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A FAMILY OF STABLE DIFFUSIONS

FRANÇOIS LEDRAPPIER AND LIN SHU

Abstract. Consider a C8 closed connected Riemannian manifold pM, gq with negative
curvature. The unit tangent bundle SM is foliated by the (weak) stable foliation Ws of

the geodesic flow. Let ∆s be the leafwise Laplacian for Ws and let X be the geodesic
spray, i.e., the vector field that generates the geodesic flow. For each ρ, the operator
Lρ :“ ∆s

` ρX generates a diffusion for Ws. We show that, as ρ Ñ ´8, the unique
stationary probability measure for the leafwise diffusion of Lρ converge to the normalized
Liouville measure on SM .

1. Statement of the result

Let pM, gq be an m-dimensional closed connected negatively curved C8 Riemannian
manifold. We shall study a class of probability measures on the unit tangent bundle SM
which interpolates between the Burger-Roblin measure (whose transversal distribution in
the weak unstable leaves is the same as the one for the maximal entropy measure of the
geodesic flow) and the normalized Liouville measure.

Let rg be the the G-invariant extension of g to the universal cover space ĂM . The fun-

damental group G “ π1pMq acts on pĂM, rgq as isometries such that M “ ĂM{G. Let BĂM

be the geometric boundary of ĂM , i.e., the collection of equivalent classes of unit speed ge-
odesic rays that remain a bounded distance apart. Since rg is negatively curved, there is a

natural homeomorphism from BĂM to the unit sphere SxĂM in the tangent space at x P ĂM ,
sending ξ to the initial vector of the geodesic ray starting from x in the equivalent class of

ξ ([EO73]). Hence we identify the unit tangent bundle SĂM “
Ť

xPĂM
SxĂM with ĂM ˆ BĂM .

For each v “ px, ξq P SĂM , its (weak) stable manifold for the geodesic flow tΦtutPR on

SĂM , denoted ĂW spvq, is the collection of initial vectors of geodesic rays in the equivalent

class of ξ and can be identified with ĂM ˆ tξu. The collection of ĂW spvq form the stable

foliation ĂWs of SĂM . Extend the action of G continuously to BĂM . Then SM can be

identified with the quotient of ĂM ˆBĂM under the diagonal action of G. Since ψpĂW spvqq “
ĂW spDψpvqq for ψ P G, the collection of quotients of ĂW spvq defines a lamination Ws on
SM , the so-called (weak) stable foliation of SM . The leaves of Ws are discrete quotients of
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2 FRANÇOIS LEDRAPPIER AND LIN SHU

ĂM , which are naturally endowed with the Riemannian metric induced from rg. For v P SM ,
let W spvq be the leaf of W containing v. Then W spvq is a C8 immersed submanifold of
SM depending Hölder continuously on v in the C8-topology ([Shu87]).

Let L be a Markovian operator (i.e., L1 “ 0) on (the smooth functions on) SM with
continuous coefficients. It is said to be subordinated to the stable foliation Ws, if for every
smooth function f on SM , the value of Lpfq at v P SM only depends on the restriction of
f to W spvq. A Borel probability measure m on SM is called L-harmonic if it satisfies

ż

Lpfq dm “ 0

for every smooth function f on SM . Extend L to be a G-equivariant operator on SĂM “
ĂM ˆ BĂM , which we shall denote with the same symbol, and, for v “ px, ξq P SĂM , let

Lv denote the laminated operator of L on ĂW spvq “ ĂM ˆ tξu. Call L weakly coercive, if

its lifted leafwise operators Lv, v P SĂM , are weakly coercive in the sense that there are
a number ε ą 0 (independent of v) and, for each v, a positive pLv ` εq-superharmonic

function F on ĂM (i.e., pLv ` εqF ď 0). It is known that for a weakly coercive operator,
there exists a unique harmonic measure ([Gar83], [Ham97]).

One classical example of weakly coercive operator is L “ ∆s, the laminated Laplacian
for Ws, whose unique L-harmonic measure is always referred to as the harmonic measure
([Gar83]). Many interesting open problems in dynamics are concerned with the relation-
ship of the harmonic measure with the normalized Liouville measure and the normalized
maximal entropy measure for the geodesic flow (Bowen-Margulis measure), and the ap-
plications of these relations to the characterizations of the locally symmetric property of
the underlying space (see [Kat82, Sul83] and see also [Kai90, Led95, Yue94] for more
descriptions).

In this paper, we are interested in the family Lρ “ ∆s ` ρX, where ρ is a real number

and X is the geodesic spray. Since X is tangent to the stable manifold, the operators Lρ
are subordinated to the stable foliation.

Let V denote the volume entropy of pM, gq:

V “ lim
rÑ`8

log VolpBpx, rqq

r
,

where Bpx, rq is the ball of radius r in pĂM, rgq and Vol is the volume. The volume entropy
coincides with the topological entropy of the geodesic flow on SM since g has negative
sectional curvature ([Man79]). For ρ ă V , the operator Lρ is weakly coercive ([Ham97])
and hence there is a unique Lρ-harmonic measure, which we will denote by mρ.

Clearly, m0 is the classical harmonic measure. When ρ Ñ V , mρ tends to the Burger-
Roblin measure mBR, the unique harmonic measure for the Laplacian subordinated to the
strong stable foliation ([LS, Proposition 4.10], the uniqueness of such a measure is due to
Kaimanovich ([Kai88])). When ρÑ ´8, the main result of this paper is:
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Theorem 1.1. Let pM, gq be an m-dimensional closed connected negatively curved C8 Rie-
mannian manifold. As ρÑ ´8, the Lρ-harmonic measure mρ converge to the normalized
Liouville measure on SM .

Roughly speaking, since the measure mρ is Lρ-harmonic, it is also stationary for the

operator ´X ´ p1{ρq∆s (see Section 2 for a precise definition). In particular, any limit
measure of the family mρ as ´1{ρ Ñ 0 is invariant under the (reversed) geodesic flow.
For a limit of random perturbations of a conservative Anosov flow, the convergence of the
stationary measures to a SRB measure has been shown by several authors, in particular
Kifer ([Kif74]), under the condition that the operator ∆ is hypoelliptic, so that the Markov
kernels have a density with respect to Lebesgue on SM. We cannot apply this to show
Theorem 1.1 since in our case, the operators are subordinated to the stable foliation and
the Markov kernels pρpt, px, ξq, dpy, ηqq are singular. Another approach by Cowieson-Young
([CY05]) uses the variational principle from thermodynamical formalism and we show that
such an approach can be used in our case in spite of the singularity of the Markov kernels.
We shall show any limiting measure m of mρ (as ρÑ ´8) satisfies Pesin entropy formula
for the geodesic flow. Theorem 1.1 follows since the normalized Liouville measure on SM
is indeed characterized by Pesin formula among invariant measures for the geodesic flow
([BR75]). More precisely, we will define a stochastic flow on a bigger space and consider
a special stationary measure mρ for that stochastic flow that projects to mρ on SM . We
then introduce a relative entropy like quantity hsρ for mρ and show hm, the entropy of m
for the reversed geodesic flow, satisfies

(1.1) hm ě lim sup
ρÑ´8

hsρ.

This can be done (see Proposition 3.2) along the lines of Cowieson-Young ([CY05]) and
Kifer-Yomdin ([KY88]) for the upper semi-continuity of the relative entropy. To conclude
Theorem 1.1, we verify that lim supρÑ´8 h

s
ρ has a lower bound given by Pesin entropy

integral for m using the SRB like properties of mρ (see Proposition 3.1) and their nice
convergence property inherited from our stochastic flow system (see Proposition 2.7).

We arrange the paper as follows. In Section 2, we will give preliminaries on the properties
of the L-harmonic measures and the dynamics of the associated stochastic flows. In Section
3, we will introduce the random system to define hsρ and reveal its relation with Pesin
entropy formula. The upper semi-continuity equality (1.1) will be shown in the final section.

2. Harmonic measure and stochastic flow

We begin with some basic understanding of the Lρ-harmonic measure mρ (ρ ă V ) by

analyzing the dynamics of its G-invariant extension on ĂM ˆ BĂM , which is denoted by rmρ.

Consider the G-equivariant extension of Lρ to SĂM “ ĂM ˆ BĂM , which we shall denote

by the same symbol. It defines a Markovian family of probabilities on rΩ`, the space of

paths of rω : R` Ñ SĂM (where R` :“ r0,`8q), equipped with the smallest σ-algebra A
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for which the projections Rt : rω ÞÑ rωptq are measurable. Indeed, for v “ px, ξq P SĂM , the

laminated operator Lv
ρ on ĂW spvq can be regarded as an operator on ĂM with corresponding

heat kernel functions pvρ pt, y, zq, t ą 0, y, z P ĂM . Define

pρpt, px, ξq, dpy, ηqq “ pvρ pt, x, yq dVolpyq δξpηq,

where δξp¨q is the Dirac function at ξ. Then the diffusion process on ĂW spvq with infinites-
imal operator Lv

ρ is given by a Markovian family tPw
ρ uwPĂMˆtξu, where for every t ą 0 and

every Borel set A Ă ĂM ˆ BĂM we have

Pw
ρ ptrω : rωptq P Auq “

ż

A
pρpt,w, dpy, ηqq.

