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Abstract: Algae result from a complex evolutionary history that shapes their metabolic network.
For example, these organisms can synthesize different polyunsaturated fatty acids, such as those
found in land plants and oily fish. Due to the presence of numerous double-bonds, such molecules can
be oxidized nonenzymatically, and this results in the biosynthesis of high-value bioactive metabolites
named isoprostanoids. So far, there have been only a few studies reporting isoprostanoid productions
in algae. To fill this gap, the current investigation aimed at profiling isoprostanoids by liquid
chromatography -mass spectrometry/mass spectrometry (LC-MS/MS) in four marine microalgae.
A good correlation was observed between the most abundant polyunsaturated fatty acids (PUFAs)
produced by the investigated microalgal species and their isoprostanoid profiles. No significant
variations in the content of oxidized derivatives were observed for Rhodomonas salina and Chaetoceros
gracilis under copper stress, whereas increases in the production of C18-, C20- and C22-derived
isoprostanoids were monitored in Tisochrysis lutea and Phaeodactylum tricornutum. In the presence of
hydrogen peroxide, no significant changes were observed for C. gracilis and for T. lutea, while variations
were monitored for the other two algae. This study paves the way to further studying the physiological
roles of isoprostanoids in marine microalgae and exploring these organisms as bioresources for
isoprostanoid production.

Keywords: microalgae; PUFAs; isoprostanoids; oxidative stress; micro-LC-MS/MS

1. Introduction

Marine ecosystems account for approximately half of the global primary production,
and unicellular eukaryotes, e.g., photosynthetic microalgae, as part of the phytoplankton, are major
contributors to this ocean productivity [1]. These organisms also play critical roles in the biogeochemical
cycle of many chemical elements, including carbon, nitrogen, sulfur, phosphorus and silica. Currently,
more than 35,000 species of microalgae have been described, which likely represent only a small part of
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the supposed biodiversity, since their number of species has been estimated to range between 200,000
and 800,000 [2].

Microalgae can grow mostly autotrophically but, also, heterotrophically or mixotrophically
according to culture conditions and metabolic capacities. These are related to the different environments
inhabited by these organisms, as well as their evolutionary history that shaped their network of
biochemical pathways [3]. Some microalgae exhibit high contents in proteins, lipids, sugars and
pigments, making them attractive for a number of biotechnological applications. Such potential has
been investigated for the bio-based production of a wide range of compounds for the food, feed, energy,
agriculture and health sectors [4].

Among the interesting compounds produced by microalgae are the omega-3 (ω-3 or n-3) long-chain
polyunsaturated fatty acids (n-3 PUFAs), eicosapentaenoic acid (EPA; C20: 5n-3) and docosahexaenoic
acid (DHA; C22:6n-3). While land plants and microalgae can produce the medium-chainα-linolenic acid
(ALA; C18:3n-3), only the latter organisms can convert this precursor into EPA and DHA. These three
fatty acids are considered as essential in human nutrition, because ALA cannot be synthesized de
novo by humans, and the metabolic conversion efficiency of dietary ALA into EPA and DHA is low
and insufficient to meet physiological demands [5]. These n-3 PUFAs have been shown to provide
significant benefits on human health [6,7], notably in mitigating a number of pathological conditions,
including cardiac diseases [8]. They are also important for the healthy development of the neural
system [9,10], and as such, they are necessarily included in infant formula. Very recently, it has been
proposed that dietary n-3 PUFAs selectively drive the expansion of adipocyte numbers to produce new
fat cells and store saturated fatty acids, enabling the homeostasis of healthy fat tissue [11]. At present,
marine fishes and fish oils are the main commercial sources of n-3 PUFAs. However, the suitability of
these sources of PUFAs for human consumption has been questioned, notably because of biosafety
(e.g., contents in heavy metals) and of overfishing. In addition, the current supply of n-3 PUFAs from
these traditional sources is insufficient to satisfy human nutritional requirements [12]. Therefore, new
sources of n-3 PUFAs have been investigated, such as wild-type and engineered microbes, including
microalgae [13], and the extraction of fish oil from genetically modified crops [14].

It is well-established that PUFAs are highly reactive species sensitive to oxidation because of the
presence of bis-allylic structures, in which α-hydrogen atoms are easily removed by the action of free
radicals. Some of these free radicals, named reactive oxygen species, are produced under oxidative
stress (OS) conditions and react with PUFAs to form, spontaneously through enzymatic reactions,
oxidized derivatives of PUFAs. All of these oxidized metabolites are grouped under the term oxylipins.
Most of the oxylipins studied so far are derived from the enzymatic transformation catalyzed by
enzymes such as lipoxygenases or dioxygenases. During the last two decades, it has been shown that
the nonenzymatic oxidation of PUFAs (NEO-PUFAs) leads to other valuable compounds. ALA are
precursors of phytoprostanes (PhytoPs), arachidonic acid (AA; C20: 4n-6) of isoprostanes from the
serie 2 (IsoPs, serie 2), EPA of isoprostanes from the serie 3 (IsoPs, serie 3), AdA (docosatetraenoic acid;
C22: 4n-6) of dihomo-isoprostanes and dihomo-isofurans, and DPAn-6 (docosapentaenoic acid; C22:
5n-6) and DHA of neuroprostanes (NeuroPs) (Figures 1 and 2). These NEO-PUFAs are considered to be
very good markers of OS in plants and animals. They have also been shown to act as lipid mediators,
with key functions in various cell-signaling pathways [15], and have been suggested to be potentially
beneficial for human health [16].
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Recently [17], we have investigated variations in the isoprostanoid contents of red and brown 
macroalgae after exposure to oxidative (heavy metal) stress conditions [18]. In addition, changes in 
the production of isoprostanoids derived from C18, C20 and C22 fatty acids were observed in the 
microalga Phaeodatylum tricornutum subjected to oxidative stress by cultivation under increasing 
doses of hydrogen peroxide (H2O2) [19]. This work suggested that nonenzymatic oxylipins in P. 
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Figure 2. Structure of some isoprostanoids isomers derived from n-6 PUFAs: AA (arachidonic acid),
DPAn-6 (docosapentaenoic acid) and AdA (adrenic acid).

Recently [17], we have investigated variations in the isoprostanoid contents of red and brown
macroalgae after exposure to oxidative (heavy metal) stress conditions [18]. In addition, changes in
the production of isoprostanoids derived from C18, C20 and C22 fatty acids were observed in the
microalga Phaeodatylum tricornutum subjected to oxidative stress by cultivation under increasing doses



Biomolecules 2020, 10, 1073 4 of 20

of hydrogen peroxide (H2O2) [19]. This work suggested that nonenzymatic oxylipins in P. tricornutum
may be involved in the control of important processes under various physiological and environmental
conditions. In view of these findings, and to go further in the study of the potential production of
NEO-PUFAs by algae, we were first interested in increasing our knowledge on the distribution of
NEO-PUFAs in different lineages of marine microalgae by establishing qualitative and quantitative
profiles under laboratory culture growth conditions. Based on previous analyses of fatty acids and
lipid compositions in marine microalgae and, notably, the high production of EPA and DHA by some
of them [20–22], we decided to select the four following species: the diatoms Phaeodactylum tricornutum
and Chaetoceros gracilis known to exhibit high content of EPA, the haptophyte Tisochrysis lutea that has
been shown to produce elevated amounts of ALA and DHA and the cryptophyte Rhodomonas salina that
harbors similar and high levels of EPA and DHA. Our second objective was to assess changes in the
isoprostanoid profiles of the selected microalgae under altered physiological conditions in relationship
with the exposure to oxidative stress (copper and hydrogen peroxide treatments).

