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Abstract: Simulating the non-perturbative and non-Markovian dynamics of open quantum systems
is a very challenging many body problem, due to the need to evolve both the system and
its environments on an equal footing. Tensor network and matrix product states (MPS) have
emerged as powerful tools for open system models, but the numerical resources required to treat
finite-temperature environments grow extremely rapidly and limit their applications. In this study
we use time-dependent variational evolution of MPS to expore the striking theory of Tamescelli et
al. [1] that shows how finite-temperature open dyanmics can be obtained from zero temperature,
i.e. pure wave function, simulations. Using this approach, we produce a benchmark data set for the
dynamics of the Ohmic spin-boson model across a wide range of coupling and temperatures, and
also present detailed analysis of the numerical costs of simulating non-equilibrium steady states, such
as those emerging from the non-perturbative coupling of a qubit to baths at different temperatures.
Despite ever growing resource requirements, we find that converged non-perturbative results can be
obtained, and we discuss a number of recent ideas and numerical techniques that should allow wide
application of MPS to complex open quantum systems.

Keywords: Open quantum systems, Tensor networks, non-equilibrium dynamics

1. Introduction

The physics of open quantum systems (OQS) plays a critical role in almost all aspects of quantum
science [2,3], and the emergent phenomena of dephasing, decoherence and dissipation particularly
limit our ability to initialise and control multi-partite quantum states. As a direct result of this, the
development of scalable quantum technologies is greatly constrained by open system phenomena,
and understanding how irreversibility arises from microscopic system-environment interactions has
become essential for finding ways to mitigate deleterious noise effects [4]. However, alongside this
goal of suppressing dissipative noise - normally by making the systems less ‘open’ - the theory of
OQS also plays a vital role in the design of systems where the exploitation of strong energy and
information exchange between a system and its environment is desirable: this is the world of quantum
thermodynamics and nanoscale energy harvesting, storage and transduction [5-7].

Any ‘machine’ or device capable of converting ambient energy into work must necessarily be
an open system. As these machines shrink to lengths where such energetic transformations can
become few-quanta, ultra-fast events, it becomes necessary to describe their functional dynamics on
timescales over which system-environment correlations - in both space and time - may be highly
relevant [8,9]. Unlike the perturbative OQS found, for example, in atomic systems where dissipation
can be characterised by simple decay rates, quantum energy harvesting naturally focuses on the
highly non-Markovian and non-perturbative regime of OQS where the border between the ‘system’
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and ‘environment” degrees of freedom is ill-defined. Moreover, as systems capable of converting
thermal energy must also reject a certain amount of heat to a colder reservoir [7], the study of quantum
energy harvesting leads directly to a consideration of multi-environment OQS, and the extended,
inter-environmental quantum correlations that could be generated under non-equilibrium operating
conditions.

Molecular and biological light-harvesting systems provide a good example of such nanoscale
energy extraction, in which a non-thermal population of electronic excitations (excitons, charge
pairs...) appears from the molecule-mediated connection of the "hot” photon and ‘cold’ vibrational
environments. In this context, much attention has been placed on the complex physics due to the
strong coupling and non-separable timescales of electronic and environmental (vibrational) dynamics
[10-12], which include potentially exploitable effects such as transient breaking of detailed balance
[13], noise-induced electronic coherence and cooperative multi-environment effects [14,15]. In such
studies, the effect of light is normally assumed to be weak, leading to the ‘additive” approximation
that phenomenological terms describing excitation, emission and dephasing can be simply added to
the more complex equations of motion of the vibronic open system. However, organic molecules often
have very strong light-matter coupling and can show surprising non-additive effects [16,17], including
nonlinear polaritonic weakening of exciton-phonon coupling in micro-cavity systems [18].

The example above highlights the theoretical challenges posed by some energy harvesting
systems: non-perturbative and highly structured couplings, comparable dynamical timescales and
competing environmental processes. Under these conditions the dissipative dynamics of the system’s
reduced density matrix cannot be simply described by dephasing and relaxation rates: the full
real-time evolution of the system and its environments must be accounted for on an essentially equal
footing. This looks, a priori, like a hopeless task, as each environment contains a continuum of
quantum excitation modes, and the formal number of quantum states in any computation will explode
exponentially with the number of such modes. However, things are not so desperate, and two broad
responses to this problem have emerged over recent years: one branch aims to efficiently simulate
the propagators of the system’s reduced density matrix [10,19-21], the other aims at representing
and evolving the entire system-environment wave function. Important contributions in this latter
domain are Density Matrix Renormalization Group (DMRG) techniques such as the Time Evolving
Density with Orthogonal Polynomials Approach (TEDOPA) [22,23], Dissipation-Assisted Matrix
Product Factorization [24], Time-Dependent Numerical Renormalisation Group techniques and the
Multi-Layer Multi Configurational Time-Dependent Hartree method (ML-MCTDH) developed in
Chemical physics [25,26].

