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On the Greenhouse Effect

Claude Bardos∗ & Olivier Pironneau†

January 13, 2021

Abstract

Radiative transfer is at the heart of the mechanism to explain the greenhouse effect due to carbon
dioxide, methane and others in the earth atmosphere. We revisit this much studied field from a mathe-
matical and numerical point of view. Existence and uniqueness and semi-analytic solutions of the Milne
problem for grey atmospheres are stated. Numerical simulations are given for grey and non grey at-
mosphere and applied to the greenhouse effect. It is found that greenhouse gases are indeed capable of
making the earth temperature 1 or 2oC hotter, even without taking into account the complexity of a full
ocean-atmosphere-biosphere climate model.

1 Introduction

The greenhouse effect is an important element of the current theory of climate change. Some gases in the
earth atmosphere like carbon dioxide C02 and methane CH4 absorb infrared rays and thus contribute to
a global warming of our planet. As explained in [1], [17] and [9] the sun radiates light with a heat flux
Q0 = 1370Watt/m2, in the frequency range (0.5,20)1014 corresponding approximately to a black body at
temperature of 5800K; 70-75% of this light intensity reaches the ground because the atmosphere is almost
transparent to this spectrum but about 30% is reflected by the clouds or the ground (albedo).

The earth behaves almost like a black body at temperature Te = 288K and as such radiates rays of
frequencies ν in the infrared spectrum (0.03,0.6)1014.

So both the sun and the earth are approximate black bodies. The Planck theory says that a black body
at temperature T radiates electromagnetic waves in the entire frequency spectrum ν ∈ R+ with intensities
given by the Planck function:

ν ∈ R+ ↦ Bν(T ) = 2h̵ν3

c2[e h̵νkT − 1]
(1)

where h̵ is the Planck constant, c is the speed of light and k is the Boltzmann constant.
A major discrepancy between reality and the black body theory for earth is shown on fig 2. It is due

to the absorption power of CO2, H2O, O3, CH4, etc, in the infrared range. Figure 1 gives the transmission
coefficients κnu for some gas (a tranparent gas has κν = 1 ,and zero if it is opaque.) Consequently the
infrared light emitted by earth, seen from far, has a defect of energy in its spectrum; the energy defect is
changed to heat: it is the greenhouse effect.

In this article we propose a mathematical and numerical investigation to quantify this phenomenon.
Photons travel at the speed of light; energy balance can thus be assumed instantaneous. The atmosphere

is affected by wind, rain, chemistry, etc, but at a very different time-scale; it is believed – and to some extent
demonstrated, (see [9]) – that even if all these other phenomena are ignored, still the greenhouse effect is
sufficient to explain partially global warming. Consequently, in the article, we restrict the analysis to the
energy conservation equations for the radiative intensity and the temperature, equations (3) and (4) below.

∗claude.bardos@gmail.fr, LJLL, Université de Paris, France.
†olivier.pironneau@sorbonne-universite.fr, LJLL, Sorbonne Université, Paris, France.
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Figure 1: Absorption coefficient κν of several gases of
the earth atmosphere show in the range of frequencies
of interest, but versus wave length (speed of light /ν).
(reprinted from wikipedia).

Figure 2: The thermal infrared emission spectrum of
the Sahara, as recorded from deep space by the Mars
Global Surveyor (MGS) Spacecraft in November 1996,
(reprinted from xylenepower.com.)

Radiative transfers have been studied by astronomers and nuclear physicists. Their work are summarized
in [12] and [14]. Mathematical analysis are also numerous and we send the readers to [8], [10] and [25].

More recently, for obvious reasons, there is a regain of interest in numerical simulations of radiative
transfers. Among others the reader is sent to [21],[18], [19],[20], [23]. However we are not aware of a
simulation of the very specific greenhouse gases (GHG) effect, as presented here.

2 The fundamental equations

Let Iν(x, ω) be the intensity of the radiation of frequency ν in the direction ω at point x of the physical
domain Ω. The average operator on the unit sphere S2 is denoted by ∮ ; for instance,

∮ Iν(ω)dω ∶=
1

4π
∫
S2
Iν(ω)dω. (2)

Let T (x) be the temperature . Energy balance (see [14],[9]) yields,

ω ⋅ ∇Iν + ρκνaν [Iν − ∮ p(ω,ω′)Iν(ω′)dω′] = ρκν(1 − aν)[Bν(T ) − Iν], (3)

−κT∆T = ∇ ⋅ ∫
∞

0
∮ Iν(ω′)ω′dω′dν. (4)

Here, ρ(x) is the density of the medium, κν is the absorption coefficient (percentage absorbed per unit
length), aν is the scattering coefficient; p(ω,ω′) is the probability that a ray in the direction ω′ scatter in
the direction ω; both κν and aν usually depend on ν, and even x. The constant κT is the thermal diffusion.

As usual, boundary conditions have to be given. For the temperature we may prescribe its normal
derivative to be zero for all x ∈ ∂Ω. The equation for the intensity being a first order “kinetic” equation, Iν
must be given where particles penetrate the domain Ω. Therefore with n(x) being the outward normal to
the boundary ∂Ω one denotes by

Σ+ = {(x, ω) ∈ ∂Ω × S2} with n(x) ⋅ ω > 0 , Σ− = {(x, ω) ∈ ∂Ω × S2} with n(x) ⋅ ω < 0 . (5)

In most case no boundary condition is given on Σ+ while a boundary condition is prescribed on Σ− i.e. on
the incoming flux of particles. Alternatively one can also (see below) use on Σ− some of the information
arriving on Σ+ .
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2.1 Isotropic scattering

When p(ω,ω′) ≡ 1, the equations can be simplified due to the following

Proposition 1

∇ ⋅ ∫
S2
Iν(ω)ωdω = ρκν(1 − aν) (4πBν(T ) − ∫

S2
Iν(ω)dω) . (6)

Proof. It is shown by averaging (3) on S2 as in (2).

Corollary 1 The temperature equation which is normally written with a flux of radiative energy (4), can
also be recast as (7):

−κT∆T − ∫
∞

0
ρκν(1 − aν) (Bν(T ) − ∮ Iν(ω)dω)dν = 0. (7)

Corollary 2 If the thermal diffusion κT is neglected in (7), then

∫
∞

0
κν(1 − aν)Bνdν = ∫

∞

0
κν(1 − aν)∮ Iν(ω)dωdν. (8)

Remark 1 When κν and aν are constant, (8) leads to the Stefan-Blotzmann law

σbT
4 = ∫

∞

0
∮ Iν(ω)dωdν, with σb =

2h̵

15c2
(kπ
h̵

)
4

. (9)

Some proofs concerning the existence, uniqueness and stability for solutions of simplified versions of this
problem appear below. The most general case is discussed in the conclusion with relevant and updated
references.

3 One dimensional Approximations

Proposition 2 Consider (3),(7) in a vertical slab Ω = (0,H) × R2. Assume that the boundary conditions
at x = (x, y, z) are independent of y, z, and assume isotropic scattering (p ≡ 1). Then, the solution depends
only on x and µ = cosφ = ω ⋅ n; Iν(x, ω) = I ′ν(x,µ) is given by: for all x ∈ (0,H), µ ∈ (−1,1),

µ∂xI
′
ν + ρκνaν (I ′ν −

1

2
∫

1

−1
I ′ν(x,µ)dµ) + ρκν(1 − aν)[I ′ν −Bν] = 0, (10)

Proof. : Both problems (3),(7)) and (10) have one and only one solution. Let us show that Iν(x, y,ω1, ω2) =
I ′ν(x, cosφ) is a solution of (3),(7)) when I ′ν is a solution of (10).

Let t be the direction of the projection of ω on the plan P of the slab boundary. Iν is invariant in t.
Hence with ω = {ω1, ω2} = {cosφ, sinφ}T ,

ω∇Iν = ω1∂xIν + ω2∂tIν = cosφ∂xI
′
ν + sinφ∂tI

′
ν = cosφ∂xI

′
ν + 0 = µ∂xI ′ν .

