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Abstract

We propose two incremental preference elicitation methods 
for interactive preference-based optimization on weighted 
matroid structures. More precisely, for linear objective (util-
ity) functions, we propose an interactive greedy algorithm in-
terleaving preference queries with the incremental construc-
tion of an independent set to obtain an optimal or near-
optimal base of a matroid. We also propose an interactive lo-
cal search algorithm based on sequences of possibly improv-
ing exchanges for the same problem. For both algorithms, 
we provide performance guarantees on the quality of the re-
turned solutions and the number of queries. Our algorithms 
are tested on the uniform, graphical and scheduling matroids 
to solve three different problems (committee election, span-
ning tree, and scheduling problems) and evaluated in terms of 
computation times, number of queries, and empirical error.

Introduction
Local search is a very general heuristic approach standardly 
used in AI to determine good solutions to hard combi-
natorial optimization problems (Russell and Norvig 2002; 
E.H. Aarts 2003). Local search algorithms start from a can-
didate solution and then iteratively move to a neighbor so-
lution with the aim of finding the optimal one. A typical in-
stance of local search algorithm is hill climbing, which con-
sists in choosing the neighbor solution among the ones that 
locally optimize the objective function in the neighborhood. 

In many cases, local search delivers sub-optimal solu-
tions to the global problem and the search method needs to 
be modified t o c ontinue t he s earch b eyond l ocal optimal-
ity. However, there are some well known examples of prob-
lems for which local search algorithms deliver optimal solu-
tions. For example, in continuous optimization, the simplex 
algorithm used to solve linear programs is essentially a lo-
cal search algorithm passing from vertices of a polytope to 
neighbor vertices until reaching a local optimum, which is 
known to be a global optimum. In discrete optimization, the 
minimum spanning tree problem can also be solved by local 
search from any arbitrary initial spanning tree using neigh-
borhoods and improving sequences based on edge swaps. 
This result is strongly related to the correctness of the greedy 
algorithm in the spanning tree problem (Kruskal algorithm

(Kruskal 1956)) and more generally to the weighted matroid
structure underlying the problem.

Matroids are indeed of special interest both for greedy
search and local search. First, they are the only non-empty
hereditary structures for which the greedy algorithm pro-
vides optimal solutions (Oxley 2006). But local search also
benefits from matroid structures. In a combinatorial opti-
mization problem where the admissible solutions are the
bases of a weighted matroid, a local search algorithm can
indeed be used from any base to progressively improve the
current base using swaps of elements until reaching the opti-
mal one, as suggested in (Lee 2004) with a simple exchange
algorithm. To perform useful swaps in a local search or opti-
mal greedy choices in the construction of a solution, we need
to know the relative values of the elements composing the
feasible solutions. When this preference information is not
available at the beginning of the search, it can be acquired
during the search via preference elicitation procedures to re-
duce the elicitation burden. The goal of this paper is to make
some propositions in this direction for matroid optimization.

The standard assumption in preference-based optimiza-
tion is that preferences have been elicited beforehand and
are known when the optimization procedure is launched.
Nevertheless, some recent works in AI and algorithmic de-
cision theory have relaxed this assumption to extend search
procedures to the case of imprecisely known objective func-
tions. The idea is to combine preference elicitation methods
aiming to progressively specify the objective with the explo-
ration of the set of solutions in order to focus the elicitation
task on acquiring the part of preference information that is
necessary to solve the instance under consideration. Thus,
the optimal solution can be found after a reduced number of
preference queries. This approach which is both incremen-
tal and adaptive to answers provided by the Decision Maker
was first implemented in non-combinatorial problems, in
various contexts such as multiattribute utility theory (White
III, Sage, and Dozono 1984; Braziunas and Boutilier 2007),
decision making under risk (Ha and Haddawy 1997; Cha-
jewska, Koller, and Parr 2000; Wang and Boutilier 2003),
collective decision making (Lu and Boutilier 2011) and mul-
ticriteria decision making (Benabbou, Perny, and Viappiani
2017). Elicitation for decision making on combinatorial do-
mains is more challenging and has motivated several contri-
butions in various contexts, e.g., constraint satisfaction prob-



lems (Gelain et al. 2010), sequential decision making under
risk (Regan and Boutilier 2009; Weng and Zanuttini 2013;
Benabbou and Perny 2017), stable matching (Drummond
and Boutilier 2014), and multiobjective state space search
(Benabbou and Perny 2015a,b). Then, some interactive ver-
sions of dynamic programming, branch and bound, greedy
algorithms have been proposed for specific problems, com-
bining preference elicitation and optimization on combina-
torial domains (Benabbou and Perny 2018). Recently, some
metaheuristics have also been proposed to solve harder op-
timization problems (see (Benabbou, Leroy, and Lust 2020)
for the traveling salesman problem). Our aim is to take ad-
vantage of matroid structures to propose general interactive
local search and greedy algorithms yielding exact solutions
or approximate solutions with performance guarantees.