Proposition 2.1. ([Gar83, Ham97]) With the above notations, the following are true
for ρ ă V .

i) The measure rmρ satisfies, for all f P C2pĂM ˆ BĂMq with compact support,
ż

ĂMˆBĂM

ˆ
ż

ĂMˆBĂM

fpy, ηqpρpt, px, ξq, dpy, ηqq

˙

d rmρpx, ξq “

ż

ĂMˆBĂM

fpx, ξq d rmρpx, ξq.

ii) The measure rPρ “
ş

Pv
ρ d rmρpvq on rΩ` is invariant under all the shift maps tσtutPR`

on rΩ`, where σtprωpsqq “ rωps` tq for s P R` and rω P rΩ`.

iii) The measure rmρ can be expressed locally at v “ px, ξq P SĂM as d rmρ “ kρpy, ηqpdyˆ

dνρpηqq, where νρ is a finite measure on BĂM without atoms and, for νρ-almost every

η, kρpy, ηq is a positive function on ĂM satisfying the equation

(2.1) ∆pkρpy, ηqq ´ ρDivpkρpy, ηqXpy, ηqq “ 0,

where we continue to use X to denote the geodesic spray for SĂM .

Remark 2.2. Let m be any weak* limit of the probability measures mρ on SM as ρÑ ´8

and let rm be the G-invariant extension of m to ĂM ˆ BĂM . Clearly, Theorem 1.1 follows if

we can show rm has absolutely continuous conditional measures on leafs ĂM ˆtξu. But this
does not follow directly from equation (2.1) since the Harnack inequality used for each ρ
finite is worse and worse when ρ goes to ´8 and hence we have less and less control of the
density functions kρ.

For Theorem 1.1, we will further explore the invariant dynamics of mρ from the stochastic
flow point of view and use it to establish the entropy formula for the limit measures.

We first recall some classical results from the theory of Stochastic Differential Equations
(SDE). Let tBt “ pB

1
t , ¨ ¨ ¨ , B

d
t qutPR` be a d-dimensional Euclidean Brownian motion start-

ing from the origin with the Euclidean Laplacian generator (so the covariance matrix is
2tId) and let pΩ,Pq denote the corresponding Wiener space. Let X “ pX0, X1, ¨ ¨ ¨ , Xdq,
where tXiuiďd`1 are bounded vector fields on a smooth finite dimensional Riemannian
manifold pN, x¨, ¨yq. The pair pX, tBtutPR`q consists of a stochastic dynamical system (SDS)
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on N and it is Cj (j ě 1 or j “ 8) if all Xi are Cj bounded ([Elw82]). An N-valued
semimartingale txtutPR` defined up to a stopping time ex0 is said to be a solution of the
following Stratonovich SDE

(2.2) dxtpωq “ X0pxtpωqq dt`
d
ÿ

i“1

Xipxtpωqq ˝ dB
i
tpωq,

if for all f P C8pNq,

fpxtpωqq “ fpx0pωqq `

ż t

0
X0fpxspωqq ds`

ż t

0

d
ÿ

i“1

Xifpxspωqq ˝ dB
i
spωq, @0 ď t ă ex0pwq.

The solution to (2.2) always exists and is essentially unique when all Xi’s are C1 bounded
([Elw82]). Moreover, for P almost all ω, the mapping

Ftp¨, ωq : x0pωq ÞÑ xtpωq

has the following property.

Proposition 2.3. ([Elw82, Chapter VIII]) Let pX, tBtutPR`q be a Cj SDS on N, where
j ě 1 or j “ 8. There is a version of the explosion time map x ÞÑ ex, defined for x P N,
and a version of tFtpx, ωqu, defined when t P r0, expωqq, such that if Npt, ωq “ tx P N : t ă
expwqu, then the following are true for each pt, ωq P R` ˆ Ω.

i) The set Npt, ωq is open in N.
ii) For almost all w, x0 P N and 0 ď t ă t1 ă ex0pwq, we have the cocycle equality

Ft1px0, ωq “ Ft1´tpxt, σtpωqq ˝ Ftpx0, ωq,

where σt is the shift transformation on Ω:

σt
`

pB1
s , ¨ ¨ ¨ , B

m
s qsě0

˘

“
`

pB1
t`s, ¨ ¨ ¨ , B

m
t`sqsě0

˘

´ pB1
t , ¨ ¨ ¨ , B

m
t q.

iii) The map Ftpx, ωq : Npt, ωq Ñ N is Cj´1 (or C8 when j “ 8) and is a diffeo-
morphism onto an open subset of N. Moreover, the map τ ÞÑ Fτ p¨, ωq of r0, ts into
Cj´1 (or C8 when j “ 8) mappings of Npt, ωq is continuous.

iv) For 1 ď l ď j ´ 1, denote by DplqFtp¨, ωq the l-th tangent map of Ft. Then,
for any q P r1,8q, there is a bounded function clpt, qq, which depends on t,m, q,
and the bounds of t∇ιX0uιďl, t∇ιXiu1ďiďd,ιďl`1 and t∇ι´1Ru1ďiďd,ιďl`1 such that

}rDplqFtp¨, ωqs}Lq ă clpt, qq, where } ¨ }Lq is the Lq-norm and ∇ι denotes the ι-th
covariant derivative and R is the curvature tensor.

When Npt, ωq ” N, the solution process txtu to (2.2) is said to be non-explosive. In
this case, the maps tFtp¨, ωqutPR` induce a kind of semi-flow on N, which we shall call
the stochastic flow associated to the SDS pX, tBtutPR`q or (2.2). A direct consequence of
Proposition 2.3 is the following regularity of a one-parameter family of stochastic flows.
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Corollary 2.4. Let pXa, tBtutPR`q be a one-parameter family of SDS on N with Napt, ωq ”

N. Assume Xa
i ’s are all Ck pk ě 1 or “ 8q on NˆA in the product differentiable structure.

Then for any t ą 0, and j ď k ´ 1, a ÞÑ F at p¨, ωq is Cj in the space of Ck´1´j maps of N.

Proof. Let xat be the solution for the SDS pXa, tBtutPR`q. Then pxat , aq solves the new
SDS ppXa, 0q, tBtutPR`q on N ˆ A. The regularity in a is a straightforward application of
Proposition 2.3 by treating a as a part of the initial value. �

Corollary 2.4 does not apply when we only have Hölder continuity of Xa in a. However,
it is still possible to discuss the regularities of a ÞÑ F at p¨, ωq by using one criterion from
Kolmogorov:

Proposition 2.5. (cf. [Kun90, Theorem 1.4.1]) Let T ą 0 and let tYat pωqutPr0,T s,aPA
be a one parameter family of random processes on a complete metric space, where A

is some bounded n-dimensional Euclidean domain. Suppose there are positive constants
5, 50, 51, ¨ ¨ ¨ , 5n, with

řn
i“0p5iq

´1 ă 1, and C0p5q such that for all t, t1 P r0, T s and a “
pa1, ¨ ¨ ¨ , anq, a

1 “ pa11, ¨ ¨ ¨ , a
1
nq P A,

E
„

ˇ

ˇ

ˇ
Yat ´ Ya1t1

ˇ

ˇ

ˇ

5


ď C0p5q

˜

|t´ t1|50 `
n
ÿ

i“1

|ai ´ a
1
i|
5i

¸

,

then Yat has a continuous modification with respect to the parameter pt, aq.

Let βi, i “ 0, ¨ ¨ ¨ , n, be arbitrary positive numbers less than 5ip1´
řn

0 p5iq
´1q{5. Then for

any hypercube D in A, there exists a positive random variable kpωq with Erkpωq5s ă 8 such
that for any t, t1 P r0, T s and a, a1 P D,

ˇ

ˇ

ˇ
Yat ´ Ya1t1

ˇ

ˇ

ˇ
ď kpωq

˜

|t´ t1|β0 `
n
ÿ

i“1

|ai ´ a
1
i|
βi

¸

.

Next, we consider ρ ă 0, ε :“ 1{
?
´ρ and L1ε :“ ´X ` ε2∆s. Extend L1ε to be a G-

equivariant operator on SĂM , which we shall denote by the same symbol. Its associated
leafwise diffusions can be visualized using the classical Eells-Elworthy-Malliavin construc-
tion.

Recall that, for v “ px, ξq P SĂM, we have identified the stable manifold ĂW spvq with
ĂMˆtξu and endowed it with the Riemannian metric on ĂM . In the same way, we can identify

an orthogonal frame in the tangent space TvĂW
s with Ox ˆ tξu, where Ox “ pe1, ¨ ¨ ¨ , emq

is an element in OxpĂMq, the collection of the orthogonal frames in TxĂM. Set OspSĂMq for
the bundle of such stable orthogonal frames:

OspSĂMq :“
!

px, ξq ÞÑ Ox ˆ tξu : Ox “ pe1, ¨ ¨ ¨ , emq P OxpĂMq, x P ĂM
)

.
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We carry to OspSĂMq all the Riemannian geometry from OpĂMq “
Ť

xPĂM
OxpĂMq. In partic-

ular, if Hx denotes the horizontal lift from TxĂM to TOxOpĂMq, we can define the horizontal

lift pHv from TvW
s to TOx,ξOspSĂMq by pHvpw, ξq “ pHxpwq, ξq for w P TxĂM .