1

4π
∫
S2
Iν(x,µ)dω = 1

4π
∫

2π

0
∫

π

−π
I ′ν(x, cosφ)(− sinφ)dφdψ = 1

2
∫

1

−1
I ′ν(x,µ)dµ.

◻

Corollary 3 If light hits the right vertical boundary at a constant angle θ and intensity Qν = Q0Q̃ν and
there is total light absorption on the upper half right boundary, i.e.

I ′ν(H,µ) = 0,∀µ ∈ (−1,0), I ′ν(0, µ) = µQν cos θ,∀µ ∈ (0,1), (11)

then I ′ is uniquely defined by (10)(11) and it is proportional to Q0 cos θ.
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Remark 2 Boundary conditions (11) will be used throughout below. It is important to understand
their implications. First it assumes that an horizontal beam of energy Q0 hitting a plan with an the angle
θ with the normal, is the same as a vertical beam of intensity Q0 cos θ.

Hence to compute T at all points of planet earth, one needs only to compute it at the point of intersection
of the sphere and the sun-earth line and then multiply by cos θ. Reality is definitely more complex because
this theory implies that the earth temperature at night is zero Kelvin!.

In (11) the sun is on the right of planet earth and sunlight crosses the earth atmosphere without interaction
till it hits the ground. The intensity of light emitted by the ground at an angle φ is proportional to Q0 cos θ,
and to cosφ.

Finally condition (11) implies that nothing returns to space on the dark side of the light direction φ, i.e.
φ > π

2
.

Note . We focus on the interaction between temperature and light intensity; hence for clarity we neglect
the scattering, i.e. aν = 0. Note however that much of what is derived below apply also in case of isotropic
scattering.

3.1 Spherical symmetry

Consider a spherical planet receiving light rays from a direction i. The planet’s radius is R and its atmosphere
is Ω = {x ∈ R3, ∣R∣ < ∣x∣ < R +H} . Let us use spherical coordinates: r = ∣x∣ −R , ψ the azimuthal angle with
respect to an axis parallel to the rays i, and θ the latitude angle. Invariance with respect to ψ and a similar
argument as above (see [12]) leads to the Chandrasekhar correction:

µ
∂Īν
∂r

+ 1 − µ2

R + r
∂Īν
∂µ

+ κνρ (Īν −Bν(T )) = 0, ∀r, µ, ν ∈ (0,H) × (−1,1) ×R+. (12)

and if thermal diffusion is neglected:

∫
∞

0
ρκν (Bν(T ) − 1

2
∫

1

−1
Īνdµ)dν = 0, ∀r ∈ (0,H). (13)

Note that no additional boundary condition to (11) is needed because 1 − µ2 is zero at µ = ±1.
These “Chandrasekhar equations” can be adimentionalised by introducing a length scale λ, scaling factors

for B, ν and ρ and set: r = r̃λ, R = R̃λ and H = H̃λ, ρ = ρ0ρ̃ and B = B0B̃. Then we may rewrite the above
and its boundary conditions as :

µ
∂Ĩν
∂r̃

+ 1 − µ2

R̃ + r̃
∂Ĩν
∂µ

+ κ̃ν ρ̃ (Ĩν − B̃ν(T̃ )) = 0, ∫
∞

0
κ̃ν (B̃ν(T̃ ) − 1

2
∫

1

−1
Ĩνdµ)dν̃ = 0,

Ĩν(H,µ) = 0,∀µ ∈ (−1,0), Ĩν(0, µ) = µB−1
0 Qν cos θ,∀µ ∈ (0,1) (14)

with

κ̃ν = λρ0κν , B̃ = B−1
0

2hν3
0

c2
ν̃3

e
ν̃
T̃ − 1

, T = h̵ν0

k
T̃ , Īν = B0Ĩν . (15)

3.2 Evanescent atmosphere

When ρ = ρ0e
−r̃, we make a last change of variable (analogous to the optical depth introduced in physics) to

cope with that exponentially rarefying atmosphere: (r, µ)→ (τ ∶= 1− e−r̃, µ). Then, with Z = 1− e−H̃ , for all
τ, µ, ν ∈ (0, Z) × (−1,1) ×R+,

µ
∂Ĩν
∂τ

+ γ(τ, µ)∂Ĩν
∂µ

+ κ̃ν (Ĩν − B̃ν) = 0, ∫
∞

0
κ̃ν (B̃ν(T ) − 1

2
∫

1

−1
Īνdµ)dν̃ = 0.
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Ĩν(Z,µ) = 0,∀µ ∈ (−1,0), Ĩν(0, µ) = µQ̃ν ,∀µ ∈ (0,1), (16)

where Q̃ν = Qν cos θ/B0. The Chandrasekhar correction is

γ(τ, µ) = 1 − µ2

(1 − τ)(R̃ − log(1 − τ))
(17)

Remark 3 For clarity, from now on, we drop the tildes.

3.3 Grey atmosphere

By definition, in a grey atmosphere (Fowler [9] p70), nothing depends on ν. If in addition the thermal
diffusion is neglected, i.e. κT = 0, then the total radiation intensity, I = ∫

∞
0 Iνdν, is given by (11) and

µ∂xI + γ∂µI = ρκ[B − I] with B = ∫
∞

0
Bν(T )dν = 1

2
∫

1

−1
Idµ. (18)

Temperature is recovered from B = σbT 4.

3.4 The multi-groups problem

In numerical computations one replace the continuous dependance of the frequency Iν by a finite set of
frequencies Ik and this is also the case for climate modelling.

Hence one introduces Ik the intensity of photons with frequency νk and write the system: for k = 1..N ,

µ
∂Ik
∂τ

+ γ(τ, µ)∂Ik
∂µ

+ κνk (Ik −Bνk(T )) = 0, ∑
k

κνk (Bνk(T ) − 1

2
∫

1

−1
Īkdµ)dν = 0.

Ik(Z,µ) = 0,∀µ ∈ (−1,0), Ik(0, µ) = µQνk ,∀µ ∈ (0,1). (19)

Recall that T , which is a function of τ only, couples all the Ik.
This formulation will be used in the numerical section 7.

3.5 The Milne problem

When γ is neglected in (18), the problem is known as Milne’s problem in Ω = (0, Z) × (−1,1):

µ
∂I

∂τ
+ κ(I − 1

2
∫

1

−1
Idµ) = 0, ∀τ, µ ∈ Ω, I(Z,µ) = gH , ∀µ ∈ (−1,0), I(0, µ) = µ, ∀µ ∈ (0,1). (20)

where κ = κνρ is constant.

4 More about the Milne problem

Emphasis on the Milne problem is motivated by the two following facts.

• It correspond to a local in space description of the atmosphere say of eight H because for R large
compared to H the Chandrasekhar correction can be neglected.

• One can introduce the point of view of functional analysis (cf. [8] chapter 21 Vol 9) without going into
details but keeping things as explicit as possible.

• One can also use very explicit computations which were derived at the time when computers were not
available, say in the middle of the previous century .
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We consider the abstract problem (22).

