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Running title: Trade-off between reproduction and growth 

Abstract 



Macroalgal domestication and farming can induce significant ecological and 

biological changes in exploited species. In the red macroalga, Agarophyton chilense, marine 

farming is based on clonal propagation by cuttings of the largest plants. This type of mass 

selection by farmers can have a considerable impact on the life history characteristics of 

cultivated strains. In this study, we investigated the potential effect of this type of selection 

on the reproduction in A. chilense, comparing female gametophytes from the natural and 

farmed populations. Our results showed strong differences between these two types of 

populations. As expected, individuals were larger in the farm than in the wild population. On 

the other hand,      the number of cystocarps per centimeters of fronds      was ten times lower 

in the farm than in the natural population. These differences suggest that artificial selection 

and cultivation environment significantly modify life-history traits in this macroalga. 

Moreover, the positive relationship between female size and number of cystocarps per 

centimeters of fronds observed in Dichato point out to the possible existence of cost of 

reproduction in A. chilense, with bigger females allocating more resources or energy to 

reproductive structures in natural populations.  

 

Key index words: Aquaculture, Gracilariales, cystocarp production, reproductive effort, 

investment, trade-off, vegetative growth. 

 

1. Introduction 

New macroalgal cultivation methods, most often adapted from the agricultural 

practices of terrestrial plants, are being developed in marine aquaculture (Robinson et al. 

2013, Hafting et al. 2015). These new cultivation practices in human-controlled 



environments are associated with significant ecological changes (Smith 2016), as well as 

alterations in the biology and reproduction of cultivated species (Zeder 2015; Valero et al. 

2017). In macroalgae, these domestication processes are still poorly understood and further 

research, integrating knowledge on the evolutionary biology and ecology of natural 

populations and on the selective pressures exerted by cultivators, is therefore necessary to 

promote sustainable macroalgal aquaculture (for review Valero et al. 2017). In some species 

of red algae, cultivation is based on the clonal propagation of rapidly growing algal strains 

on farms. This type of clonal multiplication can generate an important impact in the 

characteristics of the biological cycle and the genetic diversity of cultivated species 

(Guillemin et al. 2008, Valero et al. 2017). One example of this is the Rhodophyta 

Agarophyton chilense (C.J.Bird, McLachlan et E.C.Oliveira) Gurgel, J.N.Norris et Fredericq 

previously referred as Gracilaria chilensis. This species has been domesticated and 

cultivated in Chile since the early 1970s, mainly for agar production (Buschmann et al. 2008).  

It has been hypothesized that farmers have unconsciously selected for fast growth rate 

genotypes in farms, potentially simultaneously counter-selecting against high reproductive 

investment (Guillemin et al. 2008; Usandizaga et al. 2019). Indeed, in controlled laboratory 

conditions, trade-offs have been reported between growth and reproduction for this species 

(Guillemin et al. 2013).       

Agarophyton chilense presents a typical isomorphic haplodiplontic life cycle with two 

free-living isomorphic generations: haploid gametophytes (males and females) and diploid 

tetrasporophyte. When released, the haploid tetraspores attach to the substrate to give new 

gametophyte individuals consisting of perennial holdfasts from which spaghetti-like thalli 

grow. Male gametes (spermatia) are released in the water column. Female thalli bear 

uniformly distributed gametangia, which consist of three cells and can be observed only on 



thallus sections under microscope (Kling and Bodard 1987). Fertilization occurs on the 

female individual and involves complex cytological events, resulting in the formation of a 

cystocarp on the female (Hommersand and Fredericq 1990). The development of a haploid 

pericarp is induced, within which the zygote divides mitotically (gonimoblast), protected and 

nurtured by the female. After a few weeks of maturation, the cystocarp liberates thousands 

of diploid spores named carpospores (Lefebvre et al. 1987; Fredericq and Hommersand 1989; 

Kain and Destombe 1995). These carpospores, after their release, give rise to new 

tetrasporophyte individuals.             

Two types of populations, potentially presenting strong difference in reproductive 

investment (Guillemin et al. 2008), are found in Chile: (1) natural populations formed by 

individuals growing from a perennial holdfast and fixed to hard substratum and (2) floating 

thalli that grow and propagate by self-replication in sandy and muddy bays and estuaries (i.e., 

farms). The natural populations are maintained by sexual reproduction and spores 

recruitment (Guillemin et al. 2008). In these populations fertile tetrasporophytes, male and 

female gametophytes are frequently encountered (Meneses 1996; Vieira et al. 2018a). On the 

other hand, farmed populations - growing on muddy or sandy beds - are composed by a high 

proportion of genetically identical units (Guillemin et al. 2008), mainly maintained through 

human-assisted thallus breakage and embedding. Most of the Chilean crops of A. chilense 

are composed of clonal tetrasporophytes, except the farmed population in Lenga (36° 45’ S, 

73° 11’ W), where growing thalli are mainly female gametophytes (Guillemin et al. 2008). 

