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Consider a C 8 closed connected Riemannian manifold pM, gq with negative curvature. The unit tangent bundle SM is foliated by the (weak) stable foliation W s of the geodesic flow. Let ∆ s be the leafwise Laplacian for W s and let X be the geodesic spray, i.e., the vector field that generates the geodesic flow. For each ρ, the operator Lρ :" ∆ s `ρX generates a diffusion for W s . We show that, as ρ Ñ ´8, the unique stationary probability measure for the leafwise diffusion of Lρ converge to the normalized Liouville measure on SM .

Statement of the result

Let pM, gq be an m-dimensional closed connected negatively curved C 8 Riemannian manifold. We shall study a class of probability measures on the unit tangent bundle SM which interpolates between the Burger-Roblin measure (whose transversal distribution in the weak unstable leaves is the same as the one for the maximal entropy measure of the geodesic flow) and the normalized Liouville measure.

Let r

g be the the G-invariant extension of g to the universal cover space Ă M . The fundamental group G " π 1 pM q acts on p Ă M , r gq as isometries such that M " Ă M {G. Let B Ă M be the geometric boundary of Ă M , i.e., the collection of equivalent classes of unit speed geodesic rays that remain a bounded distance apart. Since r g is negatively curved, there is a natural homeomorphism from B Ă M to the unit sphere S x Ă M in the tangent space at x P Ă M , sending ξ to the initial vector of the geodesic ray starting from x in the equivalent class of ξ ( [START_REF] Eberlein | Visibility manifolds[END_REF]). Hence we identify the unit tangent bundle S Ă M "

Ť xP Ă M S x Ă M with Ă M ˆB Ă M .
For each v " px, ξq P S Ă M , its (weak) stable manifold for the geodesic flow tΦ t u tPR on S Ă M , denoted Ă W s pvq, is the collection of initial vectors of geodesic rays in the equivalent class of ξ and can be identified with Ă M ˆtξu. The collection of Ă W s pvq form the stable foliation Ă W s of S Ă M . Extend the action of G continuously to B Ă M . Then SM can be identified with the quotient of Ă M ˆB Ă M under the diagonal action of G. Since ψp Ă W s pvqq " Ă W s pDψpvqq for ψ P G, the collection of quotients of Ă W s pvq defines a lamination W s on SM , the so-called (weak) stable foliation of SM . The leaves of W s are discrete quotients of Ă M , which are naturally endowed with the Riemannian metric induced from r g. For v P SM , let W s pvq be the leaf of W containing v. Then W s pvq is a C 8 immersed submanifold of SM depending Hölder continuously on v in the C 8 -topology ( [START_REF] Shub | Global stability of dynamical systems[END_REF]).

Let L be a Markovian operator (i.e., L1 " 0) on (the smooth functions on) SM with continuous coefficients. It is said to be subordinated to the stable foliation W s , if for every smooth function f on SM , the value of Lpf q at v P SM only depends on the restriction of f to W s pvq. A Borel probability measure m on SM is called L-harmonic if it satisfies ż Lpf q dm " 0 for every smooth function f on SM . Extend L to be a G-equivariant operator on S Ă M " Ă M ˆB Ă M , which we shall denote with the same symbol, and, for v " px, ξq P S Ă M , let L v denote the laminated operator of L on Ă W s pvq " Ă M ˆtξu. Call L weakly coercive, if its lifted leafwise operators L v , v P S Ă M , are weakly coercive in the sense that there are a number ε ą 0 (independent of v) and, for each v, a positive pL v `εq-superharmonic function F on Ă M (i.e., pL v `εqF ď 0). It is known that for a weakly coercive operator, there exists a unique harmonic measure ( [START_REF] Garnett | Foliations, the ergodic theorem and Brownian motion[END_REF], [START_REF] Hamenstädt | Harmonic measures for compact negatively curved manifolds[END_REF]).

One classical example of weakly coercive operator is L " ∆ s , the laminated Laplacian for W s , whose unique L-harmonic measure is always referred to as the harmonic measure ( [START_REF] Garnett | Foliations, the ergodic theorem and Brownian motion[END_REF]). Many interesting open problems in dynamics are concerned with the relationship of the harmonic measure with the normalized Liouville measure and the normalized maximal entropy measure for the geodesic flow (Bowen-Margulis measure), and the applications of these relations to the characterizations of the locally symmetric property of the underlying space (see [START_REF] Katok | Entropy and closed geodesics[END_REF][START_REF] Sullivan | The Dirichlet problem at infinity for a negatively curved manifold[END_REF] and see also [START_REF] Kaimanovich | Invariant measures of the geodesic flow and measures at infinity on negatively curved manifolds, Hyperbolic behaviour of dynamical systems[END_REF][START_REF] Ledrappier | Applications of dynamics to compact manifolds of negative curvature[END_REF][START_REF] Yue | Rigidity and dynamics around manifolds of negative curvature[END_REF] for more descriptions).

In this paper, we are interested in the family L ρ " ∆ s `ρX, where ρ is a real number and X is the geodesic spray. Since X is tangent to the stable manifold, the operators L ρ are subordinated to the stable foliation.

Let V denote the volume entropy of pM, gq:

V " lim rÑ`8 log VolpBpx, rqq r ,
where Bpx, rq is the ball of radius r in p Ă M , r gq and Vol is the volume. The volume entropy coincides with the topological entropy of the geodesic flow on SM since g has negative sectional curvature [START_REF] Manning | Topological entropy for geodesic flows[END_REF]). For ρ ă V , the operator L ρ is weakly coercive ( [START_REF] Hamenstädt | Harmonic measures for compact negatively curved manifolds[END_REF]) and hence there is a unique L ρ -harmonic measure, which we will denote by m ρ .

Clearly, m 0 is the classical harmonic measure. When ρ Ñ V , m ρ tends to the Burger-Roblin measure m BR , the unique harmonic measure for the Laplacian subordinated to the strong stable foliation ([LS, Proposition 4.10], the uniqueness of such a measure is due to Kaimanovich ([Kai88])). When ρ Ñ ´8, the main result of this paper is: Theorem 1.1. Let pM, gq be an m-dimensional closed connected negatively curved C 8 Riemannian manifold. As ρ Ñ ´8, the L ρ -harmonic measure m ρ converge to the normalized Liouville measure on SM .

Roughly speaking, since the measure m ρ is L ρ -harmonic, it is also stationary for the operator ´X ´p1{ρq∆ s (see Section 2 for a precise definition). In particular, any limit measure of the family m ρ as ´1{ρ Ñ 0 is invariant under the (reversed) geodesic flow. For a limit of random perturbations of a conservative Anosov flow, the convergence of the stationary measures to a SRB measure has been shown by several authors, in particular Kifer ([Kif74]), under the condition that the operator ∆ is hypoelliptic, so that the Markov kernels have a density with respect to Lebesgue on SM. We cannot apply this to show Theorem 1.1 since in our case, the operators are subordinated to the stable foliation and the Markov kernels p ρ pt, px, ξq, dpy, ηqq are singular. Another approach by ) uses the variational principle from thermodynamical formalism and we show that such an approach can be used in our case in spite of the singularity of the Markov kernels. We shall show any limiting measure m of m ρ (as ρ Ñ ´8) satisfies Pesin entropy formula for the geodesic flow. Theorem 1.1 follows since the normalized Liouville measure on SM is indeed characterized by Pesin formula among invariant measures for the geodesic flow ( [START_REF] Bowen | The ergodic theory of Axiom A flows[END_REF]). More precisely, we will define a stochastic flow on a bigger space and consider a special stationary measure m ρ for that stochastic flow that projects to m ρ on SM . We then introduce a relative entropy like quantity h s ρ for m ρ and show h m , the entropy of m for the reversed geodesic flow, satisfies

(1.1) h m ě lim sup ρÑ´8 h s ρ .
This can be done (see Proposition 3.2) along the lines of ) and ) for the upper semi-continuity of the relative entropy. To conclude Theorem 1.1, we verify that lim sup ρÑ´8 h s ρ has a lower bound given by Pesin entropy integral for m using the SRB like properties of m ρ (see Proposition 3.1) and their nice convergence property inherited from our stochastic flow system (see Proposition 2.7).

We arrange the paper as follows. In Section 2, we will give preliminaries on the properties of the L-harmonic measures and the dynamics of the associated stochastic flows. In Section 3, we will introduce the random system to define h s ρ and reveal its relation with Pesin entropy formula. The upper semi-continuity equality (1.1) will be shown in the final section.

Harmonic measure and stochastic flow

We begin with some basic understanding of the L ρ -harmonic measure m ρ (ρ ă V ) by analyzing the dynamics of its G-invariant extension on Ă M ˆB Ă M , which is denoted by r m ρ .