Theorem 1 With

f(x,µ) ∈ L2((0,H) × (−1,1)) µ
1
2 g0(µ) ∈ L2(0,1) and ∣µ∣

1
2 gH(µ) ∈ L2(−1,0) (21)

the problem

µ∂xI + I −
1

2
∫

1

−1
I(x,µ′)dµ′ = f, I(0, µ)∣µ>0 = g0(µ), I(H,µ)∣µ<0 = gH(µ), (22)

has a unique solution I ∈ L2((0,H) × (−1,1))) which satisfies the estimates:

∥I∥L2((0,H)×(−1,1)) ≤ C(H){∥I∥L2((0,H)×(−1,1)) + ∥µ
1
2 g0(µ)∥L2(0,1)) + ∥∣µ∣

1
2 gH(µ)∥L2(−1,0)) (23a)

Moreover when the data f, g0, gH are non negative , the same is true for I, the solution of (22). With f = 0
one has:

sup I(x,µ) ≤ sup ( sup
µ∈(0,1)

g0(µ), sup
µ∈(−1,0)

gH(µ))) . (23b)

Proof. The leading ideas are given below while details can be found in ([8]) . They are all based on the
estimate of physical quantities which are translated into “mathematical” norms. When unambiguous, the
symbol ∥.∥ will be used below to denote, any L2 norm in (L2((0,H) × (−1,1)) , L2

µ(−1,1), L2
µ(0,1)) and

L2
µ(−1,0)) . Observe that the formula

I(x,µ) = 1

2
∫ I(x,µ)dµ + (I(x,µ) − 1

2
∫ I(x,µ)dµ) (24)

gives the decomposition of I ∈ L2
µ(−1,1) in its orthogonal projection on the space of independent of µ

functions and on its orthogonal (i.e. function of 0 µ average) . Hence one introduces for ε ≥ 0 the regularized
equation:

εIε + µ∂xIε + Iε −
1

2
∫

1

−1
Iε(x;µ′)dµ′ = f(x,µ) , I(0, µ)∣µ>0 = g0(µ), I(H,µ)∣µ<0 = gH(µ). (25)

A priori estimate and uniqueness
Multiplying this equation by Iε, integrating with respect to x the term leads to,

(∂xIε)(Iε) =
1

2
∂xI

2
ε ;

taking in account the fact that I coincides on Σ− with the incoming data g0 or gH using the Cauchy Schwartz
formula one obtains:

ε∥Iε∥2
L2((0,H)(−1,1)) + ∥Iε −

1

2
∫

1

−1
Iε(x,µ′)dµ′∥2

L2((0,H)(−1,1))

≤ ∥Iε∥L2((0,H)(−1,1))∥f∥L2((0,H)(−1,1)) + ∥∣µ∣
1
2 Iε∥L2(Σ−)∥∣µ∣

1
2 g(x,µ)∥L2(Σ−) .

(26)

Since the problem is linear, denoting by Ĩ the difference of two solutions with the same boundary data g0

and gH and same external density f , one deduces from (26) the uniqueness (for ε > 0) of the solution of the
problem (22) according to the estimate:

ε∥Ĩε∥2
L2((0,H)×(−1,1)) + ∥Ĩε −

1

2
∫

1

−1
Ĩε(x,µ′)dµ′∥2

L2((0,H)×(−1,1)) ≤ 0 (27)
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To extend this observation to the case ε = 0 one observes that in such case (27) gives:

∥Ĩε −
1

2
∫

1

−1
Ĩε(x,µ′)dµ′∥2

L2((0,H)(−1,1)) = 0 (28)

which gives the relation

µ∂xĨ = 0 , with Ĩ(0, µ) = 0 for µ > 0 , and with Ĩ(H,µ) = 0 for µ < 0 (29)

which implies Ĩ = 0.
◇

Existence of Solutions for ε > 0
For clarity the proof of the estimate (26) and of the existence of a solution are done in the absence of

boundary source. Then, using the linearity of the problem it can be easily adapted to more general situations.
First with ε > 0 for (26) one obtains a trivial stability estimate

∥Ĩε∥2
L2((0,H)×(−1,1)) ≤

1

ε
∥f∥2

L2((0,H)×(−1,1)) (30)

To prove the existence of the solution one consider with ε > 0 the Milne problem (22) in an iterative form
first with g0 = gH = 0.

(1 + ε)In+1
ε + µ∂xIn+1

ε = 1

2
∫

1

−1
Inε (x;µ′)dµ′ + f(x,µ) (31)

leading to the estimate

∥In+1
ε ∥ ≤ 1

1 + ε
(∥Inε ∥ + ∥f∥) (32)

which shows that the mapping Inε ↦ In+1
ε is a strict contraction.

Then the same type of proof works also for the case f = 0 with non zero incoming data on Σ− with the
estimate:

∥In+1
ε ∥2 ≤ 1

1 + ε
(∥Inε ∥2 + ∫

1

0
µ∣g0(µ)∣ + ∫

0

−1
∣µ∣gH(µ)∣2) (33)

and the solution of the general problem with ε > 0 non zero f and non zero (g0 and gH) follows by linearity.
The above construction will be used to prove convergence of the numerical method in the second part of the
paper.

Existence of a solution for ε = 0
To let ε→ 0, one proceeds with the following contradiction argument. If there would be no finite constant

C for which holds the relation:

∥Ĩε∥2
L2((0,H)×(−1,1)) ≤ C∥f∥2

L2((0,H)×(−1,1)) (34)

that would imply the existence of a family of functions fε of L2((0,H)× (−1,1)) with norm equal to 1 while
the corresponding solution of Iε would go to infinity in the same norm . Then it generates a solution to the
problem:

f̃ε =
fε
∥Iε∥

→ 0 Ĩε = ∥ Iε
∥Iε∥

∥ = 1, µ∂t
Iε

∥Iε∥
+ ( Iε

∥Iε∥
− 1

2
∫

1

−1

Iε
∥Iε∥

dµ) = fε
∥Iε∥

→ 0. (35)

Now Ĩε converge weakly to a limit solution of the Milne problem with zero data, hence to 0 by the uniqueness
of the solution; To complete (by contradiction) the proof one has to show the strong convergence of Ĩε which
is of norm 1 . This follows from the so called averaging lemma (cf [11] and [8]) using the estimate.

∥µ∂tĨε∥ ≤ ∥( Iε
∥Iε∥

− 1

2
∫

1

−1

Iε
∥Iε∥

dµ)∥ +O(ε) (36)
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Proof of the non negativity
Estimates and positivity can be deduced by the following standard intuitive arguments.
Denote by (x+, µ+) (resp. (x−, µ−) the point where Iε achieves its maximum (resp minimum). Then

whenever the maximum (resp. minimum) is reached inside the open set (0,H) × (−1,1) one has:

µ∂xIε = 0 , (Iε −
1

2
∫

1

−1
Iε(xµ′)dµ′)(x+, µ+) ≥ 0 resp. (Iε −

1

2
∫

1

−1
Iε(xµ′)dµ′)(x−, µ−) < 0 (37)

And if it is reached on the boundary Σ+ one has:

(µ∂xI)(x+, µ+) ≥ 0 resp. (µ∂xI)(x−, µ−) ≤ 0 . (38)

Consequently, the equation:

εIε + µ∂xIε + Iε −
1

2
∫

1

−1
I(x,µ′)dµ′ = f(x,µ) (39)

implies that if the data f, g0 and gH are non negative (37 ) if the minimum is reached inside the domain it
cannot be negative. Hence if reached on the boundary by (39) it cannot also be negative if reached on Σ+.
The only remaining case is the situation where this minimum is reached on Σ− but then it coincides with g0

or gH which both are non negative. And in any case one has

Iε(x,µ) ≥ Iε(x−, µ−) ≥ 0 (40)

In the same way for the solutions of the problem

εIε + µ∂xIε + Iε −
1

2
∫

1

−1
Iε(x,µ′)dµ′ = 0, (41)

with g0(µ) ≥ 0 and gH(µ) ≥ 0 (42)

a positive maximum cannot be reached inside the domain because with (41) it should be negative which
contradict (42) , and it cannot be reached on Σ+ by the same argument since I coincides with g0(µ) or
gH(µ) . Since the above properties are independent of ε the proof of the positivity and of the estimate (23b)
follows by letting ε→ 0. ◻
To conclude this section it is convenient to recall the implicit formula for the solution of the problem :

Proposition 3 Let J(x) = 1

2
∫

1

−1
I(x,µ)dµ. The solution of (22) with (21) satisifies

I(x,µ) = 1µ>0(
1

µ
e−

x
µ g0(µ) + ∫

x

0
e−

x−s
µ (J(s) + f(s, µ))ds

µ
)

+1µ<0(
1

∣µ∣
e−

H−x
∣µ∣ g0(µ) + ∫

x

H
e−

H−x
∣µ∣ (J(s) + f(s, µ)) ds

∣µ∣
) .

