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On the Greenhouse Effect

Claude Bardos∗ & Olivier Pironneau†

May 12, 2021

Abstract

Radiative transfer is at the heart of the mechanism to explain the greenhouse effect based on the
partial infrared opacity of carbon dioxide, methane and other greenhouse gases in the atmosphere. In
absence of thermal diffusion, the mathematical model consists of a first order integro-differential equation
coupled with an integral equation for the light intensity and the temperature, in the atmosphere.

We revisit this much studied system from a mathematical and numerical point of view. Existence
and uniqueness and implicit solutions of the Milne problem for grey atmospheres are stated. Numerical
simulations are given for grey and non-grey atmospheres and applied to calculate the effect of greenhouse
gases. In the context of a transparent atmosphere for sunlight, it is found that by doubling the absorption
coefficient in the infrared absorption range of CO2 the temperature decreases by 2%. On the other hand,
the same changes but in the low infrared range of the sunlight leads to an increase of temperature in the
atmosphere. Several computer codes were written to cross-validate the results.

The authors conclude that the radiative transfer model without thermal diffusion for an atmosphere
transparent to the incident sunlight is not capable of explaining the greenhouse effect due to the green-
house gases.

A decreasing temperature due to an increasing proportion of CO2 has been observed in the high atmo-
sphere (D.W.J. Thomson et al, nature11579). In the lower atmosphere thermal diffusion and convection
cannot be neglected and since the absorption coefficient are highly dependent on the temperature, a full
ocean-atmosphere-biosphere climate model is required.

Hence, driving conclusions from this study on climate change should be cautiously avoided and a
review of the hypothesis of the radiative transfer argument commonly found in textbooks should be
revisited.

1 Introduction

The greenhouse effect is an important element of the current theory of climate change. Some gases in the
Earth atmosphere like carbon dioxide C02 and methane CH4 absorb infrared rays and thus contribute to a
global warming of our planet. As explained in [22],[25],[9] and [14] the Sun radiates light with a heat flux
Q = 1370Watt/m2, in the frequency range (0.5,20) × 1014Hz corresponding approximately to a black body
at temperature of 5800K; 74% of this light intensity reaches the ground because the atmosphere is almost
transparent to this spectrum and about 36% is reflected back by the clouds or the ocean, snow, etc. (albedo).

The Earth behaves almost like a black body at temperature Te = 288K and as such radiates rays of
frequencies ν in the infrared spectrum (0.03,0.6) × 1014Hz.

So both the Sun and the Earth are approximate black bodies. The Planck theory says that a black body
at temperature T radiates electromagnetic waves in the entire frequency spectrum ν ∈ R+ with intensities
given by the Planck function:

ν ↦ Bν(T ) = 2h̵ν3

c2[e h̵νkT − 1]
(1)
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Figure 1: Absorption coefficient κν of some gases
of the atmosphere in the range of frequencies of in-
terest, but versus wave length c/ν. (reprinted from
wikipedia). Adding more CO2 increases κν in the
range (8,15)µm.

Figure 2: The thermal infrared emission spectrum of
the Sahara, as recorded from deep space by the Mars
Global Surveyor (MGS) Spacecraft in November 1996,
(reprinted from xylenepower.com). CO2, O3, CH4 are
clearly responsible for infrared absorption.

where h̵ is the Planck constant, c is the speed of light in the medium and k is the Boltzmann constant.
A major discrepancy between reality and the black body theory for Earth is shown on Figure 2. It is due

to the partial transparency of the atmosphere and the absorbing power of CO2, H2O, O3, CH4, etc., in the
infrared range. Figure 1 gives the absorption coefficients κν for some gas (a transparent gas has κν = 0, and
1 if it is opaque.) Consequently, the infrared light emitted by Earth, seen from far, has a defect of radiance
in its spectrum which is affected by the proportion of Green-House Gases (GHG): it is the greenhouse effect.

In this article we propose a mathematical and numerical investigation to quantify this phenomenon,
using a popular assumption on the transparency of the atmosphere to the incoming sunlight ([14], eq.
(2.16), (2.18)).

Photons travel at the speed of light; energy balance can thus be assumed instantaneous. The atmosphere
is affected by wind, rain, chemistry, etc., but at a very different time-scale; it is believed – and to some
extend asserted, (see [14]) – that even if all these other phenomena are ignored, still the greenhouse effect,
is present in the equations, and sufficient to explain, partially, global warming. Consequently, in the article,
we restrict the analyses to the energy conservation equations for the radiative intensity and the temperature,
equation (3) below.

Radiative transfers have been studied by astronomers, nuclear physicists, combustionists and many other.
Their work is summarized in [8] and [27]. Mathematical analyses are also numerous and we send the readers
to [11],[15] and [32].

More recently, for obvious reasons, there is a renewed interest in numerical simulations of radiative trans-
fers. Among others the reader is sent to [19],[18],[10],[23],[21]. However, we are not aware of a simulation of
the very specific greenhouse gases (GHG) effect, as presented here, namely:

Compare an atmosphere in which the absorption coefficient is κ0 at all frequencies with an atmosphere
in which the absorption coefficient is κ0, except in an infrared frequency interval [ν1, ν2], where it is 1

2
κ0.

The results are unexpected: the temperature of the first case is 2% less than in the second case. This
means that, with this model, greenhouse gases cool the earth atmosphere!

The authors are applied mathematicians, with a limited knowledge of atmosphere dynamics, yet com-
petence in fluid mechanics and nuclear engineering, two fields concerned with radiative transfers. So cli-

∗claude.bardos@gmail.fr, LJLL, Université de Paris, France.
†olivier.pironneau@sorbonne-universite.fr, LJLL, Sorbonne Université, Paris, France.
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matologists were consulted. Apparently this cooling phenomenon is observed in the stratosphere [13],[17];
however the changes in 03 may to play a role, something which is not taken into account here. In the lower
atmosphere, neglecting thermal diffusion is not allowed because any change in temperature has a strong
effect on the density of the gases and on the absorption coefficient, creating winds, clouds etc.

Consequently this study does not upset the body of knowledge for climate studies, but it invalidates the
simple heuristic explanations of the green house effect found many books like [22] and on the internet like
the Al Gore experiment www.climaterealityproject.org/video/climate-101-bill-nye.

In section 2, the paper begins with a recall of the radiative transfer equations as derived from fundamental
thermodynamic principles. Then, in Section 3, the various approximations are reviewed using isotropy and
also the special case where the absorption and scattering coefficients do not depend on the light frequencies:
Milne’s problem for grey atmosphere. On the way the Chandrasekhar approximation is recalled, to account
for the earth radius. The Chandrasekhar correction is very small but the equations are less singular at the
poles[32].

Being important in plasma physics Milne’s problem has received many mathematical developments; these
are reviewed in Section 4 and 5, applied to the grey atmosphere and compared with Fowler’s[14].

The numerical study begins in Section 6. A finite element method with SUPG correction is proposed and
compared with a semi-analytical method based on an integral representation of the light intensities. The
later is computationally more expensive but it allows the validation of the first method and demonstrate
that 1/ the effect of the Chandrasekhar correction can neglected numerically also, 2/ the (needed) SUPG
correction does not degrade the precision of the result.

Section 7 deals with the greenhouse effect; as explained above two cases are compared: one with a con-
stant absorption coefficient κ = κ0, another with κ(ν) = κ0 − 1(ν1,ν2)δκ, δκ constant positive and less than
κ0. Figure 9 shows that the two computer codes and a calculus of variation done on the first one, all give a
decrease of temperature from case 2 to case 1: T (case 2)> T (case 1) at all altitudes when (ν1, ν2) is in the
infrared range and the opposite when (ν1, ν2) is in the lower range of the sunlight. However the precision is
poor.

To assert the results, in Section 7.2, an iterative method is proposed whereby the light intensity is elimi-
nated and the resulting system is a set of coupled integral equations for the temperature, function of altitude.
The numerical results confirm the previous ones and with this last formulation the results are independent of
the mesh and time steps: the method is much more robust and does not require to compute singular integrals.

In Section 8, a brief asymptotic analysis shows that the thermal diffusion will not upset the results, so
the defect of the current model lies in that κ is not a function of the temperature. The numerical methods
can be extended to the temperature dependent case but in [26], the complexity of a model with temperature
and altitude dependent coefficients is shown to require special numerical techniques in the family of level
sets: the correlated-k methods.

2 The fundamental equations

Let Iν(x,ω) be the intensity of the radiation of frequency ν in the direction ω at point x of the physical
domain Ω. Let T (x) be the temperature. Energy balance (see [27],[14]) yields,

ω ⋅∇Iν + ρκνaν [Iν −
1

4π
∫
S2
p(ω,ω′)Iν(ω′)dω′] = ρκν(1 − aν)[Bν(T ) − Iν], (2)

−κT∆T = ∇ ⋅ ∫
∞

0

1

4π
∫
S2
Iν(ω′)ω′dω′dν. (3)

Here, S2 is the unit sphere, ρ(x) is the density of the medium, κν is the absorption coefficient (percentage
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absorbed per unit length), aν is the scattering coefficient; 1
4π
p(ω,ω′) is the probability that a ray in the

direction ω scatters in the direction ω′, (recall that 1
4π ∫S2 p(ω,ω

′)dω′ = 1); both κν and aν usually depend
on ν, and even x. The constant κT is the thermal diffusion.

As usual, boundary conditions have to be given. For the temperature we may prescribe its normal
derivative to be zero for all x ∈ ∂Ω. The equation for the intensity being a first order equation, Iν should be
given on Σ− defined as

Σ− = {(x,ω) ∈ ∂Ω × S2 ∶ n(x) ⋅ω < 0} , (4)

where n is the outer unit normal of ∂Ω. However, we will deal also with cases which use on Σ− some of the
information arriving on Σ+ = {(x,ω) ∈ ∂Ω × S2 ∶ n(x) ⋅ω > 0}.

2.1 Isotropic scattering

Proposition 1

∇ ⋅ ∫
S2
Iν(ω)ωdω = ρκν(1 − aν) (4πBν(T ) − ∫

S2
Iν(ω)dω) . (5)

Proof. It is shown by averaging (2) on S2.

Corollary 1 The temperature equation which is normally written with a flux of radiative energy (3), can be
recast as (6):

−κT∆T = ∫
∞

0
ρκν(1 − aν) (Bν(T ) − 1

4π
∫
S2
Iν(ω)dω)dν. (6)

Corollary 2 If the thermal diffusion κT is neglected in (6), then

∫
∞

0
κν(1 − aν)Bνdν = ∫

∞

0
κν(1 − aν)

1

4π
∫
S2
Iν(ω)dωdν. (7)

Remark 1 When κν and aν are constant, (7) leads to the Stefan-Boltzmann law

σbT
4 = ∫

∞

0

1

4π
∫
S2
Iν(ω)dωdν, with σb =

2h̵

15c2
(kπ
h̵

)
4

. (8)

Note that the standard definition of the Stefan-Boltzmann constant has an extra π.