2. Materials and Methods

2.1. Chemicals and Reagents

All the NEO-PUFA analytical standards, as well as the internal standard (IS) mixture (C19-16-F1t-PhytoP
and C21-15-F2t-IsoP) used to determine the calibration curve ratio, were synthesized according to
previously described procedures [23–26]. NEO-PUFA analytical standards were as follows: phytoprostanes
(9-L1-PhytoP, ent-9-L1-PhytoP, ent-16-epi-16-F1t-PhytoP, 9-F1t-PhytoP, 16-F1t-PhytoP + 9-epi-9-F1t-PhytoP,
16(RS)-16-A1-PhytoP, 16-B1-PhytoP and ent-16-B1-PhytoP); phytofurans (ent-16(RS)-9-epi-ST-∆14-10-PhytoF,
ent-9(RS)-12-epi-ST-∆10-13-PhytoF and ent-16(RS)-13-epi-ST-∆14-9-PhytoF) coming from oxidation of the C18
n-3 ALA; isoprostanes derived from the C20 n-6 AA (15-F2t-IsoP, 15-epi-15-F2t-IsoP, 5-F2t-IsoP, 5-epi-5-F2t-IsoP
and 5-F2c-IsoP); isoprostanes coming from the oxidation of C20 n-3 EPA (8-F3t-IsoP, 8-epi-8-F3t-IsoP,
18-F3t-IsoP and 18-epi-18-F3t-IsoP); dihomo-isoprostanes and dihomo-isofurans derived from the C22 n-6
AdA (ent-7(RS)-7-F2t-dihomo-IsoP and 7(RS)-ST-∆8-11-dihomo-IsoF); neuroprostanes coming from the
oxidation of C22 n-3 DHA (4(RS)-4-F4t-NeuroP, 10-F4t-NeuroP, 10-epi-10-F4t-NeuroP, 20-F4t-NeuroP and
20-epi-20-F4t-NeuroP) and those derived from the oxidation of C22 DPAn-6 (4(RS)-4-F3t-NeuroPDPAn-6).
The only exception is 16 (RS)-16-A1-PhytoP that were purchased from Cayman Chemicals (Ann Arbor,
MI, USA). Liquid chromatography – mass spectrometry (LC-MS) grade water, methanol, acetonitrile and
chloroform were obtained from Fisher Scientific (Loughborough, UK). Hexane (CHROMASOLV for high
performance liquid chromatography - HPLC), formic and acetic acid, ammonia and potassium hydroxide
(Fluka for mass spectrometry) were purchased from Sigma-Aldrich (Saint Quentin Fallavier, France).
Ethyl acetate (HPLC grade) was acquired from VWR (Fontenay-sous-bois, France). Solid-phase extraction
(SPE) cartridges Oasis MAX with mixed polymer phase (3 mL, 60 mg) were obtained from Waters (Milford,
MA, USA).

2.2. Microalgal Species

The four microalgae (Tisochrysis lutea RCC 1349, Phaeodactylum tricornutum RCC 69, Chaetoceros
gracilis and Rhodomona salina RCC 20) used in this study were obtained from the Roscoff Culture
Collection (RCC) and from the EMBRC Roscoff culture facilities for C. gracilis. This latter strain is a
kind gift from the Experimental Mollusc Hatchery of Ifremer at Argenton (France) and is cultivated for
larvae feeding (Robert et al., 2004, https://archimer.ifremer.fr/doc/2004/rapport-1546.pdf).

2.3. Cultivation of Microalgae and Oxidative Stress Treatments

Microalgae were grown in Conway medium [27], commonly used in aquaculture, at a temperature
of 18 ◦C and under a continuous light intensity of 300 µmoles m−2 s−1 for biomass production [28,29].
The volume of the culture was gradually brought, by successive subculture in increasing volumes of the
medium, to a final volume of 10 L in Nalgene flasks placed under constant aeration. Cells were harvested
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after reaching the stationary phase. After centrifugation (5000 rpm for 25 min), the supernatant was
removed, and the pellet resuspended in 2 L of 0.45 µm filtered and autoclaved natural seawater (FSW)
collected offshore at Roscoff (at a site with no direct chemical influence from the shore) and free of
organic matter. After agitation to ease resuspension, cells were spun down again for 25 min at 5000 rpm,
then resuspended as described above in a final volume of 900 mL. This suspension was split into nine
glass flasks previously washed overnight with 1% HCl to limit the Cu adsorption and rinsed with
mqH2O and FSW. The 100 mL cell volume was brought to 1 L with FSW. Three flasks were considered
as the control, three were used for copper stress (Cu(II) as CuCl2) and three for incubation in the
presence of hydrogen peroxide (H2O2).

Oxidative stress was triggered by adding Cu(II) as CuCl2 (Merck, Germany) at a final concentration
of 0.3 µM or H2O2 at 1 mM. After 24 h of incubation under the conditions described above, cells
were harvested as explained in the previous section. Supernatants were discarded, and cells were
washed one time using FWS and centrifugated before freezing in liquid nitrogen and freeze-drying.
Algal material was stored at −20 ◦C until analysis.

2.4. Preparation of Algal Samples for Lipidomic Analysis

During the preparation of samples for such analysis, we made two important observations.
First, we noticed that one sample of P. tricornutum obtained under H2O2 stress condition contained
some water after lyophilization. This sample was not considered further for extraction. In addition,
one sample of T. lutea obtained after copper stress showed significant differences in color and texture
during the extractive process when compared to the other samples. The data acquired in LC-MS/MS
for this latter sample showed numerous outliers (Grubbs’ statistical test; data not shown), which were
discarded for subsequent analysis.

A protocol similar to what was described for our previous work on macroalgae was applied for
lipidomic analysis [18]. Freeze-dried microalgal samples were coarsely reduced to powder using, first,
a Mixer Mill MM400 (Retsch®) bench top unit. Then 100 mg of powder was added in grinding matrix
tubes (lysing matrix D, MP Biochemicals, Illkirch, France) with 25 µL of BHT (butylated hydroxytoluene
1% in water) and 1 mL of MeOH. Tubes were placed in a FastPrep-24 (MP Biochemicals), and samples
were ground for 30 s at a speed of 6.5 m/s. Suspensions were transferred into a 15 mL centrifuge tube,
and 1 mL of MeOH, 4 µL of IS (1 ng/µL) and 1.5 mL of phosphate buffer (50 mM, pH 2.1, prepared
with NaH2PO4 and H3PO4) saturated in NaCl were added. Tubes were then stirred for 1 h at 20 ◦C.
Subsequently, the mixture was vortexed and centrifuged at 5000 rpm for 5 min at room temperature.
The organic phase was recovered in Pyrex tubes, and the solvent was dried under a stream of nitrogen
at 40 ◦C. Afterward, lipids were hydrolyzed with 950 µL of KOH for 30 min at 40 ◦C. After incubation,
1 mL of formic acid (FA; 40 mM, pH 4.6) was added before running the SPE separation. First, SPE
Oasis MAX cartridges were conditioned with 2 mL of MeOH and equilibrated with 2 mL of formic acid
(20 mM, pH 4.5). After loading the sample, the cartridges were successively washed with 2 mL of NH3

(2% (v/v)), 2 mL of a mixture of formic acid (20 mM):MeOH (70:30, v/v), 2 mL of hexane and, finally,
2 mL of a hexane:ethanol:acetic acid (70:29.4:0.6, v/v/v) mixture. Lastly, all samples were evaporated
to dryness under a nitrogen flow at 40 ◦C for 30 min and reconstituted in 100 µL of a mobile phase
(solvent A: water with 0.1% (v/v) of formic acid, solvent B: ACN:MeOH, 8:2 v/v with 0.1% (v/v) of
formic acid and A:B ratio 83:17) for injection.

