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Abstract

In this study, we present the DEEPSTORM (DEEP moiSt aTmospheric cOnvection from 

micRowave radioMeter) algorithm, able to retrieve ice water path (IWP) and to detect 

deep moist atmospheric convection (DC) from 80°S to 80°N using observations from four 

spaceborne passive microwave radiometers. DEEPSTORM is based on a machine learning 

approach and is fitted against observations from the CPR (Cloud Profiling Radar) 

spaceborne radar on-board CloudSat. IWP predictions show an average root mean square 

error of 0.27 kg/m2 and a correlation index of 0.87. DC occurrence is detected with a 

probability of 59% and a false alarm rate of 24%. The prediction accuracy of IWP and DC

is significantly better when the IWP exceeds 0.5 kg/m2 showing that DEEPSTORM is well

suited to detect and characterise the strongest DC events. Overall DC detection is more 

accurate in the tropics than in mid-latitudes while the IWP retrieval works better in the 
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mid-latitudes. Two examples illustrating the potential of DEEPSTORM are presented: the

IWP is retrieved during Hurricane Matthew in 2016, and a climatology of DC occurrences 

between September 2016 and December 2016 is presented. This work will allow building a 

quasi-worldwide and 20-year long database of DC occurrence and intensity.
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Highlights

- DEEPSTORM detects convection and retrieves ice with passive microwave observations

- DEEPSTORM detects well the strongest and more elevated convective clouds

- Frequencies suited for convection characterisation with radiometers are highlighted

- This work will lead to the development of a worldwide and 20-year long climatology

1. Introduction

Deep moist atmospheric convection (DC) is a very frequent meteorological event that 

occurs near globally. DC plays a central role at meteorological scale by, for instance, 

homogenising, horizontally and vertically, the thermal energy received by the Earth’s 

surface. DC also redistributes vertically the atmospheric gases and in particular the water 

vapour that is sometimes injected into the lower Stratosphere. At ground level, DC is an 

essential provider of rain and thus has a role for biodiversity and farming activity but also 

for the mitigation of atmospheric pollution events through air cleansing. DC is also 
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frequently associated with severe meteorological phenomena such as heavy precipitation, 

strong winds, hail, lightning and tornadoes (Brunner et al., 2007; Doswell, 2001). Often, 

those have an important societal impact with hundreds of casualties recorded every year in

Europe and the USA, and probably many more worldwide. The economic cost of DC is 

also significant and is estimated between 1 and 8 billion of euros in Europe (Brooks & 

Dotzek, 2008; Hoeppe, 2016), and over 10 billion in the USA (Allen, 2018). 

The role and impact of DC emphasise the need for comprehensive and long-term 

monitoring of this phenomenon. However, the global monitoring of DC is challenging 

because DC can occur in remote regions (e.g., ocean, isolated islands) where no ground 

observations are available and because it can sometimes be of relatively brief duration and 

small size (i.e., ~ 30 min and 20 km). Additionally, the last IPCC scientific report 

highlights the lack of global observations to study past and present trends in the context 

of climate change.

At present, spaceborne instruments appear to be the only available solution for a global 

monitoring of DC. In particular, active and passive microwave instruments are well 

adapted to this task thanks to the ability of microwave frequencies to probe within 

convective clouds and to detect atmospheric ice. Spaceborne radars can thus provide 

invaluable information on the vertical structure of microphysics in convective clouds. 

However, the spaceborne radars do not have large swaths (~1.4 km for CloudSat) and thus

they sample only a limited fraction of severe convective clouds. Passive microwave 

radiometers (PMR) are also able to detect severe convection by taking advantage of the 

high frequency channels’ ability to detect the scattering of Earth radiations by the ice 
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crystals (e.g., Cecil and Blankenship, 2012; Ferraro et al., 2015; Hong et al., 2005; Laviola 

and Levizzani, 2011). Unlike radars, PMR have a very large swath (up to 2000 km) and 

many have been launched for 30 years which ensures a long-term sampling of DC on a 

global scale. Hong et al., (2005) developed a diagnostic able to detect deep convection and 

convective overshooting clouds using high frequency channels which has been validated 

with airborne and spaceborne collocated observations (Hong et al., 2005; Rysman et al., 

2016a; Rysman et al., 2016b). These diagnostics have been widely used in past years 