The paper is organized as follows: First, we recall
some basic notions on weighted matroids and on regret-
based preference elicitation. Then, we present an interac-
tive greedy algorithm and interactive local search method
for linear optimization on matroids. We establish a perfor-
mance guarantee in terms of worst-case regrets for these al-
gorithms. Finally, we present three applications of the pro-
posed algorithms and the results of numerical tests.

Weighted Matroids and Preference Elicitation
Matroids appear in various combinatorial optimization prob-
lems such as subset selection, task ordering, minimum span-
ning trees (Lee and Ryan 1992; Lee 2004) with various
possible applications in AI, e.g., in the context of social
choice and fair division (Gourvès, Monnot, and Tlilane
2013, 2014). We recall here some basic definitions related
to matroids, as well as some well-known examples that will
be used for application and numerical tests later in the paper.

Matroids. A matroidM = (S, I) is a finite ground set S of
size n, together with a collection of sets I ⊆ 2S known as
the independent sets, satisfying the following axioms:

• (A1) if Y ∈ I and X ⊆ Y then X ∈ I,

• (A2) if X ∈ I, Y ∈ I and |Y | > |X| then there exists
e ∈ Y \X such that X ∪ {e} ∈ I.

Axiom A2 implies that all maximal independent sets (w.r.t
set inclusion) have the same cardinality. A maximal inde-
pendent set is called a base of the matroid; the set of all bases
will be denoted by B hereafter. The cardinality of a base
is called the rank of the matroid and it will be denoted by
r(M) in the sequel. Note that the notion of matroid clearly
generalizes the notion of linear independence over vectors.

In this work, we consider the problem of finding a max-
imum weight independent set in a matroid. More pre-
cisely, given a matroid M = (S, I), we want to compute
maxX∈I w(X) wherew is a set function defined on 2S mea-
suring the weight (or utility) of any subset of S. Here we
consider the case of an additive set function, characterized
by the fact that w(X) =

∑
e∈X w(e) for all X ⊆ S. Func-

tion w is therefore completely characterized by the weights
w(e), e ∈ S. These weights represent the utilities of the el-
ements of S and are assumed to be strictly positive. Under

this assumption, w is monotonic with respect to set inclu-
sion, and therefore any optimal independent subset is neces-
sarily a base of the matroid.

Finding the optimal base in a weighted matroid is a very
general problem that appears in various practical contexts.
Let us give some examples of matroid optimization prob-
lems in the context of combinatorial optimization and algo-
rithmic decision theory:

Uniform matroid. It is defined by I={X⊆S : |X|≤k} for
a given positive integer k≤n. A base is any set of cardinality
k. This structure appears in social choice when the problem
is to determine the best committee of size k. In this context
S is the set of candidates and w measures the social utility
of any candidate and any group of candidates.

Graphic matroid. Given a graph G = (V,E) where V is
the set of nodes and E is the set of edges, the indepen-
dent sets are the subsets of edges that do not contain any
cycle (i.e. the forests). If the graph G is connected, any
base will correspond to a spanning tree T of the graph.
Let c : E → R+ be a function defining the cost of ev-
ery edge e ∈ E and let c∗ be any constant strictly greater
than maxe∈E c(e). Now if we define w(e) = c∗−c(e) then
finding the w-optimal base amounts to solving the minimum
spanning tree problem.

Scheduling matroid. We are given n jobs that each takes
one unit of processing time. All jobs are available at time
0, and job j has a profit wj and a deadline dj . The profit
for job j will only be earned if the job completes by time
dj . The problem is to find an ordering of the jobs that max-
imizes the total profit. If S= {1, . . . , n} and I= {X ⊆ S :
X can be completed on time} then M = (S, I) is a ma-
troid. If we set w(X) =

∑
j∈X wj for all X ∈ I then any

optimal base gives a set of jobs maximizing the total profit.

Here we consider a matroid optimization problem where
w is a set function representing the subjective preferences of
a Decision Maker (DM). Moreover, we assume that w is ini-
tially not known which precludes the use of standard solving
methods. Instead, we are given a (possibly empty) set P of
pairs (X,Y ) ∈ I×I such thatX is known to be preferred to
Y by the DM; such preference data can be obtained by ask-
ing comparison queries to the DM. LetW be the uncertainty
set defined as the set of all functions w that are compatible
with P , i.e. such that w(X) ≥ w(Y ) for all (X,Y ) ∈ P .
In this context, we consider the minimax regret decision cri-
terion which is commonly used within the AI community
to make robust recommendations under preference impreci-
sion. The minimax regret (MMR) can be defined using pair-
wise max regrets (PMR) and max regrets (MR) as follows:

Definition 1. For any two sets B,B′ ∈ B:
PMR(B,B′,W ) = maxw∈W {w(B′)− w(B)}
MR(B,B,W ) = maxB′∈B PMR(B,B′,W )
MMR(B,W ) = minB∈BMR(B,B,W )

Applying this criterion in a matroid context, an optimal
base is a base that achieves the minimax regret, i.e., a base
B ∈ B such that MR(B,B,W ) = MMR(B,W ). By defi-
nition, recommending any of these solutions enables to min-



imize the worst-case loss (regret). Note that these solutions
are necessarily optimal when MMR(B,W ) = 0 holds.