2.5. Preparation of Samples for Analysis of Extraction Yield and Matrix Effect

Parameters related to extraction yield (EY) and matrix effect (ME) were determined for a better
description of microalgal isoprostanoid profiles. To this aim, three sets of samples were prepared.
The first one was obtained by addition of 6.4 µL of two different concentrations of a standard
mixture (36 PUFA oxidized metabolites at 0.5 and 8 ng/mL) into 100 mg of freeze-dried microalgae at
the beginning of the extraction process described above to reach concentrations of 32 and 512 ng/g,
respectively. This corresponds to the “pre-spiked samples”. For the second set of samples, extraction was
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done as explained in the previous section on 100 mg of microalgae up to the elution step. Then, eluates
were spiked with 6.4 µL of the two different concentrations of standard mixture used for the “pre-spiked
samples” and processed to complete the algal sample preparation protocol. These samples were named
“post-spiked samples”. The third set of samples consisted of standard solutions (final concentrations of
32 and 256 ng/mL) prepared in 100 µL of the mobile phase H2O:ACN:FA (83:17:0.1, v/v/v). All sets
of samples were analyzed using the LC-MS/MS system described below. The EY was calculated as
the percentage difference between peaks areas of standards in pre-spiked and post-spiked samples.
The ME was determined as the percentage difference between peak areas of standard added to the
extracted samples (post-spiked sample) and pure standards diluted into the mobile phase. The ME
and EY were calculated for each isoprostanoid and for each species.

2.6. Micro-LC-MS/MS Analysis

All LC-MS analyses were carried out using an Eksigent®MicroLC 200 Plus (Eksigent Technologies,
CA, USA) on a HALO C18 analytical column (100 * 0.5 mm, 2.7 µm; Eksigent Technologies, CA, USA)
kept at 40 ◦C. The mobile phase consisted of a binary gradient of solvent A (water with 0.1% (v/v)
of formic acid) and solvent B (ACN:MeOH, 8: 2, v/v with 0.1% (v/v) formic acid). The elution was
performed at a flow rate of 0.03 mL/min using the following gradient profile (min/%B): 0/17, 1.6/17,
2.85/21, 7.3/25, 8.8/28.5, 11/33.3, 15/40, 16.5/95 and 18.9/95 and then returned to the initial conditions.
Under these conditions, no sample contamination or sample-to-sample carryover was observed.

Mass spectrometry analyses were performed on an AB SCIEX QTRAP 5500 (Sciex Applied
Biosystems, ON, Canada). The ionization source was electrospray (ESI), and it was operated in
the negative mode. The source voltage was kept at −4.5 kV, and N2 was used as the curtain gas.
The multiple ion monitoring (MRM) of each compound was predetermined by MS/MS analysis to define
the two transitions for quantification (T1) and specification (T2) (Table S1). The analysis was conducted
by monitoring the precursor ion to the product ion (T1). Peak detection, integration and quantitative
analysis were performed by MultiQuant 3.0 software (Sciex Applied Biosystems). The quantification
of the isoprostanoids was based on calibration curves obtained from the analyte to the IS area under
the curve ratio. Linear regression of six concentrations of standards mixture (16, 32, 64, 128, 256 and
512 pg/µL) of each standard were calculated. The sensitivity of the method was evaluated through
limit of detection (LOD) and limit of quantification (LOQ) parameters, which were defined as the
lowest concentration with a signal to noise ratio above 3 and 10, respectively.

2.7. Statistical Analysis

All statistical analyses were performed with R [30], all graphics were created with different
functions of the tidyverse package [31] and all the tables with kableExtra package [32].
Analyte concentrations were compared by one-way analysis of variance (ANOVA) and post-hoc
(Tukey) test for multiple comparison using rstatix package [33]. For all analyses, the significance
threshold was 0.05 for the p-value resulting from the statistical test used.

3. Results

3.1. Analysis of Extraction Yield and Matrix Effect

The analysis of NEO-PUFAs in natural matrices is extremely challenging, requiring highly sensitive
and specific methods for their profiling and characterization. Therefore, a protocol relying on the
specific extraction of lipophilic compounds (Folch’s extraction), combined with a step of SPE to eliminate
potentially interfering substances, was implemented to obtain an extract enriched in NEO-PUFAs.
Such a protocol has proven to be efficient for similar analyses in the past [34,35]. Isoprostanoids were
subsequently separated, identified and quantified using a micro-LC-MS/MS method validated by
previous studies [36–38]. Identification relied on retention times observed during spiked experiments,
determination of molecular masses and the analysis of specific MS/MS transitions. Calibration curves
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for the calculation of the concentrations were established for 32 compounds (Table S2), as well as LODs
and LOQs. Values were found to be dependent of the type of isoprostanoids and ranged between 0.16
and 0.63 pg injected for the LODs and between 0.16 and 1.25 pg injected for the LOQs. In addition,
based on previous experiments done on macroalgae (Vigor et al., 2018), we decided to assess the
influence of the matrix effect (ME) on the extraction protocol, since this can affect the extraction yields
(EY) and/or mass ionization. Therefore, algal samples spiked with two different concentrations of a
standard mixture (SM32 or SM256) were analyzed to calculate the EY and the ME, which subsequently
enabled the determination of the efficiency of the sample processing (Table S3). The extraction yield, a
parameter specific to each compound (standards and IS), allowed the evaluation of product losses that
could happen by retention on the SPE cartridge and/or by partial elution during the washing steps.
For the majority of analytes of C. gracilis and R. salina, the apparent loss of compounds during SPE
was between 10% and 20%. The results were most often similar for the two spiked concentrations (32
and 512 ng/g). Regarding the type of compounds (PhytoPs, PhytoFs, IsoPs or NeuroPs), no specific
trend was noticed. As far as P. tricornutum and T. lutea, the calculated extraction yield was more than
100% for some analytes, corresponding probably to the coelution of a compound that presents the
same MRM transition. Note in the table the values of two or even three units considered to be outliers.
To complete this validation, the matrix effect, corresponding to an ion-suppression/enhancement of
coeluted matrix compounds, was evaluated. As for EY, ME is specific to each isoprostanoid, and there
was no similar behavior across the same class of compounds or across selected species.

For the sake of clarity, results are presented species-by-species in the next sections. In addition,
Table 1 provides a summary of the relative percentage distribution of each type of isoprostanoid
(ALA, AA and EPA; AdA, EPA, DPA and DHA) in the four species studied.

Table 1. Relative percentage distribution of each type of nonenzymatic oxidation-polyunsaturated
fatty acids (NEO-PUFAs) in C. gracilis, P. tricornutum, T. lutea and R. salina: ALA (α-linolenic acid), AA
(arachidonic acid), AdA (adrenic acid), EPA (eicosapentaenoic acid), DPAn-6 (docosapentaenoic acid)
and DHA (docosahexaenoic acid).