Consider the G-equivariant extension of L ρ to S Ă M " Ă M ˆB Ă M , which we shall denote by the same symbol. It defines a Markovian family of probabilities on r Ω `, the space of paths of r ω : R `Ñ S Ă M (where R `:" r0, `8q), equipped with the smallest σ-algebra A for which the projections R t : r ω Þ Ñ r ωptq are measurable. Indeed, for v " px, ξq P S Ă M , the laminated operator L v ρ on Ă W s pvq can be regarded as an operator on Ă M with corresponding heat kernel functions p v ρ pt, y, zq, t ą 0, y, z P Ă M . Define p ρ pt, px, ξq, dpy, ηqq " p v ρ pt, x, yq dVolpyq δ ξ pηq, where δ ξ p¨q is the Dirac function at ξ. Then the diffusion process on Ă W s pvq with infinitesimal operator L v ρ is given by a Markovian family tP w ρ u wP Ă M ˆtξu , where for every t ą 0 and every Borel set A Ă Ă M ˆB Ă M we have ]) With the above notations, the following are true for ρ ă V .

P w ρ ptr ω : r ωptq P Auq " ż A p ρ pt, w, dpy, ηqq. Proposition 2.1. ([Gar83, Ham97 
i) The measure r m ρ satisfies, for all

f P C 2 p Ă M ˆB Ă M q with compact support, ż Ă M ˆB Ă M ˆż Ă M ˆB Ă M f py, ηqp ρ pt, px, ξq, dpy, ηqq ˙d r m ρ px, ξq " ż Ă M ˆB Ă M f px, ξq d r m ρ px, ξq.
ii) The measure r P ρ " where we continue to use X to denote the geodesic spray for S Ă M .

ş P v ρ d r m ρ pvq on r Ω `is invariant
Remark 2.2. Let m be any weak* limit of the probability measures m ρ on SM as ρ Ñ ´8 and let r m be the G-invariant extension of m to Ă M ˆB Ă M . Clearly, Theorem 1.1 follows if we can show r m has absolutely continuous conditional measures on leafs Ă M ˆtξu. But this does not follow directly from equation (2.1) since the Harnack inequality used for each ρ finite is worse and worse when ρ goes to ´8 and hence we have less and less control of the density functions k ρ .

For Theorem 1.1, we will further explore the invariant dynamics of m ρ from the stochastic flow point of view and use it to establish the entropy formula for the limit measures.

We first recall some classical results from the theory of Stochastic Differential Equations (SDE). Let tB t " pB 1 t , ¨¨¨, B d t qu tPR `be a d-dimensional Euclidean Brownian motion starting from the origin with the Euclidean Laplacian generator (so the covariance matrix is 2tId) and let pΩ, Pq denote the corresponding Wiener space. Let X " pX 0 , X 1 , ¨¨¨, X d q, where tX i u iďd`1 are bounded vector fields on a smooth finite dimensional Riemannian manifold pN, x¨, ¨yq. The pair pX, tB t u tPR `q consists of a stochastic dynamical system (SDS) on N and it is C j (j ě 1 or j " 8) if all X i are C j bounded ( [START_REF] Elworthy | Stochastic Differential Equations on Manifolds[END_REF]). An N-valued semimartingale tx t u tPR `defined up to a stopping time e x 0 is said to be a solution of the following Stratonovich SDE (2.2)

dx t pωq " X 0 px t pωqq dt `d ÿ i"1 X i px t pωqq ˝dB i t pωq,
if for all f P C 8 pNq,

f px t pωqq " f px 0 pωqq `ż t 0 X 0 f px s pωqq ds `ż t 0 d ÿ i"1
X i f px s pωqq ˝dB i s pωq, @0 ď t ă e x 0 pwq.

The solution to (2.2) always exists and is essentially unique when all X i 's are C 1 bounded ([Elw82]). Moreover, for P almost all ω, the mapping

F t p¨, ωq : x 0 pωq Þ Ñ x t pωq
has the following property.

Proposition 2.3. ([Elw82, Chapter VIII]) Let pX, tB t u tPR `q be a C j SDS on N, where j ě 1 or j " 8. There is a version of the explosion time map x Þ Ñ e x , defined for x P N, and a version of tF t px, ωqu, defined when t P r0, e x pωqq, such that if Npt, ωq " tx P N : t ă e x pwqu, then the following are true for each pt, ωq P R `ˆΩ.

i) The set Npt, ωq is open in N.

ii) For almost all w, x 0 P N and 0 ď t ă t 1 ă e x 0 pwq, we have the cocycle equality F t 1 px 0 , ωq " F t 1 ´tpx t , σ t pωqq ˝Ft px 0 , ωq, where σ t is the shift transformation on Ω:

σ t `pB 1 s , ¨¨¨, B m s q sě0
˘" `pB 1 t`s , ¨¨¨, B m t`s q sě0 ˘´pB 1 t , ¨¨¨, B m t q.

iii) The map F t px, ωq : Npt, ωq Ñ N is C j´1 (or C 8 when j " 8) and is a diffeomorphism onto an open subset of N. Moreover, the map τ Þ Ñ F τ p¨, ωq of r0, ts into C j´1 (or C 8 when j " 8) mappings of Npt, ωq is continuous. iv) For 1 ď l ď j ´1, denote by D plq F t p¨, ωq the l-th tangent map of F t . Then, for any q P r1, 8q, there is a bounded function c l pt, qq, which depends on t, m, q, and the bounds of t∇ ι X 0 u ιďl , t∇ ι X i u 1ďiďd,ιďl`1 and t∇ ι´1 Ru 1ďiďd,ιďl`1 such that }rD plq F t p¨, ωqs} L q ă c l pt, qq, where } ¨}L q is the L q -norm and ∇ ι denotes the ι-th covariant derivative and R is the curvature tensor.

When Npt, ωq " N, the solution process tx t u to (2.2) is said to be non-explosive. In this case, the maps tF t p¨, ωqu tPR `induce a kind of semi-flow on N, which we shall call the stochastic flow associated to the SDS pX, tB t u tPR `q or (2.2). A direct consequence of Proposition 2.3 is the following regularity of a one-parameter family of stochastic flows.

Corollary 2.4. Let pX a , tB t u tPR `q be a one-parameter family of SDS on N with N a pt, ωq " N. Assume X a i 's are all C k pk ě 1 or " 8q on NˆA in the product differentiable structure. Then for any t ą 0, and j ď k ´1, a Þ Ñ F a t p¨, ωq is C j in the space of C k´1´j maps of N.

Proof. Let x a t be the solution for the SDS pX a , tB t u tPR `q. Then px a t , aq solves the new SDS ppX a , 0q, tB t u tPR `q on N ˆA. The regularity in a is a straightforward application of Proposition 2.3 by treating a as a part of the initial value.

Corollary 2.4 does not apply when we only have Hölder continuity of X a in a. However, it is still possible to discuss the regularities of a Þ Ñ F a t p¨, ωq by using one criterion from Kolmogorov:

Proposition 2.5. (cf. [Kun90, Theorem 1.4.1]) Let T ą 0 and let tY a t pωqu tPr0,T s,aPA be a one parameter family of random processes on a complete metric space, where A is some bounded n-dimensional Euclidean domain. Suppose there are positive constants 5, 5 0 , 5 1 , ¨¨¨, 5 n , with ř n i"0 p5 i q ´1 ă 1, and C 0 p5q such that for all t, t 1 P r0, T s and a " pa 1 , ¨¨¨, a n q, a 1 " pa 1 1 , ¨¨¨, a 1 n q P A,

E " ˇˇY a t ´Ya 1 t 1 ˇˇ5  ď C 0 p5q ˜|t ´t1 | 5 0 `n ÿ i"1 |a i ´a1 i | 5 i ¸,
then Y a t has a continuous modification with respect to the parameter pt, aq. Let β i , i " 0, ¨¨¨, n, be arbitrary positive numbers less than 5 i p1 ´řn 0 p5 i q ´1q{5. Then for any hypercube D in A, there exists a positive random variable kpωq with Erkpωq 5 s ă 8 such that for any t, t 1 P r0, T s and a, a 1 P D,

ˇˇY a t ´Ya 1 t 1 ˇˇď kpωq ˜|t ´t1 | β 0 `n ÿ i"1 |a i ´a1 i | β i ¸.
Next, we consider ρ ă 0, ε :" 1{ ? ´ρ and L 1 ε :" ´X `ε2 ∆ s . Extend L 1 ε to be a Gequivariant operator on S Ă M , which we shall denote by the same symbol. Its associated leafwise diffusions can be visualized using the classical Eells-Elworthy-Malliavin construction.

