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Abstract

Explaining the response of catchments with a mix of pervious and impervious surfaces requires the

inclusion of controls other than catchment imperviousness. In this study, we made use of a large sample

of 70,227 events in 852 United States catchments to analyze the interplay of total impervious area (T I A)

and antecedent soil moisture (ASM) in determining the event runoff ratio (RR). First, we investigated

the importance of T I A as a spatial control compared to other catchment attributes (describing climate

and catchment landscape) in explaining the differences between catchments in terms of median event-

scale RR. Second, we examined the importance of ASM as a temporal control of the variability of

RR in comparison with spatial settings and other event characteristics. Third, events were grouped

into 30 classes of T I A and 30 classes of ASM , and linear regression models were used to analyze the

evolution of RR depending on each one of the two independent variables. Results showed the following:

(1) Analysis of the importance of space-varying catchment descriptors highlighted the relevance of

T I A as a control of catchment response, whereas ASM showed a stronger ability compared to other

event characteristics. (2) ASM played a significant role in urbanized catchments as in rural ones. The

absence of abrupt changes in the linear model parameters indicates that the impact of urbanization on

the relationship between RR and ASM was relatively gradual. (3) Differences in RR between rural and

intensively urbanized catchments were observable not only for dry pre-event conditions, but also for

wet short-term conditions.

Plain language summary

Urbanization causes a substantial increase in surface sealing which leads to dramatic impacts on water

cycle. Reliable projections of the impact of urbanization requires a good understanding of the multiple

factors that shape the response of a catchment along a wide range of urbanization levels. In catchments

with a mix of urban and natural areas, the interplay of total impervious area (T I A) and antecedent

soil moisture (ASM) conditions is still not well elucidated. To fill this gap, we attempted to quantify
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the relative importance of T I A and ASM in determining the event-scale catchment response using a

sample of 852 United States catchments. We found that both controls play an important role in runoff

generation. Particularly, ASM should be considered even in catchments with a high level of urban

cover. We also found that the impact of total impervious area on runoff ratio was relatively gradual, and

became significant when T I A exceeded 5%. This study provides a solid empirical understanding of

the behavior of urbanized catchments, which is a step toward more reliable prediction of the impact of

urbanization on hydrology for urban planning policies.

1 Introduction

Runoff is an aggregated result of the interaction of numerous hydrological processes within a catchment.

Regarded as the catchment response to climatic forcing, it is a complex function of interrelated factors

such as climate, morphology, geopedology, and land use. Hierarchizing these factors is necessary in

order to understand and predict the behavior of catchments under change. In particular, urbanization

and the associated increase in surface imperviousness constitute perhaps one of the most dramatic

human-induced changes with regard to landscapes and hydrological processes (Vörösmarty et al., 2010).

Yet, quantifying the impact of urbanization on catchment response is still not straightforward due to

balancing factors originating from the non-urbanized part of the catchment as well as the dependency

on catchment properties.

The event runoff ratio (RR) is a widely used hydrological metric to characterize the catchment re-

sponse (Blume, Zehe, and Bronstert, 2007). It expresses the fraction of rainfall that is converted into

runoff. Numerous factors drive the variability of RR, some of which are variable in time (such as

event rainfall depth and intensity, and antecedent soil moisture conditions; see, e.g., Graeff et al., 2012;

Hewlett, Fortson, and Cunningham, 1977; Tarasova et al., 2018a), while others reflect the catchment

hydrological properties, and thus vary in space from one catchment to another (e.g., climate setting, land

use, slope, and soil characteristics; see Addor et al., 2018; Merz and Blöschl, 2009; Tarasova et al., 2018b).

In the case of urbanized catchments, RR generally increases with the total impervious area (T I A) of the

catchment (Miller and Hess, 2017; Zhou et al., 2017), as a consequence of reduced infiltration due to

surface sealing. Although urban-induced imperviousness (measured by T I A) is widely considered as a

major control by many predictive regression relationships in urbanized areas (e.g., Survey, 1994), the

effect of urbanization on catchment behavior is dependent on the local physical characteristics (Price,

2011). Hierarchizing all involved factors (i.e., soil, climate, topography, and land use) is thus needed to

elucidate the relative importance of each one in influencing the hydrological response, particularly that

of T I A.

Antecedent soil moisture (ASM) modulates the temporal variability of event-scale RR, and thus it

is a widely considered control to explain and predict the hydrological behavior of non-urbanized

catchments (Berghuijs et al., 2016). Previous studies attempted to represent the interplay of T I A and

ASM in the variability of the RR of urbanized catchments (Ando, Musiake, and Takahasi, 1984; Brun

and Band, 2000; Zhang and Shuster, 2014), while the relevance of ASM as a control of RR in highly

urbanized catchments is still debated. Smith et al. (2013) found that the 5-day antecedent rainfall,

used as a proxy for ASM , did not play a significant role in the generation of RR for seven urbanized

catchments in the Baltimore region (Unites States). Zhou et al. (2017) analyzed the importance of ASM
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for a sample of 16 catchments located in Charlotte, North Carolina, with T I A ranging between 0.08

and 0.50. They found that the influence of ASM on RR decreased with increasing T I A. Miller and Hess

(2017) analyzed the role of ASM for eight catchments located in the United Kingdom, and found that

RR was less dependent on ASM in urbanized catchments than in rural ones.

These studies suggest that ASM plays a less important role in the runoff generation as the catchment

imperviousness increases. However, they focused on a small number of catchments, with a range of

imperviousness that was not rich enough to reach a general conclusion, nor to quantify the explanatory

power of ASM in comparison with T I A.

To address these gaps, we propose to analyze the relationship between the catchment response,

materialized by RR, and ASM across a wide range of T I A. The novelty of this study is the use of

a large sample of 70,227 rainfall-runoff events from 852 urbanized and rural catchments located in

the United States (US), which offers a large diversity of urbanization levels resulting in a wide range of

T I A. Another key novelty consists in considering both the space-varying factors (defined as catchment

attributes, which vary in space from one catchment to another) and the time-varying factors (defined as

factors that vary from one event to another, i.e., event rainfall characteristics and ASM) by analyzing

their relative importance in explaining the spatiotemporal variability of RR along a continuum of

catchment imperviousness.