The key to all of the wave function methods is the observation that, given a well-defined
initial condition, the quantum dynamics generated by typical system-environment Hamiltonians
leave the state inside a much smaller sub-space of the complete Hilbert space of the problem. This
suggests that the wave function can be parameterised by a potentially tractable number of parameters,
and - as we shall see - the effectively short-range, one-dimensional structure of OQS Hamiltonians
implies that Matrix Product States (MPS) will provide an efficient and versatile format for many
system-environment wave functions. Viewed this way, the parameters (matrices) of an MPS can be
considered as variational degrees of freedom, leading to the powerful 1-site time-dependent variational
principle (1ITDVP) algorithm for efficient propagation of large wave functions in real-time [27]. This
general technique can be used in any MPS and Tree-Tensor Network problem [15], but it’s particular
utility in open-system problems has only recently been appreciated. We shall make use of this technique
in this article, but a discussion of MPS, TDVP and other computational aspects is left to the dedicated
presentations in the literature [27-30].

Instead, the key issue that we wish to explore in this study is the remarkable recent result of
Tamascelli et al. [1] that allows wave function approaches to OQS to effectively capture the effects of
finite temperature environments through the simulation of an equivalent zero-temperature proxy system.
As already discussed above, in the non-perturbative, non-Markovian regime of OQS, computing the
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evolution of the single wave function from a sharp initial condition can already be very demanding;
converging results over the astronomically large space of initial conditions in a thermal ensemble
rapidly becomes impossible. If we also wish to explore the role of non-classical effects in heat flows
between finite-temperature environments, the problem becomes exponentially worse. The access to
finite temperature properties from a single zero-temperature (pure) wave function simulation thus
opens up an entire class of powerful non-perturbative methods for the study of novel open quantum
systems. This work aims to establish the extent to which Tamascelli’s “T-TEDOPA’ theory translates
into affordable non-perturbative TDVP simulations of thermal and non-equilibrium OQS dynamics, as
well as to explore some of the non-classical and non-additive aspects of heat exchange in OQS.

This article is organised as follows. In Section 2.1 we present the spin-boson Hamiltonians that
we will simulate. Sections 2.2 & 2.3 give a summary of the T-TEDOPA theory that we will employ
in our numerical investigations. Section 2.4 then presents a careful study of the non-perturbative
spin-boson model at finite temperatures which reveals some of the practical numerical costs implicit in
this approach. Thanks to this testing, we are able to offer a freely accessible data set that can be used
as a benchmark for other numerical approaches to this model, as well as code packages that allow
users to perform their own TDVP calculations on finite-temperature open systems. In anticipation
of the need to explore non-equilibrium states in a wide range of future contexts, we go on to test
the non-perturbative physics of a two-level system (TLS) coupled to two environments at different
temperatures in Section 2.5. Exploiting the information in the many-body system-environment(s)
wave function, we examine the microscopic behaviour of the heat flows between the system and the
environments as a function of environmental coupling strength and temperature differences, and
highlight a number of non-additive effects arising from non-perturbative quantum polaron effects.
Finally, we summarise and discuss our findings in Section 3.

2. Results

2.1. Model, parameters and initial conditions

We shall base our exploration of finite temperature open dynamics on numerical simulations and
analysis of a quantum two-level system that is strongly coupled to either one or two baths of bosonic
harmonic oscillators, as illustrated in Figure 1a. The two baths are labelled 2 and b and are at different
inverse temperatures B, and By, respectively (8 = 1/ (k;T)). The system-bath Hamiltonian is given by

A

A= 702+H1+H1+HB+HB, 1)
where

Hf = ; &by + 8kiy) 2)
H} = ; 81+ gkbf) ®3)
A =Y wialay )

k
A =Y wibfby. (5)

k

The TLS is described by the standard Pauli operators o, while the 4 (b;) are bosonic anihilation
operators for harmonic modes of frequency wy in bath a(b). The corresponding creation operators are
denoted af (ZAJ;;) The k harmonic of each bath couples to the TLS with a coupling strngth denoted gy,
which we take to depend on the index k but not on 4 or b.