Recall that, for v " px, ξq P S Ă M , we have identified the stable manifold Ă W s pvq with Ă M ˆtξu and endowed it with the Riemannian metric on Ă M . In the same way, we can identify an orthogonal frame in the tangent space T v Ă W s with O x ˆtξu, where O x " pe 1 , ¨¨¨, e m q is an element in O x p Ă M q, the collection of the orthogonal frames in T x Ă M . Set O s pS Ă M q for the bundle of such stable orthogonal frames:

O s pS Ă M q :" ! px, ξq Þ Ñ O x ˆtξu : O x " pe 1 , ¨¨¨, e m q P O x p Ă M q, x P Ă M ) .
We carry to O s pS Ă M q all the Riemannian geometry from Op Ă

M q " Ť xP Ă M O x p Ă M q. In partic- ular, if H x denotes the horizontal lift from T x Ă M to T Ox Op Ă M q, we can define the horizontal lift p H v from T v W s to T Ox,ξ O s pS Ă M q by p H v pw, ξq " pH x pwq, ξq for w P T x Ă M .
Let tpB 1 t , ¨¨¨, B m t qu tPR `be an m-dimensional Euclidean Brownian motion starting from the origin with the Euclidean Laplacian generator (and covariance matrix 2tId) and let pΩ, Pq be the Wiener space. Set p X as the horizontal lift of X to T O s pS Ă M q. We can realize the diffusion for L 1 ε as the projection to S Ă M of the non-explosive solution process tu t u tPR (2.3)

du t " ´p Xpu t q dt `ε m ÿ i"1 p Hpu t pe i qq ˝dB i t .
Let p π : O s pS Ă M q Ñ S Ă M be the natural projection and denote x W s for the foliation of O s pS Ă M q that projects on Ă W s . Let D 8 pO s S Ă M q be the space of homeomorphisms of O s pS Ă M q that preserve the leaves of x W s and are C 8 -diffeomorphisms along the leaves. We endow D 8 pO s S Ă M q with the C 0,8 topology: ϕ, ϕ 1 P D 8 pO s S Ă M q are close if, for all r ą 0, the r-germs of ϕ and ϕ 1 are uniformly close on compact sets and the r-germs of ϕ ´1 and pϕ 1 q ´1 are uniformly close on compact sets.

Proposition 2.6. With the above notations, for P-a.e. ω P Ω, for all ε ą 0, t ě 0, there exists ϕ ε,t pωq P D 8 pO s S Ă M q such that the following hold true.

i) For all u P O s pS Ă M q, pω, tq Þ Ñ ϕ ε,t pωqpuq is a solution of the equation (2.3); in particular, for all T ě 0, ω Þ Ñ ϕ ε,T pωq is measurable with respect to the σ-algebra generated by pB 1 t , ¨¨¨, B m t q, 0 ď t ď T . ii) For almost all ω, all t, s ě 0, ϕ ε,t`s pωq " ϕ ε,t pσ s pωqq ˝ϕε,s pωq. iii) For all ψ P G, Dψ ˝ϕε,t pωq " ϕ ε,t pωq ˝Dψ. iv)

The map ε Þ Ñ ϕ ε,t pωq is continuous in D 8 pO s S Ă M q. v) For fixed r P N, t ě 0, (2.4) E " max u › › ϕ ε,t pωqpuq| x W s puq › › C r ı ă `8.
Proof. Since both p X and p H are tangent to x W s , the solution to (2.3) is constrained in x W s . For fixed ξ and ε, equation (2.3) can be seen as a SDE on Op Ă M q ˆtξu and is solvable with infinite explosion time. Hence properties i) and ii) are given by Proposition 2.3. Property iii) follows from the uniqueness of the solution to (2.3). Considering ε as a parameter, we get the continuity of the solution in ε by Corollary 2.4. Considering ξ as a parameter, the leaves of x W s and p X, p H vary Hölder continuously with respect to ξ. Hence, by a standard estimation using Burkholder inequality and Gronwall lemma and applying Proposition 2.5, we can obtain the continuity of the solution to (2.3) in ξ, so that we can consider it as an element of D 8 pO s S Ă M q. This shows iv). Finally we show v). Using a fundamental domain for the action of G on Ă M , we may regard O s pSM q as a subset of O s pS Ă M q. By the G-equivariance property of the diffusion, we can restrict u in the left hand side of (2.4) to O s pSM q. By continuity of ϕ ε,t pωqpuq| x W s puq in u, the compactness of O s pSM q and Proposition 2.5, for (2.4), it suffices to show for each u P O s pSM q, r P N and t ą 0,

(2.5) E " › › ϕ ε,t pωqpuq| x W s puq › › C r ı ă `8.
This is an application of Proposition 2.3 iv) by using the SDE (2.3).

Equation (2.3) for ε " 0 is the ordinary differential equation du t " ´p Xpu t q dt. Its solution is the extension t p Φ ´tu tPR of the reversed geodesic flow to O s pS Ă M q by parallel transportation along the geodesics, and is called the reversed stable frame flow. Write ν ρ for the probability measure on D 8 pO s S Ă M q that is the distribution of ϕ ε,1 " ϕ 1{ ? ´ρ,1 in Proposition 2.6. Every element ϕ P D 8 pO s S Ă M q preserves each leaf x W s puq and is a C 8 diffeomorphism along it. We write Jpϕ, uq for the Jacobian determinant of the tangent map of ϕ| x W s puq at u. For later use, we state a proposition concerning the limit behavior of ϕ 1{ ? ´ρ,t when ρ Ñ ´8. Proposition 2.7. With the above notations, the following are true. iii) For any r P N,

lim ρÑ´8 ż max u ˇˇ}ϕ| x W s puq } C r ´} p Φ ´1| x W s puq } C r ˇˇdν ρ pϕq " 0. iv) We have lim ρÑ´8 ż log Jpϕ, uq dν ρ pϕq " log Jp p Φ ´1, uq
and the convergence is locally uniform in u.

Proof. The proof of continuity of the solution to (2.3) in Proposition 2.6 extends to ε " 0. This shows i). When ρ Ñ ´8, ε " 1{ ? ´ρ Ñ 0. For ii), note that B r,M pρq is finite by Proposition 2.6 v) (applied for t " M). Then B r,M is also finite by using the continuity in pε, uq in the estimation of the expectation in (2.5) in the proof of Proposition 2.6 v). Similarly, we have the continuity in ε of the tangent maps (and their derivatives in ε) of the solution to (2.3). Following Proposition 2.3 iv), it is easy to deduce from (2.3) the continuity in ε of the norm of the tangent maps and of the Jacobian of the first order tangent map. This shows iii) and iv).

It follows from Proposition 2.6 i) and ii) that we can consider ϕ ε,n , n P N, as an independent product of the homeomorphisms ϕ ε,1 and that we can apply the theory of independent random mappings. Let p π be the projection map from O s pS Ă M q to S Ă M . For any C 2 compactly supported function f on S Ă M , px, ξq P S Ă M and any frame u P O s pS Ă M q in the fiber p π ´1px, ξq, we have

(2.7) ż S Ă M
f py, ηq dp ρ pε, px, ξq, dpy, ηqq "

ż D 8 pO s S Ă M q f pπϕpuqq dν ρ pϕq.
Let p m ρ be the measure on O s pS Ă M q that projects on r m ρ on S Ă M and such that the conditional measures on fibers of the projection map p π are proportional to the Lebesgue measure on m-dimensional frames. The following is true.

Proposition 2.8. The measure p m ρ is stationary under ν ρ , i.e., it satisfies, for any

C 2 compactly supported function f on O s pS Ă M q, ż f pϕpuqq dν ρ pϕq d p m ρ puq " ż f puq d p m ρ puq.
Moreover, the conditional measures p m s ρ,u of p m ρ with respect to the leaves of the x W s foliation are absolutely continuous with respect to Lebesgue.

Proof. The stationarity follows from relation (2.7), the stationarity of r m ρ and the fact that the flow preserves the orthogonal group on the fibers ([CE86, Lemma 3.1]). The leaves of x W s are made of whole fibers and project on the leaves of Ă W s . The conditional measures on the leaves of x W s are given by the extension by Lebesgue on the fibers of the conditional measures on the leaves of Ă W s . By Proposition 2.1 iii), they are therefore absolutely continuous.

Let π : O s pSM q Ñ SM be the quotient of the map p π by the action of G and let W s " tW s puqu uPO s pSM q denote the corresponding quotient foliation of x W s . Let D 8 pO s SM q be the space of homeomorphisms of O s pSM q that preserve the leaves of W s and are C 8diffeomorphisms along the leaves. We endow D 8 pO s SM q with the C 0,8 topology: ϕ, ϕ 1 P D 8 pO s SM q are close if, for all r ą 0, the r-germs of ϕ and ϕ 1 are uniformly close and the r-germs of ϕ ´1 and pϕ 1 q ´1 are uniformly close. By Proposition 2.6 iii), we can consider ν ρ as a probability measure on D 8 pO s SM q.

We define the measure m ρ on O s pSM q such that its G-invariant extension to O s pS Ă M q is p m ρ . We see that m ρ is a probability measure that projects to m ρ on SM and is such that the conditional measures on fibers of π are proportional to Lebesgue on m-dimensional frames. As a consequence of Proposition 2.8, we have

Corollary 2.9. The measure m ρ is stationary under ν ρ , i.e., it satisfies, for any continuous function f on O s pSM q,

(2.8)

ż f pϕuq dν ρ pϕq dm ρ puq " ż f puq dm ρ puq.
Moreover, the conditional measures m s ρ,u of m ρ with respect to the leaves of the W s foliation are absolutely continuous with respect to Lebesgue.