Farmed thalli are generally recognized to be poorly reproductive sexually (Prieto et al. 1991). 

However, even if slightly less reproductive individuals have been observed in farms, no clear 

significant differences have been reported in terms of frequency of reproductive thalli when 

compared to natural populations (Guillemin et al. 2008).  



In haplodiplontic red macroalgae, the quantification of cystocarps production is 

simple since these reproductive structures are visible with the naked eye and have 

hemispherical fruiting bodies which develop on the female gametophyte after fertilization 

(Richerd et al. 1993, Kamiya and West 2010). In A. chilense (as G. chilensis) and Gracilaria 

domingensis (Kützing) Sonder, the vegetative growth of female gametophytes decreases after 

fertilization during the development of cystocarps (Santelices and Varela 1995; Guimarães 

et al. 1999). These observations are consistent with resource allocation theory which predicts 

that reproduction imposes a cost on an organism (for reviews see DeWreede and Klinger 

1988; Santelices 1990). The number and size of cystocarps produced by a female has been 

used to measure red macroalgae reproductive output (Edyvean and Ford 1984). The 

reproductive effort, classically defined as the relative amount of resources allocated to 

reproduction over a defined period of time, is much more complex to measure. The ratio of 

the reproductive biomass to that of the whole plant or the vegetative biomass has been used 

as a proxy of reproductive effort in Fucales (Cousens 1986; Ang 1992; Åberg 1996) and 

crustose macroalgae (Edyvean and Ford 1984). In red macroalgae, reproductive output will 

depend on the female genotype and the number of gametangia it produces (Engel and 

Destombe 2002), the quantity and quality of male gametes (Engel and Destombe 2002; Engel 

et al. 2002) and the female investment in cystocarps (Kamiya and Kawai 2002). However, 

reproductive output and reproductive effort are sometimes difficult to distinguish, and 

cystocarp production per unit area or frond length has been used as an indicators or proxy for 

reproductive effort (Krueger-Hadfield et al. 2013). In this study, we examined the 

relationship between thallus size and reproductive output in natural versus crop populations. 

We hypothesize that clonal propagation and artificial selection in farmed populations have 



induced reproductive costs in A. chilense evidenced by the trade-off between thallus size and 

cystocarps production.   

 

2. Materials and methods 

 

2.1     . Collection and maintenance of algal material 

In A. chilense, gametophytes and tetrasporophytes share the same gross morphology and the 

phase and sex can only be recognized during the reproduction period. Even if reproductive 

individuals could be encountered all year round and reproductive season is not clearly defined 

for A. chilense, the highest percentage of reproductive individuals is encountered during 

summer (December to April in the southern hemisphere, Guillemin M-L. unpublished data) 

and the highest spore production occur at the end of summer / beginning of autumn (after 

February, Vieira et al. 2018b). 

Reproductive female gametophytes were collected in March 2009 in the natural 

population of Dichato (36° 32’ S, 72° 56’ W) and in the crop of Lenga (36° 45’ S, 72° 11’ 

W) separated geographically by about 25 km (see Figure 1). We sampled different genets 

(i.e. females with distinct holdfasts) in Dichato and different ramets (i.e. thalli developing 

from an under-ground thallus system) in the farm of Lenga. In Dichato, females with 

cystocarps were selected directly in the field. In Lenga, a farm where much less reproductive 

structures are generally encountered (Guillemin et al. 2008), only well-isolated thalli (i.e., a 

well-defined group of fronds surrounded by at least 10 cm of sand from any other A. chilense) 

were randomly selected (N=100) and the above-ground biomass was collected. In each site, 

individuals were collected in an area no larger than 20 m2. The collected individuals were 

placed separately in plastic bags and transported in a cooler to the “Calfuco Water Resources 



Coastal Laboratory”, in Valdivia. Once at the laboratory, the presence of cystocarps was 

revised thoroughly under a stereoscope microscope (Zeiss Stemi DV4/DR) and species-

specific molecular sex markers were amplified in vegetative individuals from Lenga using 

the protocol defined by the authors (Guillemin et al. 2012). In total, 20 females were selected 

in each population for further analyses. 