The spectral density of the environment is defined as J(w) = 7t 1 |¢x|?6(w — wy), where 6(x) is
the Heaviside Theta function. As a smooth, continuous function of frequency, the spectral density can
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take various forms in specific physical realisations such as electron-phonon interactions, emitter-photon
or exciton-vibration coupling in molecular systems. It is well known that the qualitative behaviour of
the TLS depends sensitively on the form of J(w), especially at low temperatures [19]. For simplicity, we
assume identical system-bath couplings for both environments and use the common linear frequency
dependence that defines an Ohmic environment w,

J(w) = 2mawd(w, — w), (6)

where « is a dimensionless coupling constant and we have introduced a hard frequency cut-off w.

The initial condition §(0) for our numerical simulations is taken to be an uncorrelated (product)
state of the spin and baths, which - because of the baths’ finite temperatures - must be described by a
mixed state, i.e. a density matrix

eiHl{;rBa e*Hgﬁb

ra pa ® & 4
Tr{e*HBﬁ } Tr{gng/Sb}

p(0) = ps © @)

where ps is some arbitrary initial density matrix for the TLS.

Remarkably, despite the initial condition containing two statistically mixed thermal density
matrices, it has recently been shown by Tamascelli et al. that the reduced dynamics of the spin can still
be obtained from a single simulation of an equivalent pure , i.e. zero temperature, system-environment
wave function [1,31]. As this result is central for generating our numerical results and our later
discussion, we shall now give a brief summary of the protocol first presented in Ref. [1].

2.2. Finite-temperature reduced dynamics from pure wave function evolution

In this section we shall closely follow the original notation and presentation of Tamascelli et al [1]
and, to simplify the presentation, we shall only consider the coupling to a single environment denoted
E. The procedure can be easily generalised to multiple environments. Our starting point is the generic
Hamiltonian for a system coupled to a bosonic environment consisting of a continuum of harmonic
oscillators

Hsg = Hs + Hg + Hj, (8)

where 0 o0
Hp = Ag ®/ dwOy, HE = / dwwal,ag. )
0 0

The Hamiltonian Hj is the free system Hamiltonian and Ag is a generic system operator which couples
to the bath. The Environment’s free Hamiltonian is given by Hg. For the bosonic bath operators we
take the displacements

Ow = \/J(w)(ac +al,), (10)

thus defining the spectral density J(w). This has been written here as an arbitrary continuous function,
but we note that the formulas can also be applied to the case of coupling to a discrete set of vibrational
modes by adding suitable structure to the spectral density, i.e. sets of lorentzian peaks or Dirac
functions [32-34].

The state of the system-+environment at time ¢ is a mixed state described by a density matrix
pse(t). The initial condition is assumed to be a product of system and environment states psg(0) =
ps(0) ® pe(0) where pg(0) is an arbitrary density matrix for the system and pg(0) = exp(—Hgp)/ Z,
with the environment partition function given by Z = Tr{exp(—Hgp)}. Such a product state is
commonly realised in non-equilibrium problems where the system is suddenly prepared or projected
into an excited state from a ground state in which the system and environment states are separable.
This type of preparation is exemplified by the Franck-Condon principle in molecular photophysics,
where the optical transition occurs without any change in the nuclear degrees of freedom, leaving the
subsequent relaxation dynamics to evolve from a product ‘initial” condition [35,36]. The environment
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thus begins in a thermal equilibrium state with inverse temperature §, and the energy levels of each
harmonic mode are statistically populated. For a very large number (continuum) of modes, the number
of possible thermal configurations grows extremely rapidly with temperature, essentially making
it impossible to obtain a converged sampling of these configurations when each instance involves
demanding wave function simulations. We briefly note that some more efficient sampling methods
involving sparse grids and/or stochastic mean-field approaches have recently been proposed and
demonstrated [37,38], as well as some effective MPS techniques for capturing finite temperature effects
in frequency domain simulations [39].

The initial thermal condition of the environmental oscillators is also a Gaussian state, for which it
is further known that the influence functional [2] - which is a full description of the influence of the
bath on the system - will depend only on the two-time correlation function of the bath operators

5() = [ dw(0(104(0)). (a1)

Any two environments with the same S(t) will have the same influence functional and thus give rise
to the same reduced system dynamics, i.e. the same pg(t) = Tr{pse(t)}. That the reduced density
matrix’s dynamics are completely specified by the spectral density and temperature of a Gaussian
environment has been known for a long time [2], but the key idea of the equivalence - and thus the
possibly of the interchange - of environments with the same correlation functions has only recently
been demonstrated by Tamascelli et al. [31].

