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QUADRATIC DOUBLE CENTERS AND THEIR

PERTURBATIONS

JEAN–PIERRE FRANÇOISE AND PEIXING YANG

Abstract. This article begins with a full description of the quadratic planar

vector fields which display two centers. We follow the method proposed by

Chengzhi Li and provide more detailed analysis of the different types of double
centers using the classification: Hamiltonian, reversible, Lotka-Volterra, Q4,

currently used for centers of quadratic planar vector fields. We also describe

completely the different possible phase portraits and their Poincaré compact-
ification. We show that the double center set is a semi-algebraic set for which

we give an explicit stratification (see figure 2). Then we initiate a study of the

perturbations within quadratic planar vector fields of the most degenerated
case which is the double Lotka-Volterra case. The perturbative analysis is

made with the method of successive derivatives of return mappings. As usual,
this involves relative cohomology of the first integral which is in that case a

rational function. In this case, we have to deal with a kind of “relative logarith-

mic cohomology” already known in singularity theory. We succeed to compute
the first bifurcation function by residue techniques around each centers and

they differ from one center to the other.

1. Introduction

We first recall Dulac’s theorem on the classification of regular centers of quadratic
vector fields. After the important contributions of H. Zoladek ([28]) the different
cases are conveniently called: Hamiltonian, Reversible, Lotka-Volterra and Q4. The
center set is an algebraic set, union of strata of different codimensions. It was proved
by N.N. Bautin ([1, 2]), that a local perturbation of a linear focus by a quadratic
vector field can yield at most three limit cycles. An interesting generalization of
the local Hilbert’s 16th problem (restricted to quadratic planar vector fields) was
proposed by several authors: Try to bound uniformly the number of limit cycle to
bifurcate by small perturbations (inside quadratic vector fields) around a center in
any fixed component of the center set? After many contributions on that subject
(see [5, 6, 7, 8, 18, 26]), there are still some cases missing due to difficulty to
investigate the successive bifurcation functions in the reversible case (see [22] for
the Hamiltonian stratum of double centers). Indeed, almost nothing is known about
the perturbations of the reversible quadratic systems, including the double centers.
Although, the articles [25, 21] focuses on examples of reversible double centers
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whose associated invariant curves are elliptic (see also [14]). In the article [21], a
situation is uncovered where the perturbation theory displays a configuration (1, 3)
(see also [24]).

The set of double centers in quadratic planar vector field was determined in
an article by Chengzhi Li ([20]). The list of systems with a double center can be
found also in the paper of Zoladek ([28]). We find useful for the subject to include
this proof in this article. We follow very closely the method of Chengzhi Li and
give more details about the type of centers using the terminology: Hamiltonian,
reversible and Lotka-Volterra. Very quickly, we check that Q4 cannot exist in a
double center. We also give a careful analysis of the Poincaré compactification.
This part ends with a complete description of the double center set, which is a
semi-algebraic set, and of its stratification (see figure 2).

We focus in this article in the perturbations of the highest codimension case
that we call the double Lotka-Volterra case “LV+LV”. This case has been studied
using several techniques like Bautin ideal approach (in [3]), the essential perturba-
tions method of Iliev (see [17, 12]), or the averaging techniques (see [23]). It does
not seem possible to extend averaging techniques to reversible systems if they are
not isochronous. This is why we develop here the method of successive derivatives
introduced in ([11, 15]). In this case, the notion of “relative logarithmic cohomol-
ogy” (see [19]) appears and this is new for the subject. Actually the first-order
perturbation theory reduces to simple residues computation.

2. Quadratic centers

A quadratic vector field near a center is conveniently written in complex nota-
tions z = x+ iy, see [28]:

(1) ż = (i + λ)z +Az2 +B | z |2 +Cz2.

with λ, x, y ∈ R, (A,B,C) ∈ C3. The underlying real parameters of the planar
vector field are λ, a, a′, b, b′, c, c′ :

ẋ = λx− y + ax2 + bxy + cy2,

ẏ = x+ λy + a′x2 + b′xy + c′y2,
(2)

with the linear relations:

a+ ia′ = A+B + C

b+ ib′ = 2i(A− C)

c+ ic′ = −A+B − C,

A =
1

4
[a− c+ b′ + i(a′ − c′ − b)]

B =
1

2
[a+ c+ i(a′ + c′)]

C =
1

4
[a− c− b′ + i(a′ − c′ + b)].

With these variables the Bautin ideal is generated by the four polynomials (with
real coefficients):
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v1 = λ

v2 = Im(AB)

v3 = Im[(2A+B)(A− 2B)BC]

v4 = Im[(| B |2 − | C |2)(2A+B)B
2
C].

The components of the center set are then given by:

LV : λ = B = 0

R : λ = Im(AB) = Im(B
3
C) = Im(A3C) = 0

H : λ = 2A+B = 0

Q4 : λ = (A− 2B) = (| B | − | C |) = 0.

(3)

The above computation goes back essentially to Dulac and Kapteyn, see [9, 27,
28]. The usual terminology in the real case is, according to (3) : Hamiltonian
H, reversible (or symmetric) R, Lotka-Volterra LV , and co-dimension four Q4

component of the center set, respectively. Note that in the reversible case, the first
two conditions are sufficient.

If we assume B 6= 0, performing a suitable rotation and scaling of coordinates,
we can suppose B = 2. Similarly if B = 0 but A 6= 0, we take A = 1 (LV), and
when A = B = 0, we take C = 1 (Hamiltonian triangle). In the case where B = 2,
there is a center if and only if the following conditions hold: (i) A = −1 (H), (ii)
A = a and C = b are real (R), (iii) A = 4, | C |= 2 (Codimension 4).

The list of generic quadratic centers looks hence as follows:

• ż = −iz − z2 + 2 | z |2 +(b+ ic)z2, Hamiltonian (H)
• ż = −iz + az2 + 2 | z |2 +bz2, Reversible (R)
• ż = −iz + z2 + (b+ ic)z2, Lotka-Volterra (LV)
• ż = −iz + 4z2 + 2 | z |2 +(b+ ic)z2, | b+ ic |= 2, Codimension 4 (Q4)

3. Double centers

We revisit the list of all double centers for quadratic vector fields. This has been
done some years ago by Li Chengzhi (cf.[20]). Following Chengzhi Li’s method, we
precise his classification by appending the type of different centers, either Lotka-
Volterra, Reversible, Hamiltonian or Q4. One of the key ideas is to fix a system of
parameters (a, b, c; a′, b′, c′) of a quadratic planar vector field:

ẋ = − y + ax2 + bxy + cy2,

ẏ = x+ a′x2 + b′xy + c′y2,
(4)

which displays a center at (0, 0). We first look for necessary conditions to have a
double center. We can thus assume that the vector field displays somewhere another
center. We use the invariance of the vector field performing a suitable rotation of
coordinates so that the other center is also on the y-axis. We get accordingly
another system of parameters (l,m, n; p, q) so that the vector fields write in the
following normal form:



4 J.-P. FRANÇOISE AND PEIXING YANG

ẋ = − y + lx2 +mxy + ny2,

ẏ = x+ px2 + qxy.
(5)

We should note that it is not always possible to proceed with an affine transfor-
mation depending regularly on the parameters. This is a problem, when studying
the cyclicity, as in the case of the Kapteyn normal form. It is important to note
that once we have proceeded with this rotation, we can no longer use the Kapteyn
normal form. The nice aspect about this other choice of rotation is that it brings
the other center at the point (0, 1

n ). We are going to write explicitely the conditions
for double centers in the parameter set (l,m, n; p, q) of the normal form. Explicit
writing of these conditions in the initial parameters looks rather difficult. Also, it
should be noticed that the normal form of a quadratic system with a double center
is not unique (for instance there are at least two different ways to determine which
center is (0, 0)).

3.1. Restriction of the center conditions at (0, 0).

• The Lotka-Volterra conditions for a center are: B = 0 or equivalently
l = −n, p = 0.
• The Hamiltonian conditions are: 2A+B = 0 or equivalently m = 0, 2l+q =

0 and the corresponding Hamiltonian is H = 1
2 (x2 +y2)− lx2y− n

3 y
3 + p

3x
3.

