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A FAMILY OF STABLE DIFFUSIONS

FRANGCOIS LEDRAPPIER AND LIN SHU

ABSTRACT. Consider a C* closed connected Riemannian manifold (M, g) with negative
curvature. The unit tangent bundle SM is foliated by the (weak) stable foliation W? of
the geodesic flow. Let A® be the leafwise Laplacian for W* and let X be the geodesic
spray, i.e., the vector field that generates the geodesic flow. For each p, the operator
L, := A® + pX generates a diffusion for W*. We show that, as p — —o0, the unique
stationary probability measure for the leafwise diffusion of £, converge to the normalized
Liouville measure on SM.

1. STATEMENT OF THE RESULT

Let (M,g) be an m-dimensional closed connected negatively curved C* Riemannian
manifold. We shall study a class of probability measures on the unit tangent bundle SM
which interpolates between the Burger-Roblin measure (whose transversal distribution in
the weak unstable leaves is the same as the one for the maximal entropy measure of the
geodesic flow) and the normalized Liouville measure.

Let g be the the G-invariant extension of g to the universal cover space M. The fun-
damental group G = m (M) acts on (]\7 ,§) as isometries such that M = M /G. Let oM
be the geometric boundary of M i.e., the collection of equivalent classes of unit speed ge-
odesic rays that remain a bounded dlstance apart. Since § g is negatively curved, there i is a
natural homeomorphism from oM to the unit sphere S, M in the tangent space at x € M
sending £ to the initial vector of the geodesic ray starting from x in the equivalent class of
¢ ([EO73]). Hence we identify the unit tangent bundle SM = U enr S, M with M x 0M.

For each v = (z,§) € SM, its (weak) stable manifold for the geodesic flow {®;};er on
SM , denoted ws (v), is the collection of initial vectors of geodesic rays in the equivalent
class of ¢ and can be identified with M x {¢}. The collection of W (v) form the stable
foliation W* of SM. Extend the action of G continuously to oM. Then SM can be
identified with the quotient of M x @M under the diagonal action of G. Since @ZJ(WN/S (v)) =

We (Dy(v)) for ¢ € G, the collection of quotients of Wws (v) defines a lamination W* on
SM, the so-called (weak) stable foliation of SM. The leaves of W? are discrete quotients of
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2 FRANCOIS LEDRAPPIER AND LIN SHU

M , which are naturally endowed with the Riemannian metric induced from §. For v e SM,
let W*(v) be the leaf of W containing v. Then W?*(v) is a C* immersed submanifold of
SM depending Holder continuously on v in the C*-topology ([Shu87]).

Let £ be a Markovian operator (i.e., £1 = 0) on (the smooth functions on) SM with
continuous coefficients. It is said to be subordinated to the stable foliation W2, if for every
smooth function f on SM, the value of L(f) at v € SM only depends on the restriction of
f to W5(v). A Borel probability measure m on SM is called £-harmonic if it satisfies

| ety am—o

for every smooth function f on SM. Extend L to be a G-equivariant operator on S M =
M x 8]\7, which we shall denote with the same symbol, and, for v = (z,¢) € SM, let
LY denote the laminated operator of £ on WS(V) = M x {¢}. Call £ weakly coercive, if
its lifted leafwise operators LY, v € SM , are weakly coercive in the sense that there are
a number ¢ > 0 (independent of v) and, for each v, a positive (LY + ¢)-superharmonic
function F on M (i.e, (LY +¢)F < 0). It is known that for a weakly coercive operator,
there exists a unique harmonic measure ([Gar83], [Ham97]).

One classical example of weakly coercive operator is £ = A® the laminated Laplacian
for W?*, whose unique £-harmonic measure is always referred to as the harmonic measure
(|[Gar83]). Many interesting open problems in dynamics are concerned with the relation-
ship of the harmonic measure with the normalized Liouville measure and the normalized
maximal entropy measure for the geodesic flow (Bowen-Margulis measure), and the ap-
plications of these relations to the characterizations of the locally symmetric property of
the underlying space (see [Kat82, Sul83] and see also [Kai90, Led95, Yue94| for more
descriptions).

In this paper, we are interested in the family £, = A® + pX, where p is a real number
and X is the geodesic spray. Since X is tangent to the stable manifold, the operators £,
are subordinated to the stable foliation.

Let V' denote the volume entropy of (M, g):

1 (B
Vo g g VelBG.r)

r—+00 r

where B(xz,r) is the ball of radius r in (]\7 ,g) and Vol is the volume. The volume entropy
coincides with the topological entropy of the geodesic flow on SM since g has negative
sectional curvature ([Man79]). For p <V, the operator £, is weakly coercive ([Ham97])
and hence there is a unique £,-harmonic measure, which we will denote by m,,.

Clearly, mg is the classical harmonic measure. When p — V', m, tends to the Burger-
Roblin measure mppg, the unique harmonic measure for the Laplacian subordinated to the
strong stable foliation ([LS, Proposition 4.10], the uniqueness of such a measure is due to
Kaimanovich ([Kai88])). When p — —o0, the main result of this paper is:
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Theorem 1.1. Let (M, g) be an m-dimensional closed connected negatively curved C* Rie-
mannian manifold. As p — —0, the L,-harmonic measure m, converge to the normalized
Liouville measure on SM.

Roughly speaking, since the measure m, is £,-harmonic, it is also stationary for the
operator —X — (1/p)A® (see Section 2 for a precise definition). In particular, any limit
measure of the family m, as —1/p — 0 is invariant under the (reversed) geodesic flow.
For a limit of random perturbations of a conservative Anosov flow, the convergence of the
stationary measures to a SRB measure has been shown by several authors, in particular
Kifer ([Kif74]), under the condition that the operator A is hypoelliptic, so that the Markov
kernels have a density with respect to Lebesgue on SM. We cannot apply this to show
Theorem 1.1 since in our case, the operators are subordinated to the stable foliation and
the Markov kernels p,(t, (z,€), d(y,n)) are singular. Another approach by Cowieson-Young
([CY05]) uses the variational principle from thermodynamical formalism and we show that
such an approach can be used in our case in spite of the singularity of the Markov kernels.
We shall show any limiting measure m of m,, (as p — —o0) satisfies Pesin entropy formula
for the geodesic flow. Theorem 1.1 follows since the normalized Liouville measure on SM
is indeed characterized by Pesin formula among invariant measures for the geodesic flow
([BRT75]). More precisely, we will define a stochastic flow on a bigger space and consider
a special stationary measure m,, for that stochastic flow that projects to m, on SM. We
then introduce a relative entropy like quantity hj for m, and show hp,, the entropy of m
for the reversed geodesic flow, satisfies
(1.1) hm = limsup hy,.

p——00
This can be done (see Proposition 3.2) along the lines of Cowieson-Young ([CYO05]) and
Kifer-Yomdin ([KY88]) for the upper semi-continuity of the relative entropy. To conclude
Theorem 1.1, we verify that limsup,_,_ ., h; has a lower bound given by Pesin entropy
integral for m using the SRB like properties of m, (see Proposition 3.1) and their nice
convergence property inherited from our stochastic flow system (see Proposition 2.7).

We arrange the paper as follows. In Section 2, we will give preliminaries on the properties
of the £-harmonic measures and the dynamics of the associated stochastic flows. In Section
3, we will introduce the random system to define h; and reveal its relation with Pesin
entropy formula. The upper semi-continuity equality (1.1) will be shown in the final section.

2. HARMONIC MEASURE AND STOCHASTIC FLOW

We begin with some basic understanding of the £,-harmonic measure m, (p < V') by

analyzing the dynamics of its G-invariant extension on M x oM , which is denoted by m,.