The time dependence in eq. 11 refers to the interaction picture so that the bath operators evolve
under the free bath Hamiltonian: O, (t) = ¢£f0,,(0)e~'HE!. Using eq. 10 and (a}a,,) = ng(w) we
have

S() = [ I(@)le™ ! (1+ (@) + e ng(w)], (12)

Making use of the relation

yw=>0
L1 4 coth(wp/2)) = {”“’(ﬁ) «“ (13)
2 — (1) (B) +1),w <0
we can write eq. 12 as an integral over all positive and negative w
S(t) = /0o deign(w)@(l + coth(%ﬁ))e_i‘“t. (14)

But eq. 14 is exactly the two-time correlation function one would get if the system was coupled to a
bath, now containing positive and negative frequencies, at zero temperature! The effects of the finite,
physical temperature now appear in a new effective spectral density for the extended environment
given by
. w w
Jp(w) = S1gn(w)](|27|)(l + Coth(Tﬁ)). (15)
Thus, we find that our open system problem is completely equivalent to the one governed by the
Hamiltonian
H = Hg + HP" + HPY, (16)

in which the system couples to an extended environment, where
HPt = 459 [ dwy/Jp(@)(aq +al),
—0o0

o (17)
Hg"t:/ dwwal a,,,



Version December 19, 2020 submitted to Journal Not Specified 6 of 24

and which has the initial condition psg (0) = ps(0) ® |0) (0|. This transformed initial condition is now
far more amenable to simulation as the environment is now described by a pure, single-configuration
wave function, rather than a statistical mixed state, and so no statistical sampling is required to capture
the effects of temperature on the reduced dynamics!

Analysing the effective spectral density of Eq. 15, it can be seen that the new extended environment
has thermal detailed balance between absorption and emission processes encoded in the ratio of the
coupling strengths to the positive and negative modes in the extended Hamiltonian (see Figurelc), as
opposed to the operator statistics of a thermally occupied state of the original, physical mode, i.e.

@) lwil)s g
To(—w) ~ (abaw)s ¢ (1)

Indeed, from the system’s point of view, there is no difference between the absorption of a
quantum from a thermally occupied, positive energy bath mode and the creation (emission) of an

excitation into an unoccupied, negative energy, bath mode. The extension to negative frequencies
essentially allows the process whereby the system would be heated by the environment (absorbing
pre-existing quanta in the thermal bath) to be mimicked by spontaneous emission into a negative
energy vacuum of states, as shown in Figure 1b.

In fact, the equivalence between these two environments goes beyond the reduced system
dynamics as there exists a unitary transformation which links the extended environment to the original
thermal environment. This means that one is able to reverse the transformation and calculate thermal
expectations for the actual bosonic bath such as (a}, (#)ac(t)) p- This is particularly useful for molecular
systems in which environmental (vibrational) dynamics are also important observables that report on
the mechanisms and pathways of physio-chemical transformations [40—42]. In this article, we will use
this capability later to look at the non-equilibrium heat flows between the TLS and its environments.
This is a major advantage of many-body wave function approaches, as full information about the
environment is available, cf. effective master equation descriptions which are obtained after averaging
over the environmental state.
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@) (©)
E Js(w)

I 2 'N. <«
0 == !
(b) 0.100 :
+E 0.010 :
0.001 :
K N T _ | ‘
0+ -0.5 0.0 0.5 1.0
w/we
-E

Figure 1. (a) Two-level system (TLS) is coupled to two environments (g, b) with inverse temperatures
Ba and By. (b) The reduced state dynamics of the TLS can be obtained from a zero-temperature
simulation of an extended environment containing negative frequency excitation modes and
temperature-dependent couplings. (c) The effective spectral density Jg(w) encodes the principle
of detailed balance for absorption and emission of quanta between thermal transitions in the TLS. For
the Ohmic spectral density considered in this article, J(w) becomes flat over the entire range [—cw;, w.]
as the temperature increases (8 decreases). The plots shown are for w.f = 0.1 (Purple),w:f = 1
(Red),w:B = 10 (Green), w:B = 50 (Yellow) and w.B = 100 (Blue).
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we  2.3. Chain mapping and chain coefficients

OK

Figure 2. The positive and negative energy modes of each extended environment are mapped onto
1D chains with nearest-neighbour hopping, each coupled by their first site to the TLS with coupling
strength x. The chain parameters €, and ¢, are determined such that the eigen-modes of the chains are
the original modes of the extended environments. The 1D geometry of the transformed system and the
fact that the chain modes all start in their vacuum states, means the system-environment state can be
described by a single (pure) MPS.