Since the MMR value can only decrease when adding
new preference statements in P , it has been proposed to
use the following incremental elicitation approach: progres-
sively ask preference queries to the DM until the MMR
value drops below a given threshold δ ≥ 0 which represents
the maximum allowable gap to optimality (Boutilier et al.
2006). Note that if we set δ = 0, then we obtain an opti-
mal base at the end of the execution. This approach, some-
times referred to as regret-based incremental elicitation, was
efficiently used in various decision contexts, such as multi-
criteria decision making and voting problems (e.g., (Lu and
Boutilier 2011; Benabbou, Perny, and Viappiani 2017)).

To implement this approach, one needs to compute the
valueMMR(B,W ) at every iteration step of the procedure.
For matroid optimization, this may induce prohibitive com-
putation times since it may require to compute the pairwise
max regrets for all pairs of distinct bases in B. Therefore,
we propose instead to combine search and regret-based in-
cremental elicitation to reduce both computation times and
number of queries. More precisely, we generate queries dur-
ing the search so as to progressively reduce the set W until
being able to determine a (near-)optimal base.

An Interactive Greedy Algorithm
When function w is known, the so-called Rado-Edmons the-
orem states that the problem of finding a maximum weight
independent set in the matroid can be solved using a greedy
algorithm (Edmonds 1971). Starting from the empty set, the
idea is to iteratively select an element of maximal weight
among those that could be inserted to the current indepen-
dent subset without loosing the independence property. In
practice, one first sorts the elements of the ground set by de-
creasing order and try to insert each of them successively
without loosing independence. When no element can be
added anymore to the current subset, the algorithm stops and
the elements selected so far form the optimal base.

When w is not known or imperfectly known, we can ask
preference queries to the DM in order to determine his/her
preference order over the elements of the ground set, or to
approximate it. For the sake of efficiency, the preference
elicitation can be performed during the greedy search in or-
der to focus the elicitation task on preference information
that is directly necessary to implement the algorithm. To this
end we propose an interactive version of the greedy algo-
rithm for matroid optimization, described in Algorithm 1.

Our algorithm uses the rank r(M) in lines 2-3 to reduce
the number of preference queries in practice. The rank can
be easily obtained for various matroids (e.g., uniform or
graphic). For more complex matroids, we can use any up-
per bound (by default n) or precalculate r(M) by running
the standard greedy algorithm for an arbitrary function w.

Note that the inner loop (lines 3-6) stops after a finite
number of steps since MMR(E,W ) equals 0 when all the
elements of E have been compared by the DM. Note also
that Algorithm 1 with δ = 0 selects an element that is neces-
sarily optimal at every step (i.e., the selected element is opti-
mal for all admissible set functions w ∈W ). Therefore, our

Algorithm 1: The Interactive Greedy Algorithm

1 X ← ∅; E ← S;
2 while |X| < r(M) do
3 while MMR(E,W ) > δ/r(M) do
4 Ask the DM to compare two elements of E;
5 Update W according to the DM’s answer;
6 end
7 Select ei∈E such that MR({ei}, E,W )≤δ/r(M);
8 if X ∪ {ei} ∈ I then X ← X ∪ {ei} end;
9 E ← E \ {ei}

10 end
11 return X;

algorithm with δ = 0 is nothing else but the standard greedy
algorithm (Edmonds 1971), and it returns an optimal base.
However, asking queries until minimax regrets decrease to
zero may entail an important number of queries in practice
(as will be observed in the numerical section). For a practical
implementation of this procedure, Algorithm 1 can be used
with any positive δ to construct a base with bounded regrets.
This adaptation is not straightforward, as shown below:
Proposition 1. Algorithm 1 returns a base B ∈ B such that
MR(B,B,W ) ≤ δ holds at the end of the execution.

Proof. Let us prove that MR(B,B,W )≤δ holds at the end
of the execution. By definition of max regrets, it is sufficient
to prove that w(B∗)−w(B) ≤ δ holds for any baseB∗ ∈ B
and for any function w ∈ W that is still admissible at the
end of the execution. To do so, let us prove by induction that
the following statement, denoted by P (i), holds at the end of
iteration step i ∈ {1, . . . ,m} of the outer loop (lines 2-10):

∃Bi ∈ B s. t.


Xi ⊆ Bi

Bi\Xi ⊆ Ei

w(B∗)− w(Bi) ≤ |Xi| × δ/r(M)

(1a)
(1b)

(1c)

where m is the number of iteration steps and Xi (resp. Ei)
denotes the set X (resp. E) at the end of step i. In other
words, we want to prove that Xi can be extended into a base
Bi with a regret bounded above by |Xi|× δ/r(M). For step
i = 0 (before entering the first loop), we have Xi = ∅ and
Ei = S (see line 1). Consequently if we set Bi = B∗ then
Equations (1a-1c) are obviously satisfied. HenceP (0) holds.