Some proofs concerning the existence, uniqueness and stability for solutions of simplified versions of this
problem appear below. The most general case is discussed in the conclusion with relevant and updated
references.

3 One dimensional approximations

Proposition 2 Consider (2),(7) in a vertical slab Ω = (0,H) ×R2. Assume that the boundary conditions at
x = (x, y, z) are independent of y, z, and assume isotropic scattering (p ≡ 4π). Let n be the outer unit normal
at z = H. Then, the solution depends only on x and µ = cosφ = ω ⋅ n and Iν(x,ω) = I ′ν(x,µ) and T (x) are
given by (1) and

µ∂xI
′
ν + ρκνaν (I ′ν −

1

2
∫

1

−1
I ′ν(x,µ)dµ) + ρκν(1 − aν)[I ′ν −Bν] = 0, for all x ∈ (0,H), µ ∈ (−1,1), (9)

∫
∞

0
κν(1 − aν)Bνdν = ∫

∞

0
(κν(1 − aν)

1

2
∫

1

−1
Iν(x,µ)dµ)dν, for all x ∈ (0,H). (10)
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Proof : Assume that Bν is a given function of x only. Both problems (2) and (9) have one and only one
solution. Let us show that Iν(x, y, z, ω1, ω2, ω3) = I ′ν(x, cosφ) is a solution of (2) when I ′ν is a solution of (9).

Let t be the direction of the projection ωt of ω on the plane P of the slab boundary (Figure 3). Iν is
invariant in t. Hence ωt = {ω1, ω2} = {cosφ, sinφ}T ,

ω ⋅∇Iν = ω1∂xIν + ω2∂tIν = cosφ∂xI
′
ν + sinφ∂tI

′
ν = cosφ∂xI

′
ν + 0 = µ∂xI ′ν .

1

4π
∫
S2
Iν(x,µ)dω = 1

4π
∫

2π

0
∫

π

−π
I ′ν(x, cosφ)(− sinφ)dφdψ = 1

2
∫

1

−1
I ′ν(x,µ)dµ.

Once Iν(x,µ) known, then Bν becomes a function of x only by (7). ◻

3.1 Application to the Earth-Sun problem

O

ω

r

y

x

Sunlight

P

Atmosphere

Earth

θ

Figure 3: The Sun, in the far right, sends sunlight to point P on the Earth surface. A crossection of Earth
and its atmosphere is shown in the plane defined by the axis Ox and the point P . The projection of the Earth
rotation axis in that plane is shown (bold line) but plays no role. As the Earth radius R is large compared
with the atmosphere thickness H we focus on a rectangle tangent to the Earth surface at P. In the end the
radiative transfer equations are set on the line (P, r), function of the angle ω where the observer observes
the radiation intensity.

Consider figure 3 and apply the invariance of Proposition 2 to the rectangle tangent to Earth at point P
on its surface. The rectangle has width H, the thickness of the atmosphere and length L small compared to
the Earth radius R.

Accordingly I ′ depends only on the radial distance r to P , r ∈ (0,H) and on µ, the cosine angle of the
ray from Pr to the observer. So I ′(r, µ) is studied for r ∈ (0,H) and µ ∈ (−1,1).

If sunlight hits the tangent plane to Earth at P at a constant angle θ with a frequency dependent intensity
Qν and if the atmosphere is transparent at that frequency, then

I ′ν(0, µ) = µQν cos θ,∀µ ∈ (0,1), I ′ν(H,µ) = 0,∀µ ∈ (−1,0). (11)

The first condition applies only when µ > 0 because µ < 0 corresponds to the backside of the tangent plane.
The second condition says that at the top of the atmosphere no ray comes back into the atmosphere.
Now I ′ is uniquely defined by (9),(10),(11), and it is proportional to cos θ. Hence to compute T at all

points of planet Earth, one needs only to compute it at the point of intersection of the sphere and the
Sun-Earth line and then multiply by cos θ. Reality is definitely more complex because this theory implies,
in particular, that the Earth temperature at night is zero Kelvin!
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Note In this article we focus on methods rather than numbers; for clarity we neglect the scattering, i.e.
aν = 0, however, much of what is derived below applies also when isotropic scattering is present.

3.2 Spherical symmetry

Chandrasekhar showed in [8] that the one dimensionality argument of Proposition 2, using a tangent plane
to Earth, can be extended to planets by using an osculatory spherical cap instead of a tangent plane, to take
into account the radius of the planet.

For clarity, consider a spherical planet receiving parallel light rays from infinity. The planet’s radius is
R and its atmosphere thickness is H. Let the radial distance to the surface be r = ∣x∣ −R. Invariance with
respect to the azimuthal and latitude angles, after suitable scalings by the appropriate cosines, and a similar
argument as above, lead to the Chandrasekhar correction (see [8]):

µ
∂Īν
∂r

+ 1 − µ2

R + r
∂Īν
∂µ

+ κνρ (Īν −Bν(T )) = 0, ∀r, µ, ν ∈ (0,H) × (−1,1) ×R+. (12)

and if thermal diffusion is neglected:

∫
∞

0
ρκν (Bν(T ) − 1

2
∫

1

−1
Īνdµ)dν = 0, ∀r ∈ (0,H). (13)

Note that no additional boundary condition to (11) is needed because 1 − µ2 is zero at µ = ±1.

3.3 Dimensionless variables

These “Chandrasekhar equations” can be de-dimentionalized by introducing a length scale λ, scaling factors
for B, ν and ρ and set: r = r̃λ, R = R̃λ and H = H̃λ, ρ = ρ0ρ̃, ν = ν0ν̃ and B = B0B̃. Then we may rewrite
the above and its boundary conditions as :

µ
∂Ĩν̃
∂r̃

+ 1 − µ2

R̃ + r̃
∂Ĩν̃
∂µ

+ κ̃ν̃ ρ̃ (Ĩν̃ − B̃ν̃(T̃ )) = 0, ∫
∞

0
κ̃ν̃ (B̃ν̃(T̃ ) − 1

2
∫

1

−1
Ĩν̃dµ)dν̃ = 0,

Ĩν̃(H,µ) = 0,∀µ ∈ (−1,0), Ĩν̃(0, µ) = µB−1
0 Qν̃ cos θ,∀µ ∈ (0,1), (14)

with

κ̃ν̃ = λρ0κν , B̃ = B−1
0

2hν3
0

c2
ν̃3

e
ν̃
T̃ − 1

, T = h̵ν0

k
T̃ , Īν̃ = B0Ĩν̃ . (15)

3.4 Evanescent atmosphere

When ρ = ρ0e−r̃, we make a last change of variable (analogous to the optical depth introduced in physics) to

cope with that exponentially rarefying atmosphere: (r, µ) → (τ ∶= 1− e−r̃, µ). Then, with Z = 1− e−H̃ , for all
τ, µ, ν ∈ (0, Z) × (−1,1) ×R+,

µ
∂Ĩν
∂τ

+ γ(τ, µ)∂Ĩν
∂µ

+ ρ0κ̃ν (Ĩν − B̃ν) = 0, ∫
∞

0
ρ0κ̃ν (B̃ν(T ) − 1

2
∫

1

−1
Īνdµ)dν̃ = 0.

Ĩν(Z,µ)∣µ<0 = 0, Ĩν(0, µ)∣µ>0 = µQ̃ν , (16)

where Q̃ν = Qν cos θ/B0. The Chandrasekhar correction is

γ(τ, µ) = 1 − µ2

(1 − τ)(R̃ − log(1 − τ))
(17)

Remark 2 For clarity, from now on, we drop the tildes and rename ρ0κ̃ν as κν .
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3.5 Grey atmosphere

By definition, in a grey atmosphere (Fowler [14] p70), nothing depends on ν. If in addition the thermal
diffusion is neglected, i.e. κT = 0, then the total radiation, I = ∫

∞
0 Iνdν, is given by (11) integrated in ν, and

µ
∂I

∂τ
+ γ∂µI = κ[B − I] with B(τ) = ∫

∞

0
Bν(T )dν = 1

2
∫

1

−1
Idµ. (18)

Temperature is recovered from B(τ) = σbT 4(τ).

3.6 The multi-group problem

In numerical computations one replaces the continuous map ν ↦ Iν by a finite set of frequencies {νk, Ik}K1 ,
and writes the system

µ
∂Ik
∂τ

+ γ(τ, µ)∂Ik
∂µ

+ κνk (Ik −Bνk(T )) = 0, ∑
k

κνk (Bνk(T ) − 1

2
∫

1

−1
Ikdµ) (νk − νk−1) = 0,

Ik(Z,µ)∣µ<0 = 0, Ik(0, µ)∣µ>0 = µQνk , k = 1, . . . ,K. (19)

Recall that T , which is a function of τ only, couples all the {Ik}. This formulation will be used in the
numerical section 7.

3.7 The Milne problem

When γ is neglected in (18), the problem is known as Milne’s problem in Ω = (0, Z) × (−1,1):

µ
∂I

∂τ
+ κ(I − 1

2
∫

1

−1
Idµ) = 0, ∀τ, µ ∈ Ω, I(Z,µ)∣µ<0 = 0, I(0, µ)∣µ>0 = µ. (20)

where κ (i.e. κνρ0) is constant.

4 More about the Milne problem

Emphasis on the Milne problem is motivated by the two following facts.

• It corresponds to a local in space description of the atmosphere say of height Z because for R large
compared to Z the Chandrasekhar correction can be neglected.

• One can introduce the point of view of functional analysis (cf. [11] chapter 21 Vol 9) without going
into details but keeping things as explicit as possible.

• One can also use very explicit computations which were derived at the time when computers were not
available, say in the middle of the previous century.

We consider the abstract problem (22) in Ω = (0, Z) × (−1,1).

Theorem 1 With
f ∈ L2(Ω) µ

1
2 g0 ∈ L2(0,1) and ∣µ∣

1
2 gZ ∈ L2(−1,0) (21)

the problem

µ∂τI + I −
1

2
∫

1

−1
I(τ, µ′)dµ′ = f, I(0, µ)∣µ>0 = g0(µ), I(Z,µ)∣µ<0 = gZ(µ), (22)

has a unique solution I ∈ L2(Ω)) which satisfies the estimate:

∥I∥L2(Ω) ≤ C(Z) {∥f∥L2(Ω) + ∥µ
1
2 g0(µ)∥L2(0,1)) + ∥∣µ∣

1
2 gZ(µ)∥L2(−1,0))} (23a)
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Moreover when the data f, g0, gZ are non negative , the same is true for I, the solution of (22). With f = 0
one has:

sup I(τ, µ) ≤ max ( sup
µ∈(0,1)

g0(µ), sup
µ∈(−1,0)

gZ(µ)) . (23b)

Proof : The leading ideas are given below while details can be found in ([11]). They are all based on the
estimate of physical quantities which are translated into “mathematical” norms. When unambiguous, the
symbol ∥.∥ will be used below to denote, the L2 norm in (L2(Ω) , L2

µ(−1,1), L2
µ(0,1) and L2

µ(−1,0) ; the
subscript µ indicates the variable of integration. Observe that the formula,

I(τ, µ) = 1

2
∫

1

−1
I(τ, µ)dµ + (I(τ, µ) − 1

2
∫

1

−1
I(τ, µ)dµ) , (24)

gives the decomposition of I ∈ L2
µ(−1,1) in its orthogonal projection on the space of µ-independent functions

and on its orthogonal (i.e. function of 0 µ-average).
One introduces for ε ≥ 0 the regularized equation:

εIε + µ∂τIε + Iε −
1

2
∫

1

−1
Iε(τ ;µ′)dµ′ = f(τ, µ) , Iε(0, µ)∣µ>0 = g0(µ), Iε(Z,µ)∣µ<0 = gZ(µ). (25)

A priori estimate and uniqueness
Let us multiply this equation by Iε and integrate with respect to τ and µ :

ε∫
Ω
I2
ε dτdµ + ∫

1

−1

µ

2
I2
ε ∣
Z

0
dµ + ∫

Ω
Iε (Iε −

1

2
∫

1

−1
Iεdµ)dτdµ = ∫

Ω
Iεfdτdµ. (26)

Notice that

∫
Ω
Iε (Iε −

1

2
∫

1

−1
Iεdµ)dτdµ = ∫

Ω
∣Iε −

1

2
∫

1

−1
Iεdµ∣

2

dτdµ.