(Aumann and Ruzmaikin, 2013; Claud et al., 2012; Funatsu et al., 2007, 2008, 2009, 2012, 

2018; Hong and Heygster, 2008; Sanò et al., 2015). However, the Hong et al., (2005) 

algorithm presents several limitations: first its efficiency decreases drastically over frozen 

soil and mountainous regions due to the surface contamination of the signal (Rysman et 

al., 2016b). Second, it has been designed specifically for the Advanced Microwave Sounding

Unit (AMSU-B) radiometers and while it has been shown that it can be adapted to the 

MHS (Microwave Humidity Sounder) (which is a radiometer very similar to AMSU-B), it 

cannot be applied to newest generation instruments due to different channel frequency sets

(e.g., SAPHIR (Soundeur Atmosphérique du Profil d’Humidité Intertropicale par 

Radiométrie), ATMS (Advanced Technology Microwave Sounder)) and/or different 

scanning strategies (GMI (Global precipitation measurement Microwave Imager)). Finally, 

the Hong et al., (2005) diagnostic does not inform on the intensity of the detected 

convection. As such it does not allow to distinguish powerful vertical convective towers 

and shallower cumulus clouds.

In this context, we developed an algorithm named DEEPSTORM (DEEP moiSt 

aTmospheric cOnvection from micRowave radioMeter) able to overcome the 
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aforementioned difficulties. DEEPSTORM detects DC worldwide and retrieves the ice 

water path (IWP), which is used as a proxy of DC intensity, and is adapted for four 

different passive microwave radiometers. DEEPSTORM is trained, tuned and validated 

against coincident measurements of the CloudSat CPR radar. Datasets and methods are 

presented in Section 2. Evaluation of the algorithm is conducted in Section 3 and two 

applications of the algorithm are shown in Section 4. Discussion and conclusion are 

presented in the last two sections.

2. Data and methods

Rationales

This study aims at detecting deep moist atmospheric convection (DC) and retrieving ice 

water path (IWP) using observations from four different types of passive microwave 

radiometer : MHS (Microwave Humidity Sounder) on-board the National Oceanic and 

Atmospheric Administration - 18 (N18) platform (Bonsignori, 2007), SAPHIR (Sondeur 

Atmosphérique du Profil d’Humidité Intertropicale par Radiométrie) on-board the Megha-

Tropiques (MT) satellite (Clain et al., 2015), ATMS (Advanced Technology Microwave 

Sounder) on-board the Suomi National Polar-orbiting Partnership (NPP) platform 

(Blackwell et al., 2011), GMI (GPM Microwave Imager) on-board the Global Precipitation

Measurement – Core Observatory (GPM) satellite (Draper et al., 2015). MHS and ATMS 

operate on polar orbiting satellites, GMI has a drifting orbit (65° inclination) and SAPHIR

an equatorial orbit. All radiometers probe at several frequencies around the water vapour 

absorption line at 183.3 GHz and, except for SAPHIR, at about 89 GHz. ATMS and GMI 

also probe at lower frequencies, down to 10 GHz for GMI. In addition, several of GMI 

channels are both vertically and horizontally polarised (e.g., 166 GHz). All radiometers use
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a cross-track scanning except GMI which uses a conical scanning at a constant viewing 

angle of 53°.

Passive microwave frequencies are sensitive to the presence of frozen hydrometeors in the 

troposphere and thus to the DC occurrence (e.g., Bennartz and Bauer, 2003; Deeter and 

Vivekanandan, 2005; Surussavadee and Staelin, 2006). In particular, a depression of 

brightness temperature (BT) in high frequency channels (e.g., Fig. 1. in Rysman et al., 

(2018)) can be a signature of frozen hydrometeors as those scatter Earth’s radiation. 