 

2.2. Biomass and reproductive investment estimators 

In the natural population of Dichato, all females were attached to the substratum and 

primary fronds were defined as thalli directly growing from the holdfast. In the farm of 

Lenga, after cutting individuals at sand level, the independent thalli forming the clump were 

defined as primary fronds. In both populations all primary fronds and up to seven secondary 

fronds per female were measured. For each female, we measured four estimators of biomass: 

i) the dry weight (g), ii) the volume of the thallus (i.e., the volume of a cylinder of the 

maximum length and maximum diameter of the thallus in cm3), and iii) the length of primary 

fronds (cm) and iv) the length of secondary fronds (cm). As reproductive output estimators, 

we measured: i) the number of cystocarps observed per centimeter of primary fronds (no. of 

cystocarps ∙ cm-1) and, ii) the number of cystocarps observed per centimeter of secondary 

fronds (no. of cystocarps ∙ cm-1). Hereafter, the diameter of the cystocarps was measured 

under a stereoscope microscope in the lab (Zeiss Stemi DV4/DR). Up to 60 cystocarps were 

measured per female in Dichato and up to 45 in Lenga. In order to verify for the presence of 

viable carpospores in the cystocarps, six fragments of fronds carrying cystocarps were taken 

haphazardly in each population and fixed in 10% formalin-seawater. Material embedded in 

paraffin was sectioned in a microtome (Leica RM 2035) and stained with dilute methylene 



blue or haematoxylin-eosin for observation of general morphology. Photomicrographs were 

taken with an Olympus BX41 microscope. 

 

2.3. Statistical analysis 

Data were tested for homogeneity of variances and normal distribution using 

Levene’s and Shapiro-Wilk tests, respectively. When existence of non-normal residuals 

and/or heteroscedasticity was detected, data were logarithmically transformed prior analyses. 

Student T tests were performed to evaluate differences between Dichato and Lenga whenever 

homogeneity of variances was achieved (i.e., dry weight, volume of the thallus and primary 

and secondary fronds length), while the non-parametric Mann-Whitney U-tests were used 

when homogeneity of variances was not fulfilled after data transformations (i.e., number of 

cystocarps per centimeter of primary and secondary frond). Correlation between length of 

primary fronds and cystocarps production in females were tested using Spearman rank 

correlation, performed independently in Dichato and Lenga. All differences were considered 

significant at p-value < 0.05  and correction for multiple testing was carried out using the 

Bonferroni method. All analyses were performed in R (3.6.3 version) (R Core Team 2016). 

 

3. Results 

In the farm of Lenga, cystocarps were observed in only 80% of the females (16 out 

of 20), whereas in the natural population of Dichato, all 20 females studied bear cystocarps. 

Strong differences were observed between Dichato and the crop of Lenga for female size 

(length of primary and secondary fronds, volume of thallus and dry weight, p < 0.05 for all 

Student T tests, Table 1) and production of cystocarps (number of cystocarps observed per 

centimetre of primary and secondary frond, p < 0.05 for both Mann–Whitney U-tests, Table 



1). Females from Dichato were much smaller than the ones from Lenga (dry weight, volume 

of thallus and length of primary fronds, Table 1). The females sampled in the natural 

population of Dichato were characterized by a higher production of cystocarps with a number 

of cystocarps per centimeter of frond ten times higher for primary fronds and twenty times 

higher for secondary fronds than the females from Lenga (Table 1). No significant difference 

in cystocarp size was observed between populations (Table 1). The number of cystocarps 

observed along the primary fronds was positively correlated with their length in Dichato 

(Figure 2) but not in Lenga (Figure 2). The number of cystocarps along the secondary fronds 

was not correlated with their length irrespective of the locality (rs = -0.234, p = 0.306 and rs 

= -0.137, p = 0.575 in Dichato and Lenga, respectively, data not shown). Finally, carpospores 

were observed in cross-section of cystocarps in both localities (Figure 3).  

 

4. Discussion 

Our results demonstrated that female gametophytes of Agarophyton chilense are 

bigger and less sexually reproductive in farms than in natural populations. These differences 

suggest that cultivation significantly modified life-history traits of this macro     alga. In this 

species, cultivation techniques have usually relied only on replanting of thallus cuttings. This 

practice allows farmers to selectively multiply (consciously or unconsciously) the 

phenotypes with the highest biomass production but also the ones best adapted to these new 

growing conditions. We propose that the ecological modification of the environment and the 

clonal selection oriented towards the production of biomass operated by farmers (i.e., the 

first step in the domestication process of the species; Valero et al. 2017), had the indirect 

consequence of reduced investment in sexual reproduction leading to a much lower 

reproductive output. Observations of the effect of domestication on the reproduction on 



plants suggest that human selection for increased vegetative propagation led to architectural 

changes that resulted in reduced sexual fecundity (in cassava, McKey et al. 2010) and fertility 

(e.g. in potato, Simmonds 1997; and yams, Segnou et al. 1992). In cultivated seaweeds, 

strong evidence for domestication exist (Agarophyton, Guillemin et al. 2008 and 

Kappaphycus, Ask and Azanza 2002). Nevertheless, no clear results have been obtained 

regarding the diminished reproductive output as a consequence of domestication process in 

macroalgae yet. 