This paper is structured as follows. In Section 2, we present the catchment sample, and we describe

how RR, T I A, and ASM were estimated. We explain how we assessed the importance of T I A (as a

space-varying control) and ASM (as a time-varying control) in predicting RR. Then, we detail how the

variability of RR was analyzed with regard to ASM and T I A, as well as how the sensitivity of RR to

each variable was assessed. The results are presented and discussed in Sections 3 and 4, and Section 5

concludes with the main findings and some perspectives.

2 Dataset and methods

2.1 Catchment sample and spatial characteristics

We used a sample of 852 catchments located in the United States (Saadi, Oudin, and Ribstein, 2019), for

which the snow effect and the influence of artificial reservoirs were limited. Their sizes ranged between

1.1 km2 and 21,300 km2, with a median value of 321 km2 (interquartile range: 90 km2-926 km2). The

majority of these catchments are located in Southeastern United States, and are characterized by a

temperate humid subtropical climate (Beck et al., 2018). Their aridity indices varied between 0.48 and

3.4, and a non-negligible number of catchments are located in areas with relatively high aridity indices

(Figure 1), indicating the richness of the catchment sample with regard to climatic settings.

The hourly mean areal precipitation depths were extracted from the National Centers for Environmental

Prediction’s Stage-IV dataset using the geoknife R package (Read et al., 2015; Lin and Mitchell, 2005).

This dataset was constructed by mosaicking regional multi-sensor (i.e., radar and gages) precipitation

analyses into a national product, gridded over the United States at a 4-km resolution. Hourly mean

streamflow data were prepared by processing the instantaneous streamflow measurements, which we

extracted from the GAGES-II database maintained by the United States Geological Survey (Falcone,

2011) using the dataRetrieval R package (Cicco et al., 2018). Daily temperature was extracted
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Figure 1. Location and aridity index of the 852 US catchments. Dots represent catchment
centroids. Colors indicate aridity indices, computed as the ratio of average annual potential
evapotranspiration PEm (mm/year) to average annual precipitation Pm (mm/year).
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from the Daymet product (Thornton et al., 2016), available over the United States at a 1-km resolution.

Recorded periods span between 2002 and 2017, with lengths ranging from 8 to 16 years.

Landscape and climate settings of each catchment were characterized using an initial set of 23 de-

scriptors (Table 1). The land cover characteristics were extracted from the Multi-Resolution Land

Characteristics Consortium’s NLCD database, available for the years 2001, 2006, 2011, and 2016 (e.g.,

Homer et al., 2015) at a 30-m resolution. These included the mean T I A (computed as the arithmetic

mean of percentages of sealed surfaces estimated at each catchment pixel), catchment percent devel-

oped (C PD, computed as the proportion of catchment area occupied by urbanization classes), the

fraction of catchment area with an imperviousness value higher than 0.8 (I MP80), the fraction of

forest ( f FOR), and the fraction of open water ( f W ). The distribution of imperviousness values of the

catchment was characterized using the irregularity of imperviousness (I r I MP ). A linear interpolation

was used to estimate these characteristics for missing years.

Climate conditions were described using six metrics, including long-term mean precipitation (Pm),

flashiness of precipitation (F P ), hourly precipitation intensity coefficient (P99/Pm), long-term mean

potential evapotranspiration (PEm), flashiness of potential evapotranspiration (F PE ), and aridity index

(AI ). In addition to the catchment area (Ar ea), the drainage density (DD), the catchment mean slope

(Sl ope), the mean elevation (Elevm), and the median value of compound topographic index (C T I ) of

catchment pixels were chosen to characterize the morphological settings. The mean content of sand

(Sand), gravel (Gr avel ), silt (Si l t ), and clay (C l ay), the mean soil porosity (Por osi t y) and the mean

intrinsic permeability (Per m) were used as geopedological characteristics. Table 1 summarizes the

catchment characteristics, their estimation methods, and their corresponding sources.
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2.2 Time-varying event and catchment characteristics

Many event-separation algorithms are reported in the literature (Mei and Anagnostou, 2015; Merz and

Blöschl, 2009; Norbiato et al., 2009). The event-separation method used in this paper is detailed in

Appendix A, only the three main steps are mentioned hereafter. First, we proceeded by separating

the baseflow from the direct flow, using a combination of the constant-k method (Blume, Zehe, and

Bronstert, 2007) and a recursive digital filtering algorithm (Collischonn and Fan, 2013; Eckhardt, 2005;

Mei and Anagnostou, 2015). Second, the direct flow time series, which is the difference between the

total streamflow and the baseflow, was iteratively screened to look for peak flows in the vicinity of which

the start and the end of each event were estimated using direct flow thresholds and a bunch of time

characteristics estimated from the cross-correlation of direct flow and rainfall. Third, the event was

retained after satisfying additional conditions related to peak flow importance, duration, and total

rainfall depth. The event RR was computed as the ratio of direct flow to the total rainfall depth. This

event-separation algorithm yielded 70,227 events, and the number of events per catchment ranged

between 1 and 615, with a median of 50 events per catchment (interquartile range: 23-104).

For each event, a set of time-varying characteristics summarized in Table 2 were estimated. The first

group of characteristics is composed of event rainfall depth Ptot (mm), rainfall intensity Pi nt (mm/h),

and maximum hourly rainfall depth of the event Pmax (mm/h). The second group is a set of variables

derived to estimate catchment ASM . To this end, four types of proxies were tested:

• The discharge at the start of the event can be considered to reflect the state of catchment moisture

(Cappus, 1960; Kirchner, 2009; Tarasova et al., 2018a). Two measures were considered: the

total discharge and the baseflow at the start of the event, both normalized by the mean annual

streamflow of the catchment.