Let tpB1
t , ¨ ¨ ¨ , B

m
t qutPR` be an m-dimensional Euclidean Brownian motion starting from

the origin with the Euclidean Laplacian generator (and covariance matrix 2tId) and let

pΩ,Pq be the Wiener space. Set pX as the horizontal lift of X to TOspSĂMq. We can realize

the diffusion for L1ε as the projection to SĂM of the non-explosive solution process tututPR`
(the non-explosiveness follows since pĂM, rgq has Ricci curvature uniformly bounded from

below) to the Stratonovich SDE on OspSĂMq:

(2.3) dut “ ´ pXputq dt` ε
m
ÿ

i“1

pHputpeiqq ˝ dB
i
t.

Let pπ : OspSĂMq Ñ SĂM be the natural projection and denote xWs for the foliation

of OspSĂMq that projects on ĂWs. Let D8pOsSĂMq be the space of homeomorphisms of

OspSĂMq that preserve the leaves of xWs and are C8-diffeomorphisms along the leaves. We

endow D8pOsSĂMq with the C0,8 topology: ϕ,ϕ1 P D8pOsSĂMq are close if, for all r ą 0,
the r-germs of ϕ and ϕ1 are uniformly close on compact sets and the r-germs of ϕ´1 and
pϕ1q´1 are uniformly close on compact sets.

Proposition 2.6. With the above notations, for P-a.e. ω P Ω, for all ε ą 0, t ě 0, there

exists ϕε,tpωq P D
8pOsSĂMq such that the following hold true.

i) For all u P OspSĂMq, pω, tq ÞÑ ϕε,tpωqpuq is a solution of the equation (2.3); in
particular, for all T ě 0, ω ÞÑ ϕε,T pωq is measurable with respect to the σ-algebra
generated by pB1

t , ¨ ¨ ¨ , B
m
t q, 0 ď t ď T .

ii) For almost all ω, all t, s ě 0, ϕε,t`spωq “ ϕε,tpσspωqq ˝ ϕε,spωq.
iii) For all ψ P G, Dψ ˝ ϕε,tpωq “ ϕε,tpωq ˝Dψ.

iv) The map ε ÞÑ ϕε,tpωq is continuous in D8pOsSĂMq.
v) For fixed r P N, t ě 0,

(2.4) E
”

max
u

›

›ϕε,tpωqpuq|
xW spuq

›

›

Cr

ı

ă `8.

Proof. Since both pX and pH are tangent to xWs, the solution to (2.3) is constrained in xWs.

For fixed ξ and ε, equation (2.3) can be seen as a SDE on OpĂMqˆ tξu and is solvable with
infinite explosion time. Hence properties i) and ii) are given by Proposition 2.3. Property
iii) follows from the uniqueness of the solution to (2.3). Considering ε as a parameter, we
get the continuity of the solution in ε by Corollary 2.4. Considering ξ as a parameter, the

leaves of xWs and pX, pH vary Hölder continuously with respect to ξ. Hence, by a standard
estimation using Burkholder inequality and Gronwall lemma and applying Proposition 2.5,
we can obtain the continuity of the solution to (2.3) in ξ, so that we can consider it as
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an element of D8pOsSĂMq. This shows iv). Finally we show v). Using a fundamental

domain for the action of G on ĂM , we may regard OspSMq as a subset of OspSĂMq. By
the G-equivariance property of the diffusion, we can restrict u in the left hand side of
(2.4) to OspSMq. By continuity of ϕε,tpωqpuq|

xW spuq
in u, the compactness of OspSMq and

Proposition 2.5, for (2.4), it suffices to show for each u P OspSMq, r P N and t ą 0,

(2.5) E
”

›

›ϕε,tpωqpuq|
xW spuq

›

›

Cr

ı

ă `8.

This is an application of Proposition 2.3 iv) by using the SDE (2.3). �

Equation (2.3) for ε “ 0 is the ordinary differential equation dut “ ´ pXputq dt. Its

solution is the extension tpΦ´tutPR of the reversed geodesic flow to OspSĂMq by parallel
transportation along the geodesics, and is called the reversed stable frame flow. Write νρ
for the probability measure on D8pOsSĂMq that is the distribution of ϕε,1 “ ϕ1{

?
´ρ,1 in

Proposition 2.6. Every element ϕ P D8pOsSĂMq preserves each leaf xW spuq and is a C8

diffeomorphism along it. We write Jpϕ, uq for the Jacobian determinant of the tangent
map of ϕ|

xW spuq
at u. For later use, we state a proposition concerning the limit behavior of

ϕ1{
?
´ρ,t when ρÑ ´8.

Proposition 2.7. With the above notations, the following are true.

i) For P-a.e. ω P Ω, all t ą 0, as ρ Ñ ´8, ϕ1{
?
´ρ,tpωq converge to pΦ´t in

D8pOsSĂMq, in particular, ϕ1{
?
´ρ,1 converge to the time 1 map of the reversed

stable frame flow.
ii) For any ´8 ă ρ ă 0 and r,M positive integers,

(2.6)

Br,Mpρq :“ E
”

max
u

›

›ϕ1{
?
´ρ,Mpωqpuq|xW spuq

›

›

Cr

ı

ă `8 and Br,M :“ lim sup
ρÑ´8

Br,Mpρq ă `8.

iii) For any r P N,

lim
ρÑ´8

ż

max
u

ˇ

ˇ

ˇ
}ϕ|

xW spuq
}Cr ´ }pΦ´1|

xW spuq
}Cr

ˇ

ˇ

ˇ
dνρpϕq “ 0.

iv) We have

lim
ρÑ´8

ż

log Jpϕ, uq dνρpϕq “ log JppΦ´1, uq

and the convergence is locally uniform in u.

Proof. The proof of continuity of the solution to (2.3) in Proposition 2.6 extends to ε “ 0.
This shows i). When ρ Ñ ´8, ε “ 1{

?
´ρ Ñ 0. For ii), note that Br,Mpρq is finite by

Proposition 2.6 v) (applied for t “ M). Then Br,M is also finite by using the continuity
in pε, uq in the estimation of the expectation in (2.5) in the proof of Proposition 2.6 v).
Similarly, we have the continuity in ε of the tangent maps (and their derivatives in ε) of
the solution to (2.3). Following Proposition 2.3 iv), it is easy to deduce from (2.3) the
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continuity in ε of the norm of the tangent maps and of the Jacobian of the first order
tangent map. This shows iii) and iv). �

It follows from Proposition 2.6 i) and ii) that we can consider ϕε,n, n P N, as an indepen-
dent product of the homeomorphisms ϕε,1 and that we can apply the theory of independent

random mappings. Let pπ be the projection map from OspSĂMq to SĂM . For any C2 com-

pactly supported function f on SĂM , px, ξq P SĂM and any frame u P OspSĂMq in the fiber
pπ´1px, ξq, we have

(2.7)

ż

SĂM
fpy, ηq dpρpε, px, ξq, dpy, ηqq “

ż

D8pOsSĂMq
fpπϕpuqq dνρpϕq.

Let pmρ be the measure on OspSĂMq that projects on rmρ on SĂM and such that the condi-
tional measures on fibers of the projection map pπ are proportional to the Lebesgue measure
on m-dimensional frames. The following is true.

Proposition 2.8. The measure pmρ is stationary under νρ, i.e., it satisfies, for any C2

compactly supported function f on OspSĂMq,
ż

fpϕpuqq dνρpϕq d pmρpuq “

ż

fpuq d pmρpuq.

Moreover, the conditional measures pms
ρ,uof pmρ with respect to the leaves of the xWs foliation

are absolutely continuous with respect to Lebesgue.

Proof. The stationarity follows from relation (2.7), the stationarity of rmρ and the fact
that the flow preserves the orthogonal group on the fibers ([CE86, Lemma 3.1]). The

leaves of xWs are made of whole fibers and project on the leaves of ĂWs. The conditional

measures on the leaves of xWs are given by the extension by Lebesgue on the fibers of

the conditional measures on the leaves of ĂWs. By Proposition 2.1 iii), they are therefore
absolutely continuous. �

Let π : OspSMq Ñ SM be the quotient of the map pπ by the action of G and let Ws
“

tW
s
puquuPOspSMq denote the corresponding quotient foliation of xWs. Let D8pOsSMq be

the space of homeomorphisms of OspSMq that preserve the leaves of Ws
and are C8-

diffeomorphisms along the leaves. We endow D8pOsSMq with the C0,8 topology: ϕ,ϕ1 P
D8pOsSMq are close if, for all r ą 0, the r-germs of ϕ and ϕ1 are uniformly close and the
r-germs of ϕ´1 and pϕ1q´1 are uniformly close. By Proposition 2.6 iii), we can consider νρ
as a probability measure on D8pOsSMq.

We define the measure mρ on OspSMq such that its G-invariant extension to OspSĂMq is
pmρ. We see that mρ is a probability measure that projects to mρ on SM and is such that
the conditional measures on fibers of π are proportional to Lebesgue on m-dimensional
frames. As a consequence of Proposition 2.8, we have



10 FRANÇOIS LEDRAPPIER AND LIN SHU

Corollary 2.9. The measure mρ is stationary under νρ, i.e., it satisfies, for any continuous
function f on OspSMq,

(2.8)

ż

fpϕuq dνρpϕq dmρpuq “

ż

fpuq dmρpuq.

Moreover, the conditional measures ms
ρ,u of mρ with respect to the leaves of the Ws

foliation
are absolutely continuous with respect to Lebesgue.