(43)

This formula under different variants will be used below.

4.1 Milne Problem and non explicit formula for the temperature of the earth

In (0,H)× (−1,1) one considers an intensity of radiation I, coming in the domain to the earth surface from
the high atmosphere i.e. for x = 0 and 0 < µ < 1 with intensity I(0, µ) = µI and one assumes that the albedo
of the earth (i.e. the radiative intensity in term of the incoming intensity) is given in weighted Sobolev
spaces by

A ∶ L2(µ
1
2 , (0,1))↦ L2(∣µ∣

1
2 , (0,1)), ∥A(g1) −L(g2)∥ ≤ C∥g1 − g2∥ (44)

where

µ∂xI + I −
1

2
∫

1

−1
I(x,µ′)dµ′ = 0, I(0, µ)∣µ>0 = g(µ)Isol, I(H,µ)∣µ<0 = A(I(H,−µ)) (45)

8



has for C ≤ 1 a unique well defined solution (easy for C < 1 , more subtle but as above for ε = 0 .)
The construction is done as follow:
Consider in (0,H) × (−1,1) the unique well defined solution Ig,X of the equation

µ∂xI + I −
1

2
∫

1

−1
I(x,µ′)dµ′ = 0 (46)

with the incoming boundary data

Ig,X(0, µ) = g(µ) for µ > 0 given and Ig,X(H,µ) =X(µ) unknown forµ < 0 . (47)

Then the mapping X ↦ Ig,X(H,µ)∣µ>0 is affine and continuous from L2(∣µ∣ 12 , (−1,0)) to L2(µ 1
2 , (0,1)) and

the solution of the albedo problem is given by the following equation:

Find Z ∈ L2(µ
1
2 , (0,1)) such that Ig,A(Z)(H,µ) = Z(µ) (48)

which with the hypothesis C < 1 has a unique solution.
The computation of the temperature follows from the Stefan-Boltzmann law.

σT 4 = 1

2
∫

0

−1
Ig,A(Z)(H,µ)dµ +

1

2
∫

1

0
Z(µ)dµdµ (49)

The formula (49) is perfectly well defined but far from explicit, so in need of a relevant approximation. One
of the main tool for such an approximation is the introduction of the half space Milne problem and this is
justified by the fact that after rescaling the analysis is done for x ∈ (0,H) with H large.

5 The Half space Milne problem

For the Milne equation, defined in (0,H) × (−1,1),

µ∂xI + I −
1

2
∫

1

−1
I(x;µ′)dµ′ = 0 (50)

one has
d

dx
ΦI(x) = 0 and

d

dx
∫

1

−1
µ2I(x;µ′)dµ′ = ΦI ∶= ΦI(x) = ∫

1

−1
µI(x;µ′)dµ′ (51)

where ΦI is the flux of of I which by the above observation turns out to be constant. As a consequence
to remain uniformly bounded with respect to x for H → ∞ any solution of (50) has to have ΦI = 0. This
justifies the following (cf.([5] and [6])

Theorem 2 For any incoming data g0(µ) defined for x = 0 and µ ∈ (0,1) with µ
1
2 g0(µ) ∈ L2(0,1), there

exists a unique uniformly bounded in x solution of the “half space ”Milne problem:

µ∂xI + I −
1

2
∫

1

−1
I(x,µ′)dµ′ = 0 , I(0, µ)∣µ>0 = g0(µ) . (52)

This solution has 0 flux and satisfies the estimates:

sup
x≥0,µ∈(−1,1)

∣I(x,µ)∣ ≤ sup
µ∈(0,1)

∣g0(µ)∣ and ∀α ∈ [0,1),∫
∞

0
eαx ∫

1

−1
(I − 1

2
∫

1

−1
I)2dµ′ ≤ 1

1 − α ∫
1

0
µ∣g(0, µ)∣2∣dµ.

(53)
Moreover this solution converges exponentially fast to a constant C(g0); the while the mapping g ↦ C(g) is

linear continuous from the space of function with ∣µ∣ 12 g ∈ L2(0,1) into R.
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Proof. Once again the proof is only sketched below; for details see [6]. First one considers the solution
on a “double” space interval (0,2H) with as incoming boundary data for x = H µ < 0⇒ I(2H,µ) = g0(−µ)
this makes the, unique well defined in (0,2H) × (−1,1), solution of the problem

µ∂xI + I −
1

2
∫

1

−1
I(x,µ′)dµ′ = 0 (54)

symmetric with respect to H : ∀{∣z∣ <H,µ ∈ (−1,1)} I(H −z, µ) = I(H +z,−µ) . Henc e for x =H,ΦI(H) =
∫

1
−1 µI(H,µ)dµ = 0.

Since Φ(x) is independent of x, it is equal to 0 everywhere.

Then the decomposition of I into its average Ia(x) = 1
2 ∫

1
−1 I(x,µ

′)dµ′ and the orthogonal complement

Iort = I − 1
2 ∫

1
−1 I(x,µ

′)dµ′ gives, with the 0-flux property, the relation:

∫
1

−1
µI2(x,µ)dµ = ∫

1

−1
(I(x,µ) − 1

2
∫

1

−1
I(x,µ′)dµ′)2dµ (55)

Multiplying the equation by eαxI with 0 < α < 1 and integrating on (0,H) × (0,1) with the relation:

eαx ∫
1

−1
(µ∂xI)Idµ = ∂x(eαx

1

2
∫

1

−1
µI2dµ)) − αeαx 1

2
∫

1

−1
µI2dµ. (56)

Thus, one obtains the estimate:

(1 − α)∫
H

0
eαx ∫ (I(x,µ) − 1

2
∫

1

−1
I(x,µ′)dµ′)2dµ)dx ≤ ∫

1

0
µ∣g0(µ)∣2dµ. (57)

Returning to the equation,

µ∂xI = −I(x,µ) −
1

2
∫

1

−1
I(x,µ′)dµ′ (58)

gives the exponential convergence to a constant C(g) for H →∞ .
The uniqueness of the solution is based on the same type of estimates. ◻

Remark 4 The determination of the function g ↦ C(g) in particular before the appearance of large scale
computers and in the quest for an explicit or semi explicit formula has been in the last century the object
of an intensive activities involving in particular Wiener Hopf calculus (cf. [7]). However the most explicit
form this computation is based on the introduction of the Chandrasekhar function. A function defined by the
implicit formula:

H(µ) = 1 + 1

2
µH(µ)∫

1

0

H(µ′)
µ + µ′

dµ′ (59)

which gives the constant C(g) by the relation

C(g) =
√

3

2
∫

1

0
µ′H(µ′)g(µ′)dµ′ . (60)

In particular for g(µ) = µ one has C(g) = ω1 = 0.7014.

5.1 Approximate determination of the temperature on earth

We present two approximations which yield the same formula for earth’s temperature based on the asymptotic
behaviour of the half-space Milne problem.