• The commonly applied Natural Resources Conservation Service’s Curve Number (NRCS-CN)

method traditionally considers the antecedent precipitation (AP ) as a proxy of ASM , namely 5-

day AP (Isik et al., 2013; Soulis et al., 2009). For each event, we have estimated a set of AP measures

corresponding to different lengths of time windows before the start of the event, including 2, 5,

10, 15, and 20 days, in addition to a specific period Lag (in hours) estimated for each catchment

as the delay ∆t (in hours) that maximized the correlation between the precipitation time series

P (t ) and direct flow Qd (t +∆t ) (see Appendix A).

• The antecedent precipitations index (API ) has been widely used as a proxy of ASM (Berthet

et al., 2009; Heggen, 2001; Kohler and Linsley, 1951). It is computed as a weighted sum of the

antecedent rainfall depths according to their antecedence in time. As with AP , we considered six

API s including 2, 5, 10, 15, and 20 days as well as Lag hours of antecedent precipitation. The

weighting parameter was estimated corresponding to a 10% weight for the earliest considered

depth in each API (e.g., the 120th and the 360th hour before the start of each event for 5-day API

and 15-day API , respectively).

• Measures based on soil moisture accounting reservoirs (SM AR ; Berthet et al., 2009; Merz, Blöschl,

and Parajka, 2006). We used the SM AR of the hourly hydrological model GR4H (Ficchì, Perrin,

and Andréassian, 2019), due to its ability to represent ASM as shown in previous studies (Anctil

et al., 2004; Javelle et al., 2010). It enables us to make full use of the precipitation (P ) and potential

10



evapotranspiration (PE) hourly time series to get information on the current hydric state of the

catchment. The equations of the SM AR are detailed in Appendix B. The pre-event catchment

ASM is taken as the ratio S
Smax

at the start of the event, where S is the updated SM AR state (mm)

and Smax (mm) the maximum capacity. This ratio varies between 0 (extremely dry condition,

i.e., the SM AR is empty) and 1 (extremely wet condition, i.e., the SM AR is full). Smax regulates

the SM AR dynamics and memory; setting Smax low allows us to target the short-term wetness

conditions (i.e., a few days before the event), whereas large values of Smax make it possible to

target wetness conditions on longer terms. Four values of Smax were tested in this study: 10, 50,

100, and 200 mm.
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2.3 Relevance of catchment imperviousness and ASM as controls of the spatial and

temporal variability of RR

Before investigating the interplay of catchment imperviousness and ASM in determining event RR,

we questioned their relevance in comparison with the remaining catchment and event characteristics.

First, we ranked the space-varying factors (Table 1) based on their importance as explanatory variables

of the evolution of median RR from one catchment to another. This will help to unveil the importance

of catchment imperviousness in controlling average catchment hydrological behavior. Second, the time-

varying factors (Table 2) were ranked based on their importance in predicting event RR , which helped to

reveal the variables that mostly contributed to event-to-event variability of catchment response among

spatial settings, event rainfall characteristics, and ASM proxies.

In our case, variable ranking was a difficult task as all space-varying and time-varying factors simul-

taneously and nonlinearly interact to decide the event-scale RR. To deal with the nonlinear and

multidimensional aspects of the problem, we have employed the random forest algorithm (Breiman,

2001), which has been applied by recent studies that exploited large samples of catchments characterized

by a relatively large number of descriptors (Addor et al., 2018; Zhang et al., 2018). In addition, random

forest reduces the risk of overfitting and robustly handles nonlinear relationships between predictors

while allowing for variable importance assessment. These advantages are achieved thanks to a column

and row subsampling strategy. A random forest is constructed by growing a number of regression trees.

At each tree growing, a number of independent variables is randomly sampled at each split (generally

one third of variables), while a subset of data is left out of the training sample (36.8% of cases) in order

to assess the accuracy of the constructed random forest, called out-of-bag (OOB) data. OOB data is used

to assess the importance of each variable by randomly shuffling the values of the OOB cases specific to

each tree. This random shuffling would lead to a decrease in the accuracy of the constructed random

forest, and the greater the decrease in accuracy, the more important the variable in question. The

decreases in accuracy are averaged over all the trees that included the considered variable, and the

obtained mean is normalized by the standard deviation of decreases to compute the variable’s Z-score of

importance. As an accuracy measure, the mean squared error (MSE ) is utilized, and the most important

variables are the ones with the highest increases in MSE .

Using this method, simply ranking variables does not allow for deciding which ones are significantly

important. To accomplish this, we used the Boruta algorithm (Kursa and Rudnicki, 2010) implemented

in the Boruta R package (Kursa and Rudnicki, 2020). This algorithm creates copies of all variables,

called “shadow variables”, by shuffling the values of each one of the original variables. Then, both

original and shadow variables are combined to run the random forest algorithm implemented in the

randomForest R package (Liaw and Wiener, 2002) and obtain variable importance scores. The

maximum Z-score of the shadow variables M Z SV is used to assess whether a variable is statistically

relevant or not. A variable obtaining a Z-score higher than M Z SV scores a hit. At each iteration, the

ratio of the cumulative number of hits to the total number of trials is used to assess the statistical

significance of the variable importance by means of a binomial test. The outcome of this statistical test

decides whether the variable is significantly relevant, significantly irrelevant, or without decision.

Boruta algorithm was used to rank both the space-varying and the time-varying variables, and decide

whether a variable was significantly relevant or irrelevant in predicting RR (p-value< 0.01). As variable

ranking is influenced by the multicollinearity of variables, we identified the ones that showed high
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Spearman’s rank correlation coefficient (i.e., |rsp | > 0.7). Among the space-varying descriptors, we

selected the ones that were best correlated (in the sense of Pearson’s correlation coefficient) with the

852 median event-scale RR per catchment. This has led to a final selection of 16 out of the initial 23

space-varying descriptors, as detailed in Table 1. Similarly, we selected only the time-varying variables

that were not highly correlated (Table 2) by preferring the ones that had the best Pearson’s correlation

with the 70,227 event RRs. This has led to a rejection of 14 initially considered variables, as detailed in

Table 2.