We are interested in the limit measures of mρ’s when ρ goes to ´8. Let m be such a
limit point and let m be the probability measure on OspSMq that projects to m on SM
and is such that the conditional measures on fibers of π are proportional to the Lebesgue
measure on m-dimensional frames. Then m is the limit of mρ along the same subsequence.

Let tΦ´tutPR be the reversed stable frame flow. Then m is invariant under Φ´t. To show
m is Liouville, it suffices to show the conditional measures of m on the leaves of Ws

are
absolutely continuous with respect to Lebesgue. But this does not follow from Corollary
2.9 by the same reason that we mentioned in Remark 2.2. What we are going to do in the
next section is to analyze the entropy related to the natural random dynamics for mρ that
arises in the stationarity relation (2.8).

3. Entropy of random mappings

We consider the action on OspSMq of the random elements of D8pOsSMq with distri-

bution νρ,´8 ď ρ ă 0. Namely, let S :“ pD8pOsSMqqNYt0u, endowed with the product

measures ν
bNYt0u
ρ (with the convention that ν´8 is the Dirac measure at Φ´1) and the

shift transformation σ. On the space T :“ S ˆOspSMq, define the transformation τ by:

τpϕ, uq :“ pσϕ, ϕ0uq.

For ´8 ă ρ ă 0, let mρ be the stationary measure from Corollary 2.9 and for ρ “ ´8,
let m´8 “ m be some weak* limit of mρ as ρ Ñ ´8. For ´8 ď ρ ă 0, the measure

µρ :“ ν
bNYt0u
ρ bmρ is invariant under the transformation τ.

Let P be a measurable partition of T with finite or countably many elements. We assume
´
ş

logpmρpPqq dµρ ă `8. For n P N, set P´1 “ P and P´n :“ P
Ž

τ´1P
Ž

¨ ¨ ¨
Ž

τ´pn´1qP
for n ą 1, where

Ž

denotes the join of partitions, i.e., the refinement of partitions by taking
intersections. For pϕ, uq P T , let P´npϕ, uq denote the element of P´n that contains pϕ, uq.
We define the entropy hsρ for mρ as

hsρ :“ sup
P
hsρ,P ,

where

(3.1) hsρ,P :“ lim inf
nÑ`8

´
1

n

ż

log ms
ρ,u

`

P´npϕ, uq
˘

dµρpϕ, uq.
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For a formal definition of ms
ρ,u, we should use a measurable partition R subordinated to

Ws
(see Section 4 for details). But the value of hsρ,P does not depend on the choice of such

a subordinated partition and is thus well-defined. Observe that

´

ż

log ms
ρ,u

`

P´npϕ, uq
˘

dµρpϕ, uq ď ´

ż

log mρ

`

P´npϕ, uq
˘

dµρpϕ, uq.

Using the random Ruelle inequality (cf. [BB95, Kif86]), we obtain that hsρ,P is bounded
independent of P. Hence hsρ is finite. Note also that ms

ρ,u is absolutely continuous with
respect to Lebesgue with a smooth density.

For the computation of hsρ,P , we can restrict the conditional measure ms
ρ,u to the local

stable leaf W
s
loc,εpuq :“ tw P W

s
puq : dW spw, uq ă εu for ε small enough. Recall that

ϕ P D8pOsSMq preserves each leaf W
s
puq and is a C8 diffeomorphism along it. Write

Jpϕ, uq for the Jacobian determinant of the tangent map of ϕ|W s
puq at u. We will conclude

Theorem 1.1 from the following two propositions.

Proposition 3.1. For ´8 ă ρ ă 0,

(3.2) hsρ ě

ż

log Jpϕ, uq dνρpϕq dmρpuq.

Proposition 3.2. Let ρp, p P N, be a sequence such that ρp Ñ ´8 and mρp converge to
the probability measure m as pÑ `8, and let m be as above. Then

hsm :“ hs´8 ě lim sup
pÑ`8

hsρp .

The proofs of Proposition 3.1 and Proposition 3.2 use completely different techniques
and will be presented in this section and the following section, respectively.

In the following, we shall use HϑpAq to denote the entropy of a measurable partition
A with respect to a measure ϑ of some space and use HϑpA|Bq to denote the entropy of
A conditioned on some measurable partition B, whenever these entropies are well-defined.
We shall denote m for the dimension of W

s
; for pϕ, uq P T , we shall write

ϕ|0 “ Id and ϕ|n “ ϕn´1 ˝ ¨ ¨ ¨ ˝ ϕ0, @n ě 1,

and Jpϕ|n, uq for the Jacobian determinant of the tangent map of ϕ|n|W s
puq at u. Clearly,

we have Jpϕ|1, uq “ Jpϕ0, uq for ϕ “ pϕ0, ϕ1, ¨ ¨ ¨ q P S.

Proof of Theorem 1.1. Let ρp, p P N, be a sequence such that ρp Ñ ´8 and mρp converge

to the probability measure m as p Ñ `8, and let m be as above. Recall that Φ´1 is
the time one map of the reversed frame flow on OspSMq which is a compact isometric
extension of the time one map of the reversed geodesic flow Φ´1 on SM. Hence,

hm “ hm.
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On the other hand, we have:

hm “ sup
P

lim
nÑ`8

1

n
HmpP´nq ě sup

P
lim inf
nÑ`8

´
1

n

ż

log ms
u pP´npuqq dmpuq “ hsm.

Assume Proposition 3.1 and Proposition 3.2 hold true. Then,

hsm ě lim sup
pÑ`8

ż

log Jpϕ, uq dνρpϕq dmρppuq “

ż

log JpΦ´1, uq dmpuq,

where the last equality holds by Proposition 2.7 iii). Altogether, we obtain

hm ě

ż

log JpΦ´1, uq dmpuq.

Note that Ws
is the central unstable foliation for Φ´1, so that

ş

log JpΦ´1, uq dmpuq is

the integral of the sum of the nonnegative exponents of Φ´1 for m; neither the direction
of the flow nor the vertical directions tangent to the fibers provide positive exponents, so
that

ş

log JpΦ´1, uq dmpuq is the integral of the sum of the positive exponents of Φ´1 for
m. By [BR75], m is the normalized Liouville measure. �

3.1. Proof of Proposition 3.1. The deterministic diffeomorphism version estimation of
(3.2) is standard using Pesin theory (cf. [Man83]). But this cannot be used directly since
we are in the random and non-invertible case.

Clearly, Proposition 3.1 would follow if we can show the sample measures are SRB.
This approach might work since in a similar context, Blumenthal-Young ([BY19]) showed
the sample measures are SRB. We didn’t try that way since we don’t need that strong
conclusion and the intuition for Proposition 3.1 is relatively simpler.

For a non-invertible endomorphism of a compact manifold preserving an absolutely con-
tinuous measure, the corresponding measure theoretical entropy is at least the integral
of the logarithm of the Jacobian, which coincides with the so-called folding entropy (cf.
[Rue96], [LS11]). Proposition 3.1 is intuitively a random conditional version of this phe-
nomenon. But it might be subtle since we are considering the conditional measures and
are in the random case. So we will give some details for the key steps.

We first recall some notations and results concerning Pesin local Lyapunov charts theory
for random diffeomorphisms. In many places, we have to take invariant variables instead
of constants since our system pT , τ, µρq is invariant, but not necessarily ergodic in general.

Lemma 3.3. ([Ose68]) For each ρ ă 0, there is a measurable Ω Ă T with µρpΩq “ 1
such that for pϕ, uq P Ω, there exist rpϕ, uq P N and, for i, 1 ď i ď rpϕ, uq, χipϕ, uq, dipϕ, uq
and a filtration

t0u “ Vrpϕ,uq`1 Ă Vrpϕ,uq Ă ¨ ¨ ¨ Ă V1 “ TuW
s
puq

with the following properties:

i) all of r, χi, di, Vi’s depend measurably on pϕ, uq;

ii) limnÑ`8
1
n log }Dupϕ|nqpeq} “ χipϕ, uq for e P Vipϕ, uqzVi`1pϕ, uq;
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iii) dipϕ, uq “ dimVipϕ, uq ´ dimVi`1pϕ, uq and
řrpϕ,uq

i“1 dipϕ, uq “ m;

iv)
ş
řrpϕ,uq

i“1 χipϕ, uqdipϕ, uq dµρpϕ, uq “
ş

log Jpϕ, uq dνρpϕq dmρpuq.

Lemma 3.4. (cf. [LQ95, Chapter III, Section 1]) For each ρ ă 0, given a small enough
positive τ -invariant function ε on T , there is a positive function κ on Ωˆ tNY t0uu such
that for n P NY t0u,
(3.3) κ

`

pϕ, uq, n` 1
˘

ď eε ¨ κ
`

pϕ, uq, n
˘

,

a positive constant κ0 and a sequence Euclidean metrics } ¨ }1
pϕ,uq,n on Tϕ|npuqW

s
pϕ|npuqq

such that for all n P NY t0u,

i) κ0} ¨ }ϕ|npuq ď } ¨ }
1
pϕ,uq,n ď κppϕ, uq, nq} ¨ }ϕ|npuq, where } ¨ }ϕ|npuq is the Riemannian

norm on Tϕ|npuqW
s
pϕ|npuqq;

ii) Fpϕ,uq,npeq :“ exp´1
ϕ|n`1puq

˝ϕn ˝ expϕ|npuqpeq is defined for e with }e}1
pϕ,uq,n ď εpϕ, uq;

iii) Fpϕ,uq,n is C2 and }Dp2qFpϕ,uq,n}
1
pϕ,uq,n,n`1 ă κ

`

pϕ, uq, n
˘

, where by } ¨ }1pϕ,uq,n,n`1

we mean the norm of the tangent map calculated using } ¨ }1
pϕ,uq,n and } ¨ }1

pϕ,uq,n`1;

iv) the map DFpϕ,uq,n satisfies

}DeFpϕ,uq,n ´D0Fpϕ,uq,n}
1
pϕ,uq,n,n`1 ď εpϕ, uq}e}1pϕ,uq,n;

v) the map D0Fpϕ,uq,n satisfies

eχipϕ,uq´εpϕ,uq}e}1pϕ,uq,n ď }D0Fpϕ,uq,npeq}
1
pϕ,uq,n`1 ď eχipϕ,uq`εpϕ,uq}e}1pϕ,uq,n,

for all e P Eipτ
npϕ, uqq. Moreover, for i, 1 ď i ď rpϕ, uq, the spaces Ejpϕ, uq, j ě i,

generate Vipϕ, uq.