• The Reversible conditions are:
(i) Im(AB) = 0 equivalent to

(p−m)(l + n) + p(l − n+ q) = 0.

(ii) Im(B
3
C) = 0 equivalent to

(p+m)[(l + n)3 − 3(l + n)p2] + (l − n− q)[−3p(l + n)2 + p3] = 0.

• The Q4 component is given by: (A − 2B) = (| B | − | C |) = 0 which is
equivalent to:

5p = m, 5n = −3l + q, 4[(l + n)2 + p2] = [(l − n− q)2 + (p+m)2].

3.2. Center conditions at (0, 1
n ). Following Chengzhi Li’s method, we translate

the origin to (0, 1
n ): x = ξ, y = η + 1

n . The vector field displays:

ξ̇ = η +
m

n
ξ + lξ2 +mξη + nη2,

η̇ = (1 +
q

n
)ξ + pξ2 + qξη.

(6)

The origin must be a linear center and this implies m = 0 and n+q
n < 0. We set

n+q
n = −ω2. We get accordingly:

ξ̇ = η + lξ2 + nη2,

η̇ = −ω2ξ + pξ2 + qξη.
(7)

Changing successively (ξ, η) 7→ (−ξ,−η), t 7→ −t, we get

ξ̇ = −η + lξ2 + nη2,

η̇ = ω2ξ + pξ2 + qξη.
(8)
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Then we change finaly ξ 7→ 1
ω ξ and t 7→ t/ω. This displays:

ξ̇ = −η +
l

ω2
ξ2 + nη2,

η̇ = ξ +
p

ω3
ξ2 +

q

ω2
ξη.

(9)

We have thus obtained an expression of the vector field which is analogous to
the equation centered at (0, 0) where we change the parameters (l, n, p, q) into
( l
ω2 , n,

p
ω3 ,

q
ω2 ). We are thus ready to apply the center equations to this data.

3.3. Center conditions of (0, 0) under the conditions m = 0, n(n+ q) < 0.

Proposition 1. It is impossible that (0, 0) be a Q4-center

Proof. Consider first the case where (0, 0) would be a center of type Q4. Replacing
m = 0 into the equations of the Q4 component yields: p = m = 0, q = 5n+ 3l and
4(l + n)2 = (l − n− q)2 = (2l + 6n)2 which gives l = −2n, and then q = −n which
is obviously in contradiction with the other condition n+q

n < 0. So it is impossible
that (0, 0) would be a Q4 center. �

Consider next the reversible case for (0, 0).

Proposition 2. The generic component of the reversible case for (0, 0) is given by
m = p = 0, n(n+ q) < 0.

Proof. The first condition (i) for m = 0 becomes:

p(2l + q) = 0.

If 2l + q = 0 and m = 0, we recover the Hamiltonian case. We postpone the
discussion to the degenerated case. The second possible case is p = 0. The two
other conditions (ii) and (iii) are then satisfied. The generic reversible component
is then given by m = p = 0. �

Consider now the Hamiltonian component.

Proposition 3. The point (0, 0) is a Hamiltonian center if and only if m = 0, 2l+
q = 0, n(n+ q) < 0.

Proof. Indeed the extra condition m = 0 is already contained in the Hamiltonian
conditions. �

Consider now the Lotka-Volterra case for (0, 0).

Proposition 4. The Lotka-Volterra case for (0, 0) is given by l = −n, p = 0,m =
0, n(n+ q) < 0. It is thus contained in the reversible component.

Proof. This is obvious from the equations of the Lotka-Volterra case. �

We consider now the degenerated cases. The intersection of LV and R has just
been considered above as LV ⊂ R. The only case pending is the case of a reversible
Hamiltonian.

Proposition 5. The intersection of the Hamiltonian and Reversible strata, noted
RH is given by p = 0,m = 0, 2l + q = 0, n(n + q) < 0; It is a two-dimensional
family of Hamiltonian system H = 1

2 (x2 + y2)− lx2y − n
3 y

3.
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Proof. In the condition (ii), we set m = 0 and this yields

p[(l + n)3 − 3(l + n)p2] + (l − n− q)[−3p(l + n)2 + p3] = 0.

If we assume p 6= 0 and write with q = −2l:

[(l + n)3 − 3(l + n)p2] + (3l − n)[−3(l + n)2 + p2] = 0,

which displays:

−np2 + (l + n)2(−2l + n) = 0,

np2 = (l + n)2(−2l + n),

which is impossible because n(n− 2l) < 0. �

3.4. Possible configurations of double centers.

Theorem 6. The list of quadratic double centers is given by:

• The double generic Hamiltonian center denoted “H+H” depending of three
parameters, H = 1

2 (x2 + y2)− lx2y − n
3 y

3 + p
3x

3, n(n− 2l) < 0.
• The double generic reversible center denoted “R+R”, (m = p = 0, (n+ q)n <

0, depending of three parameters.
• The double Lotka-Volterra-reversible “LV+R”, l = −n, p = 0,m = 0, n(n+
q) < 0, which is two-dimensional.
• The double reversible-Lotka-Volterra “R+LV”, l = n+ q, p = m = 0, nl <

0, which is two-dimensional.
• The double reversible Hamiltonian center “HR+HR”, p = 0 = m, 2l + q =

0, n(n + q) < 0, represented by the Hamiltonian family H = 1
2 (x2 + y2) −

lx2y − n
3 y

3.
• The double Lotka-Volterra “LV+LV”, l = −n, p = 0,m = 0, 2n + q =

0, n(n+ q) < 0, which is of dimension one.

Proof. Assume that (0, 0) is a generic Hamiltonian center, m = 0, q = −2l, n(n +
q) < 0, then q

ω2 = −2 l
ω2 and thus the Hamiltonian displays another center around

(0, 1
n ). So this is an example of double center that we denote “H+H”. It is a 3

parameter family of double centers:

ẋ = −∂H
∂y

,

ẏ =
∂H

∂x
,

H =
1

2
(x2 + y2)− lx2y − n

3
y3 +

p

3
x3,

n− 2l

n
< 0.

(10)

Consider now that (0, 0) is a generic reversible center m = p = 0, n+q
n < 0, then

it is easy to check that (0, 1
n ) is also a center of reversible type. This is also a

3-dimensional family that we denote “R+R”:

ẋ = − y + lx2 + ny2,

ẏ = x+ qxy.
(11)
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Consider now that (0, 0) is a Lotka-Volterra l = −n, p = 0,m = 0, n(n+ q) < 0.
Then we know that (0, 1

n ) is a reversible center. This is a 2-dimensional component
that we denote “LV+R”

ẋ = − y + l(x2 − y2),

ẏ = x+ qxy.
(12)

If we assume (0, 1
n ) is a Lotka-Volterra, we should have l

ω2 = −n, p = 0, m =
0, n(n+ q) < 0, which is l = n+ q. It is easy to check (0, 0) is a center of reversible
type. This is a 2−dimensional component that we denote “R+LV”

ẋ = − y + lx2 + (l − q)y2,

ẏ = x+ qxy.
(13)

We should check if it would be possible that (0, 0) and (0, 1
n ) are both Lotka-

Volterra. We should have l = −n, l
ω2 = −n, hence ω = 1 and thus 2n + q = 0.

This is a component of dimension 1 that we note “LV+LV”

ẋ = − y + l(x2 − y2),

ẏ = x+ 2lxy.
(14)

Note that this example can be reduced to a single one by change of scaling so that:
l = 1.

Finally, if we assume that (0, 0) is a reversible Hamiltonian center, p = 0 =
m, 2l+q = 0, n(n+q) < 0, it is immediate that (0, 0) is also a reversible Hamitonian
center. This case of double centers, denoted “HR+HR” is represented by the two-
dimensional family of Hamiltonian systems H = 1

2 (x2 + y2)− lx2y − n
3 y

3.

The dimension mentioned here refers to the above normal form and it should
be distinguished from the dimension in the initial moduli space of quadratic vector
fields.