Once the 16 space-varying variables were ranked, the ones that were considered to be relevant by the

Boruta algorithm were used to predict the median event-scale RR for each catchment. This predicted

median RR, noted Spati al RR, was combined with the 7 selected time-varying variables (Table 2)

to rank them based on their importance in predicting the 70,227 event RRs. This helped to compare

the importance of ASM variables with that of event rainfall characteristics and catchment descriptors

reflected by Spati al RR.

2.4 Investigation of the relationship between RR and ASM for different levels of

catchment imperviousness

In this section, we present the method used to analyze the relationship between RR and two a priori

driving characteristics: a time-varying characteristic representing catchment wetness (ASM) and a

space-varying characteristic representing the catchment imperviousness (T I A). The 70,227 rainfall-

runoff events are grouped into NT I A ·NASM classes, where NT I A is the number of classes of T I A and

NASM the number of classes of the ASM variable (Table 2). For each independent variable (T I A or

ASM), the classes were delimited by variable quantiles (NT I A + 1 quantiles for T I A, and NASM + 1

quantiles for ASM) extracted from the event dataset. This pre-clustering aims at: (i) facilitating the

visualization of the RR evolution across T I A and ASM classes, and (ii) deriving robust regression

models by filtering RR variability among a given class of T I A and ASM .

First, the matrix

MRR =


MRR1,1 ... MRR1,NASM

... MRRi , j ...

MRRNT I A ,1 ... MRRNT I A ,NASM


1≤i≤NT I A
1≤ j≤NASM

(2.1)

is constructed, where MRRi , j represents the mean of runoff ratios RR for the class {i , j } of events

for which T I A values are located between the i th and (i + 1)th quantile of T I A (the (NT I A + 1)th

quantile being the max of T I A of all events) and ASM values are located between the j th and ( j +1)th

quantile of ASM (the (NASM +1)th quantile being the max of ASM of all events), with 1 ≤ i ≤ NT I A

and 1 ≤ j ≤ NASM . This matrix is constructed to qualitatively understand how RR varies along the

T I A axis (i.e., urbanization-induced contrasts) and ASM axis (i.e., wetness state-induced contrasts).

In particular, MRR1,1 and MRRNT I A ,1 represent the mean RR under dry conditions for the least and

highest urbanized cases, respectively, whereas MRR1,NASM and MRRNT I A ,NASM represent the mean RR

under wet conditions for the least and highest urbanized cases, respectively.

Second, in order to quantify the RR gradient along T I A and ASM axes, a weighted least squares
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(WLS) regression model was fitted to each row (i.e., RR as a linear function of ASM for a given class

of urbanization) and each column (i.e., RR as a linear function of T I A for a given class of antecedent

wetness conditions). The goodness of fit is estimated using the coefficient of determination R2. In

particular, the explanatory power of ASM across all the classes of T I A R2(RR, ASM) is computed as:


R2

i (RR, ASM) = 1−
∑NASM

j=1 wi , j ·
(
MRRi , j− ãMRRi , j (ASM)

)2

∑NASM
j=1 wi , j ·

(
MRRi , j−MRRi

)2 ; 1 ≤ i ≤ NT I A

R2(RR, ASM) = median
1≤i≤NT I A

R2
i (RR, ASM)

(2.2)

where MRRi , j is the element {i , j } of matrix MRR (Equation 2.1), { ãMRRi , j (ASM)}1≤ j≤NASM are estima-

tions from the regression line RR = f (ASM) for the class i of T I A, and MRRi is the weighted mean of

{MRRi , j }1≤ j≤NASM for the class i . The weights wi , j were chosen as the inverse of the variance of RR of

each class {i , j } to account for the intraclass variability of RR. Similarly, the explanatory power of T I A

across the ASM classes is estimated as:
R2

j (RR,T I A) = 1−
∑NT I A

i=1 wi , j ·
(
MRRi , j− ãMRRi , j (T I A)

)2

∑NT I A
i=1 wi , j ·

(
MRRi , j−MRR j

)2 ; 1 ≤ j ≤ NASM

R2(RR,T I A) = median
1≤ j≤NASM

R2
j (RR,T I A)

(2.3)

where { ãMRRi , j (T I A)}1≤i≤NT I A are estimations from the regression line RR = f (T I A) for the class j of

ASM , and MRR j is the weighted mean of {MRRi , j }1≤i≤NT I A for the class j .

Then, we analyzed the evolution of the parameters (i.e., slope and intercept) of the regression line

RR = f (ASM) along the T I A classes, as well as the evolution of the parameters of the regression line

RR = f (T I A) along the ASM classes.

3 Results

3.1 Assessing the relevance of catchment imperviousness and ASM as explanatory

variables of event-scale RR

The catchment land-use characteristics, namely T I A and fraction of forest ( f FOR), were the most

important variables in explaining the spatial variability of median event RR, as indicated by Figure 2a.

Aridity index (AI ) obtained almost similar importance scores to those of f FOR, followed by mean

content of gravel (Gr avel ), coefficient of hourly precipitation intensity (P99/Pm), and mean intrinsic

permeability (Per m), proving the strong controls of climatic and geopedological conditions over the

catchment response. The following group of controls had equivalent importance scores, with mean

content of silt (Si l t ) and flashiness of precipitation (F P ) slightly ahead of mean content of sand (Sand),

clay (C l ay), and long-term averages of precipitation and potential evapotranspiration (Pm and PEm).