Now we assume that P (i− 1) holds for some step i ∈
{1, . . . ,m} and we want to prove that P (i) is true. In other
words, assuming that Equations (1a-1c) hold for some base
Bi−1, we need to identify some base Bi such that Equa-
tions (1a-1c) are satisfied by Bi. According to line 8, two
cases may occur: eitherXi−1∪{ei} 6∈ I orXi−1∪{ei} ∈ I.

Case Xi−1 ∪ {ei} 6∈ I: In that case, we have Xi =
Xi−1 (see lines 8-9). Let us prove that we can simply set
Bi = Bi−1 to establish the result. First, note that the in-
duction hypothesis (IH) directly implies that Equations (1a)
and (1c) hold for Bi since Xi = Xi−1 and Bi = Bi−1.
Then, for Equation (1b), we need to prove that we have
Bi\Xi ⊆ Ei, i.e. Bi−1\Xi−1 ⊆ Ei. By the IH, we have
Bi−1\Xi−1 ⊆ Ei−1, i.e. Bi−1\Xi−1 ⊆ Ei ∪ {ei} (see
line 9). Moreover, we can derive ei 6∈ Bi−1 from axiom A1



sinceXi−1∪{ei} 6∈ I andXi−1 ⊆ Bi−1 (by the IH). Hence
Bi−1\Xi−1 ⊆ Ei holds and therefore P (i) is true.

Case Xi−1 ∪ {ei} ∈ I: In that case, we have Xi =
Xi−1∪{ei} (see lines 8-9). Two cases can be distinguished:

• Case ei ∈ Bi−1: let us show that we can simply set Bi =
Bi−1. More precisely, for Equation (1a), we have:

Xi = Xi−1 ∪ {ei} (by hypothesis)
⊆ Bi−1 ∪ {ei} (by the IH)
= Bi−1 (since ei ∈ Bi−1)
= Bi (by definition)

For Equation (1b), we have:
Bi\Xi = Bi−1\(Xi−1 ∪ {ei})

⊆ Ei−1\{ei} (by the IH)
= Ei (see line 9)

For Equation (1c), we have:
w(B∗)−w(Bi) = w(B∗)− w(Bi−1) (by definition)

≤ |Xi−1| × δ/r(M) (by the IH)
≤ |Xi| × δ/r(M) (since |Xi| = |Xi−1|+ 1)

Hence P (i) holds.
• Case ei 6∈ Bi−1: note that we have |Xi| ≤ |Bi−1| since
Bi−1 is a base. Hence by iteratively applying axiom A2,
we can conclude that there exists Y ⊆Bi−1\Xi such that
|Xi ∪ Y | = |Bi−1| and Xi ∪ Y ∈ I. Now we set Bi =
Xi ∪ Y and we want to prove that Equations (1a-1c) are
satisfied by Bi. Note that Equation (1a) is obviously true
sinceBi=Xi∪Y (by definition). For Equation (1b), since
Bi\Xi=Y , we only need to prove that Y ⊆Ei. We have:

Y ⊆ Bi−1\Xi (by definition)
= Bi−1\(Xi−1 ∪ {ei}) (since Xi = Xi−1 ∪ {ei})
⊆ Ei−1\{ei} (by the IH)
= Ei (see line 9)

For Equation (1c), we need to prove that inequality
w(B∗)− w(Bi) ≤ |Xi| × δ/r(M) holds. We have:
Bi\Bi−1 =(Xi ∪ Y )\Bi−1 (by definition)

=(Xi−1 ∪ {ei} ∪ Y )\Bi−1 (by hypothesis)
=({ei}∪Y )\Bi−1 (since Xi−1⊆Bi−1 by the IH)
={ei} (since Y ⊆ Bi−1 and ei 6∈ Bi−1)

As a consequence, since we also have |Bi| = |Bi−1|,
we know that there exists ej ∈ S\{ei} such that Bi =
(Bi−1 ∪ {ei})\{ej}. Now let us prove that ej ∈ Ei−1:
{ej} = Bi−1\Bi = Bi−1\(Xi ∪ Y )

= Bi−1\(Xi−1 ∪ {ei} ∪ Y ) ⊆ Bi−1\Xi−1 ⊆ Ei−1

where the last inclusion is obtained by the IH. Conse-
quently we can derive w(ei) − w(ej) ≤ δ/r(M) from
the definition of max regrets (see line 7). Hence we have:
w(B∗)− w(Bi)

=w(B∗)−w((Bi−1∪{ei})\{ej}) (by definition)

=w(B∗)−w(Bi−1)+(w({ei})−w({ej})) (by additivity)
≤ |Xi−1|×δ/r(M) +(w({ei})−w({ej})) (by the IH)
≤ (|Xi−1|+1)×δ/r(M) (since w(ei)−w(ej)≤δ/r(M))
= |Xi| × δ/r(M) (since Xi = Xi−1 ∪ {ei})

Hence Equation (1c) holds and therefore P (i) is true.