Microalgal
Species

Metabolites
of ALA

Metabolites
of AA

Metabolites
of AdA

Metabolites
of EPA

Metabolites
of DPA

Metabolites
of DHA

C. gracilis
CTL 0.8% 6.6% 0.4% 89.0% 0.0% 3.1%
Cu2+ 1.1% 7.4% 0.5% 87.9% 0.0% 3.0%
H2O2 0.8% 11.2% 0.4% 83.4% 0.0% 4.2%

P. tricornutum
CTL 65.5% 4.0% 1.7% 28.2% 0.0% 0.6%
Cu2+ 58.1% 4.5% 2.0% 34.8% 0.0% 0.5%
H2O2 44.8% 4.3% 1.5% 48.7% 0.0% 0.7%

T. lutea
CTL 69.5% 0.2% 0.6% 0.1% 1.9% 27.7%
Cu2+ 73.6% 0.3% 0.8% 0.1% 2.2% 23.0%
H2O2 67.9% 0.2% 0.7% 0.1% 1.7% 29.4%

R. salina
CTL 71.2% 2.4% 0.5% 18.2% 0.1% 7.4%
Cu2+ 66.7% 2.7% 0.4% 21.4% 0.2% 8.6%
H2O2 79.1% 3.5% 1.5% 12.4% 0.1% 3.4%

3.2. Rhodomonas Salina

Analysis of the isoprostanoid profile of this species revealed the presence of 35 isoprostanoids
(Table 2 and Figure S1). The concentrations of metabolites were comprised between 13.4 ng/g for
the epimers 4(RS)-4-F3t-NeuroP and 2 µg/g for 16-B1-PhytoP. The total amount of isoprostanoids in
R. salina was 10.6 µg/g.
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Table 2. Quantification of NEO-PUFAs in R. salina incubated under control, copper or H2O2 stress
conditions. Data are mean ± sd (n = 3) expressed as ng/g dry weight. NaN stands for Not a Number,
because it is an impossible value.

Component Name
CTL Cu2+ H2O2

Conc. sd Conc. sd Conc. sd

10-epi-10-F4t-NeuroP 49.6 18.1 81.2 51.5 13.2 5.03
10-F4t-NeuroP 40.0 11.9 62.5 34.3 15.1 5.99

13-epi-13-F4t-NeuroP 113 35.7 160 76.8 39.2 13.4
13-F4t-NeuroP 183 65.2 279 153 41.0 NaN

14(RS)-14-F4t-NeuroP 51.0 14.8 89.0 55.0 12.3 4.78
15-epi-15-F2t-IsoP 26.0 7.17 37.1 15.4 31.7 9.39

15-F2t-IsoP 14.0 3.78 21.9 10.1 17.3 6.42
16-B1-PhytoP 1960 96.9 2190 208 1410 844

18-F3t-IsoP 711 239 1100 575 343 142
18-epi-18-F3t-IsoP 240 63.6 393 203 174 54.9

20-epi-20-F4t-NeuroP 67.0 19.7 97.2 48.0 37.3 16.2
20-F4t-NeuroP 88.8 28.7 143.0 81.6 33.1 11.4

4(RS)-4-F3t-NeuroP 13.4 4.57 22.7 16.8 9.24 1.90
4(RS)-4-F4t-NeuroP 194 45.0 326 187 90.1 9.40

5-epi-5-F3t-IsoP 457 137 717 378 278 77.1
5(RS)-5-F2t-IsoP 70.1 17.7 107 49.0 95.7 22.3

5-F3t-IsoP 424 107 713 377 193 43.3
5-F2c-IsoP 149 31.0 222 96.2 143 34.9

7(RS)-ST-∆18-11-dihomo-IsoF 57.1 3.55 62.9 3.56 125 22.4
8-epi-8-F3t-IsoP 38.9 11.5 61.4 33,0 18.9 7.81

8-F3t-IsoP 57.3 17.0 82.0 40.2 17.0 4.21
9-epi-9-F1t-PhytoP 514 115 851 455 668 119

9-F1t-PhytoP 584 113 888 404 687 122
9-L1-PhytoP 1510 76.6 1660 172 1110 619

ent-16-epi-16-F1t-PhytoP 440 96.7 715 362 550 118
ent-16-F1t-PhytoP 311 66.4 520 284 417 81.3

ent-16(RS)-9-epi-ST-∆14-10-PhytoF 1790 173 2180 411 1290 NaN
ent-9(RS)-12-epi-ST-∆10-13-PhytoF 434 NaN 570 124 404 149

Considering the four PhytoPs corresponding to epimers 9-F1t-PhytoP, 9-epi-9-F1t-PhytoP,
16-F1t-PhytoP and 16-epi-16-F1t-PhytoP, plus two other derivatives (16-B1-PhytoP and 9-L1-PhytoP) and two
pairs of phytofuranoid forms (ent-16(RS)-9-epi-ST-∆14-10-PhytoF and ent-9(RS)-12-epi-ST-∆10-13-PhytoF),
ALA is considered as the main source of isoprostanoids in R. salina. This is confirmed when
assessing the amounts of oxidized derivatives produced for each potential precursor. Those from
ALA represent an average value of 7.6 µg/g of algal dry weight, with the 16-B1-PhytoP and the
ent-16(RS)-9-epi-ST-∆14-10-PhytoF being the most abundant (2 µg/g and 1.8 µg/g, respectively). DHA
was also inferred to produce a wide range of compounds, with up to ten stereoisomeric NeuroPs that
could be arranged by pairs. The sum of the DHA derivatives was 0.8 µg/g, i.e., approximately ten
times less than the sum of the ALA derivatives. R. salina also synthesized six EPA derivatives, again
as epimers that could be classified by pairs, which corresponded to an amount of 1.9 µg/g. Therefore,
compared to the DHA-derived isoprostanoids, the EPA products had slightly less structural diversity but
accumulated at a higher content. Among the other molecular species of interest, it is worth mentioning
those derived from AA: five representatives (15-epi-15-F2t-IsoP, 15-F2t-IsoP, 5(RS)-5-F2t-IsoP and 5-F2c-IsoP)
were identified, for a total content of 0.26 µg/g. To complete this description, other isoprostanoids were
observed, including AdA derivatives (7(RS)-ST-∆8-11-dihomo-IsoF at the level of 0.06 µg/g) and DPAn-6

derivatives (4(RS)-4-F3t-NeuroPDPAn-6 at the level of 0.01 µg/g). Based on this analysis, it is interesting to
note that, while the cryptophyte R. salina is known to produce high amounts of EPA and DHA [39–41],
the most abundant isoprostanoids were derived from the C18 ALA (71.5 % of the total amount of
PUFA-oxidized derivatives).
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After oxidative stress, no modification in the diversity of the molecules identified could be noticed.
All the compounds observed under the control condition were still present under the OS condition,
regardless of the type of stress applied. Few significant changes were observed in the content of the
35 NEO-PUFAs measured initially. In fact, based on the statistical analysis, the amount of only one
compound showed a significant increase (Table S4) between the control condition and H2O2 stress.
Indeed, it was observed that the content of the two 7(RS)-ST-∆8-11-dihomo-IsoF epimers doubled,
from 0.06 µg/g to 0.13 µg/g, after OS (Table 1). In addition, when comparing profiles obtained after
copper and peroxide hydrogen additions, differences were noted for three compounds: 8-F3t-IsoP,
ent-16(RS)-9-epi-ST-∆14-10-PhytoF and 7(RS)-ST-∆8-11-dihomo-IsoF (Figure 3).
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Figure 3. Changes in contents of selected isoprostanoids for the cryptophyte Rhodomonas salina between
the control condition (CTL) and oxidative stress (Cu2+ and H2O2) conditions. Statistically relevant
responses between the control and stress conditions (one-way ANOVA) are indicated by asterisks:
* p < 5 × 10−2 and ** p < 5 × 10−3; ns, not significant.