However, several other factors such as the variation of humidity, atmospheric temperature 

and surface type also affect BT in a non-linear manner which makes it difficult, in some 

cases, to discriminate atmospheric convection from other features. Therefore the 

development of  specific algorithms able to tackle these problems is of great importance. A 

further challenge is to characterise the intensity of atmospheric convection with passive 

microwave radiometers. A way to infer the convection intensity is to use atmospheric ice 

as a proxy. Indeed, a high magnitude of ice in a convective cell is a signature of strong and

sustained vertical updrafts and thus of intense events. In addition, high contents of 

atmospheric ice are likely to yield lightning and heavy precipitation including hail but also 

strong surface wind gusts. For instance, Heymsfield et al., (2020) showed that 57% of all 

Earth’s precipitation consists in precipitating ice that melts to produce rain. Therefore, 

retrieving IWP using BT can inform on the intensity of DC. However, the relationship 

between BT and IWP is non-linear and is affected by many other parameters such as 

humidity and temperature. Such high-dimensional problems, associated with a high volume

of data, can be addressed using machine learning techniques. These techniques allow to 

characterise the high diversity of atmospheric conditions in which DC occurs and to 
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identify underlying patterns. It is for this purpose that we developed the DEEPSTORM 

(DEEP moiSt aTmospheric cOnvection from micRowave radioMeter) algorithm.

Coincidence databases

Building an algorithm able to detect DC and retrieve IWP requires first a reference 

dataset. In our study, we chose the CloudSat CPR (Cloud Profiling Radar) observations to

train and evaluate the DEEPSTORM predictions. CPR is able to distinguish eight cloud 

types (2B-CLDCLASS product; Sassen and Wang (2008)) including Deep Convective 

Clouds used for DC detection, and to retrieve ice water content with the DARDAR-

CLOUD product (Ceccaldi et al., 2013; Delanoë and Hogan, 2008, 2010) that we used to 

compute the IWP. Specifically, we built co-located databases between CPR observations 

and each radiometer observations, i.e., we identified every +/- 15 min CPR measurements 

embedded in each radiometer pixel for the period spanning between 2006 and 2017. This 

represents, for MHS on-board N18, more than 200 million of CPR pixels with 436 vertical 

levels each. Then, we averaged CPR measurements on the coincident radiometer pixel and 

we extracted several variables including the ice water path (IWP), the occurrence of DC, 

the altitude of the maximum ice content and the top and bottom altitude of the DC cloud.

Note that, as soon as at least one CPR pixel detected DC, we flagged the whole associated 

radiometer pixel as DC. In addition, the co-located database includes all the BT and the 

viewing angles for each radiometer, the ground elevation, and the temperature (Tp), the 

specific humidity (q) and relative humidity (R) profiles at 37 pressure levels (from 1 hPa 

to 1000 hPa) extracted from the ERA-5 reanalysis (Copernicus Climate Change Service, 

2017). The nearest neighbour approach has been used to match the closest ERA-5 grid 
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point (available on a spatio-temporal grid of 0.25°x0.25° and 6 h) to each passive 

microwave pixel.

Coincident measurements between CPR and the radiometers are unevenly spread over the 

globe with an increasing number with latitude due to their quasi polar orbits (except for 

SAPHIR). This could bias the DEEPSTORM algorithm. Therefore, we resampled the 

datasets by randomly taking a constant number of collocations for each degree of latitude 

for each radiometer. We finally obtained 4 databases with 300,000 (GMI), 400,000 

(SAPHIR), 4 million (ATMS) and 13 million (MHS) coincidences. 

DEEPSTORM algorithm

When using machine learning algorithms, the larger the training dataset, the better the 

prediction accuracy. However, larger datasets increase greatly the computing time, thus in 

the variable selection and tuning procedures described thereafter, for which each model has

been run hundreds of thousands of times, we limited each database to 300,000 randomly 

selected points. The full coincident databases are only used once for the final fitting of the 

models.
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Fig. 1. Scheme of the DEEPSTORM algorithm. First, input variables are 

provided to the genetic algorithm which selects the minimal set of variable 

required to detect DC and retrieve IWP. Then, these variables are provided 

to a neural network and a gradient boosting model. The neural network has 

2 levels: the first level consists in 2 LSTM layers (32 neurons +16 neurons) 

and one FC layer (16 neurons) and the second level is made of one FC layer 

(32 neurons +8 neurons +1 neuron). The results of those two models are 

combined to obtain two output variables: the IWP and the DC occurrence.

The first step was to select the appropriate input variables to predict DC and IWP (Fig. 