We are interested in the limit measures of m ρ 's when ρ goes to ´8. Let m be such a limit point and let m be the probability measure on O s pSM q that projects to m on SM and is such that the conditional measures on fibers of π are proportional to the Lebesgue measure on m-dimensional frames. Then m is the limit of m ρ along the same subsequence. Let tΦ ´tu tPR be the reversed stable frame flow. Then m is invariant under Φ ´t. To show m is Liouville, it suffices to show the conditional measures of m on the leaves of W s are absolutely continuous with respect to Lebesgue. But this does not follow from Corollary 2.9 by the same reason that we mentioned in Remark 2.2. What we are going to do in the next section is to analyze the entropy related to the natural random dynamics for m ρ that arises in the stationarity relation (2.8).

Entropy of random mappings

We consider the action on O s pSM q of the random elements of D 8 pO s SM q with distribution ν ρ , ´8 ď ρ ă 0. Namely, let S :" pD 8 pO s SM qq NYt0u , endowed with the product measures ν bNYt0u ρ (with the convention that ν ´8 is the Dirac measure at Φ ´1) and the shift transformation σ. On the space T :" S ˆOs pSM q, define the transformation τ by: τ pϕ, uq :" pσϕ, ϕ 0 uq.

For ´8 ă ρ ă 0, let m ρ be the stationary measure from Corollary 2.9 and for ρ " ´8, let m ´8 " m be some weak* limit of m ρ as ρ Ñ ´8. For ´8 ď ρ ă 0, the measure µ ρ :" ν bNYt0u ρ b m ρ is invariant under the transformation τ.

Let P be a measurable partition of T with finite or countably many elements. We assume ´ş logpm ρ pPqq dµ ρ ă `8. For n P N, set P ´1 " P and P ´n :" P Ž τ ´1P Ž ¨¨¨Ž τ ´pn´1q P for n ą 1, where Ž denotes the join of partitions, i.e., the refinement of partitions by taking intersections. For pϕ, uq P T , let P ´npϕ, uq denote the element of P ´n that contains pϕ, uq. We define the entropy h s ρ for m ρ as h s ρ :" sup For a formal definition of m s ρ,u , we should use a measurable partition R subordinated to W s (see Section 4 for details). But the value of h s ρ,P does not depend on the choice of such a subordinated partition and is thus well-defined. Observe that ´ż log m s ρ,u `P´n pϕ, uq ˘dµ ρ pϕ, uq ď ´ż log m ρ `P´n pϕ, uq ˘dµ ρ pϕ, uq.

Using the random Ruelle inequality (cf. [START_REF] Bahnmüller | A Margulis-Ruelle inequality for random dynamical systems[END_REF][START_REF] Kifer | Ergodic Theory of Random Transformations[END_REF]), we obtain that h s ρ,P is bounded independent of P. Hence h s ρ is finite. Note also that m s ρ,u is absolutely continuous with respect to Lebesgue with a smooth density.

For the computation of h s ρ,P , we can restrict the conditional measure m s ρ,u to the local stable leaf W s loc, puq :" tw P W s puq : d W s pw, uq ă u for small enough. Recall that ϕ P D 8 pO s SM q preserves each leaf W s puq and is a C 8 diffeomorphism along it. Write Jpϕ, uq for the Jacobian determinant of the tangent map of ϕ| W s puq at u. We will conclude Theorem 1.1 from the following two propositions.

Proposition 3.1. For ´8 ă ρ ă 0, (3.2) h s ρ ě ż log Jpϕ, uq dν ρ pϕq dm ρ puq.

Proposition 3.2. Let ρ p , p P N, be a sequence such that ρ p Ñ ´8 and m ρp converge to the probability measure m as p Ñ `8, and let m be as above. Then

h s m :" h s ´8 ě lim sup pÑ`8 h s ρp .
The proofs of Proposition 3.1 and Proposition 3.2 use completely different techniques and will be presented in this section and the following section, respectively.

In the following, we shall use H ϑ pAq to denote the entropy of a measurable partition A with respect to a measure ϑ of some space and use H ϑ pA|Bq to denote the entropy of A conditioned on some measurable partition B, whenever these entropies are well-defined. We shall denote m for the dimension of W s ; for pϕ, uq P T , we shall write ϕ| 0 " Id and ϕ| n " ϕ n´1 ˝¨¨¨˝ϕ 0 , @n ě 1, and Jpϕ| n , uq for the Jacobian determinant of the tangent map of ϕ| n | W s puq at u. Clearly, we have Jpϕ| 1 , uq " Jpϕ 0 , uq for ϕ " pϕ 0 , ϕ 1 , ¨¨¨q P S.

Proof of Theorem 1.1. Let ρ p , p P N, be a sequence such that ρ p Ñ ´8 and m ρp converge to the probability measure m as p Ñ `8, and let m be as above. Recall that Φ ´1 is the time one map of the reversed frame flow on O s pSM q which is a compact isometric extension of the time one map of the reversed geodesic flow Φ ´1 on SM. Hence,

h m " h m .
On the other hand, we have: Note that W s is the central unstable foliation for Φ ´1, so that ş log JpΦ ´1, uq dmpuq is the integral of the sum of the nonnegative exponents of Φ ´1 for m; neither the direction of the flow nor the vertical directions tangent to the fibers provide positive exponents, so that ş log JpΦ ´1, dmpuq is the integral of the sum of the positive exponents of Φ ´1 for m. By [START_REF] Bowen | The ergodic theory of Axiom A flows[END_REF], m is the normalized Liouville measure.

h m "
3.1. Proof of Proposition 3.1. The deterministic diffeomorphism version estimation of (3.2) is standard using Pesin theory (cf. [START_REF] Mañé | Errata to: "A proof of Pesin's formula[END_REF]). But this cannot be used directly since we are in the random and non-invertible case.

Clearly, Proposition 3.1 would follow if we can show the sample measures are SRB. This approach might work since in a similar context, Blumenthal-Young ([BY19]) showed the sample measures are SRB. We didn't try that way since we don't need that strong conclusion and the intuition for Proposition 3.1 is relatively simpler.

For a non-invertible endomorphism of a compact manifold preserving an absolutely continuous measure, the corresponding measure theoretical entropy is at least the integral of the logarithm of the Jacobian, which coincides with the so-called folding entropy (cf. [START_REF] Ruelle | Positivity of entropy production in nonequilibrium statistical mechanics[END_REF], [START_REF] Liu | Absolute continuity of hyperbolic invariant measures for endomorphisms[END_REF]). Proposition 3.1 is intuitively a random conditional version of this phenomenon. But it might be subtle since we are considering the conditional measures and are in the random case. So we will give some details for the key steps.

We first recall some notations and results concerning Pesin local Lyapunov charts theory for random diffeomorphisms. In many places, we have to take invariant variables instead of constants since our system pT , τ, µ ρ q is invariant, but not necessarily ergodic in general.

Lemma 3.3. ([Ose68]

) For each ρ ă 0, there is a measurable Ω Ă T with µ ρ pΩq " 1 such that for pϕ, uq P Ω, there exist rpϕ, uq P N and, for i, 1 ď i ď rpϕ, uq, χ i pϕ, uq, d i pϕ, uq and a filtration t0u " V rpϕ,uq`1 Ă V rpϕ,uq Ă ¨¨¨Ă V 1 " T u W s puq with the following properties: i) all of r, χ i , d i , V i 's depend measurably on pϕ, uq; ii) lim nÑ`8 1 n log }D u pϕ| n qpeq} " χ i pϕ, uq for e P V i pϕ, uqzV i`1 pϕ, uq;

iii) d i pϕ, uq " dimV i pϕ, uq ´dimV i`1 pϕ, uq and ř rpϕ,uq i"1 we mean the norm of the tangent map calculated using } ¨}1 pϕ,uq,n and } ¨}1 pϕ,uq,n`1 ; iv) the map DF pϕ,uq,n satisfies }D e F pϕ,uq,n ´D0 F pϕ,uq,n } 1 pϕ,uq,n,n`1 ď pϕ, uq}e} 1 pϕ,uq,n ; v) the map D 0 F pϕ,uq,n satisfies e χ i pϕ,uq´ pϕ,uq }e} 1 pϕ,uq,n ď }D 0 F pϕ,uq,n peq} 1 pϕ,uq,n`1 ď e χ i pϕ,uq` pϕ,uq }e} 1 pϕ,uq,n , for all e P E i pτ n pϕ, uqq. Moreover, for i, 1 ď i ď rpϕ, uq, the spaces E j pϕ, uq, j ě i, generate V i pϕ, uq.

d i pϕ,
(Since elements of D 8 pO s SM q preserve the leaves of W s , Lemma 3.4 can be obtained as in [LQ95, Chapter III, Section 1]) using the natural auxiliary charts E j pϕ, uq 1 s and Lemma 3.3.)

For Proposition 3.1, we shall follow Mañé ([Man83]) to give a local version of (3.2) for Bowen balls defined using the norms in Lemma 3.4 and then compare it with local entropy for special partitions. Note that we are in the non-invertible case, κ is not invariant (i.e., for pϕ, uq P Ω, κppϕ, uq, nq does not equal to κpτ n pϕ, uq, 0q in general). To overcome this deficiency, we will pick up a set A with measure close to 1 and define modified Bowen balls associated to A.