Consider the G-equivariant extension of £, to SM = M x oM , which we shall denote
by the same symbol. It defines a Markovian family of probabilities on 2., the space of
paths of @ : Ry — SM (where R, := [0,40)), equipped with the smallest o-algebra A
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for which the projections R; : @ — @(t) are measurable. Indeed, for v = (z,&) € SM, the
laminated operator L on W#(v) can be regarded as an operator on M with corresponding

heat kernel functions p;’(t, y,2),t>0,y,2z€ M. Define
Po(t, (2, €),d(y,n)) = p, (t, 2, y) dVol(y) d¢(n),

where 0¢(-) is the Dirac function at . Then the diffusion process on We (v) with infinites-
imal operator L} is given by a Markovian family {P}’} where for every ¢ > 0 and

every Borel set A ¢ M x oM we have
Py (@2 30 € 4)) = | pyltiw.dlr.n).

Proposition 2.1. ([Gar83, Ham97]) With the above notations, the following are true
forp<V.

wel x{¢}

i) The measure m,, satisfies, for all f € 02(1\7 X 8]\7) with compact support,

[ A swame@odum) diye = [ o).

M x oM
ii) The measure Iﬁ’p = [Py dim,(v) on Q. is invariant under all the shift maps {ot}ier.,
on 0, where o1(@(s)) = &(s +t) for se Ry and & e Q.
iii) The measure m, can be expressed locally atv = (z,§) € SM as dm, = k,(y,n)(dyx
dv,(n)), where v, is a finite measure on oM without atoms and, for v,-almost every
n, k,(y,n) is a positive function on M satisfying the equation

(2.1) A(kp(y,m) — pDiv(k,(y, ) X (y,n)) = 0,
where we continue to use X to denote the geodesic spray for SM.

Remark 2.2. Let m be any weak™ limit of the probability measures m, on SM as p — —o0
and let ™ be the G-invariant extension of m to M x oM. Clearly, Theorem 1.1 follows if
we can show m has absolutely continuous conditional measures on leafs M x {¢}. But this
does not follow directly from equation (2.1) since the Harnack inequality used for each p
finite is worse and worse when p goes to —oo and hence we have less and less control of the
density functions k,,.

For Theorem 1.1, we will further explore the invariant dynamics of m,, from the stochastic
flow point of view and use it to establish the entropy formula for the limit measures.

We first recall some classical results from the theory of Stochastic Differential Equations
(SDE). Let {B; = (B}, -+, B!)}ter. be a d-dimensional Euclidean Brownian motion start-
ing from the origin with the Euclidean Laplacian generator (so the covariance matrix is
2tId) and let (Q,P) denote the corresponding Wiener space. Let X = (Xo, X1, , Xyq),
where {X;}i<q+1 are bounded vector fields on a smooth finite dimensional Riemannian
manifold (N, {:,-)). The pair (X, {B;}«r, ) consists of a stochastic dynamical system (SDS)
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on N and it is C7 (j = 1 or j = o) if all X; are €7 bounded ([Elw82]). An N-valued
semimartingale {x;}er . defined up to a stopping time e is said to be a solution of the
following Stratonovich SDE

d

(2.2) dy(w) = Xo(ze(w)) dt + . Xi(x¢(w)) 0 dBj(w),
i=1

if for all f € C*(N),

t t d
Flae()) = flao(w)) + jo Xof (@s(w)) ds + jo S Xif(s(w) 0 dBi(w), Y0 < t < e™(uw).
=1

The solution to (2.2) always exists and is essentially unique when all X;’s are C'* bounded
([Elw82]). Moreover, for P almost all w, the mapping

Fi(,w): xo(w) — 24(w)
has the following property.

Proposition 2.3. ([Elw82, Chapter VIII]) Let (X, {B;}wer, ) be a C7 SDS on N, where
j =1 orj=o0. There is a version of the explosion time map x — €%, defined for x € N,
and a version of {Fy(z,w)}, defined when t € [0,e"(w)), such that if N(t,w) ={reN: t <
e®(w)}, then the following are true for each (t,w) € Ry x €.

i) The set N(t,w) is open in N.
ii) For almost all w, xg € N and 0 < t < t' < e*(w), we have the cocycle equality

Ft’(x()?w) = Ft’—t(xta Jt(w>) © Ft(x()a w)v
where oy is the shift transformation on €):
Ot ((le, T 7B;n)820) = ((Bt1+57 e 7B?}rs)520) - (Btlv T 7B{n>

iii) The map Fy(z,w) : N(t,w) — N is C771 (or C® when j = o) and is a diffeo-
morphism onto an open subset of N. Moreover, the map T — F.(-,w) of [0,t] into
CI=Y (or C® when j = o) mappings of N(t,w) is continuous.

iv) For 1 < 1 < j — 1, denote by DWE,(-,w) the l-th tangent map of Fy. Then,
for any q € [1,00), there is a bounded function ci(t,q), which depends on t,m,q,
and the bounds of {V'Xo}.<i, {V' Xi}1<i<du<i+1 and {V' 'R} 1<i<q.<i+1 such that
I[DOF(-,w)]|ze < e(t,q), where || - | za is the Li-norm and V* denotes the 1-th
covariant derivative and R is the curvature tensor.

When N(¢,w) = N, the solution process {x:} to (2.2) is said to be non-explosive. In
this case, the maps {Fi(-,w)}wer, induce a kind of semi-flow on N, which we shall call
the stochastic flow associated to the SDS (X, {B;}wer, ) or (2.2). A direct consequence of
Proposition 2.3 is the following regularity of a one-parameter family of stochastic flows.
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Corollary 2.4. Let (X%, {B;}iwcr, ) be a one-parameter family of SDS on N with N*(t,w) =
N. Assume X@’s are all C* (k > 1 0or = w0) on N x A in the product differentiable structure.
Then for anyt >0, and j < k — 1, a — F(-,w) is C7 in the space of C*¥~1=7 maps of N.

Proof. Let xf be the solution for the SDS (X% {B;}wer, ). Then (zf,a) solves the new
SDS ((X,0),{Bt}er, ) on N x A. The regularity in a is a straightforward application of
Proposition 2.3 by treating a as a part of the initial value. O

Corollary 2.4 does not apply when we only have Holder continuity of X% in a. However,
it is still possible to discuss the regularities of a — F{(-,w) by using one criterion from
Kolmogorov:

Proposition 2.5. (¢f. [Kun90, Theorem 1.4.1]) Let T > 0 and let {V{(w)}ie[o,7],aea
be a one parameter family of random processes on a complete metric space, where A
18 some bounded n-dimensional FEuclidean domain. Suppose there are positive constants
b,bo, b1y -+ by, with Yo (b;)™! < 1, and Co(b) such that for all t,t' € [0,T] and a =
(ab"'aan) a = (alﬁ"'> n)eA

b n
} < Co(h) (It — P+ D lai - aél“) ,
i=1

then YV{ has a continuous modification with respect to the parameter (t,a).

Let Bi,i =0, ,n, be arbitrary positive numbers less than b;(1— > (5;)~1)/b. Then for
any hypercube D in A, there exists a positive random variable k(w) with E[k(w)?] < oo such
that for any t,t' € [0,T] and a,a’ €D,

n
< k(w) (!t — '[P 4 Z la; — a;|5"> :
i=1

Next, we consider p < 0, & := 1/y/=p and L. := —X + 2A%. Extend L. to be a G-
equivariant operator on SM , which we shall denote by the same symbol. Its associated
leafwise diffusions can be visualized using the classical Eells-Elworthy-Malliavin construc-
tion.