�

3.5. Stationary points in the Poincaré compactification.

Theorem 7. The list of global phase portrait for quadratic double centers is given
by

• For the double center “LV+LV”, l = −n, p = m = 0, q = −2n, it has two
centers in real domain, and two saddles at infinity. It has an invariant line
y = 1

2n , see figure (a).
• For the double center “LV+R”, l = −n, p = m = 0, n(n + q) < 0, it has

two centers in real domain, and two saddles at infinity. It has an invariant
line y = − 1

q , see figure (a).

• For the double center “R+LV”, l = n + q, p = m = 0, nl < 0, it has two
centers in real domain, and two saddles at infinity. It has an invariant line
y = − 1

q , see figure (a).

• For the double generic center “R+R”, p = m = 0,
i) If n(n+ q) < 0, l(n+ q) > 0, n(q− l) < 0, it has two centers in real

domain, two saddles at infinity. It has an invariant line y = − 1
q , see figure

(a).
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(a) (b)

(c) (d)

Figure 1. Global phase portrait for quadratic double centers. A
similar figure appeared in [20].

ii) If n(n+ q) < 0, l(n+ q) > 0, n(q− l) > 0, it has two centers in real
domain, two nodes and four saddles at infinity. It has an invariant line
y = − 1

q , see figure (b).

iii) If n(n + q) < 0, l(n + q) < 0, it has two centers and two saddles
in real domain, two nodes at infinity. It has an invariant line y = − 1

q , see

figure (c).
• For the double generic Hamiltonian center “H+H”, m = 2l+ q = 0, n(n+
q) < 0, it has two centers and two saddles in real domain, and two nodes
at infinity, see figure (d).
• For the double Hamiltonian and reversible center “HR+HR”, p = m =

2l+ q = 0, n(n+ q) < 0, it has two centers and two saddles in real domain,
and two nodes at infinity, It has an invariant line y = 1

2l , see figure (c).

Before the proof, for system (5), we make Poincaré transformation

x =
1

z
, y =

u

z
, dt = zdτ.

Then

du

dτ
= p+ (q − l)u+ z −mu2 + zu2 − nu3,

dz

dτ
= z(−l −mu+ zu− nu2).

(15)
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With the transformation of x = v
z , y = 1

z , dt = zdτ, We obtain

dv

dτ
= n− z +mv + (l − q)v2 − v2z − pv3,

dz

dτ
= − vz2 − pv2z − qvz.

Here because n 6= 0, so (0, 0) is not a singular point, in the following discussion,
we just consider system (15) at infinity.

Proposition 8. The double Lotka-Volterra center “LV+LV,” has two centers in
real domain, and two saddles at infinity. It displays also an invariant line y = 1

2n .

Proof. Under this case, we have l = −n, p = m = 0, q = −2n, which is

ẋ = − y + l(x2 − y2),

ẏ = x+ 2lxy.
(16)

It has no other singularity in real domain except two centers (0, 0) and (0, 1
n ).

At infinity, substituting l = −n, p = m = 0, q = −2n into (15), we have

du

dτ
= − nu+ z + zu2 − nu3,

dz

dτ
= z(n+ zu− nu2).

It has an unique real root (0, 0). And the Jacobian determinant is −n2, so it is a
saddle.

So in this case, it has two centers in real domain, and two saddles at infinity, by
the way, it has an invariant line y = 1

2n . See figure (a). �

Proposition 9. For the Lotka-Volterra-reversible center “LV+R,” there are two
centers in real domain, and two saddles at infinity. It also displays an invariant
line y = 1

2n .

Proof. Under this case, we have l = −n, p = m = 0, n(n+ q) < 0 which is

ẋ = − y − n(x2 − y2),

ẏ = x+ qxy.
(17)

If y = − 1
q , we can obtain x2 = n+q

nq2 from the first equation, combining with

n(n + q) < 0, it has no other singularity in real domain except two centers (0, 0)
and (0, 1

n ).
At infinity, substituting l = −n, p = m = 0 into (15), we have

du

dτ
= (q + n)u+ z + zu2 − nu3,

dz

dτ
= z(n+ zu− nu2).

It has an unique real root (0, 0), because q + n = nu2 is a contradiction with
n(n + q) < 0. And the Jacobian determinant at (0, 0) is n(n + q) < 0, so it is a
saddle.

Hence in this case, it has two centers in real domain, and two saddles at infinity,
by the way, it has an invariant line y = − 1

q . See figure (a). �
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Proposition 10. For the reversible-Lotka-Volterra center “R+LV,” it has two cen-
ters in real domain, and two saddles at infinity, it has an invariant line y = − 1

q .

Proof. Under this case, we have l = n+ q, p = m = 0, n(n+ q) < 0 which is

ẋ = − y + (n+ q)x2 + ny2,

ẏ = x+ qxy.

If y = − 1
q , we can obtain x2 = − 1

q2 from the first equation, so it has no other

singularity in real domain except two centers (0, 0) and (0, 1
n ).

At infinity, substituting l = n+ q, p = m = 0 into (15), we have

du

dτ
= − nu+ z + zu2 − nu3,

dz

dτ
= z(−n− q + zu− nu2).

It has an unique real root (0, 0). And the Jacobian determinant at (0, 0) is n(n+
q) < 0, so it is a saddle.

Hence in this case, it has two centers in real domain, and two saddles at infinity,
by the way, it has an invariant line y = − 1

q . See figure (a). �

Proposition 11. For the double generic reversible center “R+R,” there are three
cases as follows,

• If p = m = 0, n(n+ q) < 0, l(n+ q) > 0, n(q− l) < 0, there are two centers
in real domain, two saddles at infinity and an invariant line y = − 1

q , see

figure (a).
• If p = m = 0, n(n+ q) < 0, l(n+ q) > 0, n(q− l) > 0, there are two centers

in real domain, two nodes and four saddles at infinity and an invariant line
y = − 1

q , see figure (b).

• If p = m = 0, n(n + q) < 0, l(n + q) < 0, there are two centers and two
saddles in real domain, two nodes at infinity and an invariant line y = − 1

q ,

see figure (c).

Proof. Here we substitute p = m = 0 into system(5), which is

ẋ = − y + lx2 + ny2,

ẏ = x+ qxy.

If y = − 1
q , we can obtain x2 = −n+q

lq2 from the first equation.

If l(n+ q) > 0, there are no other singularity in real domain except two centers
(0, 0) and (0, 1

n ).

If l(n + q) < 0, there are four singular points (0, 0), (0, 1
n ), (

√
−n+q

lq2 , −
1
q ) and

(−
√
−n+q

lq2 , −
1
q ).Here the Jacobian determinant at (

√
−n+q

lq2 , −
1
q ) and (−

√
−n+q

lq2 , −
1
q )

are both − 2(n+q)
q , from n(n+q) < 0 we have nq < 0 and q(n+q) > 0, which implies

the other two singular points are saddles.
At infinity, substituting p = m = 0 into (15), we have

du

dτ
= (q − l)u+ z + zu2 − nu3,

dz

dτ
= z(−l + zu− nu2).
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When z = 0, u = 0 or u2 = q−l
n .

If n(n + q) < 0, l(n + q) > 0, n(q − l) > 0, which implies system (5) only has
two centers in real domain, and three roots at infinity. The Jacobian determinant
at (0, 0) is −l(q− l), the condition n(n+ q) < 0, l(n+ q) > 0, n(q− l) > 0 gives to
l(q − l) < 0, so The Jacobian determinant at (0, 0) is positive, the discriminant at

(0, 0) is equal to q2, so (0, 0) is a node. The Jacobian determinant at (
√

q−l
n , 0)

and (−
√

q−l
n , 0) are both 2q(q − l), the condition n(n+ q) < 0, n(q − l) > 0 gives

rise to q(q − l) < 0, we can obtain (
√

q−l
n , 0) and (−

√
q−l
n , 0) are saddles.

Hence under the condition n(n + q) < 0, l(n + q) > 0, n(q − l) > 0, it has two
centers in real domain, two nodes and four saddles at infinity, by the way, it has an
invariant line y = − 1

q . See figure (b).

If n(n + q) < 0, l(n + q) > 0, n(q − l) < 0, which implies system (5) only
has two centers in real domain, and a unique root (0, 0) at infinity. The Jacobian
determinant at (0, 0) is−l(q−l), the condition n(n+q) < 0, l(n+q) > 0, n(q−l) < 0
gives to l(q − l) > 0, so the Jacobian determinant at (0, 0) is negative, so (0, 0) is
a saddle.