Thus, statement P (i) holds for every step i ∈ {1, . . . ,m},
and in particular P (i) is true for i = m. Since Xm is a base,
then we necessarily have Xm = Bm due to Equation (1a).
Then, using Equation (1c), we obtain w(B∗) − w(Xm) ≤
|Xm| × δ/r(M) = r(M) × δ/r(M) = δ. Finally, since
Algorithm 1 returns B = Xm, the result is established.

Note that Algorithm 1 generates no more than a polyno-
mial number of queries since in the worst-case the DM is
asked to compare all the elements of S (see line 4). Con-
sequently the total number of steps of the inner loop (lines
3-6) is also polynomial. However, despite the existence of a
general formalism, the implementation of Algorithm 1 may
differ significantly from one application context to another.
More precisely, checking whether X ∪ {ei} ∈ I can be
more or less complex depending on the matroid under con-
sideration; for the three examples used in the paper (the uni-
form, graphic and scheduling matroids), the independence
test can be performed in polynomial time. Moreover, com-
puting regrets can be more or less complex depending on the
assumptions made onw. In this respect, an interesting option
is to define w by a parametric function which is linear in its
parameters (e.g., a linear combination of spline functions,
or a linear multiattribute utility, or an ordered weighted av-
erage of criterion values). In that case, regret optimization
can be performed in polynomial time using linear program-
ming. Moreover, using a parametric definition of w enables
to save queries because any preference statement of type
w(e) > w(e′) translates into a constraint on the parameter
space that reduces possible preferences over other elements.

We now present an execution of Algorithm 1 on a small
instance of the scheduling matroid:

Example 1. Consider an instance of the scheduling matroid
with S = {1, . . . , 8} (a set of 8 jobs of unitary length). The
utility w(j) of completing job j on time is defined from an
attribute vector y(j) = (y1(j), y2(j), y3(j)) by

w(j) = λ1y1(j) + λ2y2(j) + λ3y3(j) (2)

for some unknown λ = (λ1, λ2, λ3) representing the value
system of the DM. The attribute vectors attached to jobs are
given below, together with their deadlines dj , j ∈ S:

j 1 2 3 4 5 6 7 8
y1(j) 6 2 5 8 1 6 3 2
y2(j) 8 4 2 7 2 3 4 3
y3(j) 8 7 5 1 8 3 6 1
dj 4 1 2 4 1 3 4 1

Initially, the set Λ of admissible weighting vectors λ is de-
fined by Λ = {λ ∈ [0, 1]3 :

∑3
i=1 λi = 1} and induces

a set W of admissible set functions w by Equation (2). To
simulate the DM’s answers during the execution of Algo-
rithm 1, we assume that the actual set function w of the DM
is defined by λ∗ = (6

9 ,
2
9 ,

1
9 ). In Figure 1, Λ is represented

by triangle ABC in the space (λ1, λ2), λ3 being implicitly
defined by λ3 = 1 − λ1 − λ2, and λ∗ is represented by
a star inside the triangle. For this instance, we applied the
standard greedy algorithm with an arbitrary w and obtained
r(M) = 4. Now, let us execute Algorithm 1 with δ = 0.
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Figure 1: Λ after 1 query.
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Figure 2: Λ after 2 queries.

Step 1: Since E=S and MMR(E,W )=2 > 0, the DM
is asked to compare two jobs, say 1 and 4. We have w(4) =
7 ≥ w(1) = 6.7 (by Equation (2) with λ = λ∗). Therefore
the DM’s answers: “job 4 is more important than job 1”.
Then W is updated by imposing the constraint w(4)≥w(1)
which amounts to restricting Λ by inserting λ2 ≥ 7

6 −
3
2λ1.

Now Λ is represented by the triangle CDE in Figure 1. More-
over, we have MMR(E,W ) = MR({4}, E,W ) = 0 and
therefore job 4 is added to the current independent set X .

Step 2: We have E = S\{4} and MMR(E,W ) =
MR({1}, E,W ) = 0. Hence we do not need to solicit the
DM at this. Then job 1 is added to X (X = {4, 1}) since it
can be completed on time.

Step 3: We haveE = S\{4, 1}. Again no query is needed
since MMR(E,W ) = MR({6}, E,W ) = 0, and job 6 is
added to X (X = {4, 1, 6}) as schedule (6, 1, 4) is feasible.