10



5.1.1 Using Theorem 2

We return to the notations used in [9] for climate dynamics: τ = 1 − e−r where r is the altitude; H is the
thickness of the atmosphere and Z = 1 − e−H . One observes that the formula Ĩ = (µ − τ) provides a solution
of the Milne equation for τ ∈ R with constant flux given by

Φ̃ = ∫
1

−1
µ(τ − µ)dµ = −2

3
(61)

Hence one introduce the solution e(τ, µ) of the half space problem with 0 flux and equal to µ at τ = 0 for
µ > 0 . As was proven in the theorem 2 such solution exists is unique and converges exponentially fast to
the constant ω1 as τ goes to ∞ . As such

I = c[τ − µ + rem(τ, µ)] (62)

provides a boundary layer approximation (ie for τ > 0 not far from 0) of the solution of the Milne problem
with a flux given equal to 2

3
c no incoming density for τ = 0 and rem(τ, µ) going exponentially fast to ω1

when τ → 1. Hence for H large enough one has

Forµ < 0 I(0, µ) = c[−µ + ω1] + o(e−αH) (63)

Therefore for τ = 0

∫
1

−1
I(0, µ))dµ ≃ c∫

0

−1
((−µ) + ω1)dµ = c

2
+ cω1 (64)

For a solar flux equal to Φ the intensity Iearth is obtained after be multiplication by 3
2
Φ (see (61). This

gives:

∫
1

−1
Iearth(µ)dµ ≃ 3

4
Φ(1 + 2ω1) (65)

and with the Stephan Boltzmann law one obtains:

Tearth ≃
⎛
⎝

3

8σ
Φ(1 + 2ω1)

⎞
⎠

1
4

(66)

5.1.2 Using an approximation of the Schwarzfield solution

In Appendix B of Fowler [9], a semi-analytic solution of the Milne problem is given in terms of a complex
integral. It is said also that (notice the similarity with what has been written above)

Ī = 1.3 − (Z − τ) − µ − 1µ>0(1.3 − µ)e−
(Z−τ)
µ (67)

Figure 3 displays (on the left) I(τ, µ) given by (67). For comparison a numerical soultion of the Milner
problem (see below) is shown on the right in the same figure. The plots don’t agree because the boundary
conditions are not (and cannot be) the same, but the general trend is the same. The numerical method
presented below corresponding to the right plot in figure 3, gives a temperature on earth T = 293K. Formula
(66) with Φ = Q(1 − a)/4 as in [9] eq (1.18) p66, gives T = 351K.

6 Numerical Analysis

Consider (19), adimentionalised :

µ
∂Iν
∂τ

+ γ(τ, µ)∂Iν
∂µ

+ κν (Iν −Bν(T )) = 0, ∀{τ, µ} ∈ (0, Z) × (−1,1),∀ν ∈ R+, (68)

Bν(T ) = ν3

e
ν
T − 1

, ∫
∞

0
κν (Bν(T ) − 1

2
∫

1

−1
Iνdµ)dν = 0, ∀τ ∈ (0, Z), (69)

Iν(Z,µ) = 0, ∀µ < 0, Iν(0, µ) = µQν , ∀µ > 0, (70)
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IsoValue
-0.0526316
0.0263158
0.0789474
0.131579
0.184211
0.236842
0.289474
0.342105
0.394737
0.447368
0.5
0.552632
0.605263
0.657895
0.710526
0.763158
0.815789
0.868421
0.921053
1.05263

Figure 3: Semi-analytical solution (left) and numerical solution (right) based on (73). Color intensity plots
in the rectangle τ, µ ∈ (0,1) × (0,2). The differences are due to the different boundary conditions: a flux
condition for the one on the left and a Dirichlet condition on Σ− for the one on the right. One sees also on
the plots the singularities of the integrands at µ = 0: a red spot on the left plot and a yellow line on the
right.

The physical constants are given in Table 1. Following (14)(15), we set ν0 = 1014 so that ν ∈ (0.01,20),
choose B0 = 2h̵ν3

0

c2
= 1.47 10−8 and T0 = h̵ν0

k
, then the physical quantites (noted with a tilde) are recovered by

T̃ = T0T , B̃ν(T ) = B0Bν(T ), Ĩν = B0Iν . Similarly we choose λ = 103 and set κν = λρ0κ̃ν = 1.225κ̃ν . Thus, in
the computation H = 12 and R = 40000; but R does not appear if the Chandraskhar correction is neglected.

The energy of the sun light is 1370Wm−2, so, at the equator cos θ = 1, with a = 0.3, Q0 = 1370(1−a) = 959,
giving Qν = 1.397 10−5Bν(Tsun) .

If κν is independent of ν then Ī = ∫
∞

0 Iνdν may be computed with Qν = 1 and then T is given by

T (τ) = (Q0

2σb
∫

1

−1
I(τ, µ)dµ)

1
4

(71)

Table 1: The physical constants.

c h̵ k ρ0 R H σb
2.998 108 6.6261 10−34 1.381 10−23 1.225 10−3 4 107 12 103 1.801 10−8

6.1 Numerical scheme

The numerical scheme is based on the observation that the solution of (68)-(70) with T ↦ Bν(T ) given, is

Iν = 1µ>0
⎡⎢⎢⎢⎣
µe−κν

τ
µ + ∫

τ

0

eκν
t−τ
µ

µ
Bν(t)dt

⎤⎥⎥⎥⎦
− 1µ<0 ∫

Z

τ

eκν
t−τ
µ

µ
Bν(t)dt. (72)

Example B = µ ⇒ Iν = 1µ>0 [µ(1 + 1
κν

)e−κν
τ
µ − µ

κν
] − 1µ<0 [ µ

κν
(1 − eκν

(Z−τ)
µ )] .
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Programming (72) is straightforward; it needs only to be evaluated at all vertices of a triangulation of
the rectangle Ω. Table 2 shows the error versus the mesh size for the above example. Note however that the
precision is weak: O(h), probably because the solution is singular at µ = 0.

Alternatively , following [21], a finite element method has been tested. It uses a weak formulation of (68)
discretized with Lagrangian-P 1 triangular elements For stability a least square upwinding term (SUPG)
is added, namely hSUPG(µ∂τI + κνI)(µ∂τ Î + κν Î) for a small hSUPG, where Î is the test function of the
variational formulation. The performance of the method is reported in Table 2. It appears to be less efficient
than (72), but faster. The results could be sensitive to values chosen for hSUPB.

Table 2: Numerical error versus mesh size h on Example 1: the error is O(h)

Number of Vertices 1107 4008 9856
L2-error by FEM 20.10−4 7.7 10−4 3.7 10−4

L2-error by (72) 14 10−4 0.45 10−4 0.12 10−4

6.2 The Milne problem

To solve the Milne problem, we use the following iterations, initialized with B0(⋅) ≡ 0:

In+1 = 1µ>0
⎡⎢⎢⎢⎣
µe−κ

τ
µ + ∫

τ

0

eκ
t−τ
µ

µ
Bn(t)dt

⎤⎥⎥⎥⎦
− 1µ<0 ∫

Z

τ

eκ
t−τ
µ

µ
Bn(t)dt, Bn+1(τ) = 1

2
∫

1

−1
In+1dµ. (73)

6.2.1 Convergence of the iterative scheme

For clarity let κ = 1. Scheme (73) is a numerical implementation of the following iterations:

µ∂τI
n+1 + (1 + ε)In+1 = 1

2
∫

1

−1
Indµ

Adding the terms with ε makes the convergence proof rather simple. Indeed,

µ∂τ(In+1 − In) + (1 + ε)(In+1 − In) = 1

2
∫

1

−1
(In − In−1)dµ

Consequently,

∫
Ω

µ

2
∂τ(In+1 − In)2 + (1 + ε)∫

Ω
(In+1 − In)2 = ∫

Ω
(In+1 − In)(In − In−1)

⇒ ∫
1

−1
µ∣In+1 − In∣2(τ, µ)dµ∣

Z

0
+ (1 + ε)∥In+1 − In∥2

0,Ω ≤ ∥In+1 − In∥0,Ω∥In − In−1∥0,Ω

⇒ ∥In+1 − In∥0,Ω ≤ 1

(1 + ε)
∥In − In−1∥0,Ω ≤ 1

(1 + ε)n
∥I1 − I0∥0,Ω

6.2.2 Results

In practice the convergence is much faster than predicted above, as shown by Table 3. A typical result is
also shown, in the physical coordinates, on figure 4. The right side of figure 3 shows the solution of Milne’s
problem computed on a grid 40 × 20. The temperature on earth given by (71) is T = 293K.
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Table 3: Convergence of the fixed point algorithm with κν = 1.