Recall that, for v = (z,€) € SM, we have identified the stable manifold WS( ) with
M x {¢} and endowed it with the Riemannian metrlc on M. Inthe same way, we can identify

E [jyf —yy

!
\yf — e

an orthogonal frame in the tangent space T W* with O, x {&}, Where Oy = (e1,+ ,em)

is an element in O (M), the collection of the orthogonal frames in Ty M. Set O%(SM) for
the bundle of such stable orthogonal frames:

O (SM) := {(x,g) > O x {E): Op = (e1, -+ ,em) € Ou(M), z € JTJ}
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We carry to OS(SM) all the Riemannian geometry from (”)(]\7) = U,eir O= (]\7) In partic-
ular, if H, denotes the horizontal lift from T, M to TOZO(M ), we can define the horizontal
lift Hy, from T,W* to Toz@OS(S]\/\f) by Hy(w, &) = (Hy(w), &) for w e T, M.

Let {(B},- -, Bi")}ier, be an m-dimensional Euclidean Brownian motion starting from
the origin with the Euclidean Laplacian generator (and covariance matrix 2¢tId) and let
(€2, P) be the Wiener space. Set X as the horizontal lift of X to TO*(SM). We can realize
the diffusion for £, as the projection to S M of the non-explosive solution process {u}er,

(the non-explosiveness follows since (]\7 ,g) has Ricci curvature uniformly bounded from
below) to the Stratonovich SDE on O*(SM):

(2.3) duy = — X (ug) dt + ¢ i H (u(e;)) o dBL.

=1

Let 7 : 05(51\7 ) — SM be the natural projection and denote W* for the foliation
of 05(51\7) that projects on W?. Let DOO(OSSM) be the space of homeomorphisms of
OS(SM ) that preserve the leaves of WS and are C*-diffeomorphisms along the leaves. We
endow DOO(OSS],\Z) with the C%* topology: ¢, ¢’ € DOO(OSSM) are close if, for all r > 0,
the r-germs of ¢ and ¢ are uniformly close on compact sets and the 7-germs of ¢! and
(¢')~! are uniformly close on compact sets.

Proposition 2.6. With the above notations, for P-a.e. w € §Q, for all e > 0, t = 0, there
exists e (w) € D®(O*SM) such that the following hold true.

i) For all w € O5(SM), (w,t) — e t(w)(u) is a solution of the equation (2.3); in
particular, for all T > 0, w — . 7(w) is measurable with respect to the o-algebra
generated by (B},--- ,B"),0 <t < T.

ii) For almost all w, allt,s =0, e 14+s(w) = pei(0s(w)) 0 e s(w).

For all v € G, Dt 0 g4 () = pey(w) © DU

The map € — @c1(w) is continuous in DOC(OSSM).

For fixed re N;t > 0,

)
iii)
iv)
v)

(2.4) E [mgx ||90€7t(w)(u)|VT/S(u)HCT] < 400.

Proof. Since both X and H are tangent to )7\/\5, the solution to (2.3) is constrained in W

~

For fixed £ and ¢, equation (2.3) can be seen as a SDE on O(M) x {{} and is solvable with
infinite explosion time. Hence properties i) and ii) are given by Proposition 2.3. Property
iii) follows from the uniqueness of the solution to (2.3). Considering € as a parameter, we
get the co/n\tinuity of the solution in € by Corollary 2.4. Considering £ as a parameter, the
leaves of W* and X , H vary Holder continuously with respect to £&. Hence, by a standard
estimation using Burkholder inequality and Gronwall lemma and applying Proposition 2.5,
we can obtain the continuity of the solution to (2.3) in £, so that we can consider it as
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an element of DOO((’)SSM ). This shows iv). Finally we show v). Using a fundamental

domain for the action of G on M, we may regard O*(SM) as a subset of 05(51\7). By
the G-equivariance property of the diffusion, we can restrict u in the left hand side of
(2.4) to O*(SM). By continuity of wg,t(w)(u)b/‘;s(u) in u, the compactness of O*(SM) and
Proposition 2.5, for (2.4), it suffices to show for each v € O*(SM),r € N and ¢t > 0,

(2.5) E || @) (@)l e | < +o0.
This is an application of Proposition 2.3 iv) by using the SDE (2.3). O
Equation (2.3) for ¢ = 0 is the ordinary differential equation du; = —X(us) dt. Its

solution is the extension {®_;},cr of the reversed geodesic flow to @%(SM) by parallel
transportation along the geodesics, and is called the reversed stable frame flow. Write v,

for the probability measure on DOO(OSSM ) that is the distribution of ¢e1 = ¢/~ in
Proposition 2.6. Every element ¢ € D”(OSSM ) preserves each leaf we (u) and is a C™

diffeomorphism along it. We write J(p,u) for the Jacobian determinant of the tangent
map of g0|v?/s (w) at u. For later use, we state a proposition concerning the limit behavior of

®1/y=p,¢ When p — —0.

Proposition 2.7. With the above notations, the following are true.

i) For P-a.e. w e Q, allt > 0, as p »> —n0, 801/\/_7p’t<W) converge to <’I\>_t n

DOO(OSSM), in particular, ¢y /=51 converge to the time 1 map of the reversed
stable frame flow.
il) For any —oo < p <0 and r,M positive integers,
(2.6)

Brw(p) i= E [max [ 01/=5 () (@) e

CT] < 400 and By := limsup B, m(p) < +00.

p——0

iii) For any r e N,

i [ el o = 181l lor| dii() = 0.
iv) We have
limooflog J(p,u) dv,(p) = log J(<i>_1,u)
p——

and the convergence is locally uniform in u.

Proof. The proof of continuity of the solution to (2.3) in Proposition 2.6 extends to ¢ = 0.
This shows i). When p — —o0, ¢ = 1/4/—p — 0. For ii), note that B, m(p) is finite by
Proposition 2.6 v) (applied for ¢ = M). Then B,y is also finite by using the continuity
in (g,u) in the estimation of the expectation in (2.5) in the proof of Proposition 2.6 v).
Similarly, we have the continuity in € of the tangent maps (and their derivatives in &) of
the solution to (2.3). Following Proposition 2.3 iv), it is easy to deduce from (2.3) the
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continuity in € of the norm of the tangent maps and of the Jacobian of the first order
tangent map. This shows iii) and iv). O

It follows from Proposition 2.6 i) and ii) that we can consider ¢, ,,n € N, as an indepen-
dent product of the homeomorphisms ¢, 1 and that we can apply the theory of independent
random mappings. Let 7 be the projection map from (95(5’]\7 ) to SM. For any C? com-
pactly supported function f on SM, (r,€) € SM and any frame u € OS(SM) in the fiber
771 (x, ), we have

e | e el ) = [ fmelu) duye).

S D (O SM)
Let m, be the measure on 05(51\7) that projects on m, on SM and such that the condi-
tional measures on fibers of the projection map 7 are proportional to the Lebesgue measure
on m-dimensional frames. The following is true.

Proposition 2.8. The measure m, is stationary under v,, i.e., it satisfies, for any C?
compactly supported function f on O%(SM),

J f(p(u)) dvy () dimy(u f f(u) dimy(u

Moreover, the conditional measures m wof My, with respect to the leaves of the W foliation
are absolutely continuous with respect to Lebesgue.