(Since elements of D8pOsSMq preserve the leaves of Ws
, Lemma 3.4 can be obtained

as in [LQ95, Chapter III, Section 1]) using the natural auxiliary charts Ejpϕ, uq
1s and

Lemma 3.3.)

For Proposition 3.1, we shall follow Mañé ([Man83]) to give a local version of (3.2) for
Bowen balls defined using the norms in Lemma 3.4 and then compare it with local entropy
for special partitions. Note that we are in the non-invertible case, κ is not invariant (i.e.,
for pϕ, uq P Ω, κppϕ, uq, nq does not equal to κpτnpϕ, uq, 0q in general). To overcome this
deficiency, we will pick up a set A with measure close to 1 and define modified Bowen balls
associated to A.

Let ε0 ą 0, ´8 ă ρ ă 0 be fixed. Choose ε ă ε0 as in Lemma 3.4. For any a P p0, 1q,
we choose a measurable set A Ă Ω with µρpAq ą 1 ´ a as follows. By the ergodicity of

ν
bNYt0u
ρ with respect to σ and the integrability property (2.6), for ν

bNYt0u
ρ almost every ϕ,

lim
nÑ`8

1

n

n
ÿ

i“1

`

log max
u
}ϕi|

xW spuq
}C2

˘`
“

ż

`

log max
u
}ϕ|

xW spuq
}C2

˘`
dνρpϕq “: L ă `8.
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For any b ą 0, let

Apbq :“

#

ϕ P S :
n´1
ź

i“0

max
u
}ϕi|

xW spuq
}C2 ď be2Ln for all n P NY t0u

+

.

Then there exists b ą 0 large such that

(3.4) νbNYt0uρ pApbqq ą 1´
1

2
a.

Let b be as in (3.4). For l ą 0, set

(3.5) Apb, lq :“
 

pϕ, uq P Ω : ϕ P Apbq, ηκ0

`

κ
`

pϕ, uq, 0
˘˘´2

ą l
(

.

Choosing η ą 0, εpϕ, uq with εpϕ, uq ă ε0 and l to be small enough, we can obtain a
measurable set

(3.6) A :“ Apb, lq X tpϕ, uq : η ă εpϕ, uqu

with µρ measure greater than 1´ a.

Let A be as in (3.6). For µρ almost all pϕ, uq P A, it will return to A under the iterations
of the map τ for infinitely many times. Hence, for any such pϕ, uq and k ě 1,

(3.7) }.}2pϕ,uq,k :“ }.}1
τ
NA
k pϕ,uq,k´NAk

is well-defined, where NA
k is the last non-negative time before or equal to k with τN

A
k pϕ, uq P

A. For η ą 0, pϕ, uq P A such that η ă εpϕ, uq, and n P N, let us define the modified

random Ws
-Bowen ball (with respect to A) by

(3.8)

Bs
Apϕ, u, η, nq :“

!

e P TuW
s
puq : }e}2pϕ,uq,0 ă ηκ´1

`

pϕ, uq, 0
˘

, and for k, 1 ď k ď n,

›

›Fpϕ,uq
ˇ

ˇ

k
peq

›

›

2

pϕ,uq,k
ă ηκ´1

`

τN
A
k pϕ, uq, k ´ NA

k

˘

)

,

where Fpϕ,uq
ˇ

ˇ

k
:“ Fpϕ,uq,k´1 ˝ ¨ ¨ ¨ ˝ Fpϕ,uq,0.

The following can be considered as a first step coarse local version of Proposition 3.1:

Lemma 3.5. Let ´8 ă ρ ă 0, a P p0, 1q, ε0 ą 0, and η ą 0 be fixed. Choose ε ă ε0 as
in Lemma 3.4. Let A Ă Ω be as in (3.6). Then, there is a positive geometric constant C0

such that, setting c0 :“ 1
2m log lκ0

η , for µρ almost all pϕ, uq and all n P N,

(3.9) ´
1

n
log ms

ρ,u

`

expupB
s
Apϕ, u, η, nqq

˘

ě ´
1

n
log Jpϕ|n, uq ´ 3mε0 ´

1

n
C0 ` c0.

Proof. The set Bs
Apϕ, u, η, nq is empty if pϕ, uq R A. Otherwise, by definition and Lemma

3.4 iv), Bs
Apϕ, u, η, nq is contained in the set of vectors e P TuW

s
puq such that

}e}1pϕ,uq,0 ă ηκ´1
`

pϕ, uq, 0
˘

,
›

›Fpϕ,uq
ˇ

ˇ

n
peq

›

›

2

pϕ,uq,n
ă ηκ´1

`

τN
A
n pϕ, uq, n´ NA

n

˘

and
ˇ

ˇDet1DeFpϕ,uq,k
ˇ

ˇ ě
ˇ

ˇDet1D0Fpϕ,uq,k
ˇ

ˇp1´ εpϕ, uqqm for 1 ď k ď n,
(3.10)
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where Det1 is the determinant of a linear mapping in the metrics } ¨ }1
τ
NA
k pϕ,uq,k´NAk

and

} ¨ }1

τ
NA
k pϕ,uq,k`1´NAk

. By construction, τN
A
k pϕ, uq P A and κ

`

τN
A
k pϕ, uq, 0

˘

ď
`

η
l κ0

˘1{2
. Assume

τk`1pϕ, uq P A, i.e., NA
k`1 “ k ` 1. Then

} ¨ }1

τ
NA
k pϕ,uq,k`1´NAk

ď epN
A
k`1´N

A
k qεκ

`

τN
A
k pϕ, uq, 0

˘

κ´1
0 } ¨ }1τk`1pϕ,uq,0

ď epN
A
k`1´N

A
k qε

` η

lκ0

˘
1
2 } ¨ }1τk`1pϕ,uq,0.

(3.11)

By chopping ϕ|npuq into pieces in between returning times and using (3.10), (3.11), we see
that there exists a geometric constant C such that the set expu Bs

Apϕ, u, η, nq is contained

in the set Bs
Apϕ, u, η, nq of points w PW

s
puq such that

dW s
puqpw, uq ă Cκ´1

0 ηκ´1pϕ, uq, dW s
pϕ|nuq

pϕ|nw,ϕ|nuq ă Cκ´1
0 ηκ´1

`

τN
A
n pϕ, uq, n´ NA

n

˘

and Jpϕ|n, wq ě pC
´1κ0q

mp1´ εpϕ, uqqnmJpϕ|n, uqe
´nmε

` lκ0

η

˘
1
2
m#tNAk pϕ,uq: kďnu.

It follows that, denoting λ
s
u the Lebesgue measure on W

s
puq,

ms
ρ,u

`

expupB
s
Apϕ, u, η, nqq

˘

ď
eC

1

λ
s
upRpϕ|npuqqq

ż

ϕ|npBsApϕ,u,η,nqq
J´1pϕ|n, wq dλ

s
ϕ|nupwq,

where C 1 is a positive constant taking into account the regularity of the density for a fixed
ρ. It follows that, with our definition of c0,

ms
ρ,u

`

expupB
s
Apϕ, u, η, nqq

˘

ď
eC

1

λ
s
upRpϕ|npuqqq

J´1pϕ|n, uqpCκ
´1
0 qmp1´ εpϕ, uqq´nmenmεe´c0#tNAk pϕ,uq: kďnu.

Note that the partition R is such that each element contains a ball with radius greater
than some positive constant (see Section 4), we obtain some constant C0 ą 0 such that

´
1

n
log ms

ρ,u

`

expupB
s
Apϕ, u, η, nqq

˘

ě
1

n
log Jpϕ|n, uq`m logp1´ εpϕ, uqq´mε´

1

n
C0` c0.

The estimation in (3.9) follows for ε0 small enough. �

By (3.5) and Lemma 3.4 i), we have

c0 “
1

2
m log

lκ0

η
ď m log

κ0

minpϕ,uqPA κ
`

pϕ, uq, 0
˘ ď 0.

So the estimation in (3.9) might be too coarse since c0 is not a priori small compared with
ε0. But c0 remains unchanged when we consider (3.9) for Bowen balls for any power of τ ,
hence it will not enter the lower bound estimation of entropy in (3.2).
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More precisely, let M P N be fixed. For ϕ P S, write

ϕ1 :“ pϕ10, ϕ
1
1, ¨ ¨ ¨ , ϕ

1
k, ¨ ¨ ¨ q, where ϕ1k :“ ϕ ˝ σkM|M.