Following this transformation a further step is required to facilitate efficient simulation of the
many-body system+environment wave-function. This is to apply a unitary transformation to the
bath modes which converts the star-like geometry of Hf*" into a chain-like geometry, thus allowing
the use of Matrix-Product-State (MPS) methods [11,43,44] (see Figure2). We thus define new modes
c,(;r) = [® U, (w)agr ) known as chain modes, via the unitary transformation Uy (w) = /Jp(w)pn(w)
where p,(w) are orthonormal polynomials with respect to the measure dw]g(w). Thanks to the three
term recurrence relations associated with all orthonormal polynomials p, (w) [43], only one of these
new modes, n = 1, will be coupled to the system, while all other chain modes will be coupled only to
their nearest neighbours [43]. Our interaction and bath Hamiltonians thus become

Hfhain = KAs(Cl + C-lr),

hain _ V= . .+ &t (19)
HE™™ = Y " enchen+ Y (tncycni + hec).

n=1 n=1

17z The chain coefficients appearing in eq. 19 are related to the three-term recurrence parameters of the
17e  orthonormal polynomials and can be computed using standard numerical techniques [43]. Since the
e initial state of the bath was the vacuum state, it is unaffected by the chain transformation. We briefly
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note the evolution of the asymptotic values of the chain parameters, as illustrated in Figure 3. For a
smooth spectral density with a hard cut-off, it is has been rigorously proven thate, — w./2,t;, — w./4
as n — oo [45]. Figure 3 shows the dramatic changes in these asymptotic values as the temperature
is increased, which - from the numerical results - appear to be €, — 0,f;, — w.;/2 as n — oo and
B — 0. This can be naturally understood from the behaviour of the effective spectral functions Jg(w)
with increasing temperature, as illustrated in Figurelc. The spectral functions become symmetric and
have finite values over the whole domain [—w,, w.]. The asymptotic spectrum of the chain modes
thus has a bandwidth of 2w, centred on w = 0, which, for a uniform hopping chain, requires the
numerically observed asymptotic chain parameters. In the particular case of the Ohmic environment
at high temperatures, it can easily be seen that Jg(w) tends to a constant and so will have a chain
representation derived from the classical Legendre polynomials [45].

We have thus arrived at a formulation of the problem of finite-temperature open systems in which
the many-body environmental state is initialised as a pure product of trivial ground states, whilst
the effects of thermal fluctuations and populations are encoded in the Hamiltonian chain parameters
and system-chain coupling. These parameters must be determined once for each temperature but
- in principle - the actual simulation of the many-body dynamics is now no more complex than a
zero-temperature simulation!
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Figure 3. Site energies e,; (a) and hopping amplitudes ¢, (b) as a function of chain distance # at different
environment temperatures

w7 2.4. Spin-boson model across the complete x — B space

198 In this section, we numerically verify that the finite-temperature approach set out in Sections
100 2.2 & 2.3 captures the correct non-perturbative behaviour in the single-bath spin-boson model. This
o will be illustrated with a few explicit examples, but the key result of this section is the creation of a
201 comprehensive data set for the Ohmic spin-boson model that allows arbitrary TLS initial conditions to
» be propagated in real-time and over a large area of « — 8 space. This data set has been made freely
s available online in citable form and can be used to benchmark other methods and applications [46].

208 Figure 4a,b shows the temporal decay of an initially polarised spin (03 (0)) = +1 towards thermal
s equilibrium for varying coupling strengths « and inverse temperatures . The TLS energy splitting

2

o

N
o

2

o

N
o
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was wp = 0.2w,. The key result in Figure 4b is the dependence of the thermalized spin polarization at
long times. In a simple, perturbative rate equation treatment, this final polarization would be set by
the energy gap wy and the temperature, according to the Gibbs-Boltzmann distribution

(1 — e~Pwo)
(1 + e Pwo)’
The coupling strength « would only alter the rate at which this thermal distribution is reached.