Proof. The stationarity follows from relation (2.7), the stationarity of m, and the fact
that the flow preserves the orthogonal group on the fibers ([CE86, Lemma 3.1]). The
leaves of W* are made of whole fibers and project on the leaves of Ws. The conditional
measures on the leaves of W° are given by the extension by Lebesgue on the fibers of
the conditional measures on the leaves of W*. By Proposition 2.1 iii), they are therefore
absolutely continuous. O

Let 7 : O(SM) — SM be the quotient of the map 7 by the action of G' and let W’ =
(w* (u)}ueos(smry denote the corresponding quotient foliation of W?*. Let D (O*SM) be

the space of homeomorphisms of @*(SM) that preserve the leaves of W’ and are C'®-
diffeomorphisms along the leaves. We endow D®(O$SM) with the C%® topology: ¢, ¢’ €
D*(O*SM) are close if, for all » > 0, the r-germs of ¢ and ¢’ are uniformly close and the
r-germs of ¢~ and (/)~! are uniformly close. By Proposition 2.6 iii), we can consider v,
as a probability measure on D®(O*SM).

We define the measure m, on O°(SM) such that its G-invariant extension to O3 (SM) is
m,. We see that m,, is a probability measure that projects to m, on SM and is such that
the conditional measures on fibers of 7w are proportional to Lebesgue on m-dimensional
frames. As a consequence of Proposition 2.8, we have
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Corollary 2.9. The measure m, is stationary under v,, i.e., it satisfies, for any continuous
function f on O%(SM),

(2.8) f Flu) dvy() dim (u f Fu

Moreover, the conditional measures my,,, of m, with respect to the leaves of the W’ foliation
are absolutely continuous with respect to Lebesgue.

We are interested in the limit measures of m,’s when p goes to —o0. Let m be such a
limit point and let m be the probability measure on O°(SM) that projects to m on SM
and is such that the conditional measures on fibers of 7 are proportional to the Lebesgue
measure on m-dimensional frames. Then m is the limit of m, along the same subsequence.
Let {E—t}teR be the reversed stable frame flow. Then m is invariant under ®_;. To show
m is Liouville, it suffices to show the conditional measures of m on the leaves of W* are
absolutely continuous with respect to Lebesgue. But this does not follow from Corollary
2.9 by the same reason that we mentioned in Remark 2.2. What we are going to do in the
next section is to analyze the entropy related to the natural random dynamics for m, that
arises in the stationarity relation (2.8).

3. ENTROPY OF RANDOM MAPPINGS

We consider the action on O%(SM) of the random elements of D*(O®*SM) with distri-
bution v, —oo p < 0. Namely, let S := (D®(0*SM))N{ endowed with the product

measures 1/p {0} (with the convention that v_g, is the Dirac measure at ®_;) and the
shift transformation o. On the space T := S x O%(SM), define the transformation 7 by:

T(Ev U) = (U£7 QOO’LL)-
For —o0 < p < 0, let m, be the stationary measure from Corollary 2.9 and for p = —o0,

let m_,, = m be some weak* limit of m, as p — —o0. For —0 < p < 0, the measure

Hp i= V?NU{O} ®my,, is invariant under the transformation 7.

Let P be a measurable partition of 7 with finite or countably many elements. We assume
— {log(m,(P)) du, < +o0. Forne N,set P_; = Pand P, := P\/ 7P\ ---\/ 7~ (=P
for n > 1, where \/ denotes the join of partitions, i.e., the refinement of partitions by taking
intersections. For (p,u) € T, let P_, (¢, u) denote the element of P_,, that contains (¢, u).
We define the entropy h;, for m, as n n

h® :=suph’
=P, )
P p,P
where

s s 1 =5
(3.1) hyp = liminf —— flog m,, (P_n(g, u)) d,up(g, u).

n—+0o0 n
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For a formal definition of m? ,, we should use a measurable partition R subordinated to

J— p w
W’ (see Section 4 for details). But the value of h, p does not depend on the choice of such

a subordinated partition and is thus well-defined. Observe that

- Jlog my, (P-n(p, ) dpy(p,u) < — flogmp (P-n(e,u)) dup(e,u).

Using the random Ruelle inequality (cf. [BB95, Kif86]), we obtain that hj p is bounded
independent of P. Hence hj is finite. Note also that mj , is absolutely contlnuous with
respect to Lebesgue with a smooth density.

u

For the computation of A° I, p, we can restrict the conditional measure my , to the local
stable leaf Wloc’e( u) = {w e W (u) : dy(w,u) < €} for € small enough. Recall that

@ € D®(O°SM) preserves each leaf W’ (u) and is a C% diffeomorphism along it. Write
J (¢, u) for the Jacobian determinant of the tangent map of |- (u) 8t u. We will conclude
Theorem 1.1 from the following two propositions.

Proposition 3.1. For —o0 < p <0,

(3.2) hz > jlog J(p,u) dvy(p) dmp(u).

Proposition 3.2. Let p,,p € N, be a sequence such that p, — —o0 and m,, converge to
the probability measure m as p — +00, and let m be as above. Then

S

hig 1= hZ,, = limsuph; .

p—>+00

The proofs of Proposition 3.1 and Proposition 3.2 use completely different techniques
and will be presented in this section and the following section, respectively.

In the following, we shall use Hy(A) to denote the entropy of a measurable partition
A with respect to a measure ¥ of some space and use Hy(A|B) to denote the entropy of
A conditioned on some measurable partition B, whenever these entropies are well-defined.
We shall denote m for the dimension of W°; for (p,u) € T, we shall write

wlo=1d and ¢|, =pp-10---0pg, ¥n =1

and J(g|n,u) for the Jacobian determinant of the tangent map of o|, |3 (u) 8t u. Clearly,
we have J(p|1,u) = J(po,u) for ¢ = (o, ¢1,---) €S.

Proof of Theorem 1.1. Let pp,p € N, be a sequence such that p, — —o0 and m,, converge

to the probability measure m as p — 400, and let m be as above. Recall that ®_; is
the time one map of the reversed frame flow on O%(SM) which is a compact isometric
extension of the time one map of the reversed geodesic flow ®_; on SM. Hence,

hm = hm
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On the other hand, we have:

_ .1 o 1 s N s
hwm = s%pnlirfm EHm(P_n) > s%plérilirgof—nflog m, (P_,(u)) dm(u) = hg.

Assume Proposition 3.1 and Proposition 3.2 hold true. Then,

hiz = limsup f log J (i, u) dv,(p) dmy, (u) = flog J(®_1,u) dm(u),
p—+o0

where the last equality holds by Proposition 2.7 iii). Altogether, we obtain
hm = flog J(®_1,u) dm(u).

Note that W’ is the central unstable foliation for ®_;, so that {log.J(®_1,u)dm(u) is
the integral of the sum of the nonnegative exponents of ®_; for my; neither the direction
of the flow nor the vertical directions tangent to the fibers provide positive exponents, so
that §log J(®_1,u)dm(u) is the integral of the sum of the positive exponents of ®_; for
m. By [BR75], m is the normalized Liouville measure. O

3.1. Proof of Proposition 3.1. The deterministic diffeomorphism version estimation of
(3.2) is standard using Pesin theory (cf. [Man83]). But this cannot be used directly since
we are in the random and non-invertible case.

Clearly, Proposition 3.1 would follow if we can show the sample measures are SRB.
This approach might work since in a similar context, Blumenthal-Young ([BY19]) showed
the sample measures are SRB. We didn’t try that way since we don’t need that strong
conclusion and the intuition for Proposition 3.1 is relatively simpler.

For a non-invertible endomorphism of a compact manifold preserving an absolutely con-
tinuous measure, the corresponding measure theoretical entropy is at least the integral
of the logarithm of the Jacobian, which coincides with the so-called folding entropy (cf.
[Rue96]|, [LS11]). Proposition 3.1 is intuitively a random conditional version of this phe-
nomenon. But it might be subtle since we are considering the conditional measures and
are in the random case. So we will give some details for the key steps.

We first recall some notations and results concerning Pesin local Lyapunov charts theory
for random diffeomorphisms. In many places, we have to take invariant variables instead
of constants since our system (7,7, f1,,) is invariant, but not necessarily ergodic in general.