Let

σ1pϕ1q :“ pϕ11, ¨ ¨ ¨ , ϕ
1
k, ¨ ¨ ¨ q and τ 1pϕ1, uq :“ pσ1pϕq, ϕ10uq.

The transformation τ 1 can be identified with τM. We can use the same κ0, κ for τ 1 as for
τ , but now ε in (3.3) has to be changed into Mε. So we have to choose ε1 so that Mε1 ă ε0.

Choose η1 ă η small enough that, if l1 :“ l η
1

η , the measurable set

(3.12) A1 :“ Apb, l1q X tpϕ, uq : η1 ă ε1pϕ, uqu

has µρ measure greater than 1´ a.

For µρ almost all pϕ, uq “ pϕ1, uq P A1 and k P N, let MA1

k denote the last non-negative

time before or equal to k such that pτ 1qM
A1

k pϕ1, uq P A1. Similar to (3.7) and (3.8), we define

}.}
2,M
pϕ1,uq,k :“ }.}1

pτ 1q
MA1
k pϕ1,uq,pk´MA1

k qM
,

and for η1 ą 0, pϕ, uq P A1 such that η1 ă ε1pϕ, uq, and n P N, we define the modified random

Ws
-Bowen ball for τ 1 (with respect to A1) by

Bs,M
A1 pϕ

1, u, η, nq :“
!

e P TuW
s
puq : }e}2pϕ1,uq,0 ă η1κ´1

`

pϕ1, uq, 0
˘

, and for k, 1 ď k ď n,

›

›Fpϕ,uq
ˇ

ˇ

kM
peq

›

›

2,M

pϕ1,uq,k
ă ηκ´1

`

pτ 1qM
A1

k pϕ1, uq, pk ´MA1

k qM
˘

)

.

Then following the argument in Lemma 3.5, we obtain (observe that, by our choice of l1,

c0 “
1
2m log lκ0

η “ 1
2m log l1κ0

η1 has the same value as in Lemma 3.5)

Lemma 3.6. Let ´8 ă ρ ă 0, a P p0, 1q, M P N and ε0 be fixed. Let η1, ε1,A1 be as in
(3.12) and let c0,C0 be as in Lemma 3.5. Then, for µρ almost all pϕ, uq P A1 and all n P N,

(3.13) ´
1

n
log ms

ρ,u

´

expupB
s,M
A1 pϕ

1, u, η, nqq
¯

ě ´
1

n
log Jpϕ|nM, uq ´ 3mMε0 ´

1

n
C0 ` c0.

Following Mañé ([Man83]) (see also [Thi92]), we can proceed to find partitions which
have local entropy lower bound as in (3.13) in our non-invertible random setting.

Lemma 3.7. Let ε0 ą 0, ´8 ă ρ ă 0, M P N be fixed. Let η1, ε1,A1 be as in (3.12)
and let c0,C0 be as in Lemma 3.5. There exists a countable partition Q of T with
´
ş

logpmρpQqq dµρ ă `8 such that for µρ almost all pϕ, uq P A1, we have 0 ă η1 ă

ε1pϕ, uq ă ε0{M and

(3.14) QM,´npϕ, uq Ă expu
`

Bs,M
A1 pϕ

1, u, η1, nq
˘

,
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where QM,´n :“ Q
Ž

pτMq´1Q
Ž

¨ ¨ ¨
Ž

pτMq´pn´1qQ. Consequently, for µρ almost all pϕ, uq P

A1,

(3.15) lim inf
nÑ`8

´
1

n
log ms

ρ,u

`

QM,´npϕ, uq
˘

ě ´
1

n
log Jpϕ|nM, uq ´ 3mMε0 ´

1

n
C0 ` c0.

Proof. Clearly, (3.15) is a consequence of (3.14) and (3.13). Hence, it suffices to show
(3.14). Let η1, ε1,A1 be as in (3.12). For pϕ, uq P A1, κ1 ą 0 and n P N, set

Bs,M,κ1,κ
A1 pϕ1, u, η1, nq :“

"

w PW
s
puq : d

`

ϕ|kMpwq, ϕ|kMpuq
˘

ă η1κ1

´

κ
`

pτ 1qM
A1

k pϕ1, uq, pk ´MA1

k qM
˘

¯´2

,@0 ď k ď n

*

.

By Lemma 3.4 i), we see that there exists some constant κ1 depending on the geometry of
pM, gq such that, for almost all pϕ, uq P A1 and all n P NY t0u,

Bs,M,κ1,κ
A1 pϕ1, u, η1, nq Ă expu

`

Bs,M
A1 pϕ

1, u, η1, nq
˘

.

Hence, to find a countable partition Q satisfying (3.14), it suffices to find a Q such that

QM,´npϕ, uq Ă Bs,M,κ1,κ
A1 pϕ1, u, η1, nq.

For each n P NYt0u, let A1n Ă A1 be the collection of points with n as the first return time to
A1 with respect to the map τM. Recall that the local stable leaf W

s
loc,ε0puq “ tw PW

s
puq :

dW spw, uq ă ε0u depends continuously on u and for each n, we can choose in a continuous

way a maximal p4pl1q2bq´1e´2pL`ε0qnM separated set in W
s
loc,ε0puq. The cardinality Cn of

such sets satisfies Cn ď KnM for some K. Using these points, we can further slice A1n into
tA1n,`u`ďCn such that for all pϕ, uq P A1n,`, the intersection tw : pϕ,wq P A1n,`uXW

s
loc,ε0puq

has diameter less than p2pl1q2bq´1e´2pL`ε0qnM. The partition Q can be chosen to be

tA1n,`, n P NY t0u, ` ď Cn, T zA1u.

Following [Man83], one checks that Q satisfies ´
ş

logpmρpQqq dµρ ă `8 and (3.14). �

Proof of Proposition 3.1. Let ´8 ă ρ ă 0 be fixed. In the following, we show, for every
ε0 ą 0, there exists a finite measurable partition P of T satisfying

(3.16) hsρ,P ě

ż

log Jpϕ, uq dνρpϕq dmρpuq ´ 5mε0.

Then, by definition of hsρ and (3.16),

hsρ ě hsρ,P ě

ż

log Jpϕ, uq dνρpϕq dmρpuq ´ 5mε0.

This concludes the proof of Proposition 3.1 since ε0 is arbitrary.
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Let M be such that |c0| ă Mε0. Let a ą 0 be small and let A1 and Q be as in Lemma
3.7. Then for µρ almost all pϕ, uq P A1, (3.15) holds true. Set

hs,Mρ,Q :“ lim inf
nÑ`8

´
1

n

ż

log ms
ρ,u

`

QM,´npϕ, uq
˘

dµρpϕ, uq.

For any α ą 0, by our choice of R in Section 4, it is true that (see Proposition 4.3)

hsρ,Q ě
1

M
hs,Mρ,Q ´ α.

Hence, by Fatou Lemma,

hsρ,Q ě

ż

A
lim inf
nÑ`8

´
1

nM
log ms

ρ,u

`

QM,´npϕ, uq
˘

dµρpϕ, uq ´ α.

Since the function log Jpϕ, uq is integrable and |c0| ă Mε0, by using(3.15), we obtain, for
a, α ą 0 small,

hsρ,Q ě

ż

log Jpϕ, uq dνρpϕq dmρpuq ´ 4mε0.

Note that Q is such that ´
ş

logpmρpQqq dµρ ă `8 and for any finite partition P such
that Q is finer than it,

hsρ,Q ´ h
s
ρ,P ď lim sup

nÑ`8

1

n

ż

Hms
ρ
pQ´n|P´nq dµρ

ď lim sup
nÑ`8

1

n

ż

HmρpQ´n|P´nq dµρ ď
ż

HmρpQ|Pq dµρ.

We can group the tail elements in Q together with some care to obtain a finite partition
P satisfying the requirement in (3.16). �

4. The proof of Proposition 3.2

Let m be as in Proposition 3.2. To compare hsm with hsρp , we first formulate the entropy

hsρp,P (see (3.1)) in terms of some conditional entropy for the unconditional measure µρ.

Let W be a lamination of a compact metric space. A measurable partition is said to
be subordinated to W if its elements are bounded subsets of the leaves of W with non-
empty interiors in the topology of the leaf. We can construct a partition R subordinated to
Ws

by choosing a finite partition X of OspSMq into sufficiently small sets with non-empty
interiors and subdivide each element of X into the connected components of its intersection
with the leaves. We may assume R is such that each element contains a ball with radius
greater than some positive constant. The partition R is measurable if it is constructed as
an intersection of an increasing family Rj , j P N, of finite partitions into measurable sets.

Let P be a finite partition of OspSMq and we assume that we have chosen X ,R “
Ž

j Rj

as above and that P refines X . We may assume that the boundaries of the elements of
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P,X and Rj are all m-negligible. The conditional measures ms
ρ,u in the definition of hsρ,P

can be taken on any measurable finite partition R chosen in the above way, so that

hsρ,P “ lim inf
nÑ`8

´
1

n

ż

log ms
ρ,u

`

P´npϕ, uq
˘

dµρpϕ, uq “ lim inf
nÑ`8

1

n
HµρpP´n|Rq.

Proving Proposition 3.2 amounts to proving that, if ρp Ñ ´8 and mρp Ñ m as pÑ `8,
then

hsm ě lim sup
pÑ`8

sup
P

lim inf
nÑ`8

1

n
Hµρp pP´n|Rq.