Hence under the condition n(n + q) < 0, l(n + q) > 0, n(q − l) < 0, it has two
centers in real domain, two saddles at infinity, by the way, it has an invariant line
y = − 1

q . See figure (a).

If n(n + q) < 0, l(n + q) < 0, which implies system (5) has two centers and
two saddles in real domain, with this condition, we can obtain n(q − l) < 0, which
implies it has a unique root (0, 0) at infinity. The Jacobian determinant at (0, 0) is
−l(q−l), the condition n(n+q) < 0, l(n+q) < 0, n(q−l) < 0 gives to −l(q−l) > 0,
and the discriminant is equal to q2, so (0, 0) is a node.

Hence under the condition n(n+ q) < 0, l(n+ q) < 0, it has two centers and two
saddles in real domain, two nodes at infinity, by the way, it has an invariant line
y = − 1

q . See figure (c). Here we complete the proof. �

Proposition 12. For the double generic Hamiltonian center “H+H,” there are two
centers and two saddles in real domain, and two nodes at infinity, and no invariant
line.

Proof. Under this condition, m = 2l + q = 0, n(n+ q) < 0, we have

ẋ = − y + lx2 + ny2,

ẏ = x+ px2 − 2lxy.

If p 6= 0, we can obtain x = 2ly−1
p from the second equation. Substituting the

equation into the first equation and simplifying, we can get

(4l3 + np2)y2 − (4l2 + p2)y + l = 0.

The discriminant is p2(p2+4l(2l−n)), from n(n+q) < 0 and 2l+q = 0, we can derive
nl > 0, n(2l − n) > 0, which implies l(2l − n) > 0, so the discriminant is positive.

So it must have four singular points (0, 0), (0, 1
n ), A1(

2l(4l2+p2+
√
p2(p2+4l(2l−n)))

2p(4l3+np2) −
1
p ,

4l2+p2+
√
p2(p2+4l(2l−n))

2(4l3+np2) ) andA2(
2l(4l2+p2−

√
p2(p2+4l(2l−n)))

2p(4l3+np2) − 1
p ,

4l2+p2−
√
p2(p2+4l(2l−n))

2(4l3+np2) )

in the real domain.
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The Jacobian determinant at A1 is

D1 = −

√
p2(p2 + 8l2 − 4ln)(lp2 − np2 + l

√
p2(8l2 − 4ln+ p2))

p2(4l3 + np2)

= −

√
p2(p2 + 8l2 − 4ln)((2l − n)p2 + l

√
p2(8l2 − 4ln+ p2))− lp2

p2(4l3 + np2)

= −

√
p2(p2 + 8l2 − 4ln)((2l − n)p2 + l(

√
p2(8l2 − 4ln+ p2))−

√
p4)

p2(4l3 + np2)
.

(18)

Here we assume 2l − n > 0, then we have n > 0 and l > 0, which is obtained from
n(n+ p) < 0, p+ 2l = 0. So under the assumption, we can derive (18) is negative.
if we assume 2l − n < 0, we have n < 0 and l < 0, and we can get D1 < 0. Hence
A1 is a saddle.

The Jacobian determinant at A2 is

D2 = −

√
p2(p2 + 8l2 − 4ln)(−lp2 + np2 + l

√
p2(8l2 − 4ln+ p2))

p2(4l3 + np2)

= −

√
p2(p2 + 8l2 − 4ln)(np2 + l

√
p2(8l2 − 4ln+ p2)−

√
p4)

p2(4l3 + np2)
.

As the same derivation, we can get D2 is negative. So A2 is also a saddle.
At infinity, substituting m = 2l + q = 0 into (15), we have

du

dτ
= p+ (q − l)u+ z + zu2 − nu3,

dz

dτ
= z(−l + zu− nu2).

If z = 0, we have

(19) p+ (q − l)u− nu3 = 0,

if (19) has a unique zero, if and only if

−27p2n2 + 4n(−3l)3 < 0.

Here from n(n + q < 0) and q + 2l = 0 we can obtain nl > 0. So −27p2n2 +
4n(−3l)3 < 0 holds, and (19) has a unique root (u0, 0). The Jacobian determinant
at (u0, 0) is 3(l + nu2

0)2, and the discriminant is 4(l + nu2
0)2, so (u0, 0) is a node.

If p = 0, we recover the double Hamiltonian-reversible center.
Hence, for double generic Hamiltonian center, it has two centers and two saddles

in real domain, and two nodes at infinity, and it has no invariant line. �

Proposition 13. For the double Hamiltonian-reversible center “HR+HR,” it has
two centers and two saddles in real domain, and two nodes at infinity, it has an
invariant line y = 1

2l .

Proof. Under this condition, p = m = 2l + q = 0, n(n+ q) < 0, we have

ẋ = − y + lx2 + ny2,

ẏ = x− 2lxy.
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If y = 1
2l , we can obtain x2 = 2l−n

4l3 from the first equation. From n(n + q) <
0, q + 2l = 0, we get nl > 0, l(n − 2l) < 0, so it must have four singular points

(0, 0), (0, 1
n ), A3(

√
2l−n
4l3 ,

1
2l ) and A4(

√
− 2l−n

4l3 ,
1
2l ) in real domain.

The Jacobian determinant at A3 and A4 are both n−2l
l , it is negative, so the

other two singular points are saddles.
At infinity, substituting p = m = 2l + q = 0 into (15), we have

du

dτ
= − 3lu+ z + zu2 − nu3,

dz

dτ
= z(−l + zu− nu2).

If z = 0, we have u = 0 or u2 = − 3l
n , here nl > 0, so it has a unique root (0, 0).

The Jacobian determinant at (0, 0) is 3l2, and the discriminant is 4l2, so (0, 0) is
a node.

Hence, for double Hamiltonian-reversible center, it has two centers and two sad-
dles in real domain, and two nodes at infinity, and it has an invariant line y = 1

2l . �

3.6. Darboux integral for the generic reversible case. We consider again the
generic reversible case:

ẋ = − y + lx2 + ny2,

ẏ = x+ qxy.

By Dulac’s theorem (see [9, 12]), we know that there exists a linear polynomial
p1 and a quadratic polynomial p2 so that the 1-form associated with the vector
field:

ω = (−y + lx2 + ny2)dy − (x+ qxy)dx = λ1p2dp1 + λ2p1dp2.

We can explicitely compute these scalars (λ1, λ2) and the polynomials p1, p2.

Proposition 14. In the case of a generic reversible double center, the vector field
displays the following Darboux integral:

H = (1 + qy)(
l

q
x2 + ay2 + by + c)−q/2l,

where

a =
nl

q(l − q)
, b =

2l(n− l + q)

q(2l − q)(l − q)
, c =

(n− l + q)

q(2l − q)(l − q)
.

Proof. From the special form of the Darboux integral for reversible case, it is clear
that the system should have p1 = 0 as invariant line. So we try p1 = 1 + qy. This
yields:

ω = qλ1p2dy + λ2(1 + qy)dp2.

This displays:

ω = (−y + lx2 + ny2)dy − x(1 + qy)dp2 =

qλ1p2dy + λ2(1 + qy)p′2xdx+ λ2(1 + qy)p′2ydy.
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By equating the two terms in front of dx, we obtain:

λ2p
′
2x = −x,

p2 = − 1

2λ2
x2 + f(y).

Replacing this equality in the terms factorizing dy yields:

−y + lx2 + ny2 = qλ1(− 1

2λ2
x2) + qλ1f(y) + λ2(1 + qy)f ′(y).

Comparing the two terms in x2, we get l/q = − λ1

2λ2
. In fact if H is a Darboux

integral, Hk is also a Darboux integral so that we can fix arbitrarily λ1 = 1. We
then deduce that λ2 = − q

2l . We know that f(y) should be quadratic, introduce

f(y) = ay2 + by + c in the equation −y + ny2 = qλ1f(y) + λ2(1 + qy)f ′(y). It is
then obvious that it determines (a, b, c) as prescribed in the proposition. �

An important corollary is that not only the system leaves invariant the line
p1 = 1 + qy = 0 but also the conic p2 = lx2 + ay2 + by + c = 0. The two branches
of this conic are nothing else than the two heteroclinic connections between the
saddles at infinity.