Hence

∥Iε∥2
L2(Ω) + ∥Iε −

1

2
∫

1

−1
Iε(τ, µ)dµ∥2

L2(Ω) + ∫
Σ+

∣µ∣
2
I2
ε dµ = ∫

Σ−

∣µ∣
2
I2
ε dµ + ∫

Ω
Iεfdτdµ; (27)

using the Cauchy Schwartz inequality:

ε∥Iε∥2
L2(Ω) + ∥Iε −

1

2
∫

1

−1
Iε(τ, µ)dµ∥2

L2(Ω) ≤ ∥Iε∥L2(Ω)∥f∥L2(Ω) + ∥∣µ∣
1
2 Iε∥L2(Σ−)∥∣µ∣

1
2 g(τ, µ)∥L2(Σ−) . (28)

Since the problem is linear, denoting by I1
ε − I2

ε the difference of two solutions with the same boundary data
g0 and gZ and same external density f , one deduces from (28) the uniqueness because

ε∥I1
ε − I2

ε ∥2
L2(Ω) + ∥I1

ε − I2
ε −

1

2
∫

1

−1
(I1
ε − I2

ε )dµ∥2
L2(Ω) ≤ 0. (29)

To extend this observation to the case ε = 0 one observes that in such case (29) gives:

∥I1
ε − I2

ε −
1

2
∫

1

−1
(I1
ε − I2

ε )dµ∥2
L2(Ω) = 0 (30)

which gives the relation

µ∂τ(I1 − I2) = 0 , with Ij(0, µ) = 0 for µ > 0 , and with Ij(Z,µ) = 0 for µ < 0, j = 1,2, (31)

which implies I1 = I2.
◇
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Existence of Solutions for ε > 0
For clarity the proof of the estimate (28) and of the existence of a solution Iε are done in the absence

of boundary source. Then, using the linearity of the problem it can be easily adapted to more general
situations. First with ε > 0 for (28) one obtains a trivial stability estimate

∥Ĩε∥2
L2(Ω) ≤

1

ε
∥f∥2

L2(Ω) (32)

To prove the existence of the solution one considers with ε > 0 the Milne problem (22) in an iterative
form,

(1 + ε)In+1
ε + µ∂τIn+1

ε = 1

2
∫

1

−1
Inε (τ ;µ)dµ + f(τ, µ), (33)

leading to the estimate

∥In+1
ε ∥ ≤ 1

1 + ε
(∥Inε ∥ + ∥f∥), (34)

which shows that the mapping Inε ↦ In+1
ε is a strict contraction.

Then the same type of proof works also for the case f = 0 with non zero incoming data on Σ− with the
estimate:

∥In+1
ε ∥2 ≤ 1

1 + ε
(∥Inε ∥2 + ∫

1

0
µ∣g0(µ)∣2dµ + ∫

0

−1
∣µ∣gZ(µ)∣2dµ) (35)

and the solution of the general problem with ε > 0 non zero, f and non zero (g0 and gZ), follows by linearity.
The above construction will be used to prove convergence of the numerical method in the second part of the
paper.

Existence of a solution for ε = 0
To let ε→ 0, one proceeds with the following contradiction argument. If there would be no finite constant

C for which holds the relation:
∥Ĩε∥2

L2(Ω) ≤ C∥f∥2
L2(Ω) (36)

that would imply the existence of a family of functions fε of L2(Ω) with norm equal to 1 while the corre-
sponding solution of Iε would go to infinity in the same norm. Then it generates a solution to the problem:

f̃ε =
fε
∥Iε∥

→ 0 Ĩε = ∥ Iε
∥Iε∥

∥ = 1, µ∂t
Iε

∥Iε∥
+ ( Iε

∥Iε∥
− 1

2
∫

1

−1

Iε
∥Iε∥

dµ) = fε
∥Iε∥

→ 0. (37)

Now Ĩε converge weakly to a limit solution of the Milne problem with zero data, hence to 0 by the uniqueness
of the solution; To complete (by contradiction) the proof one has to show the strong convergence of Ĩε which
is of norm 1. This follows from the so called averaging lemma (cf [16] and [11]) using the estimate.

∥µ∂tĨε∥ ≤ ∥( Iε
∥Iε∥

− 1

2
∫

1

−1

Iε
∥Iε∥

dµ)∥ +O(ε) (38)

Proof of the non negativity
Positivity can be shown by the following standard intuitive arguments.
Denote by (τ+, µ+) (resp. (τ−, µ−) the point where Iε achieves its maximum (resp minimum). Then

whenever the maximum (resp. minimum) is reached inside the open set (0, Z) × (−1,1) one has:

µ∂τIε = 0, Iε(τ+, µ+) −
1

2
∫

1

−1
Iε(τ+µ)dµ) ≥ 0, resp. Iε(τ−, µ−) −

1

2
∫

1

−1
Iε(τ−µ)dµ < 0 (39)

And if it is reached on the boundary Σ+ (resp. Σ− )one has:

(µ∂τI)(τ+, µ+) ≥ 0 resp. (µ∂τI)(τ−, µ−) ≤ 0 . (40)
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Consequently, the equation:

εIε + µ∂τIε + Iε −
1

2
∫

1

−1
I(τ, µ)dµ = f(τ, µ) (41)

implies that if the data f, g0 and gZ are non negative and if the minimum is reached inside the domain it
cannot be negative and if reached on Σ+ by (40) it cannot be negative either. The only remaining case is
the situation where this minimum is reached on Σ− but then it coincides with g0 or gZ which both are non
negative. Hence in all cases one has

Iε(τ, µ) ≥ Iε(τ−, µ−) ≥ 0 (42)

In the same way for the solutions of the problem

εIε + µ∂τIε + Iε −
1

2
∫

1

−1
Iε(τ, µ)dµ = 0, (43)

with g0(µ) ≥ 0 and gZ(µ) ≥ 0, (44)

a positive maximum cannot be reached inside the domain because with (40) it should be negative which
contradict (44) , and it cannot be reached on Σ+ by the same argument since Iε coincides with g0(µ) or
gZ(µ) . Since the above properties are independent of ε the proof of the positivity and of the estimate (23b)
follow by letting ε→ 0. ◻

Remark 3 For the above problem L∞ estimates and positivity for I or Iε are even more natural than L2

estimates. However, to produce a complete mathematical proof one proceeds as follow:

1. Observe that the above estimates are fully valid for C1 solutions.

2. Use the fact that smooth solutions with smooth data are dense in the set of solutions and that the above
estimates remain valid under weak limit.

This approach is documented with details and used in [1].

To conclude this section it is convenient to recall the implicit formula for the solution of the problem :

Proposition 3 Let J(τ) = 1

2
∫

1

−1
I(τ, µ)dµ. The solution of (22) with (21) satisfies

I(τ, µ) = 1µ>0(
1

µ
e−

τ
µ g0(µ) + ∫

τ

0
e−

τ−t
µ (J(t) + f(t, µ))dt

µ
)

+1µ<0(
1

∣µ∣
e−

Z−τ
∣µ∣ gZ(µ) − ∫

Z

τ
e−

Z−τ
∣µ∣ (J(t) + f(t, µ)) dt

∣µ∣
) .

(45)

This formula under different variants will be used below.

4.1 Milne Problem and “non explicit formula” for the temperature in term of
the albedo of the Earth

The fraction of the incoming solar energy scattered by Earth back to space is referred to as the planetary
albedo and is an essential component of the Earth energy balance; cf. for instance [29]. In particular it can
be combined with Milne problem to determine the temperature of the Earth as described below.

Hence in (0, Z)×(−1,1) one considers an intensity of radiation which evolves according to the equation:

µ∂τI + I −
1

2
∫

1

−1
I(τ, µ′)dµ′ = 0 (46)

10



Then on the upper atmosphere τ = Z an incoming boundary condition is given, for instance:

I(τ, µ)∣µ<0 = ∣µ∣I∞ (47)

with I∞ representing the intensity of the radiation coming from the Sun.
On the surface of the Earth i.e. for τ = 0 the amount of radiation scattered back in the atmosphere

I(0, µ)∣µ>0 depends on the incoming radiation I(0, µ)µ<0. Therefore one assumes that it is given by the
albedo operator A :

I(Z,µ)∣µ<0 = A(I(Z,µ)∣µ>0) (48)

Such operator may depend on many parameters in a very complex fashion ( cf. the discussion in section 2.2
of [29] ). However, in the present setting of the Milne problem we assume that A – which is a data of the

problem– is a linear contraction operator in the ∣µ∣ 12 weighted Sobolev spaces:

A ∶ L2(∣µ∣
1
2 , (−1,0)) ↦ L2(µ

1
2 , (0,1)), ∥A(I)∥ ≤ ∥I∥ . (49)

Then one has the following:

Theorem 2

1. In Ω = (0, Z) × (−1,1) the problem

µ∂τI + I −
1

2
∫

1

−1
I(τ, µ′)dµ′ = 0 (50)

with the incoming data
I(Z,µ)∣µ<0 = ∣µ∣I∞ (51)

and the albedo data
I(0, µ)∣µ>0 = A(I(0, µ)∣µ<0) (52)

has a unique solution IA ∈ L2((0, Z) × (−1,1)) .

2. According to the Stefan Boltzmann law the temperature on the Earth is given by the formula:

T = (C(Z,A)
σ

)
1
4 I

1
4
∞ (53)

with C(Z,A) denoting a constant depending on the depth of the atmosphere Z and the albedo operator
A .