Lemma 3.3. ([Ose68]) For each p < 0, there is a measurable Q < T with ;1,(2) = 1
such that for (p,u) € Q, there exist r(p,u) € N and, fori,1 <i <r(p,u), xi(p,u),di(p,u)
and a filtration

{0} = ‘/7"(£7u)+1 < V;“(f,u) c--ch = TUWS(U)
with the following properties:

i) all of 7, xi,d;, Vi'’s depend measurably on (o, u);
ii) limy, o0 3 log | Du(pln) ()] = xi(p, ) for e € Vi(p, u)\Vip1 (g, w);
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iii) d; (gp, ) = dimV;(p,u) — dimV;;1(p,u) and ergu) di(p,u) = m;
iv) §305" vl wdi(p ) dpy(p,u) = §log T (,u) dvy(ip) dimy(u).

Lemma 3.4. (¢f. [LQ95, Chapter III, Section 1]) For each p < 0, given a small enough
positive T-invariant function € on T, there is a positive function k on  x {N U {0}} such
that for n e N U {0},

(3.3) /{((g, u),n + 1) <ef- /@((g, u), n),
a positive constant ko and a sequence Euclidean metrics || - Hl(cp,u),n on T£|R(U)Ws(g\n(u))
such that for all m € N u {0},
i) Kol - ”g\n(u) <|- H'(f’u)’n < K((,u),n)| - Hﬂn(u), where | - Hf‘n(u) is the Riemannian
norm on Ty, (u) S(go]n(u));
ii) F(pu)nle) :=exp, |n+1(u) O 0 €XPyy, (u)(€) is defined for e with HeH’(f’u)’n < e(p,u);

111) F(f,u)ﬂl 18 02 and HD liu),n,n+1 < "{((fa u’)?”)? where by H ’ H, u),m,n+1
we mean the norm of the tangent map calculated using || - ||’(£7 nd | - H(% 1’
iv) the map DF (), satisfies
HD@F(E:“):” - DOF(va)vnul(f,u),n,n+l < E(f, u)Heul(f,u),n;
v) the map DoF (., satisfies
BXi(f’u)_e(f’u)HeHl(f,u),n < ”DOF(f,u),n(e)Hzf,u),n—kl < eXilpu)te(pu H H((pu s

for all e € Ei(1"(p,u)). Moreover, fori,1 <i <r(p,u), the spaces Ej(p,u), j =1,
generate Vi(p,u).

(Since elements of D®(O*SM) preserve the leaves of W’, Lemma 3.4 can be obtained
as in [LQ95, Chapter III, Section 1]) using the natural auxiliary charts E;(p,u)’s and
Lemma 3.3.)

For Proposition 3.1, we shall follow Mané ([Man83]) to give a local version of (3.2) for
Bowen balls defined using the norms in Lemma 3.4 and then compare it with local entropy
for special partitions. Note that we are in the non-invertible case, x is not invariant (i.e.,
for (p,u) € Q, Kk((¢,u),n) does not equal to k(7" (¢p,u),0) in general). To overcome this
deficiency, we will pick up a set A with measure close to 1 and define modified Bowen balls
associated to A.

Let g > 0, —o0 < p < 0 be fixed. Choose € < ¢y as in Lemma 3.4. For any a € (0, 1),

we choose a measurable set A < € with p,(A) > 1 — a as follows. By the ergodicity of

V?NU{O} with respect to o and the integrability property (2.6), for V?NU{O} almost every o,

n

1
Jim > (logmax leileyle2) ™ = J (logmax [l ., o) " dvp(p) = L < +e.
i=1
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For any b > 0, let

n—1

A(b) = {cp €S: H max ‘|S0i|ﬁ/s(u)||c2 < be? for all ne N U {O}} :
i=0

Then there exists b > 0 large such that

(3.4) VBN (A (D)) > 1 — %a.

Let b be as in (3.4). For [ > 0, set

-2
(3.5) A1) = {(p,u) e : e Ab), nro(k((p,u),0)) " >1}.
Choosing 7 > 0,¢(p,u) with €(p,u) < € and I to be small enough, we can obtain a
measurable set

(3.6) A=A 1) n{(p,u) :n <e(p,u)}
with p, measure greater than 1 — a.

Let A be as in (3.6). For 1, almost all (o, u) € A, it will return to A under the iterations
of the map 7 for infinitely many times. Hence, for any such (p,u) and k > 1,

" e /
(37) HH(f,u),k’ T H.HTNQ(f,u),kJ—N?

is well-defined, where N,‘:‘ is the last non-negative time before or equal to k with N (p,u) e
A. For n > 0, (p,u) € A such that n < €(p,u), and n € N, let us define the modified

random W’ -Bowen ball (with respect to A) by
(3.8)

Bj‘;(g,u,n,n) = {e € TUWS(U) : HeH'('f’u)’O < nm_l((f, u),()), and for k, 1 <k < n,

" _ A
HF(fvu)}kz<e)H(£7u)7k <k 1(TNk (f? U), k— Nﬁ)} ’
where F(fvu)‘k: = F(f,u),k—l O---0 F(£7U)70.
The following can be considered as a first step coarse local version of Proposition 3.1:

Lemma 3.5. Let —0 < p <0, a € (0,1), ¢ > 0, and n > 0 be fized. Choose € < €y as
in Lemma 3.4. Let A < Q2 be as in (3.6). Then, there is a positive geometric constant Cy

such that, setting cg := %mlog MTO, for p, almost all (p,u) and all n € N,

1 _ 1 o 1
(39) - ﬁ log mz,u (expu(BZ(fv u, 1, n))) = _E IOg J(f’nﬁ u) - 3m60 - ECO =+ Co.

Proof. The set Bf (¢, u,n,n) is empty if (¢, u) ¢ A. Otherwise, by definition and Lemma
3.4 iv), By (@, u,n,n) is contained in the set of vectors e € T, W’ (u) such that

||€H/(£7u)70 < 77/{_1((@ u), 0), F(f,u)‘n(e)H/{gum < 77/€_1 (TNQ (o, u),n — NQ) and

(3.10) _
|Det’ DeF () k| = [Det’ DoF (o, 1 1| (1 — €(,u))™ for 1 <k < n,
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where Det’ is the determinant of a linear mapping in the metrics | - | » and
Nk (f,u),k—N?
I H/NA( o, . By construction, 7% (cp, u) € A and Ii(TNﬁ (¢, u),0) < (}r0) 2 Assume
k k+1— -

k+1(907 ) € A7 l‘e‘u Nk+1 =k + 1. Then
A _nA € A
H . H;—N?(w ) 1A < e(NkJrl N K;(TN]C (E’ U), 0) IH H7—k+1(<p 00
) k
/RS-
l/i()) H

(3.11)

A _yA
< RO Nk)e( ) ||'Tk+1(£’u)’0.

By chopping ¢|,(u) into pieces in between returning times and using (3.10), (3.11), we see
that there exists a geometric constant C' such that the set exp, B} (¢, u,n,n) is contained

in the set B} (p,u,n,n) of points w € W*(u) such that
dirs (W, 1) < Crg ' (g, u), dWs(gnu) (plnw, plau) < Crgtnr (TNQ (p,u),n — N5
and  J(p|n, w) = (C~ ko)™ (1 — €(gp, u))”mJ(gpln,u)e_"me(l’;O) S () hsn)
It follows that, denoting X, the Lebesgue measure on W (u),
e

Xo(R(pln(u))) L|n(Bz<<p7umzn>)

where C’ is a positive constant taking into account the regularity of the density for a fixed
p. It follows that, with our definition of cg,

o (exp, (B (g, u,m,m))) < T (plns w) ANy, (w),

m , (exp, (Ba (e, u,n,n)))

C/
< 76—J71<£|mu)(0ﬁ0—1>m(1 . é(f, u))*"me”mee"’O#{NkA(fvu): kgn}.