Let 0 ą 0, ´8 ă ρ ă 0 be fixed. Choose ă 0 as in Lemma 3.4. For any a P p0, 1q, we choose a measurable set A Ă Ω with µ ρ pAq ą 1 ´a as follows. By the ergodicity of ν bNYt0u ρ with respect to σ and the integrability property (2.6), for ν bNYt0u ρ almost every ϕ,

lim nÑ`8 1 n n ÿ i"1 `log max u }ϕ i | x W s puq } C 2 ˘`" ż `log max u }ϕ| x W s puq } C 2 ˘`dν ρ pϕq ": L ă `8.
For any b ą 0, let Apbq :"

# ϕ P S : n´1 ź i"0 max u }ϕ i | x W s puq } C 2 ď be 2Ln for all n P N Y t0u + .
Then there exists b ą 0 large such that

(3.4) ν bNYt0u ρ pApbqq ą 1 ´1 2 a.
Let b be as in (3.4). For l ą 0, set (3.5) Apb, lq :" pϕ, uq P Ω : ϕ P Apbq, ηκ 0 `κ`p ϕ, uq, 0 ˘˘´2 ą l ( .

Choosing η ą 0, pϕ, uq with pϕ, uq ă 0 and l to be small enough, we can obtain a measurable set (3.6) A :" Apb, lq X tpϕ, uq : η ă pϕ, uqu with µ ρ measure greater than 1 ´a.

Let A be as in (3.6). For µ ρ almost all pϕ, uq P A, it will return to A under the iterations of the map τ for infinitely many times. Hence, for any such pϕ, uq and k ě 1, 

(3.7) }.} 2 pϕ,uq,k :" }.} 1 τ N A k pϕ,uq,k´N A k is well-defined,
› › 2 pϕ,uq,k ă ηκ ´1`τ N A k pϕ, uq, k ´NA k ˘) ,
where F pϕ,uq ˇˇk :" F pϕ,uq,k´1 ˝¨¨¨˝F pϕ,uq,0 .

The following can be considered as a first step coarse local version of Proposition 3.1:

Lemma 3.5. Let ´8 ă ρ ă 0, a P p0, 1q, 0 ą 0, and η ą 0 be fixed. Choose ă 0 as in Lemma 3.4. Let A Ă Ω be as in (3.6). Then, there is a positive geometric constant C 0 such that, setting c 0 :" 1 2 m log lκ 0 η , for µ ρ almost all pϕ, uq and all n P N,

(3.9) ´1 n log m s ρ,u `exp u pB s A pϕ, u, η, nqq ˘ě ´1 n log Jpϕ| n , uq ´3m 0 ´1 n C 0 `c0 .
Proof. The set B s A pϕ, u, η, nq is empty if pϕ, uq R A. Otherwise, by definition and Lemma 3.4 iv), B s A pϕ, u, η, nq is contained in the set of vectors e P T u W s puq such that }e} 1 pϕ,uq,0 ă ηκ

´1`p ϕ, uq, 0 ˘, › › F pϕ,uq ˇˇn peq › › 2 pϕ,uq,n ă ηκ ´1`τ N A n pϕ, uq, n ´NA n ˘and ˇˇDet 1 D e F pϕ,uq,k ˇˇě ˇˇDet 1 D 0 F pϕ,uq,k ˇˇp1 ´ pϕ, uqq m for 1 ď k ď n, (3.10)
where Det 1 is the determinant of a linear mapping in the metrics } ¨}1 

τ N A k pϕ,uq,k´N A k and } ¨}1 τ N A k pϕ,uq,k`1´N A k . By construction, τ N A k pϕ, uq P A and κ `τ N A k pϕ, uq, 0 ˘ď `η l κ 0 ˘1{2 . Assume τ k`1 pϕ, uq P A, i.e., N A k`1 " k `1. Then } ¨}1 τ N A k pϕ,uq,k`1´N A k ď e pN A k`1 ´NA k q κ `τ N A k pϕ, uq, 0 ˘κ´1 0 } ¨}1 τ k`1 pϕ,uq,0 ď e pN A k`1 ´NA k q `η lκ 0 ˘1 2 } ¨}1 τ k`1 pϕ,
J ´1pϕ| n , uqpCκ ´1 0 q m p1
´ pϕ, uqq ´nm e nm e ´c0 #tN A k pϕ,uq: kďnu .

Note that the partition R is such that each element contains a ball with radius greater than some positive constant (see Section 4), we obtain some constant C 0 ą 0 such that

´1 n log m s ρ,u `exp u pB s A pϕ, u, η, nqq ˘ě 1 n log Jpϕ| n , uq `m logp1 ´ pϕ, uqq ´m ´1 n C 0 `c0 .
The estimation in (3.9) follows for 0 small enough.

By (3.5) and Lemma 3.4 i), we have

c 0 " 1 2 m log lκ 0 η ď m log κ 0 min pϕ,uqPA κ `pϕ, uq, 0 ˘ď 0.
So the estimation in (3.9) might be too coarse since c 0 is not a priori small compared with 0 . But c 0 remains unchanged when we consider (3.9) for Bowen balls for any power of τ , hence it will not enter the lower bound estimation of entropy in (3.2).

More precisely, let M P N be fixed. For ϕ P S, write

ϕ 1 :" pϕ 1 0 , ϕ 1 1 , ¨¨¨, ϕ 1 k , ¨¨¨q, where ϕ 1 k :" ϕ ˝σkM | M .
Let σ 1 pϕ 1 q :" pϕ 1 1 , ¨¨¨, ϕ 1 k , ¨¨¨q and τ 1 pϕ 1 , uq :" pσ 1 pϕq, ϕ 1 0 uq. The transformation τ 1 can be identified with τ M . We can use the same κ 0 , κ for τ 1 as for τ , but now in (3.3) has to be changed into M . So we have to choose 1 so that M 1 ă 0 . Choose η 1 ă η small enough that, if l 1 :" l η 1 η , the measurable set (3.12) A 1 :" Apb, l 1 q X tpϕ, uq : η 1 ă 1 pϕ, uqu has µ ρ measure greater than 1 ´a.

For µ ρ almost all pϕ, uq " pϕ 1 , uq P A 1 and k P N, let M A 1 k denote the last non-negative time before or equal to k such that pτ 1 q M A 1 k pϕ 1 , uq P A 1 . Similar to (3.7) and (3.8), we define

}.} 2 ,M pϕ 1 ,uq,k :" }.} 1 pτ 1 q M A 1 k pϕ 1 ,uq,pk´M A 1 k qM
, and for η 1 ą 0, pϕ, uq P A 1 such that η 1 ă 1 pϕ, uq, and n P N, we define the modified random W s -Bowen ball for τ 1 (with respect to A 1 ) by

B s,M A 1 pϕ 1 , u, η, nq :" ! e P T u W s puq : }e} 2 pϕ 1 ,uq,0 ă η 1 κ ´1`p ϕ 1 , uq, 0 ˘, and for k, 1 ď k ď n, › › F pϕ,uq ˇˇkM peq › › 2 ,M pϕ 1 ,uq,k ă ηκ ´1`p τ 1 q M A 1 k pϕ 1 , uq, pk ´MA 1 k qM ˘) .
Then following the argument in Lemma 3.5, we obtain (observe that, by our choice of l 1 , c 0 " 1 2 m log lκ 0 η " 1 2 m log l 1 κ 0 η 1 has the same value as in Lemma 3.5) Lemma 3.6. Let ´8 ă ρ ă 0, a P p0, 1q, M P N and 0 be fixed. Let η 1 , 1 , A 1 be as in (3.12) and let c 0 , C 0 be as in Lemma 3.5. Then, for µ ρ almost all pϕ, uq P A 1 and all n P N,

(3.13) ´1 n log m s ρ,u ´exp u pB s,M A 1 pϕ 1 , u, η, nqq ¯ě ´1 n log Jpϕ| nM , uq ´3mM 0 ´1 n C 0 `c0 .

Following Mañé ([Man83]

) (see also [START_REF] Thieullen | Fibres dynamiques. Entropie et dimension[END_REF]), we can proceed to find partitions which have local entropy lower bound as in (3.13) in our non-invertible random setting.