We explain now how the Darboux integral can be used to describe precisely the
geometry of the phase portrait in the three generic cases (a), (b) and (c) of reversible
cases with double centers. In this part, we include a further simplification n = 1.
This is easily achieved after a scaling of variables (x, y)→ λ(x, y). Note that with
this scaling, the two centers are now (0, 0) and (0, 1). The solutions are given by
the curves:

(20)
l

q
x2 +

l

q(l − q)
y2 + by + c = h(1 + qy)2l/q,

where the parameter h varies within some limits which will be separatedly specified.
We now discuss each cases.

• The case (a) corresponds to the conditions 1+q < 0, l(1+q) > 0 (equivalent
to l < 0) and q − l < 0. Note that 1 > l

q > 0. For all fixed h, we look at

the asymptotic behaviour when (x, y)→∞ of

(21)
l

q
x2 +

l

q(l − q)
y2 + by + c− h(1 + qy)2l/q.

The leading term of this function is l
qx

2 + l
q(l−q)y

2 because l/q < 1. We

see that (x, y) → ∞ is impossible and so for all h, the curve is bounded.
The dynamics imposes that l

qx
2 + l

q(l−q)y
2 + by + c − h(1 + qy)2l/q = 0 is

a periodic orbit. The limit h→∞ yields the invariant line 1 + qy = 0. We
obtain the phase portrait (a).
• The case (b) corresponds to the conditions 1+q < 0, l(1+q) > 0 (equivalent

to l < 0) and q − l > 0 which implies l
q > 1. For h = 0, the curve

l
qx

2 + l
q(l−q)y

2 + by + c = 0 is an hyperbola. It can be easily checked

that the two branches of this hyperbola defines two heteroclinic connexions
between the four saddles at infinity. Direct computation shows that the
values of h at each centers is negative. So, we have necessarily h < 0 on all
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the two domains defined above and below the two branches of hyperbolas
which are separatrices for the dynamics. We now look at the expression:

(22)
l

q
x2 +

l

q(l − q)
y2 + by + c− h(1 + qy)2l/q,

when h < 0, and its asymptotics when (x, y) → ∞. The leading term is
now l

qx
2− h(1 + qy)2l/q and it cannot be compensated by the other terms.

This impossibility show that the curves with h < 0 are bounded and so
they are periodic orbits. The two domains defined by h < 0 are periodic
annuli with external boundaries given by the two heteroclinic connexions
defined by the equation of the hyperbola.

For h > 0 on the contrary, the leading term l
qx

2−h(1+qy)2l/q is the sum

of contributions of different signs and they can compensate. The asymptotic
shows that the curves have the two limit points which are nodes at infinity.
The special solution 1 + qy = 0 is obtained at the limit h→ +∞.
• The case (c) corresponds to 1+q < 0 and l(1+q) < 0 (equivalent to l > 0),

we have necessarily l
q < 0 and l > q. The curve h = 0, lqx

2 + l
q(l−q)y

2 +

by + c is an ellipse and it intersects the invariant line in the two saddles
in the finite plane. The special values of h = h(0,0) = 1−l+q

q(2l−q)(l−q) and

h = h(0,1) = (1 + q)−q/2l (l+1)(q+1)
q(2l−q)(l−q) , corresponding respectively to the two

centers are positive. So inside the ellipse, we have h > 0. The leading term
when (x, y)→∞ of the expression (22) is l

qx
2 + l

q(l−q)y
2 and it cannot be

compensated. So all orbits (except the invariant line) are bounded and thus
periodic orbits. We obtain two periodic annuli whose external boundary is
the invariant line and the ellipse h = 0.

Consider now the curves so that h < 0. As l/q < 0, the quantity −h(1 +
qy)2l/q tends to +∞ as y → −1/q. This term can only be compensated by
x→ ±∞. So the orbits are unbounded. Their asymptotics is given by the
leading term l

qx
2 − h(1 + qy)2l/q. We obtain heteroclinic connexions from

(−∞,− 1
q ) and (− 1

q , +∞). This yields the phase portrait of case (c).

3.7. The Hamiltonian function H in the Hamiltonian-reversible case. We
have seen the Hamiltonian H in the generic case of the Hamiltonian component:

H =
1

2
(x2 + y2)− lx2y − n

3
y3 +

p

3
x3.

This Hamiltonian on the intersection Hamiltonian-reversible yields:

H =
1

2
(x2 + y2)− lx2y − n

3
y3.

But as the system displays the invariant line 1− 2ly = 0 in that case, it is more
natural to factorize H in such way:

H = (1− 2ly)[
1

2
x2 +

n

6l
y2 − 1

2l
(
1

2
− n

6l
)y − 1

4l2
(
1

2
− n

6l
)]

+
1

4l2
(
1

2
− n

6l
).
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The Hamiltonian function associated to a Hamiltonian system is defined up to
a constant. So we can consider as well the first integral

H − 1

4l2
(
1

2
− n

6l
) =

(1− 2ly)[
1

2
x2 +

n

6l
y2 − 1

2l
(
1

2
− n

6l
)y − 1

4l2
(
1

2
− n

6l
)].

We should compare this first integral with the Darboux first integral obtained
in the reversible case when we fix 2l+ q = 0. A easy computation shows that if we
fix 2l+ q = 0, then the Darboux integral becomes polynomial and that it coincides
with

−(1− 2ly)[
1

2
x2 +

n

6l
y2 − 1

2l
(
1

2
− n

6l
)y − 1

4l2
(
1

2
− n

6l
)].

We further discuss the limit when a Hamiltonian case approach a Reversible ones.
We note that the phase portrait of the Hamiltonian case (a) displays three families
of heteroclinic connexions between the two nodes at infinity. Each of these families
are separated by two special heteroclinic which are also respectively homoclinic
to one of the two saddles in the finite plane. A Hamiltonian Reversible belongs
necessarily to the case (c) because 2l + q = 0. What happens of this family as the
parameter p goes to zero? A consequence of the previous computation is that we
can write the levels of the Hamiltonian as follows:

H = (1− 2ly)[
1

2
x2 +

n

6l
y2 − 1

2l
(
1

2
− n

6l
)y − 1

4l2
(
1

2
− n

6l
)] +

p

3
x3 = h.

We can compute the level of this Hamiltonian, h = h(A1) and h = H(A2) which
corresponds respectively to the two homoclinic loops around A1 and A2 and see
what happens as p → 0. We see that these two homoclinic loops tend to the
invariant line 1−2ly = 0 and two sets of heteroclinic connexions which connect the
two saddles between themselves and the nodes at infinity. The two points A1 and
A2 tend to the saddles of the finite plane. This is a quite interesting bifurcation of
quadratic double centers which connects case (d) and case (c).

3.8. The Darboux integral in the Lotka-Volterra center. We first consider
the case LV+ Reversible case where we have to impose l = −n. In that case, the
Darboux integral yields:

H = (1 + qy)(
−n
q
x2 + ay2 + by + c)q/2n,

where

a =
n2

q(n+ q)
, b =

−2n

q(n+ q)
, c =

1

q(n+ q)
.

This is equivalent to

H = (1 + qy)[−n
q
x2 +

1

q(n+ q)
(ny − 1)2]q/2n,
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and so there are three invariant lines. Note that the sign condition n(n + q) < 0
implies that two of these lines are complex (conjugated).

Finally, we consider the case of the double LV-LV case where we add the condition
q = −2n. This displays a rational first integral:

H =
1 + 2ly

[ 1
2x

2 + 1
2 (y + 1

l )
2]
.