1). As previously mentioned, more than 100 variables (BT, humidity …) are available in 

the four coincident databases. Using a large number of input variables increases the 

probability to take into account all important source of information to reach the best 
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possible predictions, but it also makes the task more difficult for a machine learning 

algorithm to converge to an optimal solution. This is why, we reduced the number of input

variables by keeping only variables related to DC or IWP using the gradient boosting 

variable importance information (Friedman et al., 2001). This reduces the number of input

variables to about 30 (depending on the radiometer). However, several of the selected 

variables provide redundant information, e.g., the specific humidity variables at 1000 and 

950 hPa levels are both related to the occurrence of DC but are strongly correlated and 

thus keeping only one can be enough. Thus, we used a genetic algorithm (Gen and Lin, 

2007) that allowed to select, iteratively, the variable set that is able to predict DC and 

IWP with the highest accuracy (500 iterations have been performed). This leads to a 

minimal set of about 10 variables (depending on the type of radiometer, see results in 

Section 3 and supplementary material) that have then been used for predictions.

The second step was to identify the machine learning algorithm able to provide the most 

accurate prediction using those input variables (Fig. 1). We chose to use a neural network 

and a Gradient Boosting, two algorithms that have been recently acclaimed as among the 

most powerful algorithms for providing accurate predictions with very large datasets and 

are well adapted to meteorological data (e.g., Petković et al., 2019; Rysman et al., 2019; 

Sanò et al., 2018; Tang et al., 2018; Xiao et al., 2019). Using two (or more) algorithms 

rather than a single one to provide a prediction is called model ensembling. The advantage

of this procedure is to reduce the bias of prediction outputs. Thus, in this study we 

averaged the outputs of the neural network and the Gradient Boosting models to provide 

the final DEEPSTORM output.

10



Neural networks consist of one or several layers chosen by the user depending of the 

characteristics of the input and output variables. A layer consists of two or more units 

(called neurons) connected to the units of the preceding and succeeding layers. The neural 

network modifies iteratively those units and the connections between those units to 

converge to a solution which is the closest possible to the expected output. In this study, 

we used two kinds of layer: the fully connected layer (FC) (also called dense layer) (LeCun

et al., 2015) which is the more widespread kind of layer and the long short term memory 

(LSTM) layer (Gers et al., 1999). The main difference between those two layers is that the

FC layer uses observations at a given pixel (n) and predict output at a given pixel (n) 

such as :

(BT1..j, q1..i, …)n → FC → IWPn or DC n

where j is the number of the channel, i is the number of vertical level, and n is a given 

passive microwave pixel. The LSTM is a layer in which the input signal is treated in 

sequence. For our case, it means that, in order to predict IWP or DC at a pixel n, the 

LSTM takes the input variables of the four neighbour pixels (e.g., n-2,n-1,n+1,n+2) in a 

sequence, i.e., the LSTM takes into account the fact that the pixel n-2 is further away 

than pixel n-1 from the pixel n to predict output in pixel n :

(BT1..j, q1..i, …)n-2,n-1,n+1,n+2 →  LSTM → IWPn or DCn

Using the neighbour pixels increases the overall prediction accuracy and reduces the 

possible noise since the data are autocorrelated, i.e., IWP at a pixel n is correlated to IWP

in the surrounding pixels (n-2,n-1,n+1,n+2). The Gradient Boosting (Chen and Guestrin, 

2016) is an algorithm which, similarly to the random forest algorithm, combines the output

of numerous decision trees (30 for the DEEPSTORM algorithm). It is based on the 

gradient boosting technique that consists of iteratively training models (i.e., several 
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decision trees) that address the weakness of the previous models. A central procedure in 

the Gradient Boosting algorithm is the tuning. Indeed, the Gradient Boosting algorithm 

behaviour is deeply affected by several parameters, named hyperparameters, that need to 

be tuned to reach an accurate prediction. In order to tune the Gradient Boosting and later

to evaluate the predictions of the overall DEEPSTORM algorithm, we split the coincident 

database into two independent training and testing datasets of respectively 80% and 20% 

of the initial dataset. Note that the LSTM layers used in the neural network of 

DEEPSTORM require to keep neighbour pixels sorted sequentially. This is why the points 

of the training and testing datasets have been selected in order to preserve this sequencing.

Using the training dataset, we tuned the hyperparameters of the gradient boosting 

algorithm using a Bayesian optimisation (Bischl et al., 2017).