3.3. Tisochrysis Lutea

T. lutea has a greater diversity of compounds identified compared to the other species investigated,
with 38 isoprostanoids observed. This consisted of 16 derivatives coming from ALA oxidation, ten
derivatives from DHA, three from EPA, three from AA, four from AdA and, finally, two from DPAn-6.
Despite this increased diversity, the total amount of isoprostanoids measured in this haptophyte was
lower than what was measured in the cryptophyte R. salina, i.e., 7µg/g. The details of the oxidized PUFA
derivatives grouped by family are as follow: 4.8 µg/g from ALA, 1.9 µg/g from DHA, 0.008 µg/g from
EPA, 0.012 µg/g from AA, 0.045 µg/g from AdA and 0.135 µg/g from DPAn-6. The levels of individual
metabolites were comprised between 1.24 ng/g for 8-epi-8-F3t-IsoP and 0.988 µg/g for 16-B1-PhytoP,
which represents a 1000-fold difference and indicated that isoprostanoids can be produced at very
different ranges in this microalga species (Table 3).

The production of these molecules is in accordance with the fatty acid profile of T. lutea, since
ALA and DHA are the most abundant PUFAs measured in this alga [39,42], and the contents of their
oxidized derivatives represented 97% of the total amount of identified isoprostanoids. Taking a closer
look at the four main families of metabolites, the amounts of ALA derivatives ranged from 0.07 µg/g
(ent-9-D1t-PhytoP) to 1µg/g (16-B1-PhytoP) and those of AA derivatives from 5 ng/g (5(RS)-5-F2t-IsoP) to
6 ng/g (5-F2c-IsoP). The contents of the EPA derivatives went from 1.2 ng/g for the lowest (8-epi-8-F3t-IsoP)
to 4.5 ng/g for the highest (18-epi-18-F3t-IsoP) and, for DHA derivatives, from 0.1 µg/g for the lowest
(10-epi-10-F4t-NeuroP) to 0.5 µg/g for the highest (4(RS)-4-F4t-NeuroP).
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Table 3. Quantification of NEO-PUFAs in T. lutea incubated under control, copper or H2O2 stress
conditions. Data are mean ± sd (n = 3, except for copper stress: n = 2) expressed as ng/g dry weight.
NaN stands for Not a Number, because it is an impossible value.

Component Name
CTL Cu2+ H2O2

Conc. sd Conc. sd Conc. sd

10-epi-10-F4t-NeuroP 137 12.4 190 NaN 175 51.7
10-F4t-NeuroP 105 10.3 153 NaN 132 37.5

13-epi-13-F4t-NeuroP 282 15.4 312 NaN 334 71.2
13-F4t-NeuroP 433 33.3 505 NaN 543 125

14(RS)-14-F4t-NeuroP 132 15.8 159 NaN 167 72.9
16-B1-PhytoP 988 99.0 1010 NaN 1050 169

16(RS)-16-A1-PhytoP 324 30.2 587 NaN 348 39.3
18-F3t-IsoP 4.54 1.13 4.60 NaN 2.46 NaN

20-epi-20-F4t-NeuroP 116 15.3 213 NaN 144 33.2
20-F4t-NeuroP 203 20.8 326 NaN 256 60.0

4(RS)-4-F3t-NeuroP 135 17.5 261 NaN 138 15.3
4(RS)-4-F4t-NeuroP 515 38.7 826 NaN 601 102

5(RS)-5-F2t-IsoP 5.05 0.635 13.1 NaN 6.10 1.09
5-F2c-IsoP 6.33 NaN 19.6 NaN 9.03 0.925

7(RS)-ST-∆18-11-dihomo-IsoF 41.8 3.50 78.5 NaN 49.5 12.2
8-epi-8-F3t-IsoP 1.24 0.344 2.43 NaN 1.90 0.939

8-F3t-IsoP 2.27 0.448 4.21 NaN 3.64 0.97
9-epi-9-F1t-PhytoP 237 43.4 575 NaN 324 71.2

9-F1t-PhytoP 407 33.6 730 NaN 466 65.9
9-L1-PhytoP 727 82.2 1300 NaN 759 128

ent-16-epi-16-F1t-PhytoP 315 28.8 610 NaN 361 50.7
ent-16-F1t-PhytoP 381 20.4 682 NaN 409 66.6

ent-16(RS)-13-epi-∆14-9-PhytoF 188 18.6 402 NaN 210 21.6
ent-16(RS)-9-epi-ST-∆14-10-PhytoF 859 84.5 1810 NaN 1020 107

ent-7(RS)-7-F2t-dihomo-IsoP 3.26 0.602 13.7 NaN 4.47 1.48
ent-9-D1t-PhytoP 65.5 10.9 172 NaN 94.6 35.6

ent-9-epi-9-D1t-PhytoP 115 24.9 263 NaN 142 38.1
ent-9(RS)-12-epi-ST-∆10-13-PhytoF 221 18.9 451 NaN 251 27.4

When assessing the impact of oxidative conditions, the oxidized metabolite diversity remained
unchanged. Furthermore, no variation in the isoprostanoid content of T. lutea was monitored after
incubation in the presence of H2O2. In contrast, the copper treatment had a strong effect; the contents
of 17 among the 38 oxidized derivatives increased under this stress condition. Two compounds
were very significantly impacted, as shown by the p-values adjusted for multiples comparisons:
5-F2c-IsoP (p < 0.0005) and ent-16-epi-16-F1t-PhytoP (p < 0.001). To a lesser extent, changes in contents
of ent-16(RS)-9-epi-ST-∆14-10-PhytoF, ent-9(RS)-12-epi-ST-∆10-13-PhytoF and 4(RS)-4-F3t-NeuroPDPAn-6

were also statistically supported (p < 0.005) (Table S4). This concerned four of the six families of
NEO-PUFAs identified, i.e., those derived from ALA, EPA, DPAn-6 and AdA, while the contents of
the derivatives from EPA and DHA did not change significantly. Comparing the contents of each
of the four families between the control and copper stress condition indicated an increase by 160%,
184%, 104% and 93% for the derivatives of ALA, AA, AdA and for DPAn-6, respectively, i.e., a two to
three-fold increase in isoprostanoid contents (Figure 4). The concentration of ent-9-D1t-PhytoP, the
metabolite from ALA with the highest content in the control condition (65 ng/g), reached a value of
172 ng/g after cupric stress. Similarly, the content of 5-F2c-IsoP increased from 6 ng/g to 20 ng/g, of
ent-7(RS)-F2t-dihomo-IsoP from 3 ng/g to 14 ng/g and, of 4(RS)-4-F3t-NeuroPDPAn-6, from 135 ng/g to
260 ng/g. None of the inventoried compounds shown a decrease in contents after applying any of the
two oxidative stresses.
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Figure 4. Changes in contents of selected isoprostanoids for the haptophyte Tisochrysis lutea between
the control condition (CTL) and oxidative stress (Cu2+ and H2O2) conditions. Statistically relevant
responses between the control and stress conditions (one-way ANOVA) are indicated by asterisks:
* p < 5 × 10−2, ** p < 5 × 10−3 and *** p < 5 × 10−4; ns, not significant.
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3.4. Chaetoceros Gracilis

In this diatom, 28 different isoprostanoids were identified, derived from all the PUFAs mentioned
above, except DPAn-6, and accounted for 2.45 µg/g (Table 4).