Indeed, it can be easily checked that this is an integral of

ẋ = − y + l(x2 − y2),

ẏ = x+ 2lxy.
(23)

4. Geometry of the stratified set of quadratic double centers

We can easily eliminate one parameter by scaling (x, y) 7→ (λx, λy). By conven-
tion, we fix the value of n equal to 1. This fix the two centers to (0, 0) and (0, 1).
Then, the set of double centers is semi-algebraic of (generic) codimension one in
the space of parameters (l, q, p). It is the union of two components, the generic
reversible set and the generic Hamiltonian case described as follows:

ẋ = −y + lx2 + y2,

ẏ = x+ qxy + px2,
(24)

The set of reversible centers is given by

ẋ = −y + lx2 + y2,

ẏ = x+ qxy.
(25)

Here, p = 0 with the condition n(n + q) = 1 + q < 0, hence q < −1. So this
is an open half-plane of equations p = 0, q < −1. Within this set, there are three
subdomains:

• The open stratum (dimension two) defined by p = 0, l(1 + q) > 0 and q < l
where the phase portrait is of type (a), see figure 2.

• The open stratum (dimension two) defined by p = 0, l(1 + q) > 0 and q > l
where the phase portrait is of type (b), see figure 2.

• The open stratum (dimension two) defined by p = 0, l(1 + q) < 0 where the
phase portrait is of type (c), see figure 2.

We have also three strata of dimension one:

• The open stratum (dimension one) defined by p = 0, l(1 + q) > 0 and
q = l which is adherent both to strata (a) and (b) and is represented by
generalized Darboux integral. We find:

H = −1

4
Y −2x2 +

∫
Y −3(−y + y2)dy,

with Y = 1 + qy.
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Figure 2. Geometry of the stratified set of quadratic double centers

• The open stratum (dimension one) represented by p = 0, l = 0 which is in
the closure of (a) and (c). These points are also represented by generalized
Darboux integrals. In that case, the equation is separable:

dy

dx
= x

1 + qy

−y + y2
,

which yields to the first integral:

H =
1

2q
y2 − q + 1

q2
y − q + 1

q3
ln(1 + qy)− 1

2
x2.

• Inside the domain (a), the semi-line p = 0, l = −1, q < −1 defines the set
LV+R and the semi-line p = 0, q = l − 1, l < 0 defines the set R+LV.

We have one stratum of dimension zero:

• On the semi-line p = 0, l = −1, q < −1, the point (−1,−2, 0) corresponds
to the LV+LV case.

The set of Hamiltonian centers is given by:

ẋ = −y + lx2 + y2,

ẏ = x− 2lxy + px2.
(26)

Hence q = −2l, with the condition l > 1/2. This is also an half-plane which is
transverse to the previous reversible set. The intersection of the two stata reversible
and Hamiltonian corresponds to the reversible Hamiltonians. It is one-dimensional,
contained in the domain (c) with the equation q + 2l = 0, see figure 2.
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It should be said that the reversible part of the double-centers set is left globally

invariant by the mapping, that we denote φ : (x, y) 7→ (Ax, 1 − y), A =
√
− 1

1+q

which defines an orbital conjugacy:

(x, y, t) 7→ (Ax, 1− y,At)(27)

of the vector field:

ẋ = − y + lx2 + y2,

ẏ = x+ qxy,

into the vector field:

ẋ = − y + Lx2 + y2,

ẏ = x+Qxy,

with

L = − l

1 + q
,Q = − q

1 + q
.(28)

This mapping leaves globally invariant each domains of the double center set; It
exchanges LV+R into R+LV. Note that (l, q) and (L,Q) are colinear with (0, 0).
The fixed point set of the mapping is the line q = −2 which contains the point
LV+LV. In restriction to this set the mapping is an involution and thus the line
q = −2 coincides with the set of double centers which are invariant by the involution
(x, y) 7→ (x, 1 − y). It determines another special point in the part (c) of figure
2, which is the intersection of this line q = −2 with the line HR+HR: (q, l, n) =
(−2, 1, 1). This point corresponds to the Hamiltonian:

H = (1− 2y)[
1

2
x2 +

1

6
(y2 − y) +

1

12
],(29)

which defines a family of elliptic curves. This case was considered in [22].

To be complete, a full perturbation theory of the double centers within the
quadratic planar vector fields should consider perturbations of all the different
strata of the stratified set described above. This has not been done yet. We
propose here to focus on the perturbation of the highest codimension case, the
double LV+LV system.

5. Perturbation theory of the double LV+LV center

In this section, we focus on the perturbation theory, within quadratic planar
vector fields, of double “LV+LV”centers. For that purpose, we need to explicit the
integrating factor. This is also the opportunity to provide another way to find the
first integral. The full perturbation theory of reversible double centers is certainly
much harder than what is done here but we can hope to get some insight of the
general case by analyzing the simplest case.
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5.1. The integrating factor. We are concerned here with the 1-form:

ω0 = (−y + lx2 + y2)dy − (x+ qxy)dx.

With X = 1
2x

2, we get:

ω0 = (−y + 2lX + y2)dy − (1 + qy)dX = (−y + y2)dy + [2lXdy − (1 + qy)dX].

We look for an integrating factor of [2lXdy−(1+qy)dX] of the form (1+qy)α, α ∈
R. Choose α = − 2l

q − 1, so that:

[2lX(1 + qy)αdy − (1 + qy)α+1dX] = d(−(1 + qy)α+1X) = d(−(1 + qy)−
2l
q X).

This yields:

(1+qy)αω0 = (1+qy)α(−y+y2)dy+d(−(1+qy)α+1X) = d[(1+qy)α+1(Ay2+By+C−X)],

where A = 1
q(3−α) , B = αq−3q−2

q2(α−2)(α−3) , C = αq−3q−2
q3(α−3)(α−2)(α−1) , or in the initial nota-

tions:

(1 + qy)−
2l
q −1ω0 = d[(1 + qy)−

2l
q (Ay2 +By + C − 1

2
x2)].

This yields:

A =
1

2(q − l)
, B = −[

q − l + 1

(q − l)(q − 2l)
], C = −[

q − l + 1

2l(q − l)(q − 2l)
].

In the following, we consider more particularly, the LV+LV case: (l, q, p) =
(−1,−2, 0):

ẋ = −y − x2 + y2,
ẏ = x− 2xy.

5.2. The first-order bifurcation function. This displays:

(1− 2y)−2ω0 = dH,

H = (2y − 1)−1[
1

2
x2 +

1

2
y2 − 1

4
y +

1

8
].

(30)

So that the integrating factor is ψ = (1 − 2y)−2 and the level sets H = h are
circles centered at (0, 1

4 + 2h) of radius ρ2 = ( 1
4 + 2h)2 − ( 1

4 + 2h). The domain of

variations of h is defined by (1
4 +2h)2− ( 1

4 +2h) ≥ 0 or equivalently by the union of
the two intervals h ≤ −1/8 and h ≥ 3/8 and the circle is reduced to a point (0, 0)
for h = − 1

8 and respectively (0, 1) for respectively h = 3
8 .

We are thus concerned with the first-order Melnikov function M1(h) (also called
the first-order bifurcation function) of system (30) with quadratic polynomial per-
turbation:

ω0 + εω1(31)

with

M1(h) =

∮
H=h

1

(2y − 1)2
ω1(32)
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where

ω1 =
∑

0≤i+j≤2

(aijx
iyjdy + bijx

iyjdx).

First we denote ωkij = xiyj

(2y−1)k
dx and δkij = xiyj

(2y−1)k
dy. Then the first-order Mel-

nikov function can be written as

M1(h) =

∮
H=h

a00δ
2
00 + a01δ

2
01 + a02δ

2
02 + a10δ

2
10 + a11δ

2
11 + a20δ

2
20

+ b00ω
2
00 + b01ω

2
01 + b02ω

2
02 + b10ω

2
10 + b11ω

2
11 + b20ω

2
20.

(33)

At this point, it is important to recall the notion of “relative cohomology” which
is closely related with the technics of computing bifurcation functions by the algo-
rithm of the successive derivatives (cf. [11, 15]).

Definition 1. Let ω be a polynomial 1-form. We say that ω is relatively exact (with
respect to the function H) on an open set U if there are two analytic functions g
and R, defined on the open set U such that ω = gdH + dR. More generally, we
say that the two 1-forms ω and ω′ are relatively cohomologous with respect to the
function H on the domain U , if there are two analytic functions g and R such that
ω − ω′ = gdH + dR.