Au(R(@ln(u)))

Note that the partition R is such that each element contains a ball with radius greater
than some positive constant (see Section 4), we obtain some constant Co > 0 such that

1 1 1
_E logﬁ;u (expu(B?\(£7 u, 7, TL))) = E IOg J(£|TL7 U) + mlog(l - E(fu ’LL)) —me— ECO + €.
The estimation in (3.9) follows for ¢y small enough. O

By (3.5) and Lemma 3.4 i), we have

1 lko Ko
cog = —mlog— < mlog —
n mln(f,u)eA Kk ((f? ’LL), 0)

< 0.
2

So the estimation in (3.9) might be too coarse since cq is not a priori small compared with
€9. But ¢¢ remains unchanged when we consider (3.9) for Bowen balls for any power of T,
hence it will not enter the lower bound estimation of entropy in (3.2).
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More precisely, let M € N be fixed. For ¢ € S, write

¢ = (0, Ph, P+ ), where @ 1= o ™My,

Let
o'(¢') = (@1 s @) and T (@ u) = (07 (@), pou).

The transformation 7/ can be identified with 7M. We can use the same kg, x for 7/ as for
7, but now € in (3.3) has to be changed into Me. So we have to choose € so that Me’ < €.

Choose 7' < i small enough that, if I := l%l, the measurable set
(3.12) A=A N {(g, u):n < e'(f, u)}
has p1, measure greater than 1 — a.

For p, almost all (¢, u) = (¢',u) € A" and k € N, let M2" denote the last non-negative
time before or equal to k such that (T’)MQ, (¢',u) € A’. Similar to (3.7) and (3.8), we define

=
')k = T M (o ), (k=M )M

and for ' > 0, (¢,u) € A’ such that ' < €(p,u), and n € N, we define the modified random
W’ -Bowen ball for 7' (with respect to A’) by

BZ’,M(f/,u,n,n) = {e € TUWS(u) : ||e||/(’so/7u)70 < n'm_l((g',u),O), and for k, 1 <k < n,

"

M _ A! ’
ok <1 (M (), O = MEM) |

Then following the argument in Lemma 3.5, we obtain (observe that, by our choice of I’,

/ .
l'%o = L - has the same value as in Lemma 3.5)

HF(gu) ’kM(e)

co = %mlog %m log

Lemma 3.6. Let —o0 < p <0, a € (0,1), M € N and ¢ be fized. Let n',¢', A’ be as in
(3.12) and let co, Cq be as in Lemma 3.5. Then, for pi, almost all (p,u) € A" and alln € N,
1. oM 1 - 1
(3.13) — - logmy , (expu(BA, (¢, u,m, n))) > - log J(¢]nm, u) — 3mMeg — ECO + co.

Following Mané ([Man83]) (see also [Thi92]), we can proceed to find partitions which
have local entropy lower bound as in (3.13) in our non-invertible random setting.

Lemma 3.7. Let ¢ > 0, —00 < p < 0, M € N be fizred. Let n',¢', A’ be as in (3.12)
and let cg,Co be as in Lemma 3.5. There exists a countable partition Q of T with
— (log(m,(Q)) du, < 4+ such that for p, almost all (p,u) € A’, we have 0 < n' <
€ (p,u) < eg/M and

(3.14) Owm,—n(p,u) < exp, (B (¢, u, 1, n)),
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where Qm,—p 1= QN (TM)1QV/ - \/(*M)= ("= Q. Consequently, for j1, almost all (¢, u) €
Al

.. 1. 1 o 1
(3.15)  liminf —— log my, (QM7_n(£, u)) > - log J(¢lnm, u) — 3mMeg — ECO + ¢o.

n—+ao0 n

Proof. Clearly, (3.15) is a consequence of (3.14) and (3.13). Hence, it suffices to show
(3.14). Let n/, ¢, A’ be as in (3.12). For (p,u) € A’, k1 > 0 and n € N, set

BN (G m) =

{w e T (u) + d (plam(w), gl () < o' (m((FM (&), (- |\/|;3’)|v|))_2 VO<k< n} .

By Lemma 3.4 i), we see that there exists some constant k1 depending on the geometry of
(M, g) such that, for almost all (¢,u) € A" and all n € N U {0},

BN (@ sy n) < expy, (B u, ', n)).
Hence, to find a countable partition Q satisfying (3.14), it suffices to find a Q such that
QM7_n(£, u) (e B:Z:/M,m,n(gl’ u, 77/7 n)

For each n € NuU{0}, let A’,, € A’ be the collection of points with n as the first return time to
A’ with respect to the map 7M. Recall that the local stable leaf Wfac’eo (u) = {we W (u) :

dyrs(w,u) < €0} depends continuously on v and for each n, we can choose in a continuous

—16—2(L+60)nM

way a maximal (4(I")2b) separated set in Wfac,eo (u). The cardinality C, of

such sets satisfies C,, < K™ for some K. Using these points, we can further slice £ A’,, into
{A’, t}e<c, such that for all (p,u) € A, 4, the intersection {w : (p,w) € A’} 4} N WISOC’EO (u)
has diameter less than (2(1')2b)~te=2(E+<0)"M The partition Q can be chosen to be

{A'}s,ne NU{0},0<Cp, T\A'}.
Following [Man83], one checks that Q satisfies — {log(m,(Q)) dy, < +o0 and (3.14). O

Proof of Proposition 3.1. Let —oo < p < 0 be fixed. In the following, we show, for every
€o > 0, there exists a finite measurable partition P of T satisfying

(3.16) hyp > f]og J(p,u) dvy(p) dm,(u) — Smeg.
Then, by definition of h; and (3.16),
hy = hyp = flog J(p,u) dvy(p) dm,(u) — 5mep.

This concludes the proof of Proposition 3.1 since ¢y is arbitrary.
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Let M be such that |co| < Meg. Let a > 0 be small and let A’ and Q be as in Lemma
3.7. Then for s1, almost all (¢, u) € A’, (3.15) holds true. Set

n—-+0oo n

. 1 _
ﬁ;g := liminf —— Jlog m, (Om,—n(ew)) duy(e,u).
For any a > 0, by our choice of R in Section 4, it is true that (see Proposition 4.3)

1
s ;M
*p,Q = Mhp,Q a.

Hence, by Fatou Lemma,

1
s s sospe - =5 o
Lpo = JA 1'r11r—1>1—}-rolof nM lOg m;. (QM,—n(fa U)) dﬂp(f, U) .
Since the function log J(p, u) is integrable and |co| < Meg, by using(3.15), we obtain, for
a,a > 0 small,

hy, o = flog J(p,u) dv,y(p) dimp(u) — 4meg.

Note that Q is such that — §log(m,(Q)) du, < 4+ and for any finite partition P such
that Q is finer than it,

) 1
Bo-lp < limsu [ Hu(Q [P-0) dn,

n—+0o0

) 1
< limsup —
n—+ow T

f Han (Q-n|Pow) dpty < mep<Q|7>> dytp.

We can group the tail elements in O together with some care to obtain a finite partition
P satisfying the requirement in (3.16). O

4. THE PROOF OF PROPOSITION 3.2

Let m be as in Proposition 3.2. To compare hi; with hf)p, we first formulate the entropy
hy p (see (3.1)) in terms of some conditional entropy for the unconditional measure p,.