Proof : The proof follows the same principles as above: It is based on the formula, obtained by multipli-
cation by I and integration over Ω ∶

0 = ∫
Ω
(µ∂τI + I −

1

2
∫

1

−1
I(τ, µ′)dµ′)I(τ, µ)dµ = ∫

Z

0
∫

1

−1
(I − 1

2
∫

1

−1
I(τ, µ′)dµ′)I(τ, µ))

2

dµdτ

+ 1

2
∫

0

−1
∣µ∣(I(0, µ))2dµ − 1

2
∫

1

0
µ(I(0, µ))2dµ + 1

2
∫

1

0
µ(I(Z,µ))2dµ − 1

2
∫

0

−1
∣µ∣(I(Z,µ))2dµ

(54)

On the other hand one has

1

2
∫

1

0
µ(I(Z,µ))2dµ − 1

2
∫

0

−1
∣µ∣(I(Z,µ))2dµ ≥ −1

2
∫

0

−1
∣µ∣(I(Z,µ))2dµ ≥ −1

4
I∞ (55)

and with the contraction property of the albedo operator:

1

2
∫

0

−1
∣µ∣(I(0, µ))2dµ − 1

2
∫

1

0
µ(I(0, µ))2dµ ≥ 1

2
∫

0

−1
∣µ∣(I(0, µ))2dµ − 1

2
∫

1

0
µ(A(I(0, µ)∣µ<0))2dµ ≥ 0 (56)

11



eventually one obtains the estimate:

∫
Z

0
∫

1

−1
(I − 1

2
∫

1

−1
I(τ, µ′)dµ′)I(τ, µ))2

dµdτ ≤ 1

4
I∞ . (57)

This gives the uniqueness of the solution. Existence follows by the same ε regularization as above concluding
the proof of point 1. For point 2 one observes that the mapping I(Z,µ)∣µ<0 ↦ I(0, µ) is in the above setting,
uniquely well defined and linear and hence one has:

∫
1

−1
I(0, µ)dµ = C(Z,A)I∞ (58)

where as indicated C(Z,A) depends only on the depth of the atmosphere and of the albedo operator. Then
the Stefan-Boltzmann law gives (53). ◻

Remark 4 • Observe that the above analysis can be applied with almost no modification to the case
where the hypothesis (51) for the incoming radiation is replaced by

I(0, µ)∣µ>0 = φ(µ)I∞ where φ is given in L2(µ
1
2 , (0,1)) . (59)

However, C(Z,A) is replaced by a coefficient C(Z,φ,A) which may depend on φ in a less explicit and
more subtle way.

• The case where no radiation is reemitted (in other world where all the radiation is absorbed by the
Earth) fits simply in the above discussion with A = 0 .

• The case where the earth acts like a mirror reemitting all the incoming radiation fits also simply in the
above discussion with

I(0, µ)∣µ>0 = I(0,−µ)∣µ>0 = A(I(0, µ)µ<0). (60)

• To describe a situation where a certain fraction α (Maxwell accommodation coefficient) of the radiation
is reemitted while the rest is homogenized, maintaining the total intensity equal to 0 , one introduces
the albedo operator.

I(0, µ)∣µ>0 = A(I(0, µ)∣µ<0) = αI(0,−µ) + (1 − α)∫
1

0
I(0,−µ)dµ (61)

which satisfies the hypothesis of the theorem 2 and leads to a constant C(Z,α) . In particular this
accommodation coefficient may depend on the earth temperature T and that would lead, for the atmo-
sphere temperature to an even more implicit equation of the form (53) with a temperature dependent
operator A(T ).

σT 4 = ∫
0

−1
I(0, µ)dµ + ∫

1

0
A(α(T ), I(0, µ)µ<0)(µ)dµ (62)

5 The half-space Milne problem

Let us study the case Z = +∞, the so-called half-space Milne problem. For the Milne equation (46), define

the flux by ΦI ∶= ∫
1

−1
µI(τ ;µ′)dµ′. Then one has

d

dτ
ΦI(τ) = 0 and

d

dτ
∫

1

−1
µ2I(τ ;µ′)dµ′ +ΦI(τ) = 0 (63)

As a consequence to remain uniformly bounded with respect to τ for Z →∞ any solution of (64) has to have
ΦI = 0. This justifies the following (cf.([6] and [5])
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Theorem 3 For any incoming data g0(µ) defined for τ = 0 and µ ∈ (0,1) with g0(µ) ∈ L2(µ 1
2 , (0,1)), there

exists a unique uniformly bounded in τ solution of the half space Milne problem:

µ∂τI + I −
1

2
∫

1

−1
I(τ, µ′)dµ′ = 0, ∀τ ∈ R+, I(0, µ)∣µ>0 = g0(µ) . (64)

This solution has zero flux and satisfies the estimates:

sup
τ≥0,µ∈(−1,1)

∣I(τ, µ)∣ ≤ sup
µ∈(0,1)

∣g0(µ)∣ and ∫
∞

0
eατ ∫

1

−1
(I−1

2
∫

1

−1
I)2dµ′ ≤ 1

1 − α ∫
1

0
µ∣g(0, µ)∣2∣dµ, ∀α ∈ [0,1).

(65)
This solution converges exponentially fast to a constant C(g0); moreover the mapping g ↦ C(g) is linear

continuous from L2(∣µ∣ 12 , (0,1)) into R.

Proof : Once again the proof is only sketched below; for details see [5]. First one considers the solution
on a double domain (0,2Z) × (−1,1) with incoming boundary data I(2Z,µ)∣µ<0 = g0(−µ). This makes the
solution of (46) unique, well defined and symmetric with respect to Z × (−1,1) in the sense

∀{∣z∣ < Z,µ ∈ (−1,1)} I(Z − z, µ) = I(Z + z,−µ) .

Hence, ΦI(Z) = ∫
1
−1 µI(Z,µ)dµ = 0. Since ΦI(τ) is independent of τ , it is equal to 0 everywhere.

Then the decomposition of I into its average Ia(τ) = 1
2 ∫

1
−1 I(τ, µ

′)dµ′ and the orthogonal complement

Iort = I − 1
2 ∫

1
−1 I(τ, µ

′)dµ′ gives, with the 0-flux property, the relation:

∫
1

−1
µI2(τ, µ)dµ = ∫

1

−1
(I(τ, µ) − 1

2
∫

1

−1
I(τ, µ′)dµ′)

2

dµ (66)

Multiplying the equation by eατI with 0 < α < 1 and integrating on (0, Z) × (0,1) with the relation:

eατ ∫
1

−1
(µ∂τI)Idµ = ∂τ(eατ

1

2
∫

1

−1
µI2dµ)) − αeατ

1

2
∫

1

−1
µI2dµ. (67)

Thus, one obtains the estimate:

(1 − α)∫
Z

0
eατ ∫ (I(τ, µ) − 1

2
∫

1

−1
I(τ, µ′)dµ′)2dµ)dτ ≤ ∫

1

0
µ∣g0(µ)∣2dµ. (68)

With (46) one can show that it gives the exponential convergence to a constant C(g) for Z →∞ .
The uniqueness of the solution is based on the same type of estimates. ◻

Remark 5 The determination of g ↦ C(g) and in the quest for an explicit or semi explicit formula has
been in the last century the object of intensive activities involving in particular the Wiener-Hopf calculus (cf.
[7]). However, the most explicit form is based on the introduction of the Chandrasekhar function H, defined
by the implicit formula:

H(µ) = 1 + 1

2
µH(µ)∫

1

0

H(µ′)
µ + µ′

dµ′, (69)

which gives the constant C(g) by the relation

C(g) =
√

3

2
∫

1

0
µ′H(µ′)g(µ′)dµ′ . (70)

In particular for g(µ) = µ one has ω1 ∶= C(µ) = 0.7014.
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5.1 Approximate determination of the temperature on Earth

We present an approximation which yields a temperature on Earth based on the asymptotic behaviour of
the half-space Milne problem.

5.1.1 Using Theorem 3

We return to climate dynamics where r ∈ (0,H) is the altitude but not in an evanescent atmosphere, i.e.
with (14) without the Chandrasekhar correction. We make the following change of variable

y(r) = ∫
r

0
κρ(r′)dr′

and assume that r ↦ ρ(r) does not decrease too fast so that y(+∞) = +∞. Then we focus on the case
H >> 1. If the atmosphere is grey, one observes that I(y, µ) is solution of the Milne equation (64) for
y ∈ R+, µ ∈ (−1,1). Assume constant flux given by

Φ̃ = ∫
1

−1
µ(y − µ)dµ = −2

3
(71)

Hence one introduces the solution e(y, µ) of the half space problem with 0 flux and equal to µ at y = 0 for
µ > 0. As was proved in theorem 3 such solution exists is unique and converges exponentially fast to the
constant ω1 as y goes to ∞ . As such, for some small function rem,

I = c[y − µ + rem(y, µ)] (72)

provides a boundary layer approximation (i.e. for y > 0, y << 1) of the solution of the Milne problem with
a flux given equal to 2

3
c and no incoming radiation for y = 0 and rem(y, µ) going exponentially fast to ω1

when y →∞. Hence for y large enough one has

I(y, µ)∣µ<0 = c[y − µ + ω1] + o(e−αy) (73)

Now let us use the linearity of the solution with respect to the data and consider the same problem with
incoming intensity without the term o(e−αZ). As this is a small perturbation, we expect the solution at y = 0
to be

I(0, µ) ≈ c[−µ + ω1]. (74)

Consequently,

∫
1

−1
I(0, µ))dµ ≃ c∫

0

−1
((−µ) + ω1)dµ = c

2
+ cω1 (75)

For a solar flux equal to Φ the intensity IEarth is obtained after multiplication by 3
2
Φ (see (71). This gives:

∫
1

−1
IEarth(µ)dµ ≃ 3

4
Φ(1 + 2ω1) (76)

and with the Stefan-Boltzmann law one obtains:

TEarth ≃
⎛
⎝

3

8σ
Φ(1 + 2ω1)

⎞
⎠

1
4

(77)

Formula (77) with Φ = Q(1 − a)/4 as in [14] eq (2.2) p66, gives T = 351K.
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6 Numerical analysis

Consider (16), dedimentionalized and without the Chandrasekhar correction. Given the physical constants
of Table 1 and following (14),(15), we set ν0 = 1014 so that for the computations ν ∈ (0.01,20) is enough;

we choose B0 = 2h̵ν3
0

c2
= 1.47 10−8 and T0 = h̵ν0

k
= 4798; then the physical quantities (noted with a breve) are

recovered by T̆ = T0T , B̆ν(T ) = B0Bν(T ), Ĭν = B0Iν . Similarly we choose λ = 103 and set κν = λρ0κ̆ν =
1.225κ̆ν . Thus an altitude of 12km gives Z = 1 − e−12.

The energy of sunlight is 1370Wm−2; in Paris, cos θ = 1/
√

2, so with a = 0.36, Q = 1370(1 − a)/
√

2 = 620.
Furthermore TSun = 5.8/4.798 = 1.209.