Field studies focused on natural populations of A. chilense have shown that the 

probability of a frond to become fecund is size-dependent (Vieira et al. 2018a and b). In the 

present study, a positive relationship between the size of the primary fronds and the number 

of cystocarps produced was observed in the natural population (Dichato). This could be 

explained by the fact that the external part of this organ (the pericarp) is produced directly 

by the female. Indeed, in the Florideophyceae, the size of the cystocarp and the number of 

spores produced by cystocarp are related to the thallus biomass supporting the reproductive 

structures (in Antithamnion nipponicum, Ceramium boydenii and C. Japonicum; Kamiya and 

Kawai 2002). In the same way, in brown algae, positive correlations between thallus size and 

the proportion of biomass allocated to  reproductive tissue have been reported in various 

species (Ascophyllum nodosum, Åberg 1996; Hizikia fusiformis, Zou et al. 2006; Sargassum 

thunbergii, Zhang et al. 2009) and were related to the higher number of reproductive 

meristems available for receptacle production present along the thalli of larger individuals 

(Zhang et al. 2009). On the other hand, the positive relationship between the size of the frond 

and the production of cystocarps was not observed in females from the farmed population 

(Lenga). In addition, these females had on average a production of cystocarps ten times lower 

than in the natural population. As the development of cystocarps occurs after the fertilization 



(Hommersand and Fredericq 1990), this result could be linked either to a low number of 

carpogonium (female reproductive structure) per female or to a general low availability of 

male gametes in this farm. Indeed, contrary to what is observed in natural populations where 

the sex ratio is generally balanced (Guillemin et al. 2008), the number of males in Lenga is 

reduced (data not shown). Farmers seem to avoid males in A. chilense crops probably due to 

their lower vegetative growth rate, when compared to females or tetrasporophytes (Guillemin 

et al. 2013). Despite these differences between the two types of populations, we assume that 

the few reproductive males observed in the farmed population can actively participate in 

fertilization. Furthermore, we cannot rule out the hypothesis that the male gametes could 

come from neighboring natural populations, maintaining some degree of sexual reproduction 

in the farm. It has been shown in Gracilaria gracilis that spermatia have a lifespan of more 

than 6 hours and can be carried by currents (Destombe et al. 1990).   

According to life-history theory, reproductive cost implies trade-offs in resource 

distribution, expressed as changes in future growth, fecundity, and/or survival (Stearns 1992; 

Álvarez-Cansino et al. 2010; Vieira et al. 2018a; Vieira et al. 2018b). In this context, some 

empirical studies in plants have documented trade-offs in terms of allocation of energy and 

limited resources, particularly between reproduction and vegetative growth (Ashman 1994; 

Campbell 2000; Ehrlén and Groenendael 2001; Henriksson 2001; Obeso 2002, 2004; 

Bañuelos and Obeso 2004; Álvarez-Cansino et al. 2010). In some Rhodophyta, gametophytic 

females have been shown to present a clear decrease in vegetative growth when reproductive 

(Santelices and Varela 1995; Guimarães et al. 1999) as resources are diverted from the 

adjacent thallus to allow the development of cystocarps (Kamiya and Kawai 2002). In A. 

chilense, vegetative fronds show a higher survival and a better growth rate than reproductive 

ones irrespective of the type of individual analyzed (male gametophyte, female gametophyte, 



or tetrasporophyte) (Guillemin et al. 2013). Studies monitoring A. chilense in natural 

populations also support the existence of a trade-off between survival and reproduction 

(Vieira et al. 2018a and b). A study developed in central Chile focusing on gametophytes of 

the two intertidal red algae Ahnfeltia durvillaei and Gymnogongrus furcellatus, suggests the 

existence of reproductive costs and trade-offs between growth and fecundity (Camus 1992). 

The study documented a size-independent threshold in reproductive effort for each species. 

In the same way, field studies in brown algae support the existence of a reproductive cost, 

evidenced by decrease in growth or survival rates in reproductive individuals (Ang 1992; 

Åberg 1996).       