However, Figure 4a shows a growing dependence of the final polarization on the coupling strength,
suggesting a non-perturbative effect. This is indeed the case: strong coupling leads to polaron

<0'z>/8 == (20)

formation and non-perturbative renormalisation of the TLS energy gap wy. According to the variational
theory of Silbey and Harris [47], the renormalized gap w;, is approximately given by

o
W, = wy (“”) , 1)

We

in the so-called scaling limit in which w, is much larger than all other energy scales in the problem.
This renormalisation is highly non-perturbative, and can completely close the TLS energy gap at a
critical coupling a = 1 [2]. Replacing wy with the the renormalized energy gaps in Eq. 20, (0z)p is
given
wo\ TF (1— e Pur)
=— (= e T 22
(@) (cw) (1+e Peor) -

where the prefactor in accounts for the suppressed expectation values of o in the polaronic eigenbasis.

Figure 5 shows this analytical prediction as a function of temperature, compared to the results
extracted from the real-time dynamics. As mentioned above, most analytical predictions for the SBM
are obtained deep in the scaling limit, while numerical results necessarily involve only moderately
large values of w,. When comparing results, it is common in the literature to evaluate analytical
expressions with a re-scaled coupling strength & = ca to account for this [48-50], which we have
applied in Figure 5. We found that a constant factor ¢ = 0.66 gave excellent agreement across the
parameter space for both one and two-bath SBMs, as shown in the inset of Figure 5.
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@) 104 (0,(1)) -2 =G0

0.0 |

~0.5!

-1.0l

Figure 4. Relaxation of spin polarization as a function of time for (a) different temperatures and & = 0.1
and (b) different coupling strengths with a fixed w. = 100.
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60 80 100

012 013 014 015 /ch

Figure 5. Analytical prediction of thermal steady state spin polarization as a function of inverse
temperature w,p. Inset compares these predictions with steady state values extracted from the real-time
dynamics shown in Figure 4. A re-scaled coupling strength & = ca with ¢ = 0.66 has been applied
when evaluating the anaytical formula ( see main text).
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Figure 6. Long-time occupations of the modes of the extended environment, following the

0.4

<n>

o
\S)

thermalization of the TLS at various temperatures. Inset shows the total number of quanta in the
environment as a function of time (left) for different temperatures. This population grows indefinitely
at finite temperatures. The inset (right) shows the long-time ratio of the peak heights in each curve of
the main figure. These give a very good fit to the exponential dependence expected for absorption and
emission rates obeying detailed balance.

As a final set of observations in this section, we now look at the behaviour of the environment. In
Figure 6 we present the occupations of the bath modes in the extended spectral representation used
to account for finite temperatures. As anticipated in our discussion in Section 2.2, we find that at
low temperatures, the energy released from the decay of the spin is absorbed by modes with positive
frequencies matching the TLS energy gap wp. As the temperature increases, peaks appear at negative
frequencies, corresponding to the excitation of these modes due to ‘heating” of the TLS, i.e. the TLS
is thermally excited and removes energy from the environment. As a function of temperature, the
ratio of the positive and negative occupations is a very close fit to ef“0, as expected from detailed
balance. However, due to the presence of negative frequency modes, we find that the populations
in both the positive and negative frequency modes grow indefinitely during the simulation time, as
shown in the inset of Figure 6. The difference of these growing populations plateaus at a finite value,
corresponding to the thermal occupation of the physical positive-frequency mode, but care must be
taken to get converged results for long-time (steady state) quantities due to the expanding local Hilbert
spaces needed for the environment modes in the simulations.
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Figure 7. The time evolution of the von Neumann entanglement entropy for each bi-partition of the
system-environment chain at site n. The TLS is located in this example at site n = 59, with the hot bath
corresponding to sites 1 — 58 and remaining sites represent the cold bath.

Figure 7 shows the behaviour of the von-Neumann entropy obtained by bi-partitioning the total
N-site system-environment chain into chains of size n and N — n and computing the singular values
of either of the subsystems’ reduced density matrices [51]. The entanglement entropy directly reports
on the size of the bond-dimensions required to represent the state accurately in the MPS format, and
our results show that this entropy also grows continuously during the simulation. There is also a clear
asymmetry in the rate of spreading and magnitudes of entanglement, with correlations between sites
in the hot environment growing much faster. Again, these growing numerical resources for finite
temperature simulations should be handled with care, and we shall take this up again in Section 3.