If κν is independent of ν then Ī = ∫
∞

0 Iνdν may be computed by (20) with gZ = 0 and T be given by

T (τ) = ( Q

2σb
∫

1

−1
I(τ, µ)dµ)

1
4

, σb =
B0ν0

15
( π
T0

)
4

(78)

Without dimensional scaling, with κν = κ constant, the total light intensity, is given by

Table 1: The physical constants.

c h̵ k ρ0 R H σb
2.998 108 6.6261 10−34 1.381 10−23 1.225 10−3 4 107 12 103 1.801 10−8

µ∂τ Ī + κ(Ī −
1

2
∫

1

−1
Ī) = 0, Ī(0, µ)∣µ>0 = µQ, Ī(Z,µ)∣µ<0 = 0 (79)

This comes from an integration in ν of

µ∂τ Ĭν + κν(Ĭν − B̆ν) = 0, ∫
∞

0
κν(B̆ν −

1

2
∫

1

−1
Ĭν)dν = 0, Ĭ(0, µ)∣µ>0 = µQ0B̆ν(T̆Sun),

with Ĭ(Z,µ)∣µ<0 = 0. Indeed, an integration with respect to ν yields

µ∂τ Ī + κ(Ī − B̄) = 0, κ(B̄ − 1

2
∫

1

−1
Ī) = 0, Ī(0, µ)∣µ>0 = µQ0 ∫

∞

0
B̆ν(T̆Sun)dν.

Hence we must have

Q0 ∫
∞

0
B̆ν(T̆Sun)dν = Q0σbT̆

4
Sun = Q, ⇒ Q0 =

Q

σbT̆ 4
Sun

= 3.042 10−5.

De-dimensionalization requires to sets Iν = Ĭν/B0, so the system becomes (80):

6.1 The dimensionless problem

µ∂τIν + κν (Iν −Bν(T (τ))) = 0, ∀{τ, µ} ∈ (0, Z) × (−1,1),∀ν ∈ R+,

Bν(T ) = ν3

e
ν
T − 1

, ∫
∞

0
κν (Bν(T (τ)) − 1

2
∫

1

−1
Iνdµ)dν = 0, ∀τ ∈ (0, Z),

(80)

with Iν(Z,µ)∣µ<0 = 0, I(0, µ)∣µ>0 = µQν ∶= Q0µBν(TSun), Z = 1 − e−12 and TSun = 1.209, Q0 = 3.042 10−5.
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6.2 Numerical scheme

For (80), two numerical schemes are used. Both need the following fixed-point iterations:

µ∂τI
n+1
ν + κν(In+1

ν −Bν(Tn(τ)) = 0, ∫
∞

0
κνBν(Tn+1(τ))dν = ∫

∞

0

κν
2
∫

1

−1
In+1
ν dµdν. (81)

The first , referred below as “implicit”, is based on a discretization of the exact solution of the first equation:

In+1
ν (τ, µ) = 1µ>0

⎡⎢⎢⎢⎣
µQνe−κν

τ
µ + ∫

τ

0

eκν
t−τ
µ

µ
κνBν(Tn(t))dt

⎤⎥⎥⎥⎦
+ 1µ<0 ∫

Z

τ

eκν
τ−t
µ

µ
κνBν(Tn(t))dt. (82)

Programming is straightforward; it needs only to be evaluated at all vertices of a triangulation of the rectangle
Ω. The integrals are approximated by a second order quadrature (trapezoidal rule) on a non uniform
discretization of (0, Z) to account for the fast variations in the tiny interval where infrared radiations occur.
Updating T with the second equation of (81) is hard in general but simple in the grey case, κ constant,

because the left side is κπ4Tn+14/15.
In the grey case, Table 2 shows the error versus the mesh size for example 6.2.1, below. Note however

that the precision is weak: O(h), probably because the integrands are singular at µ = 0, τ = 0.
The second method is based on a finite element discretization of the PDE as in [19]. It uses a weak

formulation of (81) discretized in Vh, the space of Lagrangian-P 1 triangular elements. For stability a least
square upwinding term (SUPG) is added, namely hSUPG(µ∂τI + κI)(µ∂τ Î + κÎ) for a small hSUPG, where Î
is the test function of the variational formulation. This means that at each iteration n of a fixed-point loop
one must solve

∫
Ω
(κIn+1Î + µ∂τIn+1 + hSUPG(µ∂τIn+1 + κI)(µ∂τ În+1 + κÎ)) = ∫

Ω
κBnÎ , (83)

with In+1 ∈ Vh satisfying the boundary conditions and for all Î ∈ Vh with Î(0)∣µ>0 = I(Z)∣µ<0 = 0 . The
method has been implemented using FreeFem++[20], which uses the library UMFPACK [12] to solve the linear
systems. We found that the method works best when the triangulation is build first in the physical variables
r, φ and then mapped to the rectangle of τ, µ. The automatic mesh refinement of FreeFem++, which is based
on the Hessian of In here, is also convenient to improve precision.

6.2.1 Example

Bν(t) = t, κν = 1, Qν = 1 ⇒ Iν = 1µ>0 [2µe−
τ
µ − µ]− 1µ<0 [µ(1 − e

(Z−τ)
µ )] . The performance of both methods

are reported in Table 2. The Finite element method (83) appears to be less precise than (82), but much
faster. Adjustment of hSUPB is done once and for all proportionally to the number of points on ∂Ω.

Table 2: Numerical error versus mesh size h on Example 1: the error is O(h)

Number of Vertices 1107 4008 9856
L2-error by FEM 20.10−4 7.7 10−4 3.7 10−4

L2-error by (82) 14.10−4 0.45 10−4 0.12 10−4

6.3 Convergence of the iterative scheme

For clarity let κ = 1. Scheme (81) is modified slightly with a parameter ε

µ∂τI
n+1 + (1 + ε)In+1 = 1

2
∫

1

−1
Indµ
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As observed in [1] and [2] solutions of scalar kinetic equation with 0 incoming data are 0 viscosity limit of
elliptic equations; therefore it is natural to introduce such regularization.

Adding the terms with ε makes also the convergence proof simple. Indeed, as for the derivation of (34)

µ∂τ(In+1 − In) + (1 + ε)(In+1 − In) = 1

2
∫

1

−1
(In − In−1)dµ

Consequently,

∫
Ω

µ

2
∂τ(In+1 − In)2 + (1 + ε)∫

Ω
(In+1 − In)2 = ∫

Ω
(In+1 − In)(In − In−1)

⇒ ∫
1

−1
µ∣In+1 − In∣2dµ∣

Z

0
+ (1 + ε)∥In+1 − In∥2

0,Ω ≤ ∥In+1 − In∥0,Ω∥In − In−1∥0,Ω

⇒ ∥In+1 − In∥0,Ω ≤ 1

(1 + ε)
∥In − In−1∥0,Ω ≤ 1

(1 + ε)n
∥I1 − I0∥0,Ω

6.3.1 Results

In practice the convergence is much faster than predicted above, even with ε = 0, as shown by Table 3. A
typical result is also shown, in the physical coordinates, on Figure 4 for (79) with Q = 1 . It shows the
solution of the Milne problem computed on a grid 40 × 20. The temperature on Earth, given by (78), is
T = 298K.

Table 3: Convergence of the fixed-point algorithm with κν = 1.

Iteration 1 2 3 4 5
∥In+1 − In∥2

0 0.524721 0.0315412 0.00777077 0.00188975 0.000457752

IsoValue
-0.0526316
0.0263158
0.0789474
0.131579
0.184211
0.236842
0.289474
0.342105
0.394737
0.447368
0.5
0.552632
0.605263
0.657895
0.710526
0.763158
0.815789
0.868421
0.921053
1.05263

Figure 4: Light intensity level map in the physical
domain, i.e. for all φ and r. Even though the cercle
has radius R = 3H, this is not a plot on a cross section
of the planet. It shows I(r, φ) for r ∈ (0,H) and
φ ∈ (−π,π).
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6.4 The Chandrasekhar equation

For a grey atmosphere the model with the Chandrasekhar correction reduces to

µ∂τI + κI + γ∂µI =
κ

2
∫

1

−1
Idµ, ∀τ, µ ∈ Ω ∶= (0, Z) × (−1,1) (84)

and (11). The two schemes above are easily modified to accommodate γ. For the FEM scheme one just adds
to (83) γ(τ, µ)Î∂yI under the left integral of (83) plus an upwinding term like (86) below.

The implicit scheme is modified as follows:

[1] Bn(τ) = 1

2
∫

1

−1
In(τ, µ)dµ,

[2] In+
1
2 = 1µ>0

⎡⎢⎢⎢⎣
µe−κ

τ
µ + ∫

τ

0

eκ
t−τ
µ

µ
κBnν (t)dt

⎤⎥⎥⎥⎦
− 1µ<0 ∫

Z

τ

eκ
t−τ
µ

µ
κBnν (t)dt,

[3] ∫
Ω
(In+1 + γ∂µIn+1)Î = ∫

Ω
In+

1
2 Î , ∀Î ∈ Vh, with boundary conditions (11). (85)

This scheme is consistent because In+
1
2 satisfies µ

κ
∂τI

n+ 1
2 + In+ 1

2 = Bn and adding this to the last equation

above gives In+1 + γ
κ
∂µI

n+1 + µ
κ
∂τI

n+ 1
2 = Bn.

In practice some additional artificial viscosity of amplitude δ should be added on the left in (85)

∫
Ω

δ

2
(∣µ∣∂τI∂τ Î + ∣γ∣∂µI∂µÎ) (86)

When the above is discretized by a P 1 Finite Element Method, the convergence of the fixed-point algorithm
is equally fast; results are shown on Figure 5 and illustrate the convergence of the solution of Chandrasekhar
equations to the solution of the Milne equation when R increases.

7 Numerical simulation of the greenhouse effect

So much for the grey case. Our aim here is to compare the Earth surface temperature for two different
functions ν → κiν(ν), i = 1,2 and observe the relative change of temperature.

The problem is defined in (80); the Chandrasekhar correction is not needed because R >>H. The values
of κν are as follows.

The atmosphere is fairly, but not fully, opaque except in a region (ν1, ν2) = (0.2,0.3) where it is much
less opaque. If a change in GHG proportion makes the atmosphere more opaque in this range then we may
set

κ1
ν = κ0 − δκ1ν∈(ν1,ν2), κ2

ν = κ0, ⇒ δκν ∶= κ2
ν − κ1

ν = δκ1ν∈(ν1,ν2) (87)

We chose κ0 = 1.225 because of the numerical value of the density of air (see (15)). We chose arbitrarily
δκ = 0.5. The values for ν1 and ν2 are on the left side of the Boltzmann curve for Earth, shown in Figure
6. In one computation the infrared clear window is narrow: (ν1, ν2) = (0.2,0.3). In another it is wider
(ν1, ν2) = (0.1,0.4).

The computer programs produce 4 temperatures τ ↦ T j(τ), j = 0, . . . ,3.

1. T 0 is the solution of the Milne equation with κ = κ0 = 1.225.

2. T 1 is the solution of the multi-group problem with κν = κ1 = 1.225 − 0.51ν∈(0.2,0.3).

3. T 2 is the solution of the multi-group problem with κν = κ2 = 1.225, ideally equal to T 0.

4. T 3 is the solution of the multi-group problem with κ0 − δκ1ν∈(0.1,0.4).
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the solution of the Milne problem (79) T 0.