Lemma 15. The 1−forms δ2
00, δ

2
01, δ

2
02, δ

2
20, ω

2
10, ω

2
11 are relatively exact (w.r. to H)

on the open period annuli defined by H:

(34)

δ2
00 = d( 1

2(1−2y) ),

δ2
01 = d

(
1

4(1−2y) + 1
4 ln|2y − 1|

)
,

δ2
02 = d( 1

4y + 1
4 ln|2y − 1| − 1

8(2y−1) ),

δ2
20 = −ln|2y − 1|dH + d

(
Hln|2y − 1| − 1

4y −
1
8 ln|2y − 1|+ 1

8(2y−1)

)
,

ω2
10 = 2

2y−1dH + d(− H
2y−1 −

1
4 ln|2y − 1|+ 1

8
1

2y−1 ),

ω2
11 =

(
y

2y−1 −
1
2 ln|2y − 1|+ 1

2(2y−1)

)
dH

+d
(

1
2 ln|2y − 1|H − H

2(2y−1) + 1
16(2y−1) −

3
16 ln|2y − 1| − 1

4y
)
.

Furthermore, the 1-forms δ2
11, ω

2
00, ω

2
01, ω

2
02, ω

2
20 are relatively cohomologous to

combinations of δ1
10, δ

2
10, and δ3

10:

(35)

δ2
11 = 1

2δ
2
10 + 1

2δ
1
10

ω2
00 = d( x

(2y−1)2 ) + 4δ3
10,

ω2
01 = d( xy

(2y−1)2 ) + δ2
10 + 2δ3

10,

ω2
02 = d( xy2

(2y−1)2 ) + δ2
10 + δ3

10,

ω2
20 = x

2y−1dH + 2Hδ2
10 − 1

4δ
2
10 − 1

2δ
1
10.

Proof. Here we omit some decompositions which are obvious. For δ2
ij and ω2

ij , we

expand them at y = 1
2 , and then derive them as follows:
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δ2
11 =

1

2

x

(2y − 1)2
dy +

1

2

x

2y − 1
dy =

1

2
δ2
10 +

1

2
δ1
10,

δ2
20 =

2H(2y − 1)− y2 + 1
2y −

1
4

(2y − 1)2
dy

= Hd(ln|2y − 1|) +
1
2y − y

2 − 1
4

(2y − 1)2
dy

= −ln|2y − 1|dH + d(Hln|2y − 1| − 1

4
y − 1

8
ln|2y − 1|+ 1

8(2y − 1)
),

ω2
00 = d(

x

(2y − 1)2
)− xd(

1

(2y − 1)2
) = d(

x

(2y − 1)2
) + 4δ3

10,

ω2
01 = d(

xy

(2y − 1)2
)− xd(

y

(2y − 1)2
) = d(

xy

(2y − 1)2
) + δ2

10 + 2δ3
10,

ω2
02 = d(

xy2

(2y − 1)2
)− xd(

y2

(2y − 1)2
) = d(

xy2

(2y − 1)2
) + δ2

10 + δ3
10,

ω2
10 =

1

(2y − 1)2
d(

1

2
x2)

=
1

(2y − 1)2
d(H(2y − 1)− 1

2
y2 +

1

4
y − 1

8
)

=
1

2y − 1
dH +

2H

(2y − 1)2
dy − y

(2y − 1)2
dy +

1

4(2y − 1)2
dy

=
2

2y − 1
dH + d(− H

2y − 1
− 1

4
ln|2y − 1|+ 1

8

1

2y − 1
),

ω2
20 =

x

(2y − 1)2
d(

1

2
x2)

=
x

(2y − 1)2
d(H(2y − 1)− 1

2
y2 +

1

4
y − 1

8
)

=
x

2y − 1
dH + 2Hδ2

10 −
1

4
δ2
10 −

1

2
δ1
10,

ω2
11 =

y

(2y − 1)2
d(

1

2
x2)

=
y

(2y − 1)2
d(H(2y − 1)− 1

2
y2 +

1

4
y − 1

8
)

=
y

2y − 1
dH +

2Hy

(2y − 1)2
dy − y2

(2y − 1)2
dy +

y

4(2y − 1)2
dy

= (
y

2y − 1
+

1

2(2y − 1)
+

1

2
ln|2y − 1|)dH

+ d(
1

2
ln|2y − 1|H − 1

2

H

2y − 1
+

1

16(2y − 1)
− 3

16
ln|2y − 1| − 1

4
y).

This completes the proof of Lemma 15. �

The presence of the term ln|2y − 1| justifies the name “relative logarithmic
cohomology”.
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An easy calculation with Lemma 15 gives the next lemma:

Lemma 16. The 1-form ω1

(2y−1)2 can be decomposed into

ω1

(2y − 1)2
= g(x, y)dH + dR(x, y) +N(x, y),

where g(x, y), R(x, y) are functions in x and y and N(x, y) is a 1-form combination
of the three forms δi10, i = 1, 2, 3:

g(x, y) = −(a20 +
1

2
b11)ln|2y − 1|+ 2b10

1

2y − 1
+

1

2
b11

2y + 1

2y − 1
+ b20

x

2y − 1
,

R(x, y) =
1

2y − 1
(
1

8
a20 +

1

8
b10 +

1

16
b11 −

1

2
a00 −

1

4
a01 −

1

8
a02)

+
x

(2y − 1)2
(b00 + b01y + b02y

2) +
1

4
y(a02 − a20 − b11)

+ ln|2y − 1|(1

4
a01 +

1

4
a02 −

1

8
a20 −

1

4
b10 −

3

16
b11)

+Hln|2y − 1|(a20 +
1

2
b11)− H

2y − 1
(b10 +

1

2
b11)

and

N(x, y) = a10δ
2
10 + a11(

1

2
δ2
10 +

1

2
δ1
10) + 4b00δ

3
10 + b01(δ2

10 + 2δ3
10)

+ b02(δ2
10 + δ3

10) + b20(2Hδ2
10 −

1

4
δ2
10 −

1

2
δ1
10)

= (
1

2
a11 −

1

2
b20)δ1

10 + (a10 +
1

2
a11 + b01 + b02 −

1

4
b20)δ2

10

+ 2b20Hδ
2
10 + (4b00 + 2b01 + b20)δ3

10.

(36)

From Lemma 15, Lemma 16 and the equation (33), we can simplify M1(h) into

M1(h) =

∮
H(x, y)=h

N = (
1

2
a11 −

1

2
b20)I1(h) + (a10 +

1

2
a11 + b01 + b02 −

1

4
b20)I2(h)

+ 2b20hI2(h) + (4b00 + 2b01 + b20)I3(h)

(37)

where

I1(h) =

∮
H(x, y)=h

δ1
10,

I2(h) =

∮
H(x, y)=h

δ2
10,

I3(h) =

∮
H(x y=h)

δ3
10.

Theorem 17. We can get the generators Ii(h)(i = 1, 2, 3) by direct computation
of residues as follows,
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I1(h) = 2πh+
π

4
, h < −1

8

I1(h) = 2πh− 3π

4
, h >

3

8

I2(h) = −2πh− π

4
, h < −1

8

I2(h) = 2πh− 3π

4
, h >

3

8

I3(h) = (4h2 − h− 3

16
)(−π), h < −1

8

I3(h) = (4h2 − h− 3

16
)(π), h >

3

8
.

(38)

Proof. We consider the complex coordinates

z = x+ i(y − y0) = Reiθ

z = x− i(y − y0) = Re−iθ,

with

R =
1

4

√
(1 + 8h)(8h− 3),

y0 =
1

4
+ 2h

y0(y0 − 1) = R2.

Along H = h, we can assume that z = R2/z. We can thus write:

δ1
10 =

1

4

(z2 +R2)2

z2(z + iy0)(z + i(y0 − 1))
= F1(z)dz.

We fix h < − 1
8 and consider the circle C− of radius R = 1

4

√
(1 + 8h)(8h− 3). The

rational form F1(z)dz has 3 poles:

• z = 0 or (x, y) = (0, y0), which is the center of the circle C−1 = δD−1,
hence inside the disk D−,
• z = −iy0 or (x, y) = (0, 0), which is a stationary point, also inside the disk
D−,
• z = −i(y0 − 1) or (x, y) = (0, 1), the other stationary point outside of the

disk D−.