This is true, if we can show, for any α ą 0, there are partitions P,R and n large, such
that for all p large enough,

(4.1) hsm ě
1

n
Hµρp pP´n|Rq ´ 2α ě hsρp,P ´ 3α ě hsρp ´ 5α.

The first inequality in (4.1) can be achieved if we can find good P,R for m with hs´8,P
being close to hsm. So we will show the other two inequalities in (4.1) first.

We begin with the second inequality in (4.1), which is not trivial in our setting since the
conditional entropy sequence Hµρp pP´n|Rq is not necessarily a subadditive sequence in n.

Lemma 4.1. Given X ,R and P as above, there exists a countable partition Q of T such
that the partition R

Ž

τ´1P
Ž

τ´1Q is finer than τ´1R. Moreover, given α ą 0, there are
δ and Λ such that if the diameters of the elements of X are smaller than δ and if ρ ă Λ,
one can choose Q with HµρpQq ă α.

Proof. For u,w P OspSMq in the same Ws
leaf, write dspu,wq for the distance between

u and w along their common leaf. For any δ ą 0, there are two constants cpδq and Cpδq
such that if u and w are on the same leaf and dpu,wq ă δ, then either dspu,wq ă cpδq
or dspu,wq ě Cpδq. We can ensure that cpδq Ñ 0 as δ Ñ 0 and that Cpδq Ñ `8 as
δ Ñ 0. Suppose u and w are in the same element of the partition R and that ϕ0u and
ϕ0w are in the same element of X . If dspϕ0u, ϕ0wq ă Cpδq, in particular, as soon as
dspu,wq ă Cpδq{}ϕ0}C1 , then ϕ0u and ϕ0w are in the same connected component of Ws

and thus in the same element of R.

To obtain Lemma 4.1, it is therefore enough to take the partition Q of T as follows: the
projection on S depends only on the first coordinate ϕ0 and is the partition An, n ě 0,
where An :“ tϕ0 : nCpδq ď }ϕ0}C1 ď pn` 1qCpδqu; A0 ˆOspSMq is one element of Q; on
each An, n ą 0, we further cut OsSM into Nn pieces of diameter smaller than 1{pn` 1q.

The entropy of Q satisfies

HµρpQq ď Hµρ

`

tAn : n ě 0u
˘

` c
8
ÿ

n“1

νρpAnq log n,

where c is some constant depending on the geometry of Ws
. Given α ą 0, we will have

HµρpQq ă α as soon as νρptϕ : }ϕ}C1 ą Cpδquq and the integral
ş

tϕ:}ϕ}C1ąCpδqu
log }ϕ}C1 dνρ
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are sufficiently small. These two conditions can be realized by choosing δ small and ρ close
enough to ´8. �

Proposition 4.2. Given α ą 0, there is δ ą 0 and Λ such that, for all n ą 0, if the
diameter of the elements of X are smaller than δ and ρ ă Λ,

(4.2)
1

n
HµρpP´n|Rq ě lim inf

nÑ`8

1

n
HµρpP´n|Rq ´ α “ hsρ,P ´ α.

Proof. Let Q be as in Lemma 4.1. Then we have that the mapping n ÞÑ Hµρ

`

P´n
Ž

Q´n
ˇ

ˇR
˘

is subadditive. Indeed, for n, n1 P N,

Hµρ

´

P´pn`n1q
ł

Q´pn`n1q
ˇ

ˇR
¯

“ Hµρ

´

P´n
ł

Q´n
ˇ

ˇR
¯

` Hµρ

´

P´n
´pn`n1q

ł

Q´n
´pn`n1q

ˇ

ˇR
ł

P´n
ł

Q´n
¯

,

where P´n
´pn`n1q :“ τ´nP

Ž

¨ ¨ ¨
Ž

τ´pn`n
1´1qP and Q´n

´pn`n1q is defined in the same way.

Moreover, by Lemma 4.1, the partition R
Ž

P´n
Ž

Q´n is finer than τ´nR and the last
term is smaller than Hµρ

`

P´n
´pn`n1q

Ž

Q´n
´pn`n1q

ˇ

ˇτ´nR
˘

. The desired subaddivity follows by

invariance of µρ under τn. Hence (4.2) follows since

lim inf
nÑ`8

1

n
HµρpP´n|Rq ď lim inf

nÑ`8

1

n
Hµρ

´

P´n
ł

Q´n
ˇ

ˇR
¯

“ inf
n

1

n
Hµρ

´

P´n
ł

Q´n
ˇ

ˇR
¯

ď inf
n

1

n
HµρpP´n|Rq `HµρpQq

ď inf
n

1

n
HµρpP´n|Rq ` α.

�

Proposition 4.3. Let M P N and let P be as in Proposition 4.2. Then

(4.3) hs,Mρ,P ď M ¨
`

hsρ,P ` α
˘

.

Proof. Let Q be as in Lemma 4.1. Recall that

hs,Mρ,P “ lim inf
nÑ`8

´
1

n

ż

log ms
ρ,u

`

PM,´npϕ, uq
˘

dµρpϕ, uq “ lim inf
nÑ`8

1

n
Hµρ

`

PM,´n

ˇ

ˇR
˘

.
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Hence,

hs,Mρ,P ď hs,Mρ,P´M
“M ¨ lim inf

nÑ`8

1

nM
Hµρ

`

P´Mn
ˇ

ˇR
˘

ďM ¨ lim inf
nÑ`8

1

nM
Hµρ

´

P´Mn
ł

Q´Mn
ˇ

ˇ

ˇ
R
¯

“M ¨ lim inf
nÑ`8

1

n
Hµρ

´

P´n
ł

Q´n
ˇ

ˇ

ˇ
R
¯

ďM ¨
`

hsρ,P `HµρpQq
˘

ďM ¨
`

hsρ,P ` α
˘

.

�

Next we show the last inequality in (4.1). For this, we first state the results extending to
our context the classical results of [Bow72], [Yue94] and [Buz97] (compare with [CY05]).

For u P OspSMq, ϕ P S, η ą 0 and n P N, define the random Ws
-Bowen ball by

Bspϕ, u, η, nq :“
 

w PW
s
puq : d

`

ϕ|kpwq, ϕ|kpuq
˘

ă η for 0 ď k ď n
(

.

The following notion was introduced by Bowen ([Bow72]) for a single map and by Cowieson-
Young ([CY05]) in the random case. Since our mappings are smooth only along the folia-

tion Ws
, we introduce a variant by restricting to the leaves W

s
. Fix ζ ą 0 and a sequence

ϕ P S. We denote for u P OspSMq, η ą 0 and n P N, rpζ, ϕ, u, η, nq the smallest num-

ber of random Ws
-Bowen balls Bspϕ,w, η, nq needed to cover the random Ws

-Bowen ball
Bspϕ, u, ζ, nq. We then set

hslocpζ, ϕq :“ sup
uPOspSMq

lim
ηÑ0

lim sup
nÑ`8

1

n
log rpζ, ϕ, u, η, nq.

The function ϕ ÞÑ hslocpζ, ϕq is σ-invariant; we denote hsloc,ρpζq its ν
bNYt0u
ρ -a.e. value.

The following three propositions (Proposition 4.4, Proposition 4.5 and Proposition 4.6)
are proven in [CY05] for the global entropy with the additional hypotheses that νρ are

supported in a fixed neighborhood N of Φ´1 in D8pOsSMq and that νρ converge to ν´8
as ρ Ñ ´8, in the sense that any D8pOsSMq neighborhood of Φ´1 has eventually full
measure for νρ. In our case, we have two extensions of the argument in [CY05]: one is

that the distributions νρ are not supported on a neighbourhood of Φ´1, but there is a tail;
the other extension is that our mappings are not smooth everywhere, but only along the
leaves of the foliation Ws

.

Proposition 4.4. Given α ą 0, ζ ą 0, let X be as in Proposition 4.2. Assume that the
diameters of the elements of P XR are all smaller than ζ. Then, for all ρ close enough to
´8,

(4.4) hsρ ´ h
s
ρ,P ď hsloc,ρpζq ` α.
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Proof. Let M be a fixed positive integer and set hs,Mρ :“ supP h
s,M
ρ,P . Since

hs,Mρ,P´M
“ M ¨ lim inf

nÑ`8

1

nM
Hµρ

`

P´Mn
ˇ

ˇR
˘

ě M ¨ hsρ,P ,

we have

(4.5) hs,Mρ ě sup
P
hs,Mρ,P´M

ě M ¨ sup
P
hs,Mρ,P “ M ¨ hsρ.

Following [Bow72, Section 3], we obtain in our random setting that there is some positive

constant c which depends on the geometry of Ws
such that for any β ą 0,

hs,Mρ ď hs,Mρ,P `M
`

hsloc,ρpζq ` β
˘

` c.

Using (4.3) and (4.5), we deduce that

hsρ ď hsρ,P ` h
s
loc,ρpζq ` α` β `

1

M
c.