According to Figure 1 and Figure 2, Green House gases increase κ and makes the window which is transparent
to infrared radiations narrower. This will be measured by T 2 − T 1 and T 1 − T 3. The problem needs to be
discretized in ν by choosing a grid in (νm, νM), which means that we need to solve the multi-group problem
introduced above with (16).

The following numerical scheme is used:

. Set KI
0 = 0, choose (νm, νM) to approximate (0,∞)

for ( n = 0,1...){

. Compute τ ↦ Tn(τ) by solving∫
νM

νm
κνBν(Tn)dν =

1

2
∫

1

−1
Kn
I dµ; then set Kn+1

I = 0.

. for(ν = νm;ν < νM ;ν+ = δν){

. Set Bnν (τ) =
ν3

e
ν

Tn(τ) − 1
,

. Solve µ∂τI
n+1 + κνIn+1 = κνBnν (τ), In+1(0, µ)∣µ>0 = µQ0Bν(TSun), In+1(H,µ)∣µ<0 = 0.

. Update KI
n+1 by KI

n+1 =KI
n+1 + κνIn+1

ν δν.
}

} (88)

Finding Tn by inverting the Planck function can be challenging. However, when κν = κ − δκ1(ν1,ν2) finding
Tn, solution of the first equation in (88) can be done by a fixed-point k-loop as follows:

∫
∞

0
κBν(Tn) −∫

ν2

ν1
δκBν(Tn) = ∫

∞

0

κν
2
∫

1

−1
Inν dµdν ⇒

κπ4Tnk+1
4

15
= 1

2
∫

1

−1
Kn
I dµ+ δκ∫

ν2

ν1
Bν(Tnk ). (89)

To assert the method we ask algorithm (88) to recover the solution of the Milne problem (κν constant).
The results are shown on Figure 7: a precision of 1% is obtained, but refining the mesh and the integration
intervals did not improve the precision. This riddle will be solved in section 7.2

Then we computed the relative change of temperature when κν is changed from κ1
ν to κ2

ν . The change
is of the order of 10−2 and negative (see Figure 9). In view of the small magnitude of the change, for a
verification we turned to a calculus of variations.
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to account for a narrower frequency range of infrared
absorption.

7.1 Solution by calculus of variations

Even though both the FEM-based code and the implicit one give the same results, evidently we are trying
to observe a temperature variation which is at the limit of the precision of the computer codes (see remark
8 below). So let us try another method.

Let (87) be written as κν = κ + δκν with δkν = −δk 1ν∈(ν1,ν2) and let κ be constant. With the obvious
notations of a calculus of variations:

µ∂τδIν + κδIν = κδBν + δκν(Bν − Iν), δIν(0, µ)∣µ>0 = δIν(Z,µ)∣µ<0 = 0,

∫
∞

0
(δBν −

1

2
∫

1

−1
δIνdµ)κdν = −∫

∞

0
(Bν −

1

2
∫

1

−1
Iνdµ)δκνdν. (90)

Let δĪ = ∫
∞

0 δIνdν and similarly for δB̄. Integrating the equations with respect to ν leads to

µ∂τδĪ + κδĪ − κδB̄ = ∫
ν2

ν1
δκν(Bν − Iν)dν, δĪ(0, µ)∣µ>0 = δĪ(Z,µ)∣µ<0 = 0, (91)

κ(δB̄ − 1

2
∫

1

−1
δĪdµ) = −∫

ν2

ν1
(Bν −

1

2
∫

1

−1
Iνdµ) δκνdν. (92)

Adding both gives

µ∂τδĪ + κδĪ −
κ

2
∫

1

−1
δĪdµ = −∫

ν2

ν1
(Iν −

1

2
∫

1

−1
Iνdµ) δκνdν. (93)

and, knowing that δB = δ(π
4T 4

15
) = 4π

4T 3

15
δT , the change in temperature is computed by (92) divided by κ:

4π4T 3

15
δT = 1

2
∫

1

−1
δĪdµ + δκ

κ
∫

ν2

ν1
(Bν −

1

2
∫

1

−1
Iνdµ)dν. (94)
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The numerical solution of (93) can be obtained both with FEM and the implicit method; results for δT
agree roughly only as shown on Figure 9. Yet here too we obtain a decrease of Earth temperature when κν
increases in the infrared interval (ν1, ν2) and the numerical values of the change obtained are of the same
magnitude as those obtained by a direct simulation with κ1

ν and κ2
ν , as seen on Figure 9.

7.2 A Formulation to compute only the temperature

These unexpected conclusions forced us to think again and track all potential precision losses. In doing so
we turned to exponential integrals (see en.wikipedia.org/wiki/Exponential integral) to evaluate (82),
an idea on which is based the computation of an analytic solution of the Milne problem in [14]-Appendix B.
Function E1 is not hard to program; it is also part of the Gnu Scientific Library gsl. One has:

∫
1

0
µe−

κτ
µ dµ = ∫

∞

1
x−3e−κτxdx = E3(κτ) =

e−κτ

2
(1 − κτ) + (κτ)2

2
E1(κτ).

∫
1

0

1

µ
e−

κ(τ−t)
µ dµ = ∫

∞

1
y−1e−κ(τ−t)ydy = E1(κ(τ − t)), t < τ,

∫
0

−1

1

µ
e
κ(t−τ)
µ dµ = −∫

1

0

1

µ′
e
−κ(t−τ)

µ′ dµ′ = −E1(κ(t − τ)), t > τ. (95)

Hence

∫
1

−1
Iνdµ = QνE3(κντ) + κν ∫

τ

0
E1(κν(τ − t))Bν(T (t))dt − κν ∫

Z

τ
−E1(κν(t − τ))Bν(T (t))dt

= QνE3(κντ) + κν ∫
Z

0
E1(κν ∣τ − t∣)Bν(T (t))dt. (96)

Observe that (82) can be integrated in µ so as to write everything in terms of

F (τ) ∶= ∫
∞

0
κν ∫

1

−1
Iνdµdν = ∫

∞

0
κν [QνE3(κντ) + κν ∫

Z

0
E1(κν ∣τ − t∣)Bν(T (t))dt]dν. (97)

We note also that to compute τ ↦ T (τ) when κν = κ0 − δκ1(ν1,ν2) by

∫
∞

0
κνBν(T )dν = 1

2
F (τ),

amounts to solve

κ0
π4T 4

15
= δκ∫

ν2

ν1
Bν(T ) + 1

2
F (τ). (98)

These give the following fixed-point iterative scheme to solve (98):

. Set F 0(τ) = ∫
∞

0 κνQνE3(κντ)dν.
for ( n = 0,1, . . . ){
. Compute τ ↦ Tn(τ) from(98) with Bν(Tn) and Fn(τ) on the right.
. Then compute Fn+1 by

. Fn+1(τ) = ∫
∞

0
κν [QνE3(κντ) + κν ∫

Z

0
E1(κν ∣τ − t∣)Bν(Tn(t))dt]dν with Bν(T ) = ν3

e
ν
T − 1

.

} (99)

This turns out to be a very fast and easily programmable method, and so far, the least prone to precision
difficulties because the only singular integrand is E1(∣t∣)∣t∼0 ∼ − log(∣t∣); but as it appears under an integral,

a dedicated quadrature rule can be used with ∫
t
log t′dt′ = t log t − t, which is not singular in R+.
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Remark 6 Note that the scheme is a non-linear solver for the functional integral equation for τ ↦ T (τ):

∫
∞

0
κνBν(T (τ))dν − 1

2
∫

∞

0
[QνE3(κντ) + κν ∫

Z

0
E1(κν ∣τ − t∣)Bν(T (t))dt]κνdν = 0 ∀τ > 0. (100)

Discrete Fourier Transform could be used to convert the integral equations into a linear system for κνBν ,
(still nonlinear in T ) but the fixed-point iteration process is so fast that it is not worth it.

Remark 7 Note that the presence of isotropic scattering complicates the problem. Consider

µ∂τIν +κνIν = κν
a

2
∫

1

−1
Idµ+κν(1−a)Bν(T (τ)), ∫

∞

0
κν(1−a)Bν(T (τ))dν = ∫

∞

0

κν
2
∫

1

−1
Iνdµdν. (101)

It leads to a formulation involving a frequency dependent integral, Gν(τ) ∶= ∫
1
−1 Iν(τ, µ)dµ:

Gn+1
ν (τ) = QνE3(κντ) + κν ∫

Z

0
E1(κν ∣τ − t∣)(

a

2
Gnν (t) + (1 − a)Bν(Tn(t)))dt,

κ0
(πTn+1)4

15
= δκ∫

ν2

ν1
Bν(Tn) +

1

2(1 − a) ∫
∞

0
κνG

n+1
ν (τ)dν. (102)

The method was tested with a = 0.3. It gives a temperature at ground level 10% higher and 10% less cooling
effect due to the same changes in κν . It requires 15 iterations to converge to 3 digits accuracy instead of 10.

7.2.1 A new set of tests

All numerical tests where re-run using (99) (automatic differentiation included) and the same results were
obtained (Figure 10 & 11): at all altitudes, temperatures decrease by 1 or 2 percents with a narrowed infrared
absorption interval, or when κν is multiplied by 2 in an infrared interval!

An added set of frequencies were tested:

ν ∈ (1.0,1.2) and ν ∈ (1.0,1.4). (103)

These numbers correspond to absorption rays of the GHG in the lower frequency range of sunlight (see
Figure 1 and Figure 6).

With the new set (103), the temperatures increase when κ increases and/or when the partially transparent
window decreases in size, yet the numbers are an order of magnitude smaller, about 0.17% near the ground
level, i.e. 0.5C.

We note also (Figure 10) that we can obtain agreement to at least 3 digits between a direct solution of
the Milne problem with constant κ and the same solved by the multi-group formulation (99) even though κ
is constant.

Figure 9 and Figure 11 are comparable, but notice Calculus of Variations and Automatic Differentiation
could differ by a factor of 2 from the direct simulations of the temperature differences; this is probably
because Calculus of Variations linearizes the problem while the finite differences don’t. It could be also an
indication of a precision issue due to a very sharp variation of the derivative of T with respect to κ.

On the convergence and stability of scheme (100)

Schemme (99) cannot jam and cannot explode either . Indeed, although E1 has a log singularity at 0, its
integral is bounded; Bnν (T ) is bounded too, therefore Fn+1 in (99) is always bounded and positive.

Hence the scheme will always generate finite numbers. Although we may not concluded that it converges,
we can conclude that if ∣Tn+1 − Tn∣∞ → 0, then any accumulation point of Tn is a solution of (100), i.e. a
solution to the radiative transfer equations (80), for some appropriate function Iν(τ, µ), not given by the
formulation but computable after convergence by (82).

A typical convergence behavior is reported in Table 4. The precision at one point near the earth surface
is also reported. Three digits are guaranteed after 6 to 10 iterations and 200 discretization points for the
altitude and an integration step for the integrals equal to 0.005.
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−0.51ν∈(0.2,0.3). In red the same is computed from T 1

and T 2, where T 1 is with κ1
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0.51ν∈(0.1,0.4). The dashed curves with colors as
above are the same but with the change of κ in the low
spectrum of sunlight: ν ∈ (1.,1.2) and ν ∈ (1.,1.4).