The last group of controls was constituted by the drainage density (DD) and the remaining land-use

characteristics ( f W and I r I MP ). Nonetheless, all the variables were confirmed significantly important

in explaining the spatial variability of RR, illustrating the multi-dependency of RR on catchment

attributes.
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Spati al RR, the predicted median RR for each one of the 852 catchments by random forest using the

space-varying characteristics, proved to be the most relevant feature to explain the spatiotemporal

variability of event RR, as shown in Figure 2b. This underlines the importance of the physical prop-

erties of the catchment in modulating its event-scale RR. The second most important control after

Spati al RR was SM AR-50, underscoring the high importance of ASM as a primary control of RR

ahead of rainfall characteristics, and the usefulness of the SM AR technique as a proxy for ASM in

predicting RR. Spati al RR and SM AR-50 were followed by the pre-event discharge (QE ) and event

characteristics (Pi nt and Ptot ). A final group of time-varying variables was formed by the remaining

ASM proxies (API -02, API -10, and AP-Lag ), suggesting their relatively low relevance in explaining

RR compared to other event characteristics. Finally, all employed variables were confirmed to be

significantly important.

3.2 Analyzing RR variability using TIA and SMAR as a surrogate of ASM

RR is similarly controlled by both the imperviousness level, i.e., T I A, and the short-term ASM ,

estimated by SM AR-50, as shown in Figure 3. In particular, the RR in highly urbanized catchments

(i.e., high T I A) was sensitive to changes in SM AR-50. Mean RR per each class of T I A and SM AR-

50 varied between 0.01 and 0.43, the lowest values being attained for the rural cases during the dry

period (bottom-left area in Figure 3), whereas the highest values were attained for the most urbanized

cases during the wet period (top-right area in Figure 3). Moving from dry to wet conditions, mean RR

increased for all catchments regardless of their level of T I A. Similarly, higher values of T I A always

resulted in higher values of mean RR for all ASM conditions. Similar patterns were obtained using

pre-event discharge measures, AP and API metrics instead of SM AR-50 (not shown here).

The obtained WLS linear regression models were satisfactory for both SM AR-50 and T I A, with median

R2(RR,SM AR −50) = 0.90 over the 30 classes of T I A (range: 0.78-0.95) and R2(RR,T I A) = 0.76 over the

30 classes of SM AR-50 (range: 0.30-0.92). The goodness of fit is illustrated by examples in Figure 4 for

the least and most urbanized cases (bottom and top rows of Figure 3) and the lowest and highest ASM

conditions (left and right columns of Figure 3). The first two examples (Figures 4a and 4b) illustrate the

effect of SM AR-50 on mean event RR, where an increase in SM AR-50 was accompanied by increasing

mean RR similarly for both the least urbanized cases and the most urbanized cases. The last two

examples (Figures 4c and 4d) indicate the effect of T I A on mean event RR, where RR got increased

with increased T I A. The effect of T I A is visually more pronounced amid dry conditions (i.e., very low

SM AR-50) than in wet conditions (i.e., very high SM AR-50), but in both cases the differences in T I A

were accompanied by differences in catchment response.
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Figure 2. (a) Rankings of space-varying catchment characteristics (Table 1), based on their importance
in explaining the variability of the 852 median catchment event-scale runoff ratios, and (b)
rankings of Spati al RR and time-varying event and catchment characteristics (Table 2),
based on their importance in explaining the variability of the 70,227 event runoff ratios.
Importance is estimated using the Z-score of decreases in accuracy, i.e., of increases in mean
squared errors (MSE) of the predictions of random forests. Spati al RR is the prediction
of median catchment runoff ratio estimated by random forest using the space-varying
catchment descriptors. SHDW -M ax, SHDW -Mean and SHDW -Mi n are the distributions
of maximum, mean and minimum values of Z-score of shadow variables, obtained using the
Boruta R package.
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Figure 3. Runoff ratio (RR) dependence on antecedent soil moisture (ASM) conditions, assessed using
the level of the soil moisture accounting reservoir (SM AR-50, Appendix B), and the catchment
total impervious area (T I A). This matrix was constructed by setting NT I A = NSM AR−50 = 30,
yielding 900 classes of T I A−SM AR-50. The bottom row shows the evolution of mean RR for
rural cases (i.e., T I A close to 0), and the top row shows mean RR for intensively urbanized
ones (i.e., T I A between 0.48 and 0.59). The left column shows mean RR for dry conditions (i.e.,
SM AR-50 close to 0), and the right column shows mean RR for wet conditions (i.e., SM AR-50
close to 1).
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Figure 4. Scatter plots showing the variability of mean runoff ratio (RR) as a function of total impervious
area (T I A) and antecedent soil moisture (ASM), assessed using the level of the soil moisture
accounting reservoir (SM AR-50, Appendix B). The first row shows RR = f (SM AR −50) for (a)
the lowest T I A level and (b) the highest T I A level. The second row shows RR = f (T I A) for (c)
the driest ASM conditions and (d) the wettest ASM conditions. Black dots show mean RR
per class of T I A and SM AR-50, and blue dashed lines show the fitted weighted least squares
(WLS) regression models.
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An overview of the evolution of the WLS model parameters suggests that the control of SM AR-50 on

RR was not influenced by T I A, as manifested by the behavior of the slope of the WLS regression line

RR = f (SM AR −50) in Figure 5a. In general, the slope did not deviate significantly from 0.21 for all

classes of T I A. This means that even for the most urbanized catchments, short-term ASM still played a

significant role in determining RR as for the rural ones. The differences between rural and urbanized

catchments were most reflected in the intercept parameter, which could be interpreted as the value of

RR in very dry conditions (i.e., SM AR-50 close to 0). The intercept was around zero for catchments with

T I A less than 5%, and increased somewhat linearly to reach a value of 0.18 for high levels of T I A. This

suggests that in dry conditions, RR is solely controlled by the impervious part of the catchment. Varying

intercept with almost constant slope is equivalent to shifting upwardly the line RR = f (SM AR −50) as

T I A gets higher, as illustrated in Figure 5b.