2.5. Non-equilibrium heat flows

In this section we simulate the non-equilibrium dynamics of the TLS connected to two
environments at different temperatures. For clarity we will designate environment a as the ‘hot
environment and b as the ‘cold” one, using suffixes ‘c’ and ‘h’, respectively. We note here that this
elementary class of two-environment models has both wide-ranging practical applications - such
as studying heat and charge transfer in nano-devices and molecules [7,52,53], as well as being of
fundamental relevance for quantum thermodynamics, decoherence, and non-equilibrium steady states
[54-58].

Figure 8 shows the real-time excitation of a TLS initially prepared in its ground state when
connected at t = 0 to the cold environment with fixed wpB. = 100 and the ‘hot” environment
at different temperatures. Figure 9 shows the steady-state spin polarization as a function of the
temperature difference between the hot and cold baths. To understand the basic features of the steady
state, let’s consider a perturbative set of rate equations for the population of the spin-up level P;(t).

7
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Assuming that the rates of absorption and emission from each bath of TLS obey detailed balance, the
dynamics of Py (t) can be obtained from the equation

dPy(t)
dt

= TP (£) (e + 1y, +2) + T(1 = Pr(£)) (nc + my), (23)

where n; = [exp(wpB;) — 1]7! By finding the steady state population P; (o), the non-equilibrium

value of the spin polarisation (c4?(c0)) then takes the simple form

ab -1
(077 (00)) = ety 1) (24)
Once again, if renormalization effects are included, the agreement between the analytical predictions
is very good, as can be seen in Figure 9. Indeed, for the lowest temperatures, the spin dynamics are
entirely due to renormalization effects, as thermal occupation of the excited level is negligible.
Interestingly, these two-bath results also reveal an intriguing non-additive effect due to the
coupling to two environments. The subject of non-additivity of environmental interactions has recently
attracted attention due to the role of multiple environments in a wide range of ‘active’” quantum
machines, such as the conversion of ambient solar energy in room-temperature (phonon-coupled)
devices [16,17,50], and also the highly co-operative actions of different types of vibrational motion
in molecular photo physics [15]. In the present case, the non-additive effects appear in the polaronic
renormalisation, which is mostly clearly seen in the case when the two baths have the same temperature.
This situation is indistinguishable from a coupling to a single bath with twice the coupling strength.
The renormalisation can thus be obtained from Eq. 21 with the replacement & — 2a. However, the
renormalisation arises from the overlap of the displaced mode wave functions that are ‘fast’ enough to
co-tunnel with the TLS as it transitions between (0y) = +1 [47,48], and in an additive approximation
the renormalization would be simply be the product of the individual overlaps for each environment.
However, as is clear form Eq. 21, this doubling of the coupling does not lead to a simple exponential
doubling of the renormalization, but instead leads to a nonlinear suppression of the energy gap
according to the exponent 2a /(1 — 2a).
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Figure 8. Non-equilibrium relaxation of spin polarization as a function of time for fixed cold bath
temperature and varying hot bath temperatures.
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Figure 9. The change in (0 (c0)) as a function of the temperature difference between the baths (T is
kept constant). Analytical predictions are shown as dots, numerical data points as squares.
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Exploiting the access to the environmental state, we now show the transient dynamics of the
heat flow in the two baths during the establishment of the TLS steady state. We define the following
operators

Je =0y ® (Al + Ay), (25)
and
Jn =06y @ (BY + Bo), (26)

which measure the heat flux from the spin to baths 4 and b respectively. Representative heat flows
are shown in Figure 10 for large and zero differences in the bath temperatures. In both cases, the
initial dynamics involve heating from both hot and cold environments, as the spin is initially in a pure
(T = OK) ground state. As the dynamical steady state of the spin is obtained, a net heat current appears
from the hot to cold environment. This heat current vanishes as the temperature difference of the baths
is reduced, as we would expect. From the long-time solution of the Pauli master equation given in Eq.
23, the steady-state heat flux from the hot to cold environment can be shown to be
ny —ne

]_Fil—i—nh—i—nc' (27)
and this is plotted alongside our numerical data in Figure 11. The simulations correctly capture the
essentially non-linear behaviour of heat flow through the quantum ‘heat leak’ TLS, although a linear
regime where Fourier’s law of heat flow appears to hold can be clearly observed before the flows
saturate for large temperature differences.