Table 4: Convergence of the first n ≤ 10 iterations of scheme (99) showing a speed O(n−s), s ∈ [2,3], on the

max norm of Tn(τ) − Tn−1(τ). On the second line a precision O(m− 3
2 ) is achieved for the temperature T∗

at τ∗ = 1
30

, where m controls the discretization of (0, Z) into 30 ×m points.

n or m 2 3 4 5 6 7 8 9 10
∣Tn+1 − Tn∣∞ 1.9e-3 5.3e-4 1.3e-4 3.3e-5 1.2e-5 5.4e-6 2.8e-6 1.6e-6 1.0e-6

103

T 10
∗

(Tm∗ − T 10
∗ ) 1.146 0.752 0.479 0.389 0.331 0.203 0.101 0.084 0.
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7.3 Discussion on the reliability of the numerical results

Greenhouse gases leading to a cooling of the atmosphere is counter intuitive. To check the codes we made a
similar change of κν but in a bigger range: κ = 1 + 0.51(1,1.5) where the precision should not be a problem.
Results are shown on Figure 8: increasing κ in the range of sunlight leads to 0.5% increase on Earth
temperature. The direct simulation of the change agrees with the calculus of variations. So the computer
program is probably correct.

The change of κν in a small frequency interval (0.2,0.3) could be beyond the numerical precision of the
method and indeed Figure 7 shows that the precisions may not be sufficient.

We make another remark relevant to precision:

Remark 8 It is because the intersection of the Boltzmann curve for black body Earth with the Boltzmann
curve for black body Sun is non zero (see Figure 6) that there is an infrared re-emission due to sunlight on
Earth.

Proof : If the atmosphere is transparent to sunlight, κν = 0, ∀ν > 0.6. As Iν ∣τ=0,µ>0 = µBν(TSun), ∀ν > 0.6
and Iν ∣τ=Z,µ<0 = 0, model (80) implies that Iν ∣µ>0 = max 0, µBν(TSun), ∀ν > 0.6, ∀τ . For lower frequencies,

µ∂τIν + κν(Iν −Bν) = 0, Iν ∣τ=0,µ>0 = µBν(TSun), Iν ∣τ=Z,µ<0 = 0,∀ν < .6,∫
.6

0
κν (Bν(T ) − 1

2
∫

1

−1
Iν)dν = 0.

But if Bν(TSun), ν < 0.6 is neglected, then there is nothing to drive the above system, so Iν = 0, ν < 0.6. ◻

With ν2 = 0.3, Bν2(TEarth)∣τ=0 = 3.768 10−4 and Bν2(TSun)∣τ=0 = 3.569 10−6; so the interaction is very
small. Is it why the problem is difficult ?

As a final check of the results of Figure 9 and Figure 11 we wrote an entirely different computer program
to implement (88), in C++, linked to an Automatic Differentiation library: a technique based on operator
overloading which gives the exact values of derivatives of any variable in the program with respect to another
variable, here the value of δκ in the frequency range of GHG absorption. The program uses a uniform grid in
τ, µ, by opposition to the FreeFem++ program which uses a fairly uniform grid in the physical domain refined
and adapted during computation to the Hessian of Ī. It also produces a decrease of Earth temperature of
the same magnitude!

All the numerical methods, implicit, finite element, uniform mesh (C++) and direct computation of the
temperature difference or calculus of variations or automatic differentiation, give correct values for the
temperatures versus altitude, but imprecise values to their derivative with respect to κν ; nevertheless all of
them predict a decrease of temperature due to GHG when the absorption κν increases in an infrared range
(ν1, ν2) and when the range (ν1, ν2) is decreased.

While the precisions of the finite element method and of the implicit method can be doubted because I
has singularities at the poles and because of singular exponentials, there is no reason to doubt the precision
of the last method based on (100) for the temperature. The temperature known, the light intensity can be
recovered from (82) but it has singular integrals.

8 Boundary layer near the Earth surface

Consider the Chandrasekhar equations with thermal diffusion: ∀r, µ, η ∈ (0,H) × (−1,1)2,

µ
∂Īν
∂r

+ 1 − µ2

R + r
∂Īν
∂µ

+ κνρ (Īν −Bν(T )) = 0, (104)

− κT
(R + r)2

(∂r((R + r)2∂rT ) + 1

1 − η2
∂2
ηT) + ∫

∞

0
(ρκν(Bν(T ) − 1

2
∫

1

−1
Īνdµ)dν = 0 (105)

Iν(Z,µ)∣µ<0 = 0, Iν(0, µ) = µQν ,
∂T

∂r
∣0,Z = 0 (106)
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where η = cos θ and assume that κT = εκ0, ε << 1. Then it is likely that

T = T0 + εT1(
r√
ε
, µ), Īν = I0 + εI1, (107)

with T1(r, µ) << 1 when r →∞. This leads to the following cascade of equations

µ
∂I0
∂r

+ 1 − µ2

R + r
∂I0
∂µ

+ κνρ (I0 −Bν(T0)) = 0, Bν(T0) −
1

2
∫

1

−1
I0 = 0, (108)

µ
∂I1
∂r

+ 1 − η2

R + r
∂I1
∂µ

+ κνρ (I1 − ∂TBν(T0)T1) = 0, (109)

−κ0∂
2
r′T1 + ∫

∞

0
(ρκν(∂TBν(T0)T1 −

1

2
∫

1

−1
I1dµ) = κ0

(R + r)2
(∂r((R + r)2∂rT0) +

∂2
ηT0

1 − η2
) (110)

with r′ =
√
r
ε
. For clarity and without losing generality we assume R is large so as to reduce the above to

µ
∂I0
∂r

+ κνρ (I0 −Bν(T0)) = 0, Bν(T0) −
1

4π
∫
S2
I0 = 0, (111)

µ
∂I1
∂r

+ κνρ (I1 − ∂TBν(T0)T1) = 0, (112)

−κ0∂
2
r′T1(r′) + T1(r′)∫

∞

0
ρκν∂TBν(T0)dν = κ0∂

2
rT0 + ∫

∞

0
ρκν

1

2
∫

1

−1
I1dµdν. (113)

The last line is also −∂2
r′T1 + bT1 = c, with b = 1

κ0
∫

∞

0
ρκν∂TBν(T0)dν and c = ∂2

rT0 + ∫
∞

0

ρκν
2κ0
∫

1

−1
I1dµdν

Therefore
T (r) = T0(r) + ε (c + be−

√
b rε ) . (114)

The conclusion is that there is no strong variation of the temperature r ↦ T (r) near the surface (r=0) due
to thermal diffusion, but there is a strong variation of the gradient.

To connect with the next section we notice that (114) can be rewritten as:

ε
∂(T − T0)

∂r
+
√
b(T − T0) = 0.

8.1 Boundary layer and Robin boundary condition

The temperature is a solution of an elliptic equation which requires a boundary condition on the entire
boundary ∂Ω while the boundary condition for I needs to be given only on the incoming part of Σ−.

Observe that (114) involves two temperatures T0(r) which could be expressed in term of I by the Stefan-
Boltzmann law and a temperature T (r) which represents the “observed temperature” near the boundary
(which is unknown ) and determined in term of non explicite constants. Such fact was already observed in
nuclear reactor technology, where it leads for the diffusion approximation to a Robin boundary condition
and is explained in [30] (p.199 eq. (8.13)).

Below, following [11] and [5] we propose a self contained derivation of this type of formula based on
scaling analysis. Moreover for the sake of simplicity we consider the solutions Iε of a ε dependent half space
0-flux (cf. section 5) Milne problem; one has the following

Proposition 4 The family Iε of solutions of the half space Milne Problem

εIε +
√
εµ∂rIε + Iε −

1

2
∫

1

−1
Iε(r, µ′)dµ′ = 0 , I(0, µ)∣µ>0 = I(0), (115)

I(0) independent of µ, converges to the µ independent solution of the diffusion equation

I0 −
1

3
∂2
r I0 = 0 in R+

r (116)
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with the Dirichlet boundary data I(0) = I(0), with a rate of convergence O(
√
ε) in L2(R+×(−1,1)). However,

the expression
I0(r) −

√
εµ∂rI0(r) + ω1

√
ε∂rI0(0) (117)

provides an approximation of order ε in L∞(R+ × (−1,1)).

One observes that Iε is uniformly bounded in L∞(R+ × (−1,1)) hence by standard estimates related to the
diffusion approximation , it converges to a µ-independent function I0(r) solution of (117) with I0(0) = I(0).
Then one observes also that

Ĩε(r, µ) = I0(r) −
√
εµ∂rI0(r) (118)

is a solution with an error of the order of
√
ε of the equation (115). This construction can be iterated giving

a solution of any finite order of this equation. However, at r = 0 and µ > 0 one has:

I(0, µ) − Ĩε(0, µ) =
√
εµ∂rI0(r) (119)

and this estimation concerns a boundary layer of size
√
ε which can be only analyzed by the use of the zero

flux solution e(τ, µ) of the half space problem:

µ∂re + e −
1

2
∫

1

−1
e(r, µ′)dµ′ , for µ > 0 e(0, µ) = µ . (120)

Therefore one introduces the functions:

Irem(r, µ) = (
√
ε∂rI0(r)(e(

r√
ε
, µ) − ω1) +

√
εω1∂rI0(r)

Ic(r, µ) = (I0(r) −
√
εµ∂rI0(r, µ)) − Irem(r, µ).

(121)

Constructed in such a way, Ic(r, µ) enjoys the following properties.

• It is a solution of the equation ( 115) with a remainder of order ε.

• For r = 0 and µ > 0 one has Ic(r, µ) = I0(0).

• Irem is the sum of two terms
√
εω1∂rI0(r) and the boundary layer term:

BLε(r, µ) = (
√
ε∂rI0(r)(e(

r√
ε
, µ) − ω1). (122)

According to the theorem 3 one has: sup
µ

∣BLε(r, µ)∣ ≤ C−α rε .

As a consequence of these observations one has

Iε = (I0(r) −
√
εµ∂rI0(r)) + ω1

√
ε∂rI0(0) +O(ε) (123)

In an informal way the following can be derived:

Corollary 3 Assume that the intensity of radiation Iε of the above half-space Milne problem is coupled with
the solution of a diffusion equation at the boundary of the domain by the Stefan-Boltzmann law; then the
introduction of a Robin boundary condition of the type

Tε(0) − 4ω1

√
ε∂rTε(0) = T0(0)

T0

Tε
(124)

in the diffusion approximation will improve it by an order of
√
ε to ε .
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Proof : Starting from the relations

σT 4
c (r) =

1

2
∫

1

−1
(Ic)dµ σT 4

0 (r) =
1

2
∫

1

−1
(I0)dµ (125)

one deduces from (123) that
T 4(0) = T 4

0 + 4T 3
0 ω1

√
ε∂rT0 +O(ε) (126)

From which

Tε(0) − 4ω1

√
ε∂rTε(0) = T0(0)

T0

Tε
(127)

◻

9 Conclusion

To summarize, we recall that radiative transfer is an old topic, studied by astronomers and nuclear scientists
and more recently for Earth science. Much of the ancient material can be discarded in view of the more
powerful computer solutions. However, it turns out that for the simulation of the effect of sunlight on
the atmosphere, the problem is numerically difficult, so that any mathematical and analytical properties
gathered in the past are welcome.