4 Discussion

4.1 Importance of ASM as a control of RR in urbanized catchments

This study analyzed the role of ASM , in addition to T I A, as controls of RR. The limited number of

studies that have addressed the role of ASM in urbanized catchments suggested that ASM had a less

important control on RR compared with T I A (Miller and Hess, 2017; Smith et al., 2013; Zhou et al.,

2017). Our results showed that ASM is in fact an important control to consider for predicting the event

RR even in catchments with high levels of T I A. As reported in some studies (Sillanpää and Koivusalo,

2015; Zhou et al., 2017), the differences between rural and urbanized catchments were essentially

during the dry period. We showed that this was also the case for very wet short-term ASM (Figures 3, 4,

and 5). Although some of the findings are intuitive, they are purely data-based, and their importance

lies most in providing means of revising methods in the practice of hydrology that do not account for

the effect of ASM in urbanized areas. In addition, the findings confirm previously obtained results

concerning the interplay of ASM and imperviousness, namely the logistic function model proposed

by Brun and Band (2000), or the scenario-based conclusions of Zhang and Shuster (2014) and Yang

et al. (2011). Methodologically, this study is a stepping stone to overcome the issue of the “rural-urban

dichotomy” (McGrane, 2016), by analyzing the evolution of catchment behavior along a continuum of

T I A, which would not have been possible without the use of a large sample of catchments.

Using SM AR as a proxy for ASM (Appendix B) yielded better predictive power than event characteristics

(i.e., Ptot and Pi nt ) or other ASM proxies that were based on pre-event discharge and antecedent rainfall.

The relevance of SM AR as a proxy of ASM has been confirmed in other studies (Anctil et al., 2004;

Merz and Blöschl, 2009). Moreover, the SM AR allows us to follow the seasonal variability of P and PE ,

in contrast to API that does not distinguish between hot and cold seasons, and the baseflow that is

dependent on local configurations other than climate (e.g., soil type, connectivity of surface water and

groundwater). The ranking of ASM proxies in this study is very helpful for event-based techniques

applied to estimate runoff in urbanized areas. In particular, the NRCS-CN method would be enhanced

by using SM AR-50 or API measures in estimating ASM instead of 5-day AP .

The large range of T I A values tested in this study showed that the impact of increasing T I A on the

relationship between RR and ASM was more gradual than threshold-like. As illustrated by the evolution
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Figure 5. (a) Evolution of the parameters of the WLS regression line representing mean runoff ratio (RR)
as a function of SM AR-50 for different levels of total impervious area (T I A). Estimates are
shown with solid lines, and 95% confidence intervals (CI) are shown with two-dashed lines.
Parameter estimates that were not statistically different from zero (p-value threshold at 0.05)
were set to zero. (b) Evolution of the corresponding lines for different levels of T I A.
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of the parameters of the regression line representing RR as a function of SM AR-50 (Figure 5a), for

different values of T I A, the intercept started to deviate from zero as T I A exceeded 0.05, but no abrupt

change was noticed. This advocates the continuousness of the effect of urbanization (see the discussion

in Brabec, Schulte, and Richards, 2002), and implies that it would be difficult to detect a significant

change in catchment behavior (in response to urbanization) if the absolute change in T I A or the

difference between analyzed situations (as in a paired-catchment framework) is less than 10%-5%. The

threshold of T I A above which the intercept became significantly different from zero (i.e., 0.05) has been

reported in literature reviews (Alley and Veenhuis, 1983; Brabec, Schulte, and Richards, 2002; Salvadore,

Bronders, and Batelaan, 2015).

Some would argue that T I A did not exceed 0.6 for the sample used here, leaving a relatively large range

of T I A uncovered. When examining the proportion of the catchment that is occupied by urbanization

classes, i.e., C PD (Falcone, 2011; Miller and Hess, 2017), this proportion varied between 0% and 100%,

with a median value of 29%, meaning that the range of T I A used here covered a large variety of situations

of catchment-scale urban sprawl, including catchments completely occupied by urbanization classes.

Not reaching a T I A higher than 0.6 is perhaps a result of focusing on the catchment scale, as the

minimum catchment size in this study is above 1 km2, which implies the existence of more natural

surfaces (i.e., with low imperviousness values) even for intensively urbanized catchments.

4.2 Relevance of other catchment and event characteristics in explaining the variability

of RR

In addition to T I A, f FOR had the highest importance in explaining the variability of median event

RR for the catchment set, highlighting the primary control of land-use characteristics on catchment

behavior (Merz and Blöschl, 2009; Tarasova et al., 2018b). Climate characteristics (the aridity index

and the coefficient of hourly precipitation intensity P99/Pm) and geopedological settings were the next

most relevant spatial controls, underscoring the interplay of climate and landscape features in defining

the catchment long-term hydrological behavior (Gao et al., 2018; Merz and Blöschl, 2009). Comparing

the importance of spatial and temporal controls on the variability of event-scale RR illustrated the

primacy of regional settings over ASM and event rainfall characteristics (Figure 2b), as the former

defines the long-term behavior of the catchment while the latter shapes the short-term high-frequency

variability (Merz and Blöschl, 2009). Event rainfall characteristics have been regularly chosen as

explanatory variables (Blume, Zehe, and Bronstert, 2007; Hewlett, Fortson, and Cunningham, 1977;

Tarasova et al., 2018a), which has been confirmed by our study results (Figure 2b), but their importance

was less than that of regional settings and ASM conditions.

Lastly, it has been shown that not only T I A influences catchment response, but also the spatial

arrangement of impervious surfaces (Debbage and Shepherd, 2018; Mejía and Moglen, 2010), which has

motivated to search for a more hydrologically relevant imperviousness measure, such as the effective

impervious area (E I A) or the landscape fragmentation measures (Alley and Veenhuis, 1983; Ebrahimian,

Wilson, and Gulliver, 2016; Oudin et al., 2018). Moreover, not all urbanized cover is impervious

to water (Berthier, Andrieu, and Creutin, 2004; Ragab et al., 2003; Ramier, Berthier, and Andrieu,

2011; Redfern et al., 2016), and different types of urban cover are characterized by a wide range of

imperviousness. In this respect, we used a second-order measure of imperviousness, i.e., I r I MP , which
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was a relevant indicator but showed a lesser importance compared to the remaining spatial controls in

explaining the spatial variability of event-scale RR (Figure 2a).