Lemma 3.7. Let 0 ą 0, ´8 ă ρ ă 0, M P N be fixed. Let η 1 , 1 , A 1 be as in (3.12) and let c 0 , C 0 be as in Lemma 3.5. There exists a countable partition Q of T with ´ş logpm ρ pQqq dµ ρ ă `8 such that for µ ρ almost all pϕ, uq P A 1 , we have 0 ă η 1 ă 1 pϕ, uq ă 0 {M and

(3.14) Q M,´n pϕ, uq Ă exp u `Bs,M A 1 pϕ 1 , u, η 1 , nq ˘, where Q M,´n :" Q Ž pτ M q ´1Q Ž ¨¨¨Žpτ M q ´pn´1q Q. Consequently, for µ ρ almost all pϕ, uq P A 1 , (3.15) lim inf nÑ`8 ´1 n log m s ρ,u `QM,´n pϕ, uq ˘ě ´1 n log Jpϕ| nM , uq ´3mM 0 ´1 n C 0 `c0 .
Proof. Clearly, (3.15) is a consequence of (3.14) and (3.13). Hence, it suffices to show (3.14). Let η 1 , 1 , A 1 be as in (3.12). For pϕ, uq P A 1 , κ 1 ą 0 and n P N, set

B s,M,κ 1 ,κ A 1 pϕ 1 , u, η 1 , nq :" " w P W s puq : d `ϕ| kM pwq, ϕ| kM puq ˘ă η 1 κ 1 ´κ`p τ 1 q M A 1 k pϕ 1 , uq, pk ´MA 1 k qM ˘¯´2 , @0 ď k ď n * .
By Lemma 3.4 i), we see that there exists some constant κ 1 depending on the geometry of pM, gq such that, for almost all pϕ, uq P A 1 and all n P N Y t0u,

B s,M,κ 1 ,κ A 1 pϕ 1 , u, η 1 , nq Ă exp u `Bs,M A 1 pϕ 1 , u, η 1 , nq ˘.
Hence, to find a countable partition Q satisfying (3.14), it suffices to find a Q such that

Q M,´n pϕ, uq Ă B s,M,κ 1 ,κ A 1 pϕ 1 , u, η 1 , nq.
For each n P NYt0u, let A 1 n Ă A 1 be the collection of points with n as the first return time to A 1 with respect to the map τ M . Recall that the local stable leaf W s loc, 0 puq " tw P W s puq : d W s pw, uq ă 0 u depends continuously on u and for each n, we can choose in a continuous way a maximal p4pl 1 q 2 bq ´1e ´2pL` 0 qnM separated set in W s loc, 0 puq. The cardinality C n of such sets satisfies C n ď K nM for some K. Using these points, we can further slice A 1 n into tA 1 n, u ďCn such that for all pϕ, uq P A 1 n, , the intersection tw : pϕ, wq P A 1 n, u X W s loc, 0 puq has diameter less than p2pl 1 q 2 bq ´1e ´2pL` 0 qnM . The partition Q can be chosen to be

tA 1 n, , n P N Y t0u, ď C n , T zA 1 u.
Following [START_REF] Mañé | Errata to: "A proof of Pesin's formula[END_REF], one checks that Q satisfies ´ş logpm ρ pQqq dµ ρ ă `8 and (3.14).

Proof of Proposition 3.1. Let ´8 ă ρ ă 0 be fixed. In the following, we show, for every 0 ą 0, there exists a finite measurable partition P of T satisfying

(3.16) h s ρ,P ě ż log Jpϕ, uq dν ρ pϕq dm ρ puq ´5m 0 .
Then, by definition of h s ρ and (3.16),

h s ρ ě h s ρ,P ě ż log Jpϕ, uq dν ρ pϕq dm ρ puq ´5m 0 .
This concludes the proof of Proposition 3.1 since 0 is arbitrary.

Let M be such that |c 0 | ă M 0 . Let a ą 0 be small and let A 1 and Q be as in Lemma 3.7. Then for µ ρ almost all pϕ, uq P A 1 , (3.15) holds true. Set h s,M ρ,Q :" lim inf nÑ`8 ´1 n ż log m s ρ,u `QM,´n pϕ, uq ˘dµ ρ pϕ, uq.

For any α ą 0, by our choice of R in Section 4, it is true that (see Proposition 4.3)

h s ρ,Q ě 1 M h s,M ρ,Q ´α.
Hence, by Fatou Lemma,

h s ρ,Q ě ż A lim inf nÑ`8 ´1 nM log m s ρ,u `QM,´n pϕ, uq ˘dµ ρ pϕ, uq ´α.
Since the function log Jpϕ, uq is integrable and |c 0 | ă M 0 , by using(3.15), we obtain, for a, α ą 0 small,

h s ρ,Q ě ż log Jpϕ, uq dν ρ pϕq dm ρ puq ´4m 0 .
Note that Q is such that ´ş logpm ρ pQqq dµ ρ ă `8 and for any finite partition P such that Q is finer than it,

h s ρ,Q ´hs ρ,P ď lim sup nÑ`8 1 n ż H m s ρ pQ ´n|P ´nq dµ ρ ď lim sup nÑ`8 1 n ż H mρ pQ ´n|P ´nq dµ ρ ď ż H mρ pQ|Pq dµ ρ .
We can group the tail elements in Q together with some care to obtain a finite partition P satisfying the requirement in (3.16).

The proof of Proposition 3.2

Let m be as in Proposition 3.2. To compare h s m with h s ρp , we first formulate the entropy h s ρp,P (see (3.1)) in terms of some conditional entropy for the unconditional measure µ ρ . Let W be a lamination of a compact metric space. A measurable partition is said to be subordinated to W if its elements are bounded subsets of the leaves of W with nonempty interiors in the topology of the leaf. We can construct a partition R subordinated to W s by choosing a finite partition X of O s pSM q into sufficiently small sets with non-empty interiors and subdivide each element of X into the connected components of its intersection with the leaves. We may assume R is such that each element contains a ball with radius greater than some positive constant. The partition R is measurable if it is constructed as an intersection of an increasing family R j , j P N, of finite partitions into measurable sets.

Let P be a finite partition of O s pSM q and we assume that we have chosen X , R " Ž j R j as above and that P refines X . We may assume that the boundaries of the elements of P, X and R j are all m-negligible. The conditional measures m s ρ,u in the definition of h s ρ,P can be taken on any measurable finite partition R chosen in the above way, so that h s ρ,P " lim inf being close to h s m . So we will show the other two inequalities in (4.1) first. We begin with the second inequality in (4.1), which is not trivial in our setting since the conditional entropy sequence H µρ p pP ´n|Rq is not necessarily a subadditive sequence in n.

Lemma 4.1. Given X , R and P as above, there exists a countable partition Q of T such that the partition R Ž τ ´1P Ž τ ´1Q is finer than τ ´1R. Moreover, given α ą 0, there are δ and Λ such that if the diameters of the elements of X are smaller than δ and if ρ ă Λ, one can choose Q with H µρ pQq ă α.

Proof. For u, w P O s pSM q in the same W s leaf, write d s pu, wq for the distance between u and w along their common leaf. For any δ ą 0, there are two constants cpδq and Cpδq such that if u and w are on the same leaf and dpu, wq ă δ, then either d s pu, wq ă cpδq or d s pu, wq ě Cpδq. We can ensure that cpδq Ñ 0 as δ Ñ 0 and that Cpδq Ñ `8 as δ Ñ 0. Suppose u and w are in the same element of the partition R and that ϕ 0 u and ϕ 0 w are in the same element of X . If d s pϕ 0 u, ϕ 0 wq ă Cpδq, in particular, as soon as d s pu, wq ă Cpδq{}ϕ 0 } C 1 , then ϕ 0 u and ϕ 0 w are in the same connected component of W s and thus in the same element of R.

To obtain Lemma 4.1, it is therefore enough to take the partition Q of T as follows: the projection on S depends only on the first coordinate ϕ 0 and is the partition A n , n ě 0, where A n :" tϕ 0 : nCpδq ď }ϕ 0 } C 1 ď pn `1qCpδqu; A 0 ˆOs pSM q is one element of Q; on each A n , n ą 0, we further cut O s SM into N n pieces of diameter smaller than 1{pn `1q.

The entropy of Q satisfies

H µρ pQq ď H µρ `tA n : n ě 0u ˘`c 8 ÿ n"1 ν ρ pA n q log n,
where c is some constant depending on the geometry of W s . Given α ą 0, we will have H µρ pQq ă α as soon as ν ρ ptϕ : }ϕ} C 1 ą Cpδquq and the integral ş tϕ:}ϕ} C 1 ąCpδqu log }ϕ} C 1 dν ρ are sufficiently small. These two conditions can be realized by choosing δ small and ρ close enough to ´8.

Proposition 4.2. Given α ą 0, there is δ ą 0 and Λ such that, for all n ą 0, if the diameter of the elements of X are smaller than δ and ρ ă Λ, (4.2) 1 n H µρ pP ´n|Rq ě lim inf nÑ`8

1 n H µρ pP ´n|Rq ´α " h s ρ,P ´α.

Proof. Let Q be as in Lemma 4.1. Then we have that the mapping n Þ Ñ H µρ `P´n Ž Q ´nˇRȋ s subadditive. Indeed, for n, n 1 P N,

H µρ ´P´pn`n 1 q ł Q ´pn`n 1 q ˇˇR ¯" H µρ ´P´n ł Q ´nˇR Hµρ ´P´n ´pn`n 1 q ł Q ´n ´pn`n 1 q ˇˇR ł P ´n ł Q ´n¯,
where P ´n ´pn`n 1 q :" τ ´nP Ž ¨¨¨Ž τ ´pn`n 1 ´1q P and Q ´n ´pn`n 1 q is defined in the same way. Moreover, by Lemma 4.1, the partition R Ž P ´n Ž Q ´n is finer than τ ´nR and the last term is smaller than H µρ `P´n `α˘.