Step 4: We have E = S\{4, 1, 6} and MMR(E,W ) =
0.67> 0. Therefore the DM is asked to compare two jobs,
say 3 and 7. Since we have w(3) = 4.3 ≥ w(7) = 3.6, the
DM answers: “job 3 is more important than job 7”. Then,W
is updated by imposing the constraint w(3) ≥ w(7), which
amounts to further restricting Λ by inserting λ2 ≤ 3λ1−1.
Now Λ is represented by the polyhedron CFGE in Figure
2. Moreover, sinceMMR(E,W ) = MR({3}, E,W ) = 0,
job 3 is added toX (X = {4, 1, 6, 3}) as schedule (3, 6, 1, 4)
is feasible. Finally the algorithm stops since |X|=r(M) =
4 and X = {4, 1, 6, 3} is optimal. After only two queries,
we know that the actual weights of the DM is within the
area CFGE in Figure 2 and this is sufficient to determine an
optimal solution without any ambiguity.

An Interactive Local Search Algorithm
Local Search is another efficent way of constructing opti-
mal solutions to matroid optimization problems (Lee 2004).
More precisely, starting from an arbitrary base, one can look
for an element that can be profitably replaced by an element
out of the base while preserving independence. This simple
exchange principle can be iterated to progressively improve
the current base until reaching a local optimum. When w is
not known, this principle can be combined with a preference
elicitation algorithm to collect the information that is neces-
sary to identify improving swaps. To implement this idea, we
propose Algorithm 2 where X∆Y denotes the symmetric
difference defined by (X\Y )∪(Y \X) andNB is the neigh-
borhood of baseB, i.e., the set of bases that differ fromB by
exactly one element (thus the symmetric difference withB is
of cardinality 2). The procedure ComputeInitialBase

Algorithm 2: The Interactive Local Search Algorithm

1 B ← ComputeInitialBase(M);
2 improve← true;
3 while improve do
4 NB ← {B′ ∈ B : |B∆B′| = 2};
5 while MMR(NB ∪ {B},W ) > δ/r(M) do
6 Ask one preference query to the DM;
7 Update W according to the DM’s answer;
8 end
9 if MR(B,NB ,W )≤δ/r(M) then improve← false ;

10 else
B←Select(arg min

B′∈NB

MR(B′, NB ∪ {B},W )) ;

11 end
12 return B;

called in line 1 can be any heuristic providing a good starting
solution. For instance, we can compute an optimal base for
a sample of arbitrary set functions and ask the DM to com-
pare them. The quality of the base returned by Algorithm 2
is guaranteed by the following:
Proposition 2. Algorithm 2 returns a base B ∈ B such that
MR(B,B,W ) ≤ δ holds at the end of the execution.

Proof. We want to prove that MR(B,B,W ) ≤ δ holds
when the algorithm stops. By definition of max regrets, we
only need to prove that w(B∗)−w(B)≤δ holds for any base
B∗ ∈ B and for any function w ∈W that is still admissible
at the end of the execution. Due to a well-know multiple
exchange theorem (Greene and Magnanti 1975), there
exists a one-to-one correspondence σ : B → B∗ such that
Bi= (B\{ei}) ∪ {σ(ei)} is a base of the matroid for every
element ei∈B. Note that Bi∈NB (the neighborhood of B)
for all ei ∈ B since we have |B∆Bi| = 2 (see line 4). Note
also that we necessarily have MR(B,NB ,W ) ≤ δ/r(M)
at the end of the execution due to line 9. Therefore,
w(Bi)−w(B)≤δ/r(M) holds by definition of max regrets.
Then, since w is additive and Bi=(B\{ei}) ∪ {σ(ei)}, we
obtain w(σ(ei))−w(ei)≤δ/r(M). Hence we have:

w(B∗)−w(B)=w(

r(M)⋃
i=1

{σ(ei)})− w(B) (by definition of σ)

=

r(M)∑
i=1

(
w(σ(ei))− w(ei)

)
(by additivity of w)

≤
r(M)∑
i=1

δ

r(M)
= δ.

Note that when δ=0, Proposition 2 ensures that Algorithm 2
yields an optimal base. Note also that Algorithm 2 generates
no more than a polynomial number of queries when w is ad-
ditive as computing the PMR values between two neighbors
amounts to comparing two elements of the ground set. We
now present an execution of Algorithm 2:

Example 2. Consider the same scheduling problem as in Ex-
ample 1. Let us execute Algorithm 2 with δ=0. Assume that
ComputeInitialBase(M) returns B={1, 2, 4, 7} cor-
responding to the schedule (2, 1, 4, 7) whose attribute vector
is y(B)=(19, 23, 22).



Step 1: Base B only has 7 candidate neighbors and their
attribute vectors are as follows:

B2,3 B2,5 B2,6 B4,3 B4,6 B7,3 B7,6

y1 22 18 23 16 17 21 22
y2 21 21 22 18 19 21 22
y3 20 23 18 26 24 21 19

where Be,e′ is the base obtained by replacing e by e′ in
B. Since MMR(NB ,W ) = 4 > 0, the DM is asked to
compare two bases, say B and B2,6. We have w(B2,6) =
22.2 ≥ w(B) = 20.2 (by Equation (2)), and therefore
the DM answers: “B2,6 is better than B”. Then the algo-
rithm updates W by imposing the constraint w(B2,6) ≥
w(B), which amounts to restricting Λ by inserting λ2 ≥
4
3 −

8
3λ1 (see Figure 4 where Λ is represented by CDE).