Table 4. Quantification of NEO-PUFAs in C. gracilis incubated under control, copper or H2O2 stress.
Data are mean ± sd (n = 3) expressed as ng/g dry weight. NaN stands for Not a Number, because it is
an impossible value.

Component Name
CTL Cu2+ H2O2

Conc. sd Conc. sd Conc. sd

10-epi-10-F4t-NeuroP 5.24 0.437 6.23 1.32 5.68 NaN
10-F4t-NeuroP 3.28 0.217 3.97 0.503 8.23 8.04

13-epi-13-F4t-NeuroP 11.0 0.779 14.3 1.51 24.7 22.8
13-F4t-NeuroP 14.6 1.88 16.6 3.60 31.8 25.8

15-epi-15-F2t-IsoP 13.2 0.443 16 0.24 19.3 14.1
15-F2t-IsoP 9.32 0.449 10.8 1.24 14.7 11.0

16-B1-PhytoP 4.38 0.913 7.04 2.10 4.22 1.29
18-F3t-IsoP 635 33.5 767 NaN 1040 792

18-epi-18-F3t-IsoP 362 16.1 428 NaN 335 NaN
20-epi-20-F4t-NeuroP 9.38 0.976 10.3 NaN 15.8 11.5

20-F4t-NeuroP 10.7 2.15 10.3 2.79 17.7 13.4
4(RS)-4-F4t-NeuroP 22.7 1.62 23.2 4.11 23.9 NaN

5-epi-5-F3t-IsoP 603 26.6 661 92.3 569 NaN
5(RS)-5-F2t-IsoP 35.1 3.19 41.4 7.19 61.1 52.8

5-F3t-IsoP 471 22.2 477 80.4 493 NaN
5-F2c-IsoP 105 3.71 140 20.1 248 180

7(RS)-ST-∆18-11-dihomo-IsoF 10.8 0.754 14.2 0.802 12.9 2.66
8-epi-8-F3t-IsoP 57.5 3.01 63.7 7.63 56.0 NaN

8-F3t-IsoP 52.4 2.05 62.9 7.24 56.6 NaN
9-F1t-PhytoP 2.06 0.136 2.43 0.0889 2.83 1.29
9-L1-PhytoP 3.21 0.587 5.40 1.53 3.27 0.92

ent-16-epi-16-F1t-PhytoP 1.44 0.164 1.84 0.229 2.04 0.952
ent-16(RS)-9-epi-ST-∆14-10-PhytoF 4.44 0.354 7.08 1.33 5.51 1.59

ent-9-epi-9-D1t-PhytoP 3.96 0.347 6.51 1.02 7.54 5.75

Seven phytoprostanoids and phytofuranoides derived from ALA were observed and represented
0.019 µg/g. The concentrations ranged from 1.4 ng/g (ent-16-epi-16-F1t-PhytoP) to 4.4 ng/g
(ent-16(RS)-9-epi-ST-∆14-10-PhytoF). Eight neuroprostanoids from DHA (0.077µg/g), six EPA derivatives
(2.2 µg/g), five AA derivatives (0.16 µg/g) and two AdA derivatives (0.011 µg/g) were also
identified. DHA derivatives had contents ranging from 3.3 ng/g (10-F4t-NeuroP) to 14.6 ng/g
(13B(RS)-13-F4t-NeuroP), while EPA derivatives accumulated from 52.4 ng/g (8-epi-8-F3t-IsoP) to
535 ng/g (18-epi-18-F3t-IsoP) and AA derivatives from 9.3 ng/g (15-F2t-IsoP) to 105 ng/g (5-F2c-IsoP).
As it could be expected based on the high content of EPA found in C. gracilis [39,43,44], the most abundant
isoprostanoids identified in this species were derived from this PUFA, notably the diasteroisomer
pair 5(RS)-5-F3t-IsoP that accounted for approximately 42% (1.1 µg/g) of the total amount of oxidized
metabolites measured.

For this alga, the qualitative profile remained mostly unchanged, similarly to the amounts of the
individual molecules, between the control and the two oxidative stress conditions tested. The only
exception was for the compound 18-F3t-IsoP; it showed a slight significant difference in its concentration
under the Cu2+ stress condition, increasing from 362 ng/g to 428 ng/g (p = 0.015) (Figure 5 and Table S4).
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Component Name 
CTL Cu2+ H2O2 

Conc. sd  Conc. sd  Conc. sd  
16-B1-PhytoP 15.1 1.38 42.7 5.94 3.80 1.23 

4(RS)-4-F4t-NeuroP 1.84 0.0457 2.91 0.169 2.31 0.518 
5-epi-5-F3t-IsoP 47.1 2.74 99.9 14.0 86.6 49.4 

5-F3t-IsoP 33.7 2.07 72.9 8.36 57.9 32.4 
5-F2c-IsoP 13.0 1.02 25.2 3.05 14.2 2.78 

7(RS)-ST-Δ18-11-dihomo-IsoF 5.41 0.554 11.1 1.66 5.14 1.69 
8-epi-8-F3t-IsoP 6.72 0.759 12.0 1.83 10.8 4.19 

8-F3t-IsoP 3.92 0.304 7.99 0.911 6.92 3.48 
9-F1t-PhytoP 44.2 4.36 52.5 3.05 37.2 3.93 
9-L1-PhytoP 12.3 1.13 34.0 4.63 3.25 0.846 

ent-16-epi-16-F1t-PhytoP 31.5 3.19 37.1 2.10 26.3 2.54 
ent-16-F1t-PhytoP 81.0 8.05 90.9 4.69 67.3 7.15 

ent-16(RS)-13-epi-Δ14-9-PhytoF 2.64 0.312 7.01 NaN 1.06 0.268 
ent-16(RS)-9-epi-ST-Δ14-10-PhytoF 20.2 2.46 44.0 4.61 5.78 1.94 

ent-9-epi-9-D1t-PhytoP 0.918 0.182 2.40 0.392 0.783 0.426 
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Figure 5. Changes in content of selected isoprostanoids for the diatom Chaetoceros gracilis between
the control condition (CTL) and oxidative stress (Cu2+ and H2O2) conditions. Statistically relevant
responses between the control and stress conditions (one-way ANOVA) are indicated by asterisks:
* p < 5 × 10−2 and ** p < 5 × 10−3; ns, not significant.