In this study, despite the lower production of cystocarps in females from the farmed 

population, these structures seem to be fertile and produce carpospores. However, it is very 

unlikely that these spores will succeed in germinating in this type of sandy environment, 

which could explain the low frequency of tetrasporophytes in this farm. The evolution of 

functionally sterile clonal thalli in farms has been previously hypothesized in A. chilense as 

a result of farming techniques mostly/only based on clonal multiplication of vegetative thalli 

(Guillemin et al. 2008). The theoretical framework behind this evolutionary hypothesis 

suggests that organisms maintained only by asexual reproduction for a number of generations 

could lose their ability of reproduce sexually due to the accumulation of sterility mutations 

in populations where sexual recruitment is impaired by the environment (“use it or lose it” 

hypothesis; Eckert 2002). In these cases, sterility arises through the accumulation of 

mutations in genes necessary for sexual reproduction (i.e. genes involved in meiosis, gamete 

production or necessary for gametes encounter and fusion), these becoming non-functional. 

The lack of sexual reproduction during various generations impedes counter selection and 

the purge of the mutation load accumulated along these genes (Eckert 2002). Our results do 



not, however, support the idea of a sterilization of the Lenga farm clonal female thalli. This 

result may be explained by the relatively recent domestication of A. chilense (Buschmann et 

al. 1995; Valero et al. 2017) and evolutionary pathway to sterilization could still be ongoing 

in this species. However, measurements made during the present study include only the 

cystocarps formation while other important steps in the sexual life cycle have not been 

considered (e.g., the capacity of the carpospores to settle, germinate and grow) (Fletcher and 

Callow 1992). Complementary common garden experiments and genomic screening are now 

needed to test for differences in survival and growth of carpospores produced by females 

from natural and farmed populations and study the potential load of accumulated mutation in 

genes necessary for sexual reproduction. 
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Table 1: Differences in dry weight, thallus volume, length of primary and secondary fronds, number of cystocarps observed per 

centimetre of primary and secondary fronds and size of cystocarps between females from the natural population of Dichato and the crop 

of Lenga. Bold characters represent significant values (*Mann-Whitney U Test; $Student T test) after a Bonferroni correction for multiple 

tests; 20 individual measured per locality; values are means ± SE.  n.a.: not applicable. 

Variables 

Natural 

Population 

Dichato 

 Crop Population  

Lenga 

df t-value p-value 

Dry weight (g) 8.39 ± 5.82 50.09 ± 39.54 40 -6.55  ($) < 0.001 

Volume of the thallus (cm3) 82.84 ± 70.96 291.01 ± 145.65 30 -5.84 ($) < 0.001 

Length of primary fronds (cm) 8.93 ± 4.88 27.54 ± 7.57 30 -9.89 ($) < 0.001 

Number of cystocarps per centimetre of primary frond 2.09 ± 1.27 0.26 ± 0.28 n.a. n.a. (*) < 0.001 

Length of secondary fronds (cm)       5.29 ± 2.08 7.94 ± 2.66 38 -4.00 ($) = 0.001 

Number of cystocarps per centimetre of secondary frond 2.00 ± 0.93 0.17 ± 0.22 n.a. n.a. (*) < 0.001 

Average size of cystocarps (mm) 1.05 ± 0.34 1.66 ± 0.57 22 -1.45 ($) = 0.140      

 

 



Figure legends 

Fig. 1. Map of the Chilean coast (A) and of the Concepción region, where Dichato and Lenga 

are located (B). Photographs of the natural population of Dichato (C) and of the crop of 

Lenga, note the Agarophyton chilense collected by Lenga residents forming piles on the 

beach (D). All photographs by C. Destombe. 

Figure 2: Relation between the primary frond length (cm) and the number of cystocarps 

observed per centimetre of primary frond (no. of cystocarps ∙ cm-1) in Agarophyton chilense 

from Dichato (A) and Lenga (B). Each data point represents individual average value; solid 

line represents the least square linear regression (rs: Spearman rank correlation coefficient, 

p: probability level).  

Figure 3. Photograph of female thalli from Dichato - details of cystocarps growing on the 

thallus are given in insert - (A) and Lenga (B). Cross-section of cystocarps (arrowheads: 

carpospores) from Dichato (C) and Lenga (D). Black line represents 5 cm in (A) and (B) and 

80 µm in (C) and (D). All photographs by M-L. Guillemin. Ca: carposporangium 

(corresponding to a carpospore not yet released), cc: female cortical cell, cy: cystocarp, fm: 

female medulla, ft: female thallus, g: gonimoblast, p: pericarp. 
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