Now MMR(NB ,W ) = 0.5 > 0 which requires to com-
pare two other bases, say B2,6 and B2,3. Here we have
w(B2,6) = 22.2 ≥ w(B2,3) = 21.5. Therefore W is up-
dated by imposing w(B2,6) ≥ w(B2,3), i.e. Λ is restricted
by adding λ2 ≥ 2

3 − λ1 (see Figure 5 where Λ is repre-
sented by CFGD). Now the algorithm stops asking queries
since MMR(NB ,W ) = MR(B2,6, NB ,W ) = 0 and then
we move from solution B to solution B2,6 for the next step
corresponding to schedule (6, 1, 4, 7).

Step 2: HereNB only includes 2 candidate bases, namely
B = B2,6 and B′ = {1, 4, 6, 3} corresponding to the
schedule (3, 6, 1, 4) whose vector is (25, 20, 17). Since
MMR(NB ,Λ) = 1.2 ≥ 0, the DM is asked to compare
B and B′. We have w(B′) = 23 ≥ w(B) = 22.2 and
the DM answers: “B′ is better than B”. Then W is up-
dated by imposing w(B′) ≥ w(B) and Λ is restricted by
λ2≤3λ1−1 (see Figure 6 where Λ is represented by CFIH).
Now MMR(NB ,W ) = MR(B′, NB ,W ) = 0 and we set
B=B′ for the next step.

Step 3: Here MMR(NB ,W ) = MR(B,NB ,W ) = 0
and therefore no question is needed. The algorithm ends by
returning base B associated to (3, 6, 1, 4) which is optimal.

Experimental Results
We have implemented our algorithms on three problems cor-
responding to three different matroids (uniform, graphic,
and scheduling). Their performances are evaluated in terms
of number of queries (for local search, it includes those gen-
erated by ComputeInitialBase), computation times
(given in seconds)1, and empirical error measured as a per-
centage of the optimal value. Results are averaged over 30
runs. Standard deviations are given in the appendix. Before
analyzing the results, let us present our experimental setting.

We consider here multi-objective optimization problems
in which every matroid’s element e ∈ S is evaluated by a
vector xe ∈ Rp where p is the number of objectives to be
maximized. The criterion values are randomly drawn be-
tween 1 and 1000. The DM’s preferences over elements are
defined using a scalarizing function fλ : Rp → R (linear in
its parameter λ) by w(e) = fλ(xe). Hence, any preference

1The time for answering the queries is here negligible as an-
swers are automatically generated by artificial decision makers.
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Figure 6: Λ after 3 queries.

information of type “e is as least as good as e′” translates
into the constraint fλ(e) ≥ fλ(e′) which is linear in λ. Ex-
amples of admissible functions for fλ are weighted sums,
ordered weighted average or Choquet integrals. Here we as-
sume that fλ is a weighted sum and λ is initially unknown.

Recall that, in our algorithms, we ask preference queries
to the DM until MMR values drops below δ/r(M). In our
tests, two values of δ have been used: δ = 0% (which
guarantees that the returned solution is optimal) and δ =
20% of the initial regret (to reduce the number of prefer-
ence queries). To generate informative queries, we use the
Current Solution Strategy (CSS) to efficiently reduce the
set of admissible weights (Boutilier et al. 2006): at each
step, the DM is asked to compare a subset X achieving
the minimax regret to one of its best challengers chosen in
arg maxY PMR(X,Y,W ). Answers to queries are simu-
lated using a function w∗ generated from a weighting vector
λ∗ randomly generated before running the algorithms.

We now provide the results obtained with our pro-
gram written in C++ tested on an Intel Core i7-
9700, 3.00 GHz with 15,5 GB of RAM. Pairwise
max regret optimizations were performed by CPLEX
(https://www.ibm.com/analytics/cplex-optimizer).

Subset Selection Problem (Uniform Matroid). We first
consider the subset selection problem corresponding to the
uniform matroid. Here the size of the ground set is |S| = 50
and k = 25, i.e. I = {X ⊆ S : |X| ≤ 25}. For this matroid,
the independence test simply consists in checking the cardi-
nality constraint. In Table 1, we observe that local search is
more efficient than greedy in terms of number of queries.
For example, the local search algorithm performs about two
times better for p = 6 (46 queries against 99). However,
greedy is faster than local search in terms of computation
times. This is due to the fact that minimax regrets are com-
puted on subsets of the ground set (of size bounded by 50)
for greedy search, whereas it is computed on neighborhoods
(of size bounded above by 252 since all elementary swaps



Local Search Greedy
δ p time queries error(%) time queries error(%)

0
4 4 19 0.00 5 44 0.00
6 14 46 0.00 10 100 0.00
8 45 81 0.00 13 124 0.00

20
4 3 14 0.01 3 18 0.00
6 8 29 0.01 5 37 0.00
8 36 36 0.02 4 38 0.01

Table 1: Greedy vs local search for the uniform matroid.

are allowed) for local search. The gap becomes larger as the
number of objectives increases due to the growing number
of Pareto non-dominated neighbors. With δ = 20%, we no-
tice a significant reduction of the number of queries for both
algorithms while keeping good quality solutions (the error is
at most equal to 0.02%).