Hence by Cauchy’s residue theorem, we get:

I1(h) =

∫
C−

F1(z)dz = 2πi{[res(F1(z), z = 0)] + [res(F1(z), z = −iy0)]}.

We find,

2πi[res(F1(z), z = 0)] =
π

2
(4h− 1

2
),

and
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2πi[res(F1(z), z = −iy0)] =
π

2
,

I1(h) =

∫
C−

F1(z)dz = 2πh+
π

4
, h < −1

8
.

We now fix h > 3
8 and consider the circle C+ = δD+ centered at (0, y0) of radius

R = 1
4

√
(1 + 8h)(8h− 3).

• The point z = 0 or (x, y) = (0, y0), which is the center of the circle C−1 =
δD−1, is inside the disk D−,
• z = −iy0 or (x, y) = (0, 0), which is a stationary point, is outside of the

disk D−,
• z = −i(y0 − 1) or (x, y) = (0, 1), the other stationary point is inside of the

disk D−.

Hence by Cauchy’s residue theorem, we get:

I1(h) =

∫
C−

F1(z)dz = 2πi{[res(F1(z), z = 0)] + [res(F1(z), z = −i(y0 − 1))]}.

The first residue was computed above. The second one is given by:

2πi[res(F1(z), z = −i(y0 − 1))] = −π
2
,

and thus:

I1(h) =

∫
C−

F1(z)dz = 2πh− 3π

4
, h >

3

8
.

The 1-form δ2
10 = x

(2y−1)2 dy can be written (along H = h) δ2
10 = F2(z)dz :

F2(z) =
1

4i

z2(z + R2

z )(1 + R2

z2 )

[−iz2 + (2y0 − 1)z + iR2]2
,

F2(z) =
i

4

(z2 +R2)2

z[(z + iy0)(z + i(y0 − 1)]2
.

We first assume that h < − 1
8 and are concerned with the disk D− inside which

F2(z) displays two poles z = 0 and z = −iy0.

We find easily that

Res(F2(z), z = 0) =
i

4
,

and then the residue:

Res(F2(z), z = −iy0) =
i

4
[
−2(−y2

0 +R2)2

y0
+ 3y2

0 − 2R2 − R4

y2
0

]

Res(F2(z), z = −iy0) =
i

4
[(−1

2
− 4h) + (8h)]

So Cauchy’s residue formula yields:
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I2(h) =

∫
H=h

F2(z)dz = −π
4
− 2πh, h < −1

8
.

Next we fix h > 3
8 and are concerned with the upper disk D+ inside which F2(z)

displays the two poles z = 0 and z = −i(y0 − 1). The first residue for z = 0 is the
same as above:

Res(F2(z), z = 0) =
i

4
.

The second residue is

Res(F2(z), z = −i(y0−1)) =
i

4
[
2[(−(y0 − 1)2 +R2]2

(y0 − 1)
+3(y0−1)2−2R2− R4

(y0 − 1)2
],

Res(F2(z), z = −i(y0 − 1)) =
i

4
[
1

2
(8h− 3) + (2− 8h)].

And Cauchy’s residue formula yields:

I2(h) =

∫
H=h

F2(z)dz = 2πh− 3π

4
, h >

3

8
.

The 1-form δ3
10 = x

(2y−1)3 dy can be written (along H = h) δ3
10 = F3(z)dz :

F3(z) =
1

4i

z3(z + R2

z )(1 + R2

z2 )

[−iz2 + (2y0 − 1)z + iR2]3
,

F3(z) = −1

4

(z2 +R2)2

[(z + iy0)(z + i(y0 − 1)]3
.

Consider first the case h < − 1
8 , the rational function F3(z) has a single pole

z = −iy0 inside the disk D−. The residue of F3(z) at the point z = −iy0 is given
by evaluating:

−1

4
[

(z2 +R2)2

[z + i(y0 − 1)]3
]” |z=−iy0 .

This yields

Res(F3(z), z = −iy0) =
iR2

2
,

and hence:

I3(h) =

∫
H=h

F3(z)dz = −π(4h2 − h− 3

16
), h < −1

8
.

It is then obvious that the residue of F3(z)dz at infinity is zero. So that we
obtain:

I3(h) =

∫
H=h

F3(z)dz = π(4h2 − h− 3

16
), h >

3

8
.

�
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Remark 1. The 1-forms δi10, i = 1, 2, 3 are not independent in the relative coho-
mology. From the computations above it results that:

2δ1
10 + (−1 + 8h)δ2

10 + δ3
10 = gdH + dR,

for some functions g,R analytic on the open period annuli.

Substituting (38) into (37), we can obtain:

Theorem 18. The first-order bifurcation function is given by:

M1(h) =

{
− 1

16π(8h+ 1)(A1h+A0), h < − 1
8

1
16π(8h− 3)(B1h+B0), h > 3

8

where

A1 = 32b00 + 16b01 + 8b02 + 8b20,

A0 = 4a10 − 12b00 − 2b01 + b02 + b20,

B1 = 32b00 + 16b01 + 8b02 + 8b20,

B0 = 4a10 + 4a11 + 4b00 + 6b01 + 5b02 − 3b20.

Remark 2. It is interesting to note that the involution φ : (x, y) 7→ (x, 1 − y)
leaves invariant the vector field LV+LV, and it permutes its two stationnary points
(0, 0) and (0, 1). The pull-back of the first integral H by φ yields φ∗(H) = −H + 1

4
and it leaves invariant the integrating factor. This involution induces an action on
the space of the parameters of the perturbation that, by abuse of notations, we also
denote φ∗ : (aij , bij 7→ (aij , bij) which can be computed:

a00 = a00 + a01 + a02, a10 = a10 + a11, a01 = −a01 − 2a02,
a20 = a20, a11 = −a11, a02 = a02

b00 = −b00 − b01 − b02, b10 = −b10 − b11, b01 = b01 + 2b02,

b20 = −b20, b11 = b11, b02 = −b02.

The coefficients A0, A1, B1, B0 of the function M1(h) are polynomials in the pa-
rameters (aij , bij) of the pertubation. It is easy to check that the pullback display:
φ∗(A1) = −B1 and φ∗(A0) + 1

4φ
∗(A1) = B0. So that we get:

φ∗[− 1

16
π(8h+ 1)(A1h+A0)] =

1

16
π(8h− 3)(B1h+B0).

From the theorem 18, we can deduce that the maximal configurations of limit
cycles which can appear in a first-order one-parameter perturbation theory of the
double center “LV+LV” is (1, 0), (0, 1), (1, 1). This was already proved in [3]. Of
course, it is necessary to complete with computations of higher-order bifurcation
functions. This was done at order two in [17] and [22] but not directly with the
approach of successive derivatives developped in [11, 15]. In particular, the aver-
aging theory used in [22] can only be applied to a perturbation of an isochronous
center (or double center). The article [3] was based on a first-order approximation
of the Bautin ideal. This has been recently generalized in [12] where the set of all
bifurcations functions has been characterized geometrically.
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6. Conclusion and perspectives

We gave a full description of the stratification of the semi-algebraic set of the
double-centers in the quadratic planar vector fields. We considered the first-order
perturbation theory of the double Lotka-Volterra system using “relative logarithmic
cohomology”. This approach relates with several subjects currently developped in
singularity theory (see for instance [19]) and we believe it could be an appropriated
setting for the general perturbation theory of reversible double centers. It should be
extended to second-order perturbation theory and compared with Iliev’s essential
perturbation theory and Bautin ideal approach (see [12, 17]). We plan also to
analyze more deeply the prolongation theory of the limit cycles which appear for
small perturbations.
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Sorbonne Université, Paris 6, Laboratoire Jacques–Louis Lions, UMR 7598 CNRS,
4 Place Jussieu, 75252, Paris, France and School of Mathematical Sciences, Shanghai

Jiao Tong University, Shanghai, 200240, PR China
E-mail address: Jean-Pierre.Francoise@upmc.fr

School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai, 200240,

PR China
E-mail address: peixing0806@sjtu.edu.cn