3.5. Phaeodactylum Tricornutum

In this diatom, 21 different oxidized metabolites were identified and quantified, for a total of
0.32 µg/g. No derivatives of DPAn-6 were observed under any conditions. ALA derivatives represented
the main isoprostanoids in term of diversity with 12 metabolites (six PhytoPs and six PhytoFs) and,
also, in terms of the content (0.21 µg/g, i.e., 66% of the total amount). Concentrations of ALA-oxidized
metabolites were comprised within a range of 2.6 ng/g (with ent-16(RS)-13-epi-ST-∆14-9-PhytoF)
to 44.2 ng/g (9-F1t-PhytoP). The second-most abundant derivatives were produced from EPA,
with four metabolites that accounted for 0.09 µg/g. The dynamic range was from 1.2 ng/g for
8-epi-8-F3t-IsoP to 47 ng/g for (5(R)-5-F3t-IsoP. One single isoprostanoid from AA was identified
(5-F2c-IsoP; 13 ng/g), two from AdA (7(RS)-ST-∆8-11-dihomo-IsoF epimers; 5 ng/g) and, finally, two
from DHA (4(RS)-4-F4t-NeuroP epimers; 2 ng/g). No oxidized derivatives of DPAn-6 were found, as
previously stated for the other diatom, C. gracilis (Table 5). As already mentioned for T. lutea and
C. gracilis, P. tricornutum produced isoprostanoids in accordance with its PUFA profile that contained
mainly ALA and EPA [39,45].

Table 5. Quantification of NEO-PUFAs in P. tricornutum incubated under control, copper or H2O2 stress
conditions. Data are mean ± sd (n = 3) expressed as ng/g dry weight. NaN stands for Not a Number,
because they are impossible values.

Component Name
CTL Cu2+ H2O2

Conc. sd Conc. sd Conc. sd

16-B1-PhytoP 15.1 1.38 42.7 5.94 3.80 1.23
4(RS)-4-F4t-NeuroP 1.84 0.0457 2.91 0.169 2.31 0.518

5-epi-5-F3t-IsoP 47.1 2.74 99.9 14.0 86.6 49.4
5-F3t-IsoP 33.7 2.07 72.9 8.36 57.9 32.4
5-F2c-IsoP 13.0 1.02 25.2 3.05 14.2 2.78

7(RS)-ST-∆18-11-dihomo-IsoF 5.41 0.554 11.1 1.66 5.14 1.69
8-epi-8-F3t-IsoP 6.72 0.759 12.0 1.83 10.8 4.19

8-F3t-IsoP 3.92 0.304 7.99 0.911 6.92 3.48
9-F1t-PhytoP 44.2 4.36 52.5 3.05 37.2 3.93
9-L1-PhytoP 12.3 1.13 34.0 4.63 3.25 0.846

ent-16-epi-16-F1t-PhytoP 31.5 3.19 37.1 2.10 26.3 2.54
ent-16-F1t-PhytoP 81.0 8.05 90.9 4.69 67.3 7.15

ent-16(RS)-13-epi-∆14-9-PhytoF 2.64 0.312 7.01 NaN 1.06 0.268
ent-16(RS)-9-epi-ST-∆14-10-PhytoF 20.2 2.46 44.0 4.61 5.78 1.94

ent-9-epi-9-D1t-PhytoP 0.918 0.182 2.40 0.392 0.783 0.426
ent-9(RS)-12-epi-ST-∆10-13-PhytoF 4.53 0.744 11.7 1.65 3.58 0.882

The isoprostanoid profile of the diatom P. tricornutum was strongly influenced by the copper
treatment, in contrast to what was observed for the other diatom, C. gracilis (Figure 6).
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Figure 6. Changes in contents of selected isoprostanoids for the diatom Phaeodactylum tricornutum
between the control condition (CTL) and oxidative stress (Cu2+ and H2O2) conditions. Statistically
relevant responses between the control and stress conditions (one-way ANOVA) are indicated by
asterisks: * p < 5 × 10−2, ** p < 5 × 10−3, *** p < 5 × 10−4 and **** p < 1 × 10−4; ns, not significant.

A significant increase in the content of 14 metabolites among the 21 identified was observed
(Table S4). This was particularly significant for ent-16(RS)-13-epi-ST-∆14-9-PhytoF (p < 0.00005),
with a concentration of 2.6 ng/g in the control condition and 7 ng/g under the copper
stress condition. Compounds 16-B1-PhytoP, 9-L1-PhytoP, ent-16(RS)-9-epi-ST-∆14-10-PhytoF and
ent-9(RS)-12-epi-ST-∆10-13-PhytoF were also strongly impacted by copper, with significant modifications
in the contents (p < 0.0005). The concentrations of these different metabolites increased from 15 ng/g
to 43 ng/g, 12 ng/g to 34 ng/g, 20 ng/g to 44 ng/g and 4.5 ng/g to 12 ng/g, respectively. The amounts
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of the derivatives of ALA were enhanced by 94%, of AA by 94%, of AdA by 105% and of DHA by
58%, representing, on average, a two-fold increase in the isoprostanoid contents. No changes in
the isoprostanoids for which EPA is the precursor was observed. No metabolite showed a decrease
in contents.

Surprisingly, we monitored the lower levels of the isoprostanoids under H2O2 stress compared
to the control condition for P. tricornutum. The contents of the two epimer series derived from ALA
oxidation, ent-16(RS)-13-epi-ST-∆14-9-PhytoF and ent-16(RS)-9-epi-ST-∆14-10-PhytoF, decreased by
factors of two and four, respectively (p < 0.005). In the same vein, the amounts of 16-B1-PhytoP and
9-L1-PhytoP were four times lower under the H2O2 stress condition compared to the control (p < 0.05).

4. Discussion

There is an increasing interest in studying oxylipin metabolism in marine microalgae. This is
supported by recent publications describing profiles of enzymatically produced oxidized derivatives
of PUFAs and their potential physiological roles [17,46–49]. So far, little emphasis has been put on
biosynthesis, by eukaryotic phytoplankton, of isoprostanoids, i.e., oxylipins produced nonenzymatically
by a reaction of ROS with the double-bonds of PUFAs. In this context, and to our knowledge, the
current study is the first to report the production of phytoprostanes, phytofurans, isoprostanes (serie 2
and 3) and neuroprostanes, all derived from PUFA precursors that include ALA, AdA, EPA, DPAn-6

and DHA, in the cryptophyte R. salina, the haptophyte T. lutea and the diatom C. gracilis. In addition,
it extends the repertoire of isoprostanoids recently published for another diatom, P. tricornutun [19].
Under laboratory culture growth conditions, a good correlation between the presence of PUFAs and
the biosynthesis of NEO-PUFAs was observed. We have already noticed this in our previous study on
macroalgae, notably with the Rhodophyta species Grateloupia turuturu Yamada, known to be rich in
AA and which produced significant amounts of oxidized AA metabolites [18]. The four microalgae
investigated in the present study exhibited different levels of diversity, as well as marked differences in
the amounts of isoprostanoids produced. A high content of ALA derivatives was quantified in R. salina.
The diatom P. tricornutum, which appeared to contain lower amounts of oxidized derivatives compared
to the other microalgae used, was mostly rich in AA derivatives. The diatoms C. gracilis showed profiles
rich in NEO-PUFAs produced from EPA. High contents of ALA and DHA derivatives were identified
in T. lutea. After exposure to oxidative stress conditions, changes in the diversity and amounts of
isoprostanoids produced were species and stress-dependent. Under copper stress, no strong variations
were observed in R. salina and C. gracilis, whereas a significant increase in the production of C18-, C20-
and C22-derived isoprostanoids was monitored in T. lutea. and P. tricornutum. H2O2 stress had different
impacts. NEO-PUFA concentrations remained unchanged for C. gracilis and T. lutea, whereas profiles
and contents were altered in R. salina and P. tricornutum, notably for the ALA-oxidized derivatives.
Changes in phytoprostanes derived from ALA have been recently observed in this latter alga under a
H2O2 treatment slightly different from the condition considered in our analysis (1 mM for 24 h), i.e.,
0.25 and 0.75 mM of H2O2 applied during 48 h [19]. Interestingly, this study identified a number of
isoprostanoids derived from ALA, ARA, EPA and DHA, which levels were differentially affected after
oxidative stress. The authors have studied the influence of nine synthetic isoprostanoids, applied in
the micromolar range, on the physiology and lipid metabolism of P. tricornutum. They observed an
induction of the accumulation of triacylglycerols (storage lipids) and a reduction of growth without the
alteration of photosynthesis. Such a study, describing the characterization of nonenzymatic oxylipins
in P. tricornutum and suggesting physiological roles for these molecules, paved the way to better
understand their importance in the biology of marine microalgae.