5 Conclusion

In this study, we demonstrated the impact of space-varying and time-varying controls on event RR for

a large sample of 852 catchments located in the US, characterized by a wide range of T I A. The main

finding was that ASM still plays a significant role in shaping RR even for the most intensively urbanized

catchments.

As a spatial control, T I A showed the best ability in explaining the spatial variability of catchment

response, ahead of the fraction of forest and the remaining climatic, geopedological, and morphological

settings. ASM was estimated by the soil moisture accounting reservoir (SM AR) of the GR4H model,

as it was best able to explain the event-to-event variability of RR compared with event characteristics

(Ptot and Pi nt ), antecedent precipitation (AP and API ), and pre-event discharge. Still, regional settings

had the highest importance in explaining the variability of RR compared to ASM and event rainfall

characteristics.

Using the SM AR as a proxy for ASM , the events were grouped into 900 classes of T I A and ASM . Then,

the dependency of RR on T I A and ASM was then quantified by means of linear regression. Mean

event-scale RR per each class was found to increase with either increasing T I A or increasing ASM .

In the highly urbanized catchments, RR increased as pre-event conditions became wet. Differences

in RR were found between rural and intensively urbanized catchments in dry as well as in wet ASM

conditions prior to the event. The impact of T I A was less important on the slope of RR = f (ASM),

whereas the intercept became significantly different from zero at T I A > 0.05.

The fact that the T I A was not uniformly distributed led us to adopt a quantile-based clustering

procedure, which would have been less harmful given a wider T I A range. Also, more diverse climatic

conditions are missing in this study (including hotter and colder climates; see, e.g., Sillanpää and

Koivusalo, 2015), which should be included in order to get an overall understanding of the interplay

between climate and urbanization. The analysis was restrained here to mean RR values for each class,

and an analysis of intraclass variability would help to synthesize the effect of T I A and ASM on the

overall distribution of RR. For process-based modeling, the findings of this study are highly relevant

to better represent/reproduce the rainfall-runoff relationship especially for catchments with evolving

urbanization. In addition, they offer means to check the physical soundness of commonly applied

regression relationships in practical hydrology in order to enhance the reliability of their predictions.

A Event separation method

Many event-separation algorithms have been reported in the literature (Mei and Anagnostou, 2015;

Merz and Blöschl, 2009; Norbiato et al., 2009; Tarasova et al., 2018a). The method adopted in this work

is empirical, and consists of the following steps.
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Step 1: Baseflow separation

Using numerical filtering-based methods is more practical when working on a large sample of catch-

ments (Tarasova et al., 2018a). We used a combination of the constant-k method (Blume, Zehe,

and Bronstert, 2007) and a recursive digital filtering algorithm (Collischonn and Fan, 2013; Mei and

Anagnostou, 2015; Eckhardt, 2005). We chose this method for its physical soundness: It hypothesizes

that the baseflow is associated with the low-frequency component of the total streamflow. Tarasova

et al. (2018a) compared five methods of baseflow extraction, and the method used herein has behaved

acceptably.

Step 2: Estimation of characteristic response times

The direct runoff Qd , that is considered to be the catchment response to rainfall events, was computed as

the difference between the total flow and the baseflow. To constrain the event selection, we determined

a set of catchment characteristic response times based on the cross-correlation of the time series of

rainfall and direct flow, besides the direct flow auto-correlation.

Three characteristic response times were determined (Figure 6):

• The lag time Lag (in hours), which is the positive shift ∆t that maximizes the correction between

Qd (t +∆t ) and P (t ).

• Sometimes, the correlogram of Qd (t +∆t) and P (t) does not show a sharp maximum and can

attain significantly high values for ∆t > Lag or ∆t < 0. A second metric of response time

Lagmax (in hours) was calculated to account for this issue. The correlogram is scaled by its

maximum. Three limits were defined: (1) Li mi t1 corresponded to the peak of the scaled

correlogram for ∆t < 0; (2) Li mi t2 was taken as the peak of the scaled correlogram for ∆t > dec,

where dec corresponded to the moment when the correlogram reincreased for the first time; and

(3) an arbitrary limit of Li mi t3 = 0.2 (i.e., 20% of the maximum value of the correlogram). The

maximum of these three limits, noted Li mi tPQd , was then explored in the scaled correlogram,

and Lagmax was the shift corresponding to this limit.

• The auto-correlogram of Qd was also investigated to determine the memory Mem (in hours) of the

catchment. Normally, the auto-correlogram should decrease for any ∆t > 0. Mem corresponded

to the peak of the auto-correlogram for∆t > decQd , where decQd is the moment at which the auto-

correlogram reincreased for the first time. When no reincrease was registered, Mem corresponded

to the shift at which an autocorrelation of Li mi tQd = 0.2 was attained for the first time.

Step 3: Estimation of the start of the event

The time series of Qd (t ) were screened to look for a peak flow Qp
d . Once found, a limit Q st ar t

d function

of Qp
d was determined. Over a time window T Wst ar t , the first estimation of the start of the event

corresponds to the moment when Qd (t) = Q st ar t
d . The rainfall depth over a time window T W Pst ar t

before the start should be less than 10% of the rainfall depth between the start and the peak moments.
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Figure 6. Examples of correlograms computed for the catchment drained by the USGS station 01658000
Mattawoman Creek near Pomonkey, Maryland, which has an area of 143.6 km2. (a) Scaled
correlogram of hourly direct discharge Qd and hourly precipitation P , and (b) autocorrelogram
of Qd .
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Table 3. Summary of the steps of the event separation method.