J ror w  Je(wefn = 2)
0_015:, w Jp(weBh = 2)
Jc(wcﬁh = 100)
0.010 - ws  Jp(weBr = 100)
0.005 |
0.000/ N —
25
~0.005
~0.010"

Figure 10. Heat flows into the cold bath (J;) and out of the hot bath (J,) as a function of time for varying
hot bath temperatures and a fixed wf, = 100.
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Figure 11. Net steady-state heat flux through the two-level system as a function of temperature
difference for a fixed B = 100. Data extracted from MPS simulations (yellow squares) is compared
with the analytical expression in the main text (blue dots).

3. Discussion

The results presented in Section 2 demonstrate that accurate reduced system behaviour in
the spin-boson model can be obtained in the presence of both a single or two finite-temperature
environments. Non-perturbative effects related to system-bath entanglement (polaronic dressing)
are captured in transient relaxation and non-equilibrium steady states, and we have shown how the
T-TEDOPA transformation provides direct information related to the energy and entanglement entropy
flows in the environment. All of these results were obtained from pure wave function evolution of an
initial zero-temperature (vacuum) state, and the onerous numerical cost of having to sample over a
thermal distribution of initial states was entirely avoided.

However, we did note that the numerical resources required to obtain these results grew in an
unbounded way as a function of simulation time. In the case of the one-bath SBM, Figure 6 shows
that the total number of bosonic excitation grows approximately linearly in time and the growth rate
increases with the bath temperature. The main panel showing the populations of the environment in
frequency space shows that this growth is the result of growing populations at frequencies ~ +wjy. In
Section 2.2 we made the observation that creating an excitation in a negative frequency mode allows
the TLS to be excited with overall conservation of energy, and this is the process that accounts for the
‘heating’ expected of a finite-temperature bath. The constant growth of excitations in the environment
can be seen to arise from the constant cycling of the heating process sketched in Figure 12 (a similar
cycle for cooling also generates a net population of excitations). Here the creation of a negative
frequency excitation (or hole) excites the TLS and then is de-excited by the creation of an excitation in
the positive frequency environment.

Interestingly, this pair creation goes beyond populations: the dynamics of thermalization entangles
the positive and negative frequency environments. This is perhaps unsurprising in the context of the
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thermofield theory of De Vega et al. where the thermal entanglement properties of two-mode squeezed
states are used to create an effective finite temperature environment from two zero-temperature baths
[59]. However, for our open-system problem, it should be kept in mind that the ‘dynamics’ of the
positive and - especially - the negative modes really only provide insight into the internal workings
of the simulation. The modes and their populations are proxy ( non-physical) degrees of freedom
used to provide vacuum fluctuations that mimic the physical interactions of the system with a strictly
positive-frequency harmonic bath at finite-temperature. However, a hopefully fruitful and more
physical connection between the behaviour of the artifically extended environment inT-TEDOPA can
be made to very recent developments in the theory of MPS and tensor networks for fermionic quantum
transport. Here, non-equilibrium particle flows between reservoirs at different chemical potentials
lead to the constant creation of entangled particle-hole pairs, leading to the exponential-in-time growth
of MPS bond dimensions. However, Rams and Zwolak have recently demonstrated that a change
in basis used for certain fermionic transport simulations can greatly suppress the rapid growth of
numerical resources [60], and it would be very interesting to see how this might translate - or might to
some extent already be implemented - in our current approach to bosonic heat flow problems. Finally,
we also point out that rapid growth of bond dimensions and entanglement in non-equilibrium systems
is potentially a problem for 1TDVP simulations, as these proceed at fixed bond-dimensions. Choosing
large bond-dimensions may allow one to reach long times, but much of the simulation is likely to
run slowly, as it will be using far more resources than are necessary for most of the time. In a recent
development, Dunnett and Chin have proposed an adaptive version of ITDVP that is able to change
bond-dimensions during the course of a single simulation run, allowing the necessary resources to
be deployed as needed [61]. We thus conclude that recent insights and computational development
have opened a whole new domain of finite and multiple-temperature open system problems for wave
function techniques, and that creating numerically efficient finite-temperature simulations will inspire
further progress in tensor network theory, as applied to open systems.

4
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Figure 12. Due to the unbounded bosonic nature of the negative-frequency environment, thermal
transitions within the TLS lead to a constant creation of correlated, particle-hole-like excitations in both
environments with the same absolute energy wy.
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4. Materials and Methods

All numerical results have been obtained using software packages that are available at
https:/ /github.com/angusdunnett/MPSDynamics. The benchmark data for the Ohmic Spin-Boson
Model can be found at [46].
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