Letting β Ñ 0 and then MÑ `8, we obtain the inequality (4.4). �

Let M be a fixed positive integer. We define for u P OspSMq, ϕ P S, η ą 0 and n P N,

Bs,Mpϕ, u, η, nq :“
 

w PW
s
puq : d

`

ϕ|kMpwq, ϕ|kMpuq
˘

ă η for 0 ď k ď n
(

,

rMpζ, ϕ, u, η, nq the smallest number ofBs,Mpϕ,w, η, nq balls needed to cover theBs,Mpϕ, u, ζ, nq
ball,

hs,Mloc pζ, ϕq :“ sup
uPOspSMq

lim
ηÑ0

lim sup
nÑ`8

1

n
log rMpζ, ϕ, u, η, nq

and hs,Mloc,ρpζq the ν
bNYt0u
ρ -a.e. value of hs,Mloc pζ, ϕq.

Proposition 4.5. With the above notations, we have, for all ρ ă 0, ζ ą 0,

(4.6) hsloc,ρpζq ď
1

M
hs,Mloc,ρpζq.

Proof. Observe that Bspϕ, u, ζ, nMq is a subset of Bs,Mpϕ, u, ζ, nq, so we are going to

cover Bs,Mpϕ, u, ζ, nq with Bspϕ,w, η, nMq balls, η arbitrarily small. Start with a cover

of Bs,Mpϕ, u, ζ, nq with Bs,Mpϕ,w`, η, nq balls with 1 ď ` ď rMpζ, ϕ, u, η, nq and fix K ą 0

big. Let κpϕq :“ maxt}ϕ|k}C1 : 0 ď k ă Mu. If κpσjMϕq ď K for all j, 0 ď j ă n,

then each Bs,Mpϕ,w`, η, nq ball is contained in Bspϕ,w`, 2Kη, nMq and we take these

Bspϕ,w`, 2Kη, nMq balls in our cover of Bs,Mpϕ, u, ζ, nq. Otherwise, assume, for instance,

that κpϕq ą K, we find, for each w`, at most crκpϕq{Ks2m points w1`1 such that the union

of the Bspϕ,w1`1 , 2Kη,Mq balls cover Bs,Mpϕ,w`, η, 1q, where c is some positive constant

depending on the geometry of Ws
and ras denotes the smallest integer greater than a.

Working inductively, we see that

rpζ, ϕ, u, 2Kη, nMq ď rMpζ, ϕ, u, η, nq Πn´1
j“0 rκpσjMϕq{Ksm c

Πn´1
j“0 χtκpσjMϕqąKu .
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It follows that for all K ą 0, ϕ P S,

Mhslocpζ, ϕq ď hs,Mloc pζ, ϕq ` lim sup
nÑ`8

m

n

n´1
ÿ

j“o

logrκpσjMϕq{Ks` lim sup
nÑ`8

log c

n

n´1
ÿ

j“o

χtκpσjMϕqąKu.

Finally, we get, for all ρ ă 0, all ζ ą 0,K ą 0,

Mhsloc,ρpζq ď hs,Mloc,ρpζ, ϕq `mE
“

logrκpϕq{Ks
‰

` P
“

κpϕq ą K
‰

log c.

Since Erlogκs ă `8, Proposition 4.5 follows by letting K go to infinity. �

Proposition 4.6. Fix ζ ą 0 small and ρ ă 0. For all r P N, there is a positive constant
Cprq such that, for all M P N,

hs,Mloc,ρpζq

ď
m

r

ż

log
`

max
 

ζs´1
›

›pϕ|Mq|W s
puq

›

›

Cs
: 1 ď s ď r, u P OspSMq

(˘

dνbMρ pϕ|Mq ` logCprq.

Proof. Fix r ą 0,M P N, a sequence ϕ P S and ζ ą 0. Two points w,w1 P W
s
puq are said

to be pM, n, ηq-separated if

max
 

d
`

ϕ|kMpwq, ϕ|kMpw
1q
˘

: 0 ď k ď n
(

ą η.

It is clear that rMpζ, ϕ, u, η, nq is bounded from above by sMpζ, ϕ, u, η, nq, the maximal

cardinality of a set of pM, n, ηq-separated points in Bs,Mpϕ, u, ζ, nq. Consider the mappings

ϕ1k “ ϕ|M ˝ σ
kM and their standard magnifications pϕ1k : Bp0, 2qm Ñ Rm as explained

in [CY05], page 1129. In particular, we have } pϕ1k}Cs ď ζs´1}ϕ1k}Cs . Using this, we
can estimate sMpζ, ϕ, u, η, nq by following almost verbatim the argument for the proof of
Proposition 3 in [CY05] (which is based on the ‘Renormalization’ Theorem in [Yom87]
and a telescoping construction in [Buz97]) and obtain some constant C1pr,m,mq “: Cprq
as in [CY05, Theorem 4] such that

sMpζ, ϕ, u, η, nq

ď Cprqn
ˆ

4

η

˙m n´1
ź

k“0

´

max
!

ζs´1
›

›pϕ1kq|W s
puq

›

›

Cs
: 1 ď s ď r, u P OspSMq

)¯m{r
.

Since ϕ1k are independent, the ergodic theorem gives Proposition 4.6. �

Corollary 4.7. For any α ą 0, there exists ζ0 ą 0 such that if ζ ď ζ0, then

lim sup
ρÑ´8

hsloc,ρpζq ă α.
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Proof. Fix r ě 2. We choose M P N large such that
1

M
logCprq ď

m

r
B1,1, where B1,1 is

defined in (2.6). Fix ζ ď 1, ρ ă 0. By (4.6), hsloc,ρpζq ď
1
Mh

s,M
loc,ρpζq. Therefore,

hsloc,ρpζq ď
m

r
B1,1`

m

rM

ż

log

˜

max
u

˜

›

›ϕ|M|W s
puq

›

›

C1 ` ζ
ÿ

2ďsďr

›

›ϕ|M|W s
puq

›

›

Cs

¸̧

dνbMρ pϕ|Mq.

Write, for α ą 0, log` α :“ maxtlogα, 0u. We have, using logpα1 ` α2q ď log` α1 ` α2, for
α1, α2 ą 0,

log

˜

max
u

˜

›

›ϕ|M|W s
puq

›

›

C1 ` ζ
ÿ

2ďsďr

›

›ϕ|M|W s
puq

›

›

Cs

¸¸

ď log`
´

max
u

´

›

›ϕ|M|W s
puq

›

›

C1

¯¯

` ζ
ÿ

2ďsďr

max
u

´

›

›ϕ|M|W s
puq

›

›

Cs

¯

ď

M´1
ÿ

k“0

log`
´

max
u

`›

›ϕ|W s
puq

›

›

C1

˘

˝ σk
¯

` ζ
ÿ

2ďsďr

max
u

´

›

›ϕ|M|W s
puq

›

›

Cs

¯

.

We get by integrating with respect to νbMρ ,

hsloc,ρpζq ď
m

r
B1,1 `

m

r
B1,1pρq ` ζ

m

rM

ÿ

2ďsďr

Bs,Mpρq,

where B1,1pρq, B2,Mpρq, ¨ ¨ ¨ , Br,Mpρq are defined in (2.6). Note that, by Proposition 2.7 ii),

Bs,M “ lim sup
ρÑ´8

Bs,Mpρq ă `8, @1 ď s ď r,

hence

inf
ζą0

lim sup
ρÑ´8

hsloc,ρpζq ď
2m

r
inf
ζą0

˜

B1,1 ` ζ
1

2M

r
ÿ

s“2

Bs,M

¸

“
2m

r
B1,1.

Since r is arbitrary, the corollary follows. �

Proof of Proposition 3.2. Fix α ą 0. We can choose the diameters of the elements of X
smaller than cζ0, where c is a constant depending on the local geometry of the leaves so
that the diameter of the elements of P XR are smaller than ζ0 and Corollary 4.7 applies.
We can also ensure that these diameters are smaller than δ given by Proposition 4.2. We
may assume that the boundaries of the elements of P,X and Rj are all m-negligible.

By definition, hsm ě lim infnÑ`8 infj
1
nHmpP´n|Rjq. We can choose n and j so that

(4.7) hsm ě
1

n
HmpP´n|Rjq ´ α.

Consider now ρp, p P N, such that ρp Ñ ´8 and mρp Ñ m as p Ñ `8. For P-a.e.

ω P Ω, each element of the partition
Şn
k“0pϕρp

|kpωqq
´1P converge in the Hausdorff metric

towards the corresponding element
Şn
k“0 ΦkP. Note that all these elements of P´n, and
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the elements of Rj have m negligible boundaries. It follows that there exists P P N such
that for p ě P,

(4.8)
1

n
HmpP´n|Rjq ě

1

n
Hµρp pP´n|R

jq ´ α ě
1

n
Hµρp pP´n|Rq ´ α.

The second inequality holds because the partition R is finer than Rj . By Proposition 4.2,
we have, by our choice of δ and as soon as ρp ă Λ,

(4.9)
1

n
Hµρp pP´n|Rq ě hsρp,P ´ α ě hsρp ´ 2α´ hsloc,ρppζq,

where the second equality follows from Proposition 4.4. Finally, using all the above in-
equalities (i.e., (4.7), (4.8) and (4.9)) and Corollary 4.7, we find that

hsm ě lim sup
pÑ`8

hsρp ´ 5α.

Proposition 3.2 follows from the arbitrariness of α. �
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26 FRANÇOIS LEDRAPPIER AND LIN SHU

[Kun90] H. Kunita, Stochastic flows and stochastic differential equations, Cambridge university press,
1990.

[Led95] F. Ledrappier, Applications of dynamics to compact manifolds of negative curvature, Proceed-
ings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), 1195–1202,
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