Steps Settings

Start of the event

• Q st ar t
d = max

(
Q

p
d

10 ,0.05 · (Qp
d −Q0

d )

)
, where Q0

d is the minimum of

Qd (t ) for t ∈ [
tpeak −Lag −Lagmax , tpeak

]
, where tpeak is the peak

moment

• T Wst ar t =
[
tpeak −Lag −Lagmax , tpeak

]
• T W Pst ar t =

[
tdeb −Lagmax , tdeb

]
, where tdeb is the start moment

End of the event

• Qend
d = max

(
Q

p
d

10 ,0.05 · (Qp
d −Q1

d )

)
, where Q1

d is the minimum of

Qd (t ) for t ∈ [
tpeak , tpeak +Mem

]
, where tpeak is the peak moment

• T Wend = [
tpeak , tpeak +Mem

]
• p = 50

Additional conditions

• The ratio of baseflow to total flow at tpeak should be less than BF I

• No missing values are allowed

• Direct runoff depth should be less than the rainfall depth

• The rainfall depth should be higher than 2 mm

• Very short or very long events are eliminated (the event duration
should be between 0.2 ·Mem and 1.2 ·Mem)

Step 4: Determination of the end of the event

As in step 3, a limit Qend
d function of Qp

d is determined. A time window T Wend after the peak is screened

to identify the moment when Qd (t ) =Qend
d . The rainfall depth between the peak and the end should be

less than p% of the rainfall depth between the start and the peak.

Step 5: Additional conditions

Once the start and the end of an event are determined, the event must satisfy the following conditions:

(1) At the peak moment, the ratio of the baseflow to the total flow should be less than the whole-period

baseflow index of the catchment BF I , estimated from the baseflow separation step; (2) The rainfall

and direct runoff time series should not contain missing values between the start and the end of the

event; (3) The sum of the event rainfall depth should be higher than 2 mm; (4) The total volume of direct

runoff should be less than the total volume of event rainfall (i.e., runoff ratio less than 1); and (5) The

total duration of the event should be greater than 20% of Mem and less than 120% of Mem.

Finally, event RR is taken as the ratio of the direct runoff depth to the rainfall depth. Table 3 summarizes

the steps and the corresponding thresholds.
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B Equations of the soil moisture accounting reservoir (SM AR)

As a proxy for antecedent soil moisture (ASM), we used the soil moisture accounting reservoir (SM AR)

of the GR4H hourly model (Ficchì, Perrin, and Andréassian, 2019). Detailed equations are given in

Figure 7. First, the hourly throughfall Pth is estimated using the equations under Step 1 (Figure 7),

where P is the hourly precipitation, PE the hourly potential evapotranspiration, and I the interception

reservoir state. Second, when PE is not satisfied solely by the interception reservoir content, a depth

AEs is subtracted from the SM AR (Step 2). Third, we estimated the proportion of Pth that feeds the

SM AR, noted Ps , which represents the amount of water that is expected to satisfy the initial losses

through soil storage. Fourth, a depth representing the percolation is removed from the SM AR. Ps

and AEs are both a function of the state of the reservoir S, and its maximum capacity Smax . Finally,

the pre-event catchment ASM is taken as the ratio S/Smax at the start of the event. This ratio varies

between 0 and 1, where a value of 0 indicates a completely dry condition, and 1 indicates a completely

wet condition.
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PE P

Pth

Smax

Interception 

reservoir

SMAR

Imax

AEi

I

PE - AEiAEs

S

Ps Pth – Ps

 𝐴𝐸𝑖 = min(𝑃𝐸 ; 𝐼 + 𝑃

 𝐼 ∶= max(0; 𝐼 + 𝑃 − 𝑃𝐸

𝑃𝑡ℎ = 0 if 𝐼 ≤ 𝐼𝑚𝑎𝑥 / 𝑃𝑡ℎ = 𝐼 − 𝐼𝑚𝑎𝑥 if 𝐼 > 𝐼𝑚𝑎𝑥

𝐴𝐸𝑠 = 𝑆 ∗
(2 −

𝑆
𝑆max

 tanh
𝑃𝐸 − 𝐴𝐸𝑖

𝑆max

1 + (1 −
𝑆

𝑆max
 tanh

𝑃𝐸 − 𝐴𝐸𝑖
𝑆max

𝑆 ∶= 𝑆 − 𝐴𝐸𝑠

𝑃𝑠 = 𝑆max ∗
(1 −

𝑆
𝑆max

2

 tanh
𝑃𝑡ℎ
𝑆max

1 +
𝑆

𝑆max
tanh

𝑃𝑡ℎ
𝑆max

𝑆 ∶= 𝑆 + 𝑃𝑠

𝑃𝑒𝑟𝑐 = 𝑆 ∗ 1 − 1 +
4
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𝑆

𝑆max

4 −0.25

𝑆 ∶= 𝑆 − 𝑃𝑒𝑟𝑐

Step 1: Estimation of throughfall Pth

1.1

1.2

1.3

Step 2: Subtraction of PE-induced losses

;

Step 3: Feeding the SMAR

;

Step 4: Subtraction of percolation

;

P: Precipitation

PE: Potential evapotranspiration

AEi, AEs: Actual 

evapotranspiration

Pth: Throughfall

Ps: Infiltration

Perc: Percolation

I: State of interception reservoir

Imax: Interception reservoir 

maximum capacity

S: State of SMAR

Smax: SMAR maximum capacityPerc

𝐼 ≔ 𝐼 − 𝑃𝑡ℎ1.4

Figure 7. Description of the soil moisture accounting reservoir (SM AR) equations. All variables are in
millimeters. The interception reservoir maximum capacity Imax was estimated by matching
the flux of throughfall at the hourly and daily time steps (Ficchì, Perrin, and Andréassian,
2019). Daily throughfall was estimated by comparing daily P with PE (Perrin, Michel, and
Andréassian, 2003). For the 852 catchments used in this study, Imax was between 2.00 mm
and 4.00 mm with a median value of 2.75 mm. I is initiated at 0 mm whereas S is initiated at
0.5 ·Smax .
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