´pn`n 1 q Ž Q ´n ´pn`n 1 q ˇˇτ ´nR ˘.
Next we show the last inequality in (4.1). For this, we first state the results extending to our context the classical results of [START_REF] Bowen | Entropy-expansive maps[END_REF], [START_REF] Yue | Rigidity and dynamics around manifolds of negative curvature[END_REF] and [START_REF] Buzzi | Intrinsic ergodicity of smooth interval maps[END_REF] (compare with [START_REF] Cowieson | SRB measures as zero-noise limits[END_REF]).

For u P O s pSM q, ϕ P η ą 0 and n P N, define the random W The function ϕ Þ Ñ h s loc pζ, ϕq is σ-invariant; we denote h s loc,ρ pζq its ν bNYt0u ρ -a.e. value.

The following three propositions (Proposition 4.4, Proposition 4.5 and Proposition 4.6) are proven in [START_REF] Cowieson | SRB measures as zero-noise limits[END_REF] for the global entropy with the additional hypotheses that ν ρ are supported in a fixed neighborhood N of Φ ´1 in D 8 pO s SM q and that ν ρ converge to ν ´8 as ρ Ñ ´8, in the sense that any D 8 pO s SM q neighborhood of Φ ´1 has eventually full measure for ν ρ . In our case, we have two extensions of the argument in [START_REF] Cowieson | SRB measures as zero-noise limits[END_REF]: one is that the distributions ν ρ are not supported on a neighbourhood of Φ ´1, but there is a tail; the other extension is that our mappings are not smooth everywhere, but only along the leaves of the foliation W s .

Proposition 4.4. Given α ą 0, ζ ą 0, let X be as in Proposition 4.2. Assume that the diameters of the elements of P X R are all smaller than ζ. Following [Bow72, Section 3], we obtain in our random setting that there is some positive constant c which depends on the geometry of W s such that for any β ą 0,

h s,M ρ ď h s,M ρ,P `M`h s loc,ρ pζq `β˘`c .
Using (4.3) and (4.5), we deduce that

h s ρ ď h s ρ,P `hs loc,ρ pζq `α `β `1 M c.
Letting β Ñ 0 and then M Ñ `8, we obtain the inequality (4.4).

Let M be a fixed positive integer. We define for u P O s pSM q, ϕ P S, η ą 0 and n P N, B s,M pϕ, u, η, nq :" w P W Proof. Observe that B s pϕ, u, ζ, nMq is a subset of B s,M pϕ, u, ζ, nq, so we are going to cover B s,M pϕ, u, ζ, nq with B s pϕ, w, η, nMq balls, η arbitrarily small. Start with a cover of B s,M pϕ, u, ζ, nq with B s,M pϕ, w , η, nq balls with 1 ď ď r M pζ, ϕ, u, η, nq and fix K ą 0 big. Let κpϕq :" maxt}ϕ| k } C 1 : 0 ď k ă Mu. If κpσ jM ϕq ď K for all j, 0 ď j ă n, then each B s,M pϕ, w , η, nq ball is contained in B s pϕ, w , 2Kη, nMq and we take these B s pϕ, w , 2Kη, nMq balls in our cover of B s,M pϕ, u, ζ, nq. Otherwise, assume, for instance, that κpϕq ą K, we find, for each w , at most crκpϕq{Ks 2m points w 1 1 such that the union of the B s pϕ, w 1 1 , 2Kη, Mq balls cover B s,M pϕ, w , η, 1q, where c is some positive constant depending on the geometry of W s and ras denotes the smallest integer greater than a.

Working inductively, we see that rpζ, ϕ, u, 2Kη, nMq ď r M pζ, ϕ, u, η, nq Π n´1 j"0 rκpσ jM ϕq{Ks m c Π n´1 j"0 χ tκpσ jM ϕqąKu .

It follows that for all K ą 0, ϕ P S, Mh s loc pζ, ϕq ď h s,M loc pζ, ϕq `lim sup (˘d ν bM ρ pϕ| M q `log Cprq.

Proof. Fix r ą 0, M P N, a sequence ϕ P S and ζ ą 0. Two points w, w 1 P W s puq are said to be pM, n, ηq-separated if max d `ϕ| kM pwq, ϕ| kM pw 1 q ˘: 0 ď k ď n ( ą η.

It is clear that r M pζ, ϕ, u, η, nq is bounded from above by s M pζ, ϕ, u, η, nq, the maximal cardinality of a set of pM, n, ηq-separated points in B s,M pϕ, u, ζ, nq. Consider the mappings ϕ 1 k " ϕ| M ˝σkM and their standard magnifications p ϕ 1 k : Bp0, 2q m Ñ R m as explained in [START_REF] Cowieson | SRB measures as zero-noise limits[END_REF], page 1129. In particular, we have } p ϕ 1 k } C s ď ζ s´1 }ϕ 1 k } C s . Using this, we can estimate s M pζ, ϕ, u, η, nq by following almost verbatim the argument for the proof of Proposition 3 in [START_REF] Cowieson | SRB measures as zero-noise limits[END_REF] (which is based on the 'Renormalization' Theorem in [START_REF] Yomdin | Volume growth and entropy[END_REF] and a telescoping construction in [START_REF] Buzzi | Intrinsic ergodicity of smooth interval maps[END_REF]) and obtain some constant C 1 pr, m, mq ": Cprq as in [START_REF] Cowieson | SRB measures as zero-noise limits[END_REF]Theorem 4] Write, for α ą 0, log `α :" maxtlog α, 0u. We have, using logpα 1 `α2 q ď log `α1 `α2 , for α 1 , α 2 ą 0, log ˜max Since r is arbitrary, the corollary follows.

Proof of Proposition 3.2. Fix α ą 0. We can choose the diameters of the elements of X smaller than cζ 0 , where c is a constant depending on the local geometry of the leaves so that the diameter of the elements of P X R are smaller than ζ 0 and Corollary 4.7 applies. We can also ensure that these diameters are smaller than δ given by Proposition 4.2. We may assume that the boundaries of the elements of P, X and R j are all m-negligible.

By definition, h s m ě lim inf nÑ`8 inf j 1 n H m pP ´n|R j q. We can choose n and j so that (4.7) h s m ě 1 n H m pP ´n|R j q ´α. Consider now ρ p , p P N, such that ρ p Ñ ´8 and m ρp Ñ m as p Ñ `8. For P-a.e. ω P Ω, each element of the partition Ş n k"0 pϕ ρp | k pωqq ´1P converge in the Hausdorff metric towards the corresponding element Ş n k"0 Φ k P. Note that all these elements of P ´n, and the elements of R j have m negligible boundaries. It follows that there exists P P N such that for p ě P, (4.8) 1 n H m pP ´n|R j q ě 1 n H µρ p pP ´n|R j q ´α ě 1 n H µρ p pP ´n|Rq ´α.

The second inequality holds because the partition R is finer than R j . By Proposition 4.2, we have, by our choice of δ and as soon as ρ p ă Λ, (4.9) 1 n H µρ p pP ´n|Rq ě h s ρp,P ´α ě h s ρp ´2α ´hs loc,ρp pζq, where the second equality follows from Proposition 4.4. Finally, using all the above inequalities (i.e., (4.7), (4.8) and (4.9)) and Corollary 4.7, we find that h s m ě lim sup pÑ`8 h s ρp ´5α.

Proposition 3.2 follows from the arbitrariness of α.

  follows since p Ă M , r gq has Ricci curvature uniformly bounded from below) to the Stratonovich SDE on O s pS Ă M q:

  i) For P-a.e. ω P Ω, all t ą 0, as ρ Ñ ´8, ϕ 1{ ? ´ρ,t pωq converge to p Φ ´t inD 8 pO s S Ă M q, in particular, ϕ 1{ ?´ρ,1 converge to the time 1 map of the reversed stable frame flow. ii) For any ´8 ă ρ ă 0 and r, M positive integers, (2.6) B r,M pρq :" E and B r,M :" lim sup ρÑ´8 B r,M pρq ă `8.