Iteration 1 2 3 4 5
∥In+1 − In∥2

0 0.524721 0.0315412 0.00777077 0.00188975 0.000457752

IsoValue
-0.0526316
0.0263158
0.0789474
0.131579
0.184211
0.236842
0.289474
0.342105
0.394737
0.447368
0.5
0.552632
0.605263
0.657895
0.710526
0.763158
0.815789
0.868421
0.921053
1.05263

Figure 4: Light intensity level map in the physical
domain, i.e. for all φ and r. Even though the cercle
has radius R, this is not a plot on a cross section of the
planet. It shows I(r, φ) for r ∈ (0,H) and φ ∈ (−π,π).
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T
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Figure 5: Temperature computed with the Milne and
Chandrasekhar equations. In the later case the earth
radius is 2 or 10 times the atmosphere thickness.

6.3 The Chandrasekhar equation

For a grey atmosphere the model with the Chandrasekhar correction reduces to

1

κ
µ∂τI + I + γ(τ, µ)∂yI =

1

2
∫

1

−1
Idy, ∀τ, µ ∈ Ω ∶= (0, Z) × (−1,1) (74)

and (11). The following numerical scheme is used:

. Bn(τ) = 1

2
∫

1

−1
In(τ, µ)dµ,

. In+
1
2 = 1µ>0

⎡⎢⎢⎢⎣
µe−κ

τ
µ + ∫

τ

0

eκ
t−τ
µ

µ
Bnν (t)dt

⎤⎥⎥⎥⎦
− 1µ<0 ∫

Z

τ

eκ
t−τ
µ

µ
,

. In+1 + γ∂µIn+1 = In+
1
2 , in Ω with boundary conditions (11). (75)

This scheme is consistent because In+
1
2 satisfies µ

κ
∂τI

n+ 1
2 + In+ 1

2 = Bn and adding this to the last equation

above gives In+1 + γ∂µIn+1 + µ
κ
∂τI

n+ 1
2 = Bn.

Assuming (unrealistic) regularity, the last equation of the scheme is written in weak form in the space

V = {v ∈H1(Ω) ∶ v(Z,µ) = 0 ∀µ < 0, v(0, µ) = 0 ,∀µ > 0,∀τ ∈ (0, Z)}

with additional artificial viscosity of amplitude δ and SUPG: find I with (11) and, for all Î ∈ V ,

∫
Ω
(In+1 + γ∂µIn+1) Î + ∫

Ω

δ

2
(∣µ∣∂τI∂τ Î + ∣γ∣∂µI∂µÎ) + ∫

Ω
hSUPG(µ∂τI + κνI)(µ∂τ Î + κν Î) = ∫

Ω
In+

1
2 Î .

When the above is discretized by a P 1 Finite Element Method, the convergence of the fixed point algorithm
is equaly fast, as shown by Table 4; results are shown on figures 7 and 10 and illustrate the convergence f
the Chandrasekhar equations to the Milne equation when R increases.
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Table 4: Convergence of the fixed point algorithm

Iteration 1 2 3 4 5
∥In+1 − In∥2

0 0.167459 0.00919058 0.000538005 2.78255e-05 1.37382e-06

IsoValue
-0.0526316
0.0263158
0.0789474
0.131579
0.184211
0.236842
0.289474
0.342105
0.394737
0.447368
0.5
0.552632
0.605263
0.657895
0.710526
0.763158
0.815789
0.868421
0.921053
1.05263

IsoValue
-0.0526316
0.0263158
0.0789474
0.131579
0.184211
0.236842
0.289474
0.342105
0.394737
0.447368
0.5
0.552632
0.605263
0.657895
0.710526
0.763158
0.815789
0.868421
0.921053
1.05263

Figure 6: Light Intensity plotted in the physical domain when R = 2.4,H = 1.2 and R = 24,H = 1.2

7 Numerical simulation of the greenhouse effect

The problem is defined in (68),(69),(70).
As the sun temperature is around 5700K, sunlight frequencies are in the range ν ∈ (0.5,15)1014 with

a maximum around 6; the earth temperature being around 300K, its infrared response is in the range
ν ∈ (0.01,0.5)1014 with a maximum at 0.16 (see the right part of figure 7). With ν0 = 1014, the reduced
temperatures are Te = 300k/(h̵ν0) = 0.06, Ts = 5700k/(h̵ν0) = 1.18 for earth and sun.

With B0 = c2/(2hν3
0) as in (14), we set Qν(T ) = 1.395 10−5ν3/(e νT −1) and the computer simulations give

a reduced temperature for earth around 0.07. The Boltzmann functions for earth and sun are shown on 7.
Our aim is to compare the earth surface temperature for two different functions ν → κν(ν) and what

counts is the relative change of temperature obtained. The functions κ(ν) are greater than 1 because of the
rescaling λρ0ρκν with λρ0 = 1 :

κ1
ν ≡ 0.8 and κ2

ν = 0.8 + δκ1ν∈(ν1,ν2). (76)

with ν1 = 0.07, ν2 = 0.09 and δκ = 0.25 or 0.5.
Finding T by inverting the Planck function can be challenging. A fairly accurate approximation can be

found as follows: When κν = κ is constant finding T ∗ by inverting the Planck function, is easier because.

∫
∞

0
κ.Bν(T ∗) = κ∫

∞

0

ν3

e
ν
T∗ − 1

= κπ
4

15
T ∗

4
, ⇒ T ∗ ≈ 1

π
(∫

νM

νm

15

2κ
∫

1

−1
κνIνdµdν)

1
4

. (77)

The following numerical scheme is used:

. Set KI
0 = 0,

for ( ν = νm; ν < νM ; ν+ = δν){

. Compute τ ↦ Tn(τ) by Tn = 1

π
( 15

2κ1
ν
∫

1

−1
KIdµ)

1
4

; then

. for(ν = νm;ν < νM ;ν+ = δν){

. Bnν (t) =
ν3

e
ν

Tn(t) − 1
,
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Figure 7: Plot of Bν(T ) = Bν3

e
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representing the

Light intensities versus ν expected relevant to the nu-
merical simulations, except that Bν(0.06) being too
stiff, we used Bν(0.2). Bν(1.18) corresponds to sun-
light.
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Figure 8: Temperature computed by solving the
Milne problem (solid curves) compared with the so-
lution obtained with algorithm (78) with κν constant
(dashed curves). Convergence is shown with respect
to n which controls the number of vertices of the
mesh, (proportional to n2).

. I
n+ 1

2
ν = 1µ>0

⎡⎢⎢⎢⎣
µQ0Bν(Tsun)e−κν

τ
µ + ∫

τ

0

eκν
t−τ
µ

µ
Bnν (t)dt

⎤⎥⎥⎥⎦
− 1µ<0 ∫

Z

τ

eκν
t−τ
µ

µ
Bν(t)dt,

. In+1
ν + γ∂µIn+1

ν = In+
1
2

ν , with boundary conditions (11),
. KI

n+1+ = κνIn+1
ν δν.

}
} (78)

To assert the method we ask algorithm (78) to recover the solution of the Milne problem (κν constant).
The results are shown on figure 8. Both curves coincide when the Finite Element Method is used; with the
semi-analytic formula, it fails because the formula looses additivity with respect to Bν . Figure 8 also shows
convergence when the mesh is refined by the factor n.

Then we computed the relative change of temperature when κν is changed from κ1
ν to κ2

ν . The change
is of the order of 10−3 and negative (see figure 10). This computer implementation however is not capable
of computing a realistic change when κν is modified in such a small frequency window. Hence we turned to
calculus of variation.