In the context of research on microalgal biorefinery, numerous studies were conducted on culture
parameters and have been shown to impact the production of PUFAs, such as light [50], macronutrient
depletion [51,52], temperature [53] or salinity [54]. Nitrogen depletion or salinity stress, for instance,
were shown to induce oxidative stress and significant changes in PUFA productions [51], but little is
known about the impacts of these abiotic parameters on oxidized PUFA derivatives. Under laboratory
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culture growth conditions, our study showed that isoprostanoid profiles present good correlations
with PUFA contents, and that their production could be increased in T. lutea, P. tricornutum and R. salina
by applying direct oxidative stress, either through a copper or H2O2 addition. According to previous
studies on lipid metabolism regulation, these results suggest that culture condition manipulation
could also be an interesting field to be explored for improving the biotechnological production of
microalgal isoprostanoids.

From a more methodological point of view, it is worth underlining the sensitivity of the
measurements, since we have managed to measure metabolites present in very small quantities. Indeed,
considering the case of P. tricornutum and of its lowest represented isoprostanoid (8-epi-8-F3t-IsoP)
presents at approximately 1 ng/g, it is satisfying to detect and reliably quantify molecules at such
very low levels. With LODs ranging between 0.16 ng/g and 0.63 ng/g and LOQs comprised between
0.16 ng/g and 1.25 pg/g, we can consider the method as sensitive. Interestingly, these low detection
limits enabled to detect and quantify a great diversity of metabolites. To our knowledge, the 38
oxidized metabolites detected in T. lutea represent the highest diversity of isoprostanoids identified
from a given organism so far, including plants and animals. This number of 38 isoprostanoids is
close to the number of molecules for which we currently have standards for our targeted lipidomics
method (47 metabolites). However, we cannot ensure that these undetected compounds were absent.
Some of the missing metabolites may be present in amounts lower than our LODs/LODs or may be
produced but masked by other molecules from the matrix. To overcome these two issues, it is possible
to foresee improving the sample preparation and, also, the chromatographic procedure by working on
the choice of column, solvents and gradient. Furthermore, it is important to emphasize that more than
38 isoprostanoids may be present in the microalgae studied but could not be identified, because our
analysis is based on a targeted lipidomics approach and, thus, only detects the metabolites present
in the analytical method. Therefore, we think it is important to consider extending the library of
isoprostanoid/oxylipin standards through the synthesis of new molecules by chemists, as well as to
adopt an untargeted lipidomics method [55,56] to expand the investigation of algal isoprostanoids in
the future. Another important observation is that there is a very large difference in the concentrations
of NEO-PUFAs in the four species investigated, although this can be partly smoothed out by applying
the correction factors of the extraction yield and matrix effect.

Finally, recent studies have shown promising biological activities for PhytoPs, IsoPs and
NeuroPs [16,57]. For instance, Minghetti et al. showed the ability of the phytoprostane B1-PhytoP,
through novel mechanisms involving PPAR-γ, to specifically affect immature brain cells, such as
neuroblasts and oligodendrocyte progenitors, thereby conferring neuroprotection against oxidant
injury and promoting myelination [58]. Duda et al. showed the role, also as lipid mediator, of some
phytoprostanes in the immediate effector phase of allergic inflammation [38]. More recently, the work
of Lee et al. put forward the hypothesis of the neuroprotective effect of 4-F4t-NeuroP in cellular
and animal models [59]. Early studies on the cardiovascular system demonstrated that AA-oxidized
derivatives induced platelet aggregation or showed a hypertensive effect [60,61]. More recent studies
showed that IsoPs and NeuroPs have beneficial effects in cardiovascular disease. Indeed, Leguennec et
al. revealed that the lipid mediator 4-F4t-NeuroP derived from the nonenzymatic peroxidation of DHA
has an antiarrhythmic effect in ventricular cardiomyocytes and in post-myocardial infarcted mice [62].
They also demonstrated the capability of such derivatives to prevent and protect rat myocardium
from reperfusion damages following occlusion (ischemia) [63]. Due to high amounts quantified in
some of the tested microalgae, especially after copper exposure, it may be worth exploring these
organisms as a potential natural resource for the production of isoprostanoids. The extraction of
these NEO-PUFAs from marine microalgae could be an interesting alternative to current productions
by complex chemical syntheses, as are macroalgae. In this context, further works should focus on
assessing how culture conditions alter the isoprostanoid contents and diversity in selected algae
towards enhancing productions for future extractions from natural resources.
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5. Conclusions

The current investigation aimed at profiling isoprostanoids by micro-LC-MS/MS in selected
marine microalgae belonging to different lineages: the cryptophyte Rhodomonas salina, the haptophyte
Tisochrysis lutea and the diatoms Phaeodactylum tricornutum and Chaetoceros gracilis. To our knowledge,
this is the first report of such a wide variety of NEO-PUFAs produced in microalgae. For instance, our
analysis allowed the detection of PUFA-oxidized derivatives never reported so far, and we detected
no less than 38 different metabolites in T. lutea. Our study is also the first to establish a link between
significant changes in the isoprostanoid profiles of some selected microalgae and heavy metal stress.
It also highlights the impact of hydrogen peroxide stress on NEO-PUFAs in some cases. Based on recent
studies showing promising biological activities for NEO-PUFAs and due to high amounts quantified
in some of the tested microalgae, further works should focus on assessing how manipulating culture
conditions could enhance the production of isoprostanoids in selected species, notably by targeting the
PUFA biosynthetic pathways.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-273X/10/7/1073/s1:
Figure S1: Chromatogram of selected reaction monitoring (SRM) of metabolites detected in Chaetoceros gracilis.
Figure S2: Distribution of oxidized metabolites (sum of concentrations) classified according to the original PUFAs
in the four species studied. Table S1: Selected reaction monitoring (SRM) of the isoprostanes derived from
polyunsaturated fatty acids. Table S2: Standards calibration curves. Table S3: Determination of the matrix effect
and extraction efficiency for isoprostanoid extractions from the four species studied: (a) P. tricornutum and T. lutea
and (b) C. gracilis and R. salina. Each data point is the mean of six replicates. Table S4: Statistical results expressed
with one-way ANOVA and a post-hoc test analysis for the four species studied. Statistically relevant responses
between the control and stress conditions (one-way ANOVA) are indicated by asterisks: * p < 5 × 10−2, ** p < 5 ×
10−3 and *** p < 5 × 10−4; ns, not significant.
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