Let W be a lamination of a compact metric space. A measurable partition is said to
be subordinated to W if its elements are bounded subsets of the leaves of W with non-
empty interiors in the topology of the leaf. We can construct a partition R subordinated to
W’ by choosing a finite partition X of O%(SM) into sufficiently small sets with non-empty
interiors and subdivide each element of X into the connected components of its intersection
with the leaves. We may assume R is such that each element contains a ball with radius
greater than some positive constant. The partition R is measurable if it is constructed as
an intersection of an increasing family R/, j € N, of finite partitions into measurable sets.

Let P be a finite partition of O°(SM) and we assume that we have chosen X', R =/, RI
as above and that P refines X. We may assume that the boundaries of the elements of
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P, X and R/ are all m-negligible. The conditional measures m; , in the definition of ﬁf,,p
can be taken on any measurable finite partition R chosen in the above way, so that
1 . |
by = timin [ logm}, (P-u(2,0)) disp(pvu) = liminf | H,, (P [R).
Proving Proposition 3.2 amounts to proving that, if p, — —o0 and m,, — m as p — +o0,
then
hiz = li li f— H _n|R).
> lmspsup ot -, (P-1[R)
This is true, if we can show, for any o > 0, there are partitions P, R and n large, such
that for all p large enough,

1
(4.1) hi = ﬁHﬂpp (P-n|R) —2a = hy p—3a > h), —5a.

m

The first inequality in (4.1) can be achieved if we can find good P, R for m with h® _ ,
being close to hi;. So we will show the other two inequalities in (4.1) first.

We begin with the second inequality in (4.1), which is not trivial in our setting since the
conditional entropy sequence H lop (P—n|R) is not necessarily a subadditive sequence in n.

Lemma 4.1. Given X,R and P as above, there exists a countable partition Q of T such
that the partition R\/ 7P \/ 771Q is finer than 7~'R. Moreover, given a > 0, there are
0 and A such that if the diameters of the elements of X are smaller than ¢ and if p < A,
one can choose Q with H, (Q) < a.

Proof. For u,w € O°(SM) in the same W leaf, write d*(u,w) for the distance between
u and w along their common leaf. For any § > 0, there are two constants ¢(é) and C(9)
such that if v and w are on the same leaf and d(u,w) < d, then either d*(u,w) < ¢(6)
or d*(u,w) = C(6). We can ensure that ¢(6) — 0 as 6 — 0 and that C(§) — + as
0 — 0. Suppose v and w are in the same element of the partition R and that ¢gu and
pow are in the same element of X. If d*(pou, pow) < C(§), in particular, as soon as
d*(u,w) < C(8)/|l¢olc1, then wou and wow are in the same connected component of W’
and thus in the same element of R.

To obtain Lemma 4.1, it is therefore enough to take the partition @ of 7 as follows: the
projection on S depends only on the first coordinate ¢y and is the partition A4,,n > 0,
where A, 1= {vo : nC(0) < |pollcr < (n+1)C(0)}; Ag x O°(SM) is one element of Q; on
each A,,n > 0, we further cut O*SM into N,, pieces of diameter smaller than 1/(n + 1).

The entropy of Q satisfies
H,,(Q) < up({An n = +c2yp ) logn,

where ¢ is some constant depending on the geometry of W*. Given a > 0, we will have
H,,(Q) < aassoonasvy({¢: |¢|cr > C(6)}) and the integral S{<P=HSOHCI>C(5)} log o] o1 dvy
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are sufficiently small. These two conditions can be realized by choosing § small and p close
enough to —oo. O

Proposition 4.2. Given o > 0, there is § > 0 and A such that, for all n > 0, if the
diameter of the elements of X are smaller than § and p < A,

1 S
(4.2) Hu, (PoalR) > limint ~H,, (Pu[R) —a = b p— .

n—+0w N

Proof. Let Q be as in Lemma 4.1. Then we have that the mapping n — H,, (P,n V Q,n|7?,)
is subadditive. Indeed, for n,n’ € N,

H,, (P—(n+n’) \/ Q—(n+n’)|R) = H,, (P*" \/ Q*”|R>
+ Hy, ( n+n’ \/ QT (n+n’) R\/P_”\/ Q_”) ’

where PZ0 .y i= 7PN T (n+n'=1)P and Q (4 nyy is defined in the same way.

Moreover, by Lemma 4.1, the partition R \/ P_, \/ Q n is finer than 77™R and the last
term is smaller than H),, (73:(7; ) \V4 Q:?n +n,)|7'_"7€). The desired subaddivity follows by

invariance of y, under 7". Hence (4.2) follows since

lim inf — H ,(P_n|R) < liminf— H <P_n\/Q_n|R>

n—+00 n—+0 N

~ inf 5HMP (P-n\/ Q[R)

1
ll;llf EH#’) (an|7?’) + Hup(Q)

N

A

1
irﬁf EHMP (P_n|R) + «

Proposition 4.3. Let M € N and let P be as in Proposition 4.2. Then
M

(4.3) Lop < M- (b p +a).

Proof. Let Q be as in Lemma 4.1. Recall that

ﬁ;’g = Iiminf—l flogmzyu (Pm,—n(p, 1)) dpp(p,u) = liminf — H ,(Pm,—n|R).

) n——+00 n n—+o0 N
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Hence,

n < BPM M- hminfiMHMp (P—mn|R)

=P, P-m n—+w n

<M - lim in ﬁHMP (P-wn \/ 2w
?)

?)
Mty (P \ @

M- (hf),P + H/J'P(Q))
(b + ).

V/AN/AN
<

O

Next we show the last inequality in (4.1). For this, we first state the results extending to
our context the classical results of [Bow72], [Yue94] and [Buz97] (compare with [CY05]).

For ue O°(SM),p € S, > 0 and n € N, define the random W?-Bowen ball by

B*(p,u,m,n) :=={we W’ (u): d (¢lk(w), ¢lp(uw)) <nfor 0 <k <n}.

The following notion was introduced by Bowen ([Bow72]) for a single map and by Cowieson-
Young ([CYO05]) in the random case. Since our mappings are smooth only along the folia-
tion W’, we introduce a variant by restricting to the leaves W°. Fix ¢ > 0 and a sequence
v €S. We denote for u € O5(SM), n > 0 and n € N, 7((, ¢, u,n,n) the smallest num-

ber of random W’-Bowen balls B* (¢, w,n,n) needed to cover the random W’-Bowen ball
B*(p,u,¢,n). We then set

1
e(Cp) = sup  lim limsup — log r({, o, u,n, n).
B ue®s(SM) 10 n—+o0 N -

The function ¢ — hj,.(¢, @) is o-invariant; we denote hj,. ,(¢) its V?NU{O}—a.e. value.

The following three propositions (Proposition 4.4, Proposition 4.5 and Proposition 4.6)
are proven in [CY05] for the global entropy with the additional hypotheses that v, are
supported in a fixed neighborhood N of ®_; in D®(O*SM) and that v, converge to v_q
as p — —o0, in the sense that any D®(O*SM) neighborhood of ®_; has eventually full
measure for v,. In our case, we have two extensions of the argument in [CYO05]: one is
that the distributions v, are not supported on a neighbourhood of ®_ 1, but there is a tail;
the other extension is that our mappings are not smooth everywhere, but only along the
leaves of the foliation W°.

Proposition 4.4. Given o > 0, > 0, let X be as in Proposition 4.2. Assume that the
diameters of the elements of P 'R are all smaller than (. Then, for all p close enough to
—0

)

(4.4) by, —hyp < hi,e ,(C) + .
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Proof. Let M be a fixed positive integer and set hf,’M = supp Q;g Since
R =M liminf ——H, (P_wa|R) = M- LS p,

=P, P-m n—+0 nM

we have

(4.5) heM > s%p@;%f > M- sup B =M hs.