7.1 Solution by calculus of variations

Let ν2 − ν1 be small, and let (76) be written as κν = κ + δκν with δkν = 0 if ν ∉ (ν1, ν2). With the obvious
notations of a calculus of variations:

µ∂τδIν + κδIν = κδBν + δκν(Bν − Iν), δIν(0, µ)∣µ>0 = δIν(Z,µ)∣µ<0 = 0,

∫
∞

0
(δBν −

1

2
∫

1

−1
δIνdµ)κdν = −∫

∞

0
(Bν −

1

2
∫

1

−1
Iνdµ)δκνdν (79)

Let δĪ = ∫
∞

0 δIνdν and similarly for δB̄. Integrating the first equation leads to

µ∂τδĪ + κδĪ − κδB̄ = ∫
ν2

ν1
δκν(Bν − Iν)dν, δĪ(0, µ)∣µ>0 = δĪ(Z,µ)∣µ<0 = 0, (80)

κ(δB̄ − 1

2
∫

1

−1
δĪdµ) = −∫

ν2

ν1
(Bν −

1

2
∫

1

−1
Iνdµ) δκνdν (81)
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IsoValue
-3.17061e-05
-2.79361e-05
-2.54227e-05
-2.29094e-05
-2.03961e-05
-1.78828e-05
-1.53694e-05
-1.28561e-05
-1.03428e-05
-7.82944e-06
-5.31612e-06
-2.80279e-06
-2.89459e-07
2.22387e-06
4.7372e-06
7.25053e-06
9.76386e-06
1.22772e-05
1.47905e-05
2.10738e-05

Figure 9: Color map of δI, when δκ =
0.251ν∈(0.02,0.04), the solution of (82). Colors are plot-
ted in the physical domain r, φ. It indicates that in-
frared rays intensity changes are negative for rays in
the direction of the sun and positive in the opposite
direction.
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Figure 10: Relative temperature change versus alti-
tude, computed with κν = 0.8 + δκ1ν∈(0.02,0.04) and
δκ = 0.25 or 0.5 to account for the greenhouse gas
opacity (see (83)). A direct computation of the rela-
tive changed is also displayed for δκ = 0.25.

Adding both gives

µ∂τδĪ + κδĪ −
κ

2
∫

1

−1
δĪdµ = −∫

ν2

ν1
(Iν −

1

2
∫

1

−1
Iνdµ) δκνdν (82)

and, knowing that δB = δ(π
4T 4

15
) = 4π

4T 3

15
δT , the change in temperature is computed by (81) divided by κ:

4π4T 3

15
δT = 1

2
∫

1

−1
δĪdµ − 1

κ
∫

ν2

ν1
(Bν −

1

2
∫

1

−1
Iνdµ) δκνdν (83)

The numerical results using this method are shown on figures 4 and 10. If these are to be believed, then
greenhouse gases induce an increase of temperature at the earth surface of 2% (resp 4%)when δκ = 0.25
(resp 0.5) in the frequency range (0.02,0.04)1014. This computation however is polluted by the overlap of
the Boltzmann function for earth and sun, the energy of the later being still larger than the infrared one. A
more careful numerical investigation should be done with a full inversion of the Boltzmann function rather
than using the Stefan-Boltzmann integral relation.

As the reader may want to improve this preliminary computation, we give the FreeFem++[22] script in
appendix.

8 Boundary layer near the earth surface

Consider the Chandrasekhar equations with thermal diffusion: ∀r, µ ∈ (0,H) × (−1,1),

µ
∂Īν
∂r

+ 1 − µ2

R + r
∂Īν
∂µ

+ κνρ (Īν −Bν(T )) = 0, (84)

− κT
(R + r)2

(∂r((R + r)2∂rT ) + 1

1 − η2
∂2
ηT) + ∫

∞

0
(ρκν(Bν(T ) − 1

2
∫

1

−1
Īνdµ)dν = 0 (85)

Iν(Z,µ)∣µ<0 = 0, Iν(0, µ) = µQν ,
∂T

∂r
∣0,Z = 0 (86)
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where η = cos θ and assume that κT = εκ0, ε << 1. Then it is likely that

T = T0 + εT1(
r√
ε
, µ), Īν = I0 + εI1, (87)

with T1(r, µ) << 1 when r →∞. This leads to the following cascade of equations

µ
∂I0
∂r

+ 1 − µ2

R + r
∂I0
∂µ

+ κνρ (I0 −Bν(T0)) = 0, Bν(T0) −
1

2
∫

1

−1
I0 = 0, (88)

µ
∂I1
∂r

+ 1 − η2

R + r
∂I1
∂µ

+ κνρ (I1 − ∂TBν(T0)T1) = 0, (89)

−κ0∂
2
r′T1 + ∫

∞

0
(ρκν(∂TBν(T0)T1 −

1

2
∫

1

−1
I1dµ) = κ0

(R + r)2
(∂r((R + r)2∂rT0) +

1

1 − η2
∂2
ηT0) (90)

with r′ =
√
r
ε
. For clarity and without losing generality we assume R is large so as to reduces the above to

µ
∂I0
∂r

+ κνρ (I0 −Bν(T0)) = 0, Bν(T0) −
1

4π
∫
S2
I0 = 0 (91)

µ
∂I1
∂r

+ κνρ (I1 − ∂TBν(T0)T1) = 0, (92)

−κ0∂
2
r′T1(r′) + T1(r′)∫

∞

0
ρκν∂TBν(T0)dν = κ0∂

2
rT0 + ∫

∞

0
ρκν

1

2
∫

1

−1
I1dµdν. (93)

The last line is also −∂2
r′T1 + bT1 = c, with b = 1

κ0
∫

∞

0
ρκν∂TBν(T0)dν and c = ∂2

rT0 + ∫
∞

0

ρκν
2κ0
∫

1

−1
I1dµdν

Therefore
T (r) = T0(r) + ε (c + be−

√
b rε ) . (94)

The conclusion is that there is no strong variation of the temperature r ↦ T (r) near the surface (r=0) due
to thermal diffusion, but there is a strong variation of the gradient.

To connect with the next section we notice that (94) can be rewritten as:

ε
∂(T − T0)

∂r
+
√
b(T − T0) = 0.

8.1 Boundary layer and Robin boundary condition

The temperature is a solution of an elliptic or parabolic equation ({x ∈ Ω} which requires a boundary
information on {x ∈ ∂Ω} while the boundary condition for I needs to be given only on the incoming part of
Σ− of ∂Ω.

Observe that (94) involves two temperatures T0(r) which could be expressed in term of I by the Stephan
Boltzmann law and and a temperature T (r) which represent the “observed temperature ” near the boundary
(which is unknown ) and determined in term of non explicite constants. Such fact was already observed in
nuclear reactor technology, where it leads for the diffusion approximation to a Robin boundary condition
and is already explained in [13] (p.199 eq. (8.13)).

Below, following [8] and [6] we propose a self contained derivation of this type of formula based on scaling
analysis. Moreover for the sake of simplicity we consider the solutions Iε of a ε dependent half space 0-flux
(cf. section 5) Milne problem; one has the following

Proposition 4 The family Iε of solutions of the half space Milne Problem

εIε +
√
εµ∂rIε + Iε −

1

2
∫

1

−1
Iε(r, µ′)dµ′ = 0 , I(0, µ)∣µ>0 = I(0), (95)
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converge to the µ independent solution of the diffusion equation

I0 −
1

3
∂2
r I0 = 0 in R+

r (96)

with the Dirichlet boundary data I(0) = I(0), with a rate of convergence O(
√
ε) in L2(R+

r ;L2(−1,1)). How-
ever the expression

(I0(r) −
√
εµ∂rI0(r)) + ω1

√
ε∂rI0(0)

provides an approximation of order ε in L∞(R+
t × (−1,1))

With standard a priori estimates as used above one observes that Iε is uniformly bounded in L∞(R+
t ;L∞µ (−1,1))

hence by standard estimates related to the diffusion approximation , it converges to a µ independent function
I0(r) solution of the equation:

I0(r) −
1

3
∂2
r I0 = 0 I0(0) = I(0) (97)

Then one observes also that
Ĩε(r, µ) = I0(r) −

√
εµ∂rI0(r) (98)

is a solution with an error of the order of
√
ε of the equation (95). This construction can be iterated giving

a solution of any finite order of this equation. However at the level at r = 0 and µ > 0 one has:

I(0, µ) − Ĩε(0, µ) =
√
εµ∂rI0(r) (99)

and this estimation concerns a boundary layer of size
√
ε which can be only analyzed by the use of the zero

flux solution e(x,µ) of the half space problem:

µ∂re + e −
1

2
∫

1

−1
e(r, µ′)dµ′ , for µ > 0 e(0, µ) = µ . (100)

Therefore one introduces the functions:

Irem(r, µ) = (
√
ε∂rI0(r)(e(

r√
ε
, µ) − ω1) +

√
εω1∂rI0(r)

Ic(r, µ) = (I0(r) −
√
εµ∂rI0(r, µ)) − Irem(r, µ)

(101)

Constructed in such a way Ic(r, µ) enjoys the following properties.