Spanning Tree Problem (Graphic Matroid). Here the el-
ements of the ground set are the edges of a connected
graph. The independence test consists in checking that the
selected edges do not form a cycle. We have generated
graphs with 50 nodes and a density equal to 50% with the
LEMON (https://lemon.cs.elte.hu/trac/lemon). In Table 2,
we observe that local search is much faster and asks less
queries than greedy with δ = 0. This is mainly due to a
larger size of the ground set (about 600 here against 50
for the previous problem) and to the fact that greedy con-
structs the optimal base from the empty set, whereas lo-
cal search starts from a good complete solution (obtained
with ComputeInitialBase). For both algorithms, we
observe a significant improvement in terms of number of
queries and times for δ = 20%, without causing a signifi-
cant reduction in the quality of the returned base. We have
also compared our algorithms to the interactive version of
Prim algorithm proposed in (Benabbou and Perny 2015c).
It has similar performances to our greedy approach, while
being outperformed by the local search we propose.

Scheduling Problem (Scheduling Matroid). We consider
instances involving a ground set of 50 jobs, with deadlines
randomly drawn between 1 and 25. The independence test
consists in checking that there exists an order of the selected
jobs compatible with their deadlines. As already observed,
local search generates less queries than greedy, and the error
remains very small for both algorithms. Execution times are
close for δ = 0, but greedy is twice as fast as local search
for δ = 20%. Note that this problem is very close to the sub-
set selection problem but the independence test here further
restricts the number of possible swaps in the local search
procedure (which explains why local search is faster here).

Local Search Greedy
δ p time queries error(%) time queries error(%)

0
4 18 42 0.00 20 64 0.00
6 61 105 0.00 152 155 0.00
8 256 195 0.00 584 263 0.00

20
4 17 13 0.14 10 13 0.28
6 33 25 0.17 41 26 0.24
8 69 37 0.25 99 41 0.28

Table 2: Greedy vs local search for the sgraphic matroid.

Local Search Greedy
δ p time queries error(%) time queries error(%)

0
4 4 20 0.00 4 43 0.00
6 8 43 0.00 8 80 0.00
8 22 86 0.00 14 123 0.00

20
4 4 13 0.02 2 14 0.00
6 6 23 0.03 3 27 0.00
8 12 39 0.01 5 42 0.00

Table 3: Greedy vs local search for the scheduling matroid.

Conclusion
We have introduced two interactive optimization methods
combining preference elicitation with the exploration of in-
dependent sets in a matroid, one based on local search and
the other on greedy search. The common principle used in
both methods is to interleave preference queries with opti-
mization steps to concentrate the elicitation effort on obtain-
ing the preferential information needed to determine an op-
timal solution (or a near-optimal solution if we want to save
some preference queries). The interest of our proposal is that
it is quite general and can be implemented in various opti-
mization problems involving a matroid structure. We have
implemented these methods on three problems (subset se-
lection, spanning tree and scheduling) and presented numer-
ical tests showing the practical efficiency of our algorithms,
in terms of computation times, number of preference queries
and empirical error.

A natural continuation of this work is to extend our ap-
proach to non linear set functions. For example, submodu-
lar set functions (i.e., such that w(X ∪ Y ) + w(X ∩ Y ) ≤
w(X) + w(Y ) for all subsets X,Y of the ground set S)
are of particular interest as they naturally appear in various
contexts (e.g., coverage problems). Submodular utility func-
tions are also used to guarantee a principle of diminishing
returns stating that adding an element to a smaller set has
more value than adding it to a larger set. Moreover, submod-
ularity is of special interest in maximization problems over
combinatorial domains because it plays a role that is analo-
gous to concavity in continuous optimization.

The optimization of a submodular function is hard in
general (it includes max-cut as special case) but approxi-
mate greedy and local search algorithms have been proposed
for the optimization of submodular functions under a ma-
troid constraint and some interesting worst case bounds on
the quality of the approximations returned are known, see
e.g., (Nemhauser, Wolsey, and Fisher 1978). The interactive
approach proposed here, based on interleaving preference
queries with the construction of the optimal solution, can
also be implemented for submodular optimization. We did
some preliminary tests which are very encouraging. The de-
tailed analysis of such algorithms is left for further research.

Another interesting direction of research would be to con-
sider a regret-based Bayesian approach, following some re-
cent works (Bourdache, Perny, and Spanjaard 2019), so as
to handle noisy preferences (possible mistakes).
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