Over the last fifty years the mathematical approach enjoyed stimulus from a huge range of applications,
and the introduction of functional analysis and computing. However, one observes that there is still room for
progress on the full model, in particular to make the hypothesis needed for proofs much more in agreement
with the case considered in any kind of physics. As underlined above the equations (2),(3) leads to the
following comments

• Concerning the time dependent equations, for sufficiently regular coefficients (κ, ρ and regular initial
and boundary data), as it is expected, the problem has a unique well defined (for a finite time) solution,
which can be extended on [0,∞) when the volumic sources f = 0 (cf. [28] for instance, for proofs and
recent references). One of the main observation used in this contribution is the fact that an estimate
of the type 0 <m(0) ≤ T (τ,0) <M(0) remains valid for later time with 0 <m(t) < T <M(t) .

• In ([28]) independent boundary conditions are assumed for I and T . It may be more realistic to include
in the description some relation on the boundary. This would make use of the boundary layer analysis
briefly described in the section 8.

• A more serious difficulty comes from the non-constant opacity κν(τ, T ), possibly not regular (cf. [27],
[26]) and very often only vaguely known. At least two directions have been proposed to deal with
this issue. In one of the first contributions on the subject (cf [24]) it was assumed that with no other
hypothesis on the dependance with respect to the frequency ν that the function T ↦ κν(T ) was non
increasing , while the function T ↦ κν(T )Bν(T ) was non decreasing. Then some L1 stability estimates
lead to existence and uniqueness for the system.

On the other hand a popular grey model, which also leads to a Milne problem, is based on the
assumption that the opacity depends on the temperature T , yet independent of the frequency ν. With
such hypothesis several stability results have been obtained with no constraint on the regularity of the
mapping T ↦ κ(T ) (see [1],[3],[4] and [15]).

• Under some convenient scaling hypothesis, in particular large opacity with respect to the size of the
media one may approximate the dynamics by a diffusion equation known as the Rosseland approxima-
tion. Once again mathematical results are well advanced for the grey model and some of its variants
and more sparse in the general case. Such approximation is very well adapted to describe “interior
problems” like fusion by laser confinement. It does not seem (to our knowledge) present in climatology.
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As a matter of fact, the height of the atmosphere being small with respect to the Earth radius it is
by itself a boundary layer, except for the fact that the equations are considered only in the vertical
direction. As sketched in the section 8.1 this issue is closely related to the improvement of the accuracy
of the Rosseland approximation and also well developed for grey model. It is worth mentioning that
mathematically the problem is easier with the Chandrasekhar correction (12),[32] and [31].

Numerically, it is a mixed integro-differential problem for which a fixed-point approach works quite well, and
for which a convergence proof is available for grey atmospheres.

Four methods of discretization have been tried. A finite element method with upwinding, an implicit
method based on the integral form of the solution of the equation for the light intensity at given temperature,
a finite difference implementation of the implicit method on a uniform mesh, with automatic differentiation,
and finally an integral formulation for the temperature only. The second one is more precise but slower; the
third is just for checking that the programs have no bugs, and the fourth one is the most trustworthy. So
we may use it for validation . Convergence with respect to grid refinement is fairly fast.

The present computations validate a decrease of Earth temperature due to CO2 and other greenhouse
gases responsible for a substantial change in the transmission coefficient κν in the lower part of the infrared
frequency range emitted by Earth seen as a black body at temperature ∼ 300K. Narrowing the infrared
transparent window has also the same cooling effect. On the other hand, it gives a heating effect when the
same changes on κν occur in the lower frequency range of sunlight!

Consequently, the radiative transfer equations, used with sunlight supposedly unaffected by the atmo-
sphere, should not be presented as an explanation of the greenhouse effect using the infrared frequency
range. In [13] and [17] the greenhouse effect is explained by radiative transfer principles but assuming that
κ and Bν depend on T and air pressure. It may require non-isotropic scattering in the atmosphere to justify
numerically their results.

Finally, recall that radiative transfer alone gives a very crude model for the earth temperature: 76C at
noon, -273C at midnight and 19C on the average in Paris, computed by assuming that sunlight power is
Q=620/2). Climate change is indeed much more complex than just radiative transfer!
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10 Appendix

// Written in simple C++ by O. Pironneau

#include <iostream>

#include <fstream>

#include <cmath>

using namespace std;

#define sqr(x) (x*x)

const int n=6, MM=n*30; // nb points in tau

const int kmax=6+n; // nb fixed point iterations

const double Z=1-exp(-12.); // max tau after change of var

const double SBsun = 3.042e-5; // scaled sunlight power

const double Tsun = 1.209; // scaled sun temperature

const double numax=20; // max frenquency

const int jmax=150; // nb of points for integration in nu range

const double dnu0=numax/sqr(jmax); // frequency minimal increment

const double dtt = 0.005; // integration step size in analytical formula

const int nt = 5; // min nb of integration step in anal formula

const double knu0=1.225; // absorption coeff and its GHS variation dknu

const double dknu=-0.5; // means knu0 and knu0+dknu0 are computed

const double nu01=0.2, nu02=0.3, nu03=0.1, nu04=0.4; // frequencies for GHS absorption

const double pi = 4*atan(1.);

double Inut[MM], F[MM], // mu integral of I_nu and mu+nu integral of I_nu

T[MM], // Milne with knu0

T1[MM], // T for knu0 + dknu*(nu1<nu<nu2)

T2[MM], // Milne with knu0 by multi-group

T3[MM], // // T for knu0 + dknu*(nu3<nu<nu4)

Aaux[MM]; // auxiliary array

double expint_E1(const double t, const double B=1){

// if your compiler has it or if you can link to gsl you may adapt this function

// it computes E1(t)*B

const int K=8; // precision in the exponential integral function E1

const double epst=1e-5, gamma =0.577215664901533; // special integration for log(t)

if(t==0) return -1e12*B;

double abst=fabs(t);

if(abst<epst) return -abst*(gamma + log(abst)-1)*B;

double ak=abst, somme=-gamma - log(abst)+ak;

for(int k=2;k<K;k++){
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ak *= -abst*(k-1)/sqr(k);

somme += ak;

}

return somme*B;

}

double Bsun(const double nu){ return SBsun*sqr(nu)*nu/(exp(nu/Tsun) -1);} // Boltzmann

double BB(const double nu, const double T){ return sqr(nu)*nu/(exp(nu/T) -1);} // Boltzmann

double intB(const double kappa, const double nu,const double tau,const double tmin,const double tmax){

// returns the convolution t-integral of E1*B from t=tmin to tmax

double aux=0;

const double dt=fmin(dtt,nt/(tmax-tmin));

for(double t=tmin;t<tmax;t+=dt){

double baux = BB(nu,T[int((MM-1)*t/Z)]);

if(kappa*(t-tau)!=0) aux += dt*kappa*expint_E1(kappa*fabs(tau-t),baux);

}

return aux;

}

int getT(const double nu1, const double nu2, const double dknu){ // Kirchhof law + corr

for(int i=0;i<MM;i++){

double Bik=F[i]/2; // add dknu correction

if(dknu!=0)

for(double nu=nu1; nu<nu2; nu+=dnu0) Bik -= BB(nu,T[i])*dknu*dnu0;

T[i]=sqrt(sqrt(15*Bik/knu0))/pi;

}

return 0;

}

int getInu(const double kappa, const double nu){ // returns light intensity I_nu

for(int i=0;i<MM;i++){

double x=i*Z/(MM-1);

Inut[i] = intB(kappa,nu,x,0,Z) + Bsun(nu)*(exp(-kappa*x)*(1-kappa*x)

+ expint_E1(kappa*x,sqr(kappa*x)))/2;

}

return 0;

}

int multiBlock(const double nu1, const double nu2, const double dknu)

{

for(int i=0;i<MM;i++) T[i]=0.07; // initialize

for(int k=0;k<kmax; k++){ // fixed point loop: first update F

for(int i=0;i<MM;i++){ F[i]=0; Inut[i]=0;}

double nu=0;

for(int j=1; j<=jmax;j++){

double dnu=(2*j-1)*dnu0; // variable integral increment

nu+=dnu;

double kappa=knu0+dknu*(nu>nu1)*(nu<nu2); //kappa_nu

for(int i=0;i<MM;i++) F[i]+=kappa*Inut[i]*dnu/2;

getInu(kappa,nu); // trapezoidal integration rule

for(int i=0;i<MM;i++) F[i]+=kappa*Inut[i]*dnu/2;

}

getT(nu1,nu2,dknu); // Then update T

cout << "k= "<<k <<" "<<T[n]<<" "<<T[MM-n]<<endl;

}

return 0;

}

int main(int argc, const char * argv[]) {

// computation with kappa constant

cout<<"\n kappa constant \n iterations \t [T] near earth and far near Z\n";

multiBlock(nu01,nu02, 0.);

for(int i=0;i<MM;i++) T1[i]=T[i]; // store results in T2
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// computation with kappa variable and nu1,nu2

cout<<"kappa variable\n iterations \t [T] near earth and far near Z\n";

multiBlock(nu01,nu02, dknu);

for(int i=0;i<MM;i++) T2[i]=T[i]; // store results in T1

// computation with kappa variable and nu3,nu4

cout<<"kappa variable\n iterations \t [T] near earth and far near Z\n";

multiBlock(nu03,nu04,dknu); // results in T

for(int i=0;i<MM;i++) T3[i]=T[i]; // store results in T1

// print and store results

cout<<"\n tau\t \t [T1]:Milne [T2]:narrow [T3]:wide [T1-T2]/T [T2-T3]/T \n ";

ofstream myfile = ofstream("<your folder>/milneAD2.txt");

for(int i=1;i<MM;i++){

cout << -log(1-i*Z/(MM-1))<<"\t"<<T1[i]<<"\t"<<T2[i]<<"\t"

<<T3[i]<<"\t"<<2*(T1[i]-T2[i])/(T2[i]+T1[i])

<<"\t"<<2*(T2[i]-T3[i])/(T2[i]+T3[i]) <<endl;

myfile << -log(1-i*Z/(MM-1))<<"\t" // altitude

<<T1[i]<<"\t" // T(kappa) Milne by multigroup

<<T2[i]<<"\t" // T(kappa+dknu) narrow frequency window

<<T3[i]<<"\t" // T(kappa+dknu) wide frequency window

<<2.*((T1[i]-T2[i]))/((T2[i]+T1[i]))<<"\t" // (T(kappa)-T(kappa+dknu))/T

<<2.*((T2[i]-T3[i]))/((T3[i]+T2[i]))<<"\t"<< endl;

}

return 0;

}
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