• It is a solution of the equation ( 95) with a reminder of order ε.

• For r = 0 and µ > 0 one has Ic(r, µ) = I0(0).

• Irem is the sum of two terms the constant
√
εω1∂rI0(r) and the boundary layer term:

BLε(r, µ) = (
√
ε∂rI0(r)(e(

r√
ε
, µ) − ω1) (102)

According to the theorem 2 one has: sup
µ

∣BLε(r, µ)∣ ≤ C−α rε .

As a consequence of these observations one has

Iε = (I0(r) −
√
εµ∂rI0(r)) + ω1

√
ε∂rI0(0) +O(ε) (103)

Without going into detail we propose to deduce from the above derivation with no full proof available a the
time of the writing the following
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Corollary 4 Assume that the intensity of radiation Iε of the above Milne problem is coupled with the solution
of diffusion equation at the boundary of the domain by the Stephan Boltzmann relation:

σT 4
ε = ∫

1

−1
Iε(0, µ)dµ (104)

then the introduction of a Robin boundary condition of the type

Tε(0) − 4ω1

√
ε∂rTε(0) = T0(0)

T0

Tε
(105)

in the diffusion approximation will improve it from an order of
√
ε to ε .

Proof. Starting from the relations

σT 4
c (r) =

1

2
∫

1

−1
I(Ic(r, µ))dµ σ, T 4

0 (r) =
1

2
∫

1

−1
I(I0(r, µ))dµ (106)

one deduces from the formula (103) that

T 4(0) = T 4
0 + 4T 3

0 ω1

√
ε∂rT0 +O(ε) (107)

From which (observing that the exterior normal to (0,∞) is equal to −1 follows the Robin boundary condition.

Tε(0) − 4ω1

√
ε∂rTε(0) = T0(0)

T0

Tε
(108)

◻

9 Conclusion

To summerize, we may say that radiative transfer is an old topic, studied by astronomers and nuclear
scientists and more recently by climate modellers. Much of the ancient material can be discarded in view of
the more powerful computer solutions. However it turns out that for the simulation of the effect of sunlight
on the atmosphere, the problem is numerically difficult, so that any mathematical and analytical properties
gathered in the past are welcome.

Over the last fifty years the mathematical approach of subject enjoyed stimulus including a huge range
of applications, and the introduction at almost the same time of the use of functional analysis and large
scale computing. However one observes that there is still room for progress on the full model, in particular
to make the hypothesis needed for proofs much more in agreement with the case considered in any kind of
physics. As underlined above the equations (3),(4) leads to the following comments

• For sufficiently regular coefficients (κ, ρ and regular initial and boundary data), as it is expected the
problem has a unique well defined (for a finit time) , solution, which can be extended on [0,∞) when
f = 0 (cf. [15] for instance, for proofs and recent references) . One of the main observation used in this
contribution is the fact that an estimate of the type 0 <m(0) ≤ T (x,0) <M(t) remains valid for later
time with 0 <m(t) < T <M(t) .

• In ([15]) independent boundary conditions are assumed for I and T it may be more realistic to include
in the description some relation on the boundary . This would make use of the boundary layer analysis
briefly described in the section (8).
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• A more serious difficulty comes from the opacity κν(T ) which at variant with often made hypothesis
(as in [15]) is nothing but regular (cf. [14]) and very often only vaguely known. At least two options
have been taken to consider this issue. In one of the first contributions on the subject (cf [16]) it was
assumed that with no other hypothesis on the dependance with respect to the frequency ν the function
T ↦ κν(T ) was non increasing , while the function T ↦ κν(T )Bν(T ) was non decreasing. Then some
L1 stability estimates lead to existence and uniqueness for the system (??).

On the other hand a very “popular” (which leads to Milne problem) “grey model” is based on the
assumption of independence of the opacity with respect to the frequency ν . With such hypothesis
several stability results has been obtained with no constraint on the regularity of the mapping T ↦ κ(T )
(cf [2],[3],[4] ) for a first contribution in 1988 and recently (cf [10]) for the treatement of the full problem
with grey opacity.

• Under some convenient scaling hypothesis, in particular large opacity with respect to the size of the
media one may approximate the dynamic by a diffusion equation known as the Rosseland approxima-
tion. Once again mathematical results are well advanced for the grey model and some of its variants
and more sparse in the general case. Such approximation is very well adapted to describe “interior
problems” like fusion by laser confinement. It does not seem (to the best of our knowledge) present in
climatology . As a matter of fact the height of the atmosphere being very small with respect to the
earth radius what seems to be considered is by itself a boundary layer. . As sketched in the section 8.1
this issue is closely related to the improvement of the accuracy of the Rosseland approximation and also
well developed for grey model. It is worth mentioning considering at the level of boundary layer the
curvature of the atmosphere makes the problem even more subtle [25] and [24] for the Chandrasekhar
equations (12).

Numerically, it is a mixed integro-differential problem for which a fixed point approach works quite well, and
for which a convergence proof is available in the simpler case of Milne’s.

Two methods of discretisation have been tried. A finite element method with upwinding and a semi-
explicit method based on the integral form of the solution of the first equation. The second one is more
precise but slower. Convergence with respect to grid refinement is fairly fast.

All should be well and yet it is not. The difficulty lies in the very large scale differences between the
infrared earth radiations and the sun light. This makes the evaluation of GHG effect difficult and also
because the effect is small.

The present computations validate an increase of earth temperature due to CO2 and other greenhouse
gases responsible for a substantial change in the transmission coefficient κν in the lower part of the infrared
frequency range emitted by earth seen as a black body at temperature 300K. However with one method
the predicted increase is rather large and with another it is too small. Certainly 2oC increase is within
the numerical predictions. But let us keep in mind that the real problem of global warming is much more
complex than just radiative transfer.
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10 Appendix

FreeFem++ is a convenient tool for these problems but there is a trick to compute ∫ −11I(µ)dµ that is worth
passing on.

We let the user build the mesh and initialise the constants. The domain is a rectangle (0, Z) × (−1,1)
with boundaries numbered 1 to 6 clockwise starting with Z ×(0,−1); the vertical sides are divided in 2 equal
parts. The following solves Milne’s problem:

fespace Vh(th,P1);

Vh T, I=y*(y>0), g;

func real intI(real X){ return int1d(th,5,6)(I(x+X,y));}

macro Yp() (abs(Y)+eps) // EOM

func real F(real X, real Y, real nu)

{return int1d(th,1)( (x<=X)*exp(kappa*(x-X)/Yp)/Yp*g(x,Y) );} // used with Y>eps

func real G(real X, real Y, real nu)

{return int1d(th,1)( (x>=X)*exp(-kappa*(x-X)/Yp)/Yp *g(x,Y) );} // used with Y<-eps

///////////////////////////////////////////////////////////////////////

for(int k=0;k<kmax*n; k++){ // iteration loop

g=intI(x)*kappa/2;

I= (y<-eps)*( G(x,y,nu) ) + (y*exp(-kappa*x/(abs(y)+eps)) +F(x,y,nu))*(y>eps) ;

T = sqrt(sqrt(SBsun*15*abs(g)/kappa))/pi;

cout<< "T= " << T(0,0) << " erreur =" << int2d(th)((I-Iold)^2) << endl;

}
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