Following [Bow72, Section 3], we obtain in our random setting that there is some positive
constant ¢ which depends on the geometry of W’ such that for any 3 > 0,

WM < B2 + M(Bi, ,(C) + B) +c.
Using (4.3) and (4.5), we deduce that

S S S ]‘
hy < hpyp + hiye ,(C) + o+ B+ M

Letting 8 — 0 and then M — +00, we obtain the inequality (4.4). O

Let M be a fixed positive integer. We define for u € O*(SM),p € S,n > 0 and n e N,

B*M(p,u,n,n) == {w e W’ (u) : d(plm(w), plem(u)) <nfor 0 <k <n},

M(¢, ©,u,1,n) the smallest number of BsM (@, w,n,n) balls needed to cover the BsM (o, u,(,n)
ball,

thEA(Cag) = sup hmhmsup log r (¢, u,m,m)
ue0s (SM) 10 n—to0 N

and 7" (C) the I/®NU{O} -a.e. value of hl(’m (¢, ).

loc,p
Proposition 4.5. With the above notations, we have, for all p < 0,{ > 0,

(4.6) e p(O) < Mhioﬁ”p@

Proof. Observe that B®(yp,u,(,nM) is a subset of BS7M(£, u,(,n), so we are going to
cover BS’M(E,U, ¢,n) with B*(¢,w,n,nM) balls, n arbitrarily small. Start with a cover
of BS’M(g,u,C,n) with BS’M(E, wg,m,n) balls with 1 < £ < rM(C,f, u,n,n) and fix K > 0
big. Let s(p) := max{|¢lx|c1 : 0 < k < M}. If 3(c?™Myp) < K for all j, 0 < j < n,
then each BS’M(E, we,n,n) ball is contained in B®(yp,wy,2Kn,nM) and we take these
B*(,wp, 2Kn,nM) balls in our cover of B*M(p,u,(,n). Otherwise, assume, for instance,
tha(%(g) > K, we find, for each wy, at most CT%(f)/K]Qm points w), such that the union
of the B*(p, wy,2Kn,M) balls cover BS’M(@ wy,n, 1), where c is some positive constant

depending on the geometry of W’ and [a] denotes the smallest integer greater than a.
Working inductively, we see that

T(Caf; u, 2KT77 nM) < ,,,M (4787 w,m, n) H;l:—ol [%(o.jMf)/K'lﬁ J OX{%(U]M ©)>K}
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It follows that for all K > 0,p € S,

__n—1 n—1
s s . m ; ) log c
MPjoc(C, ) < hipe! (€ ) + Timsup - 3 logse(o ™ ) /K] Tim sup =25 Y X (o) k-
e j=o e j=o -

Finally, we get, for all p <0, all { > 0, K > 0,

Mhi,e Q) < BEM (¢, ) + ME [loglse() /K] + P [(p) > K] loge.
Since E[log »] < +00, Proposition 4.5 follows by letting K go to infinity. O

Proposition 4.6. Fiz ( > 0 small and p < 0. For all v € N, there is a positive constant
C(r) such that, for all M € N,

hye (€)

< Tflog (maX{CS_1”(4p|M)|Ws(u)|

cs P 1<s<rue O*(SM)}) dV?M(QOh\A) +log C'(r).

Proof. Fix r > 0,M € N, a sequence ¢ € S and ¢ > 0. Two points w,w’ € Ws(u) are said
to be (M, n,n)-separated if

max {d (¢lm(w), plem(w)) : 0 <k <n}>n.

It is clear that TM(C,Q,u,n,n) is bounded from above by SM(C,E, u,1n,n), the maximal

cardinality of a set of (M, n, n)-separated points in B*M (¢, u, (,n). Consider the mappings
¢, = glmoot
in [CYO05], page 1129. In particular, we have |¢/.|cs < ¢*7'|¢'k]|cs. Using this, we
can estimate sM((, @, u,m,n) by following almost verbatim the argument for the proof of
Proposition 3 in [CYO05] (which is based on the ‘Renormalization’ Theorem in [Yom87]

and a telescoping construction in [Buz97]) and obtain some constant C(r,m, m) =: C(r)
as in [CYO05, Theorem 4] such that

M and their standard magnifications ¢/, : B(0,2)™ — R™ as explained

s"(¢, @, u,m,m)
4 mn—1 m/r
<C(r)" () I1 (max {CS_1|‘(¢§€)|WS(U)|CS c1<s<rue OS(SM)}) .
7 k=0
Since ¢, are independent, the ergodic theorem gives Proposition 4.6. g

Corollary 4.7. For any a > 0, there exists (o > 0 such that if ( < (o, then

lim sup Ay, ,(C) < a.
p—>—00
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1 _

Proof. Fix r = 2. We choose M € N large such that Mlog C(r) < mBl’l, where By ; is
r

defined in (2.6). Fix ( < 1,p < 0. By (4.6), hj,. ,(¢) < ' hfot/lp(o. Therefore,

?oc,p(C) 731 1+7 flog (max (H@‘M|W (u) Hcl + C Z |90‘M|W {Cs)) dV[(?M(SOh\A)
2<s<r

Write, for a > 0, log* o := max{log a, 0}. We have, using log(a; + a2) < log™ a; + ag, for

ai, g > Oa
log (mgx (}QOIMWS(U) ”Cl +¢ Z }¢|Mws(u)|os>>
2<s<r

< log” (mgx (||90|M|Ws(u)H01>) +¢ D) max <H<P|M|W3(u)

2<s<r

Z log™ (max |l (w) H(Jl) k) +¢ Z InlfLiX(

2<s<r

)

).

We get by integrating with respect to V®M

?ocp(C) B11+ Bll( +C7 Z BsM

2<s<r
where By 1(p), Bam(p),-- -, Brm(p) are defined in (2.6). Note that, by Proposition 2.7 ii),
Bsm = limsup Bgm(p) < 40, VI<s<r,

p——00
hence
2m 1 « 2m
égfolgbup Ploe,p(C) < < égg <Bl,1 +Com ;ZBS,M> = 731,1-
Since r is arbitrary, the corollary follows. O

Proof of Proposition 3.2. Fix a > 0. We can choose the diameters of the elements of X
smaller than c(y, where c is a constant depending on the local geometry of the leaves so
that the diameter of the elements of P n R are smaller than (y and Corollary 4.7 applies.
We can also ensure that these diameters are smaller than § given by Proposition 4.2. We
may assume that the boundaries of the elements of P, X and R’ are all m-negligible.

By definition, hi; > liminf, ;. inf; 2 Hy(P_p,|R7). We can choose n and j so that

(4.7) i > (o[ RI) -

Consider now p,,p € N, such that p, - —o0 and m,, — m as p — +o. For P-a.e.
w € (2, each element of the partition ();_,(¢ | k(w))~1P converge in the Hausdorff metric

towards the corresponding element ();_, @;ﬂ?. Note that all these elements of P_,, and
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the elements of R’ have m negligible boundaries. It follows that there exists P € N such
that for p > P,

1

1 .
H,,,(P-u|R)) —a > ~H,, (P_.[R) - a.

e

(4.8) %Hﬁ(p_nmﬂ‘) >

The second inequality holds because the partition R is finer than R7. By Proposition 4.2,
we have, by our choice of § and as soon as p, < A,

(4.9) %H

//'Pp

(P*n“?’) = —f)p,'P —a = hf)p — 20— hlsoc,pp (C)v

where the second equality follows from Proposition 4.4. Finally, using all the above in-
equalities (i.e., (4.7), (4.8) and (4.9)) and Corollary 4.7, we find that

hiz = limsuphj, — 5o
potw ' F

Proposition 3.2 follows from the arbitrariness of a. O
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