  `P´n pϕ, uq ˘dµ ρ pϕ, uq.

  where N A k is the last non-negative time before or equal to k with τ N A k pϕ, uq P A. For η ą 0, pϕ, uq P A such that η ă pϕ, uq, and n P N, let us define the modified random W s -Bowen ball (with respect to A) by (3.8) B s A pϕ, u, η, nq :" ! e P T u W s puq : }e} 2 pϕ,uq,0 ă ηκ ´1`p ϕ, uq, 0 ˘, and for k, 1 ď k ď n, › › F pϕ,uq ˇˇk peq

  s -Bowen ball by B s pϕ, u, η, nq :" w P W s puq : d `ϕ| k pwq, ϕ| k puq ˘ă η for 0 ď k ď n ( . The following notion was introduced by Bowen ([Bow72]) for a single map and by Cowieson-Young ([CY05]) in the random case. Since our mappings are smooth only along the foliation W s , we introduce a variant by restricting to the leaves W s . Fix ζ ą 0 and a sequence ϕ P S. We denote for u P O s pSM q, η ą 0 and n P N, rpζ, ϕ, u, η, nq the smallest number of random W s -Bowen balls B s pϕ, w, η, nq needed to cover the random W s -Bowen ball B s pϕ, u, ζ, nq. We then set h s loc pζ, ϕq :" sup uPO s pSM q rpζ, ϕ, u, η, nq.

s

  puq : d `ϕ| kM pwq, ϕ| kM puq ˘ă η for 0 ď k ď n ( , r M pζ, ϕ, u, η, nq the smallest number of B s,M pϕ, w, η, nq balls needed to cover the B s,M pϕ, u, ζ, nq ball, r M pζ, ϕ, u, η, nq and h s,M loc,ρ pζq the ν bNYt0u ρ -a.e. value of h s,M loc pζ, ϕq. Proposition 4.5. With the above notations, we have, for all ρ ă 0, ζ ą 0,

χSince

  tκpσ jM ϕqąKu .Finally, we get, for all ρ ă 0, all ζ ą 0, K ą 0, Mh s loc,ρ pζq ď h s,M loc,ρ pζ, ϕq `mE " Erlog κs ă `8, Proposition 4.5 follows by letting K go to infinity.Proposition 4.6. Fix ζ ą 0 small and ρ ă 0. For all r P N, there is a positive constant Cprq such that, for all M P N,h s,M loc,ρ pζq ď m r ż log `max ζ s´1 › › pϕ| M q| W s puq › › C s : 1 ď s ď r, u P O s pSM q

B

  We get by integrating with respect to ν bM ρ , s,M pρq, where B 1,1 pρq, B 2,M pρq, ¨¨¨, B r,M pρq are defined in (2.6). Note that, by Proposition 2.7 ii), B s,M " lim sup ρÑ´8 B s,M pρq ă `8, @1 ď s ď r,

  sup

	P	lim nÑ`8	1 n	H m pP ´nq ě sup P	lim inf nÑ`8 ´1 n	ż	log m s u pP ´npuqq dmpuq " h s m .
	Assume Proposition 3.1 and Proposition 3.2 hold true. Then,
				ż				ż
	h s m ě lim sup pÑ`8	log Jpϕ, uq dν ρ pϕq dm ρp puq "	log JpΦ ´1, uq dmpuq,
	where the last equality holds by Proposition 2.7 iii). Altogether, we obtain
					ż		
					h m ě	log JpΦ ´1, uq dmpuq.

  uq " m; i pϕ, uqd i pϕ, uq dµ ρ pϕ, uq " ş log Jpϕ, uq dν ρ pϕq dm ρ puq. F pϕ,uq,n peq :" exp ´1 ϕ| n`1 puq ˝ϕn ˝exp ϕ|npuq peq is defined for e with }e} 1 pϕ,uq,n ď pϕ, uq; iii) F pϕ,uq,n is C 2 and }D p2q F pϕ,uq,n } 1

	iv)	ş	ř rpϕ,uq i"1	
	Lemma 3.4. (cf. [LQ95, Chapter III, Section 1]) For each ρ ă 0, given a small enough
	positive τ -invariant function on T , there is a positive function κ on Ω ˆtN Y t0uu such
	that for n P N Y t0u,	
	(3.3)				κ `pϕ, uq, n	`1˘ď e	¨κ`p ϕ, uq, n ˘,
	a positive constant κ 0 and a sequence Euclidean metrics } ¨}1 pϕ,uq,n on T ϕ|npuq W	s	pϕ| n puqq
	such that for all n P N Y t0u,
	i) κ 0 } ¨}ϕ|npuq ď } ¨}1 pϕ,uq,n ď κppϕ, uq, nq} ¨}ϕ|npuq , where } ¨}ϕ|npuq is the Riemannian
		norm on T ϕ|npuq W	s	pϕ| n puqq;
	ii)			

χ pϕ,uq,n,n`1 ă κ `pϕ, uq, n ˘, where by } ¨}1 pϕ,uq,n,n`1

  uq,0 .By chopping ϕ| n puq into pieces in between returning times and using (3.10), (3.11), we see that there exists a geometric constant C such that the set exp u B s A pϕ, u, η, nq is contained in the set B s A pϕ, u, η, nq of points w P W Cκ ´1 0 ηκ ´1pϕ, uq, d W s pϕ|nuq pϕ| n w, ϕ| n uq ă Cκ ´1 0 ηκ , wq ě pC ´1κ 0 q m p1 ´ pϕ, uqq nm Jpϕ| n , uqe ´nm `lκ 0 η ˘1 2 m#tN A k pϕ,uq: kďnu .

	(3.11)					
	It follows that, denoting λ	s u the Lebesgue measure on W	s	puq,
	m s ρ,u `exp u pB s A pϕ, u, η, nqq	˘ď	λ	e C 1 u pRpϕ| n puqqq s	ż ϕ|npB s A pϕ,u,η,nqq	J ´1pϕ| n , wq dλ
	m s ρ,u `exp u pB s A pϕ, u, η, nqq	ď
	e C 1					
	λ s u pRpϕ| n puqqq					

s puq such that

d W s puq pw, uq ă ´1`τ N A n pϕ, uq, n ´NA n ȃnd Jpϕ| n s ϕ|nu pwq,

where C 1 is a positive constant taking into account the regularity of the density for a fixed ρ. It follows that, with our definition of c 0 ,

  `P´n pϕ, uq ˘dµ ρ pϕ, uq " lim inf The first inequality in (4.1) can be achieved if we can find good P, R for m with h s

		nÑ`8 ´1 n	ż	log m s ρ,u nÑ`8	1 n	H µρ pP ´n|Rq.
	Proving Proposition 3.2 amounts to proving that, if ρ p Ñ ´8 and m ρp Ñ m as p Ñ `8,
	then	h s m ě lim sup pÑ`8	sup P	lim inf nÑ`8	1 n	H µρ p pP ´n|Rq.
	This is true, if we can show, for any α ą 0, there are partitions P, R and n large, such
	that for all p large enough,		
	(4.1)	h s m ě	1 n	H µρ p pP ´n|Rq ´2α ě h s ρp,P ´3α ě h s ρp ´5α.
							´8,P

  The desired subaddivity follows by invariance of µ ρ under τ n . Hence (4.2) follows since

	Hence,						
	h s,M ρ,P ď h s,M ρ,P ´M "M ¨lim inf nÑ`8	1 nM	H µρ `P´Mn ˇˇR ďM
			¨lim inf nÑ`8	1 nM	H µρ ´P´Mn	ł	Q ´Mn ˇˇR	"M
			¨lim inf nÑ`8	1 n	H µρ ´P´n	ł	Q ´nˇRď
			M ¨`h s ρ,P `Hµρ pQq ďM
			¨`h s ρ,P				
	lim inf nÑ`8	1 n	H µρ pP ´n|Rq ď lim inf nÑ`8	1 n	H µρ ´P´n	ł	Q ´nˇR "
						inf n	1 n	H µρ ´P´n	ł	Q ´nˇR ď
						inf n	1 n	H µρ pP ´n|Rq `Hµρ pQq
					ď inf n	1 n	H µρ pP ´n|Rq `α.
	Proposition 4.3. Let M P N and let P be as in Proposition 4.2. Then
	(4.3)		h s,M ρ,P ď M ¨`h s ρ,P	`α˘.
	Proof. Let Q be as in Lemma 4.1. Recall that	
	h s,M ρ,P " lim inf nÑ`8 ´1 n	ż	log m s ρ,u `PM,´n pϕ, uq ˘dµ ρ pϕ, uq " lim inf nÑ`8	1 n	H µρ `PM,´n ˇˇR ˘.

  such that s M pζ, ϕ, u, η, nq Since ϕ 1 k are independent, the ergodic theorem gives Proposition 4.6. Corollary 4.7. For any α ą 0, there exists ζ 0 ą 0 such that if ζ ď ζ 0 , then Proof. Fix r ě 2. We choose M P N large such that 1 M log Cprq ď m r B 1,1 , where B 1,1 is defined in (2.6). Fix ζ ď 1, ρ ă 0. By (4.6), h s loc,ρ pζq ď 1 M h s,M loc,ρ pζq. Therefore,

	h s loc,ρ pζq ď	m r	B 1,1	`m rM	ż	log ˜max u	˜› › ϕ| M | W s	puq	› ›	C 1	2ďsďr `ζ ÿ	› › ϕ| M | W s	puq	› ›	C s ¸¸dν bM ρ pϕ| M q.
	ď Cprq n	ˆ4 η	˙m n´1 ź k"0	´max	! ζ s´1 › › pϕ 1 k q| W s C lim sup › puq › ρÑ´8 h s loc,ρ pζq ă α.		

s : 1 ď s ď r, u P O s pSM q )¯m {r .
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