Then, both algorithms (the neural network and the Gradient Boosting) have been fitted on

the training dataset and we created a model ensembling, i.e., we averaged output from 

both algorithms (Fig. 1). Finally we evaluated the predictions accuracy using the following

metrics for IWP : correlation index, bias, root mean square error (RMSE) and the 

fractional standard error percentage (FSE) defined as:

FSE  =100
 RMSE

 <IWP>

where <IWP> is the mean IWP.

Probability of detection, false alarm rate and Heidke Skill Score (HSS) (or Cohen Kappa) 

were used to evaluate the DC detection algorithm :

Heidke Skill Score  (HSS )=
2 (h . cn− fa.m )

(h+m ) (m+cn )+(h+ fa ) ( fa+cn )
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where h is  the hits (both prediction and reference detect an event),  cn is  the correct

negatives (prediction and reference do not detect an event), m is the misses (prediction

does not detect any event but the reference does) and fa is the false alarms (prediction

detects an event but the reference does not). HSS ranges between -1 (worst prediction

skill)  and  1  (best  prediction  skill).  In  the  results  section,  we  separated  the  analyses

between the Tropics (30°S-30°N) and Mid-latitudes (> 30°N or < 30°S) since SAPHIR

observations are only available in the Tropics.

3. Results

Ice water path retrieval

 

Fig. 2. Variables used by each radiometer to retrieve IWP. Box and link 

sizes are proportional to the number of variables selected. BT variables are 

represented in blue, environmental variables (q, R, Tp) are represented in 

red. Tp2 stands for temperature at 2 hPa. High (Low) frequency BT 

correspond to channels with frequencies greater (lower) than 88 GHz. Lower
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troposphere variables correspond to levels below 700 hPa, Mid troposphere 

variables corresponds to levels between 700 and 400 hPa and Upper 

troposphere variables corresponds to levels between 400 hPa and 100 hPa.

Variable selection procedure identifies the minimal set of variables required to retrieve 

IWP, i.e., the set of variables that contains non-redundant information which is used by 

DEEPSTORM to provide the best prediction of the IWP. Eleven or twelve variables are 

used by DEEPSTORM for retrieving the IWP with MHS, ATMS and GMI while only 

three variables are used for SAPHIR (Table 1 – Supplementary Material). Fig. 2 shows 

that DEEPSTORM selects several high frequency channels for each radiometer (e.g., 

channels at 89.5, 165.5, 183.31±7, 183.31±4.5 and 183.31±3 GHz for ATMS). In addition 

some lower frequency channels are also selected by ATMS (1) and GMI (3) (MHS and 

SAPHIR do not have any low frequency channels). The viewing angle is also selected for 

each radiometer except for GMI for which the viewing angle is fixed. Ground elevation and

environmental variables are selected for every radiometers except SAPHIR. Specifically, 

among all environmental variables selected, specific humidity is chosen 10 times over 12. 

SAPHIR requires much fewer variables to retrieve the IWP compared to the other 

radiometers (i.e., only the viewing angle and BT at 183.31 ± 11 GHz and at 183.31 ± 4.2 

Ghz). Since SAPHIR probes only in the tropics this suggests a lesser variability in the 

tropical atmosphere. This hypothesis is emphasised by the fact that, when the variable 

selection procedure is conducted for the other radiometers with their observations 

restricted to the tropics, only 3 to 6 variables are used by DEEPSTORM to retrieve IWP 

(e.g., the viewing angle and the BT at 165.5 and 183.31±7 GHz are selected for ATMS). 

Finally, among the selected variables, we also identified the variable that provides the 
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most information for retrieving the IWP for each radiometer. Hence, the most informative 

variables are BT at 183.31±11 GHz, 165.5 GHz, 183.31±7 GHz and 157 GHz for SAPHIR,

ATMS, GMI and MHS respectively.

Fig. 3. Taylor diagrams of GMI, SAPHIR, ATMS and MHS predictions of IWP with 

DEEPSTORM algorithm for tropics (a) and mid-latitudes (b) with respect to CPR 

observations. The correlation between prediction and CPR is indicated by the radial 

distance with respect to the y-axis and the RMSE is represented by the circle centred on 

reference (CPR) on the x-axis.

Then, we evaluated the skills of the algorithm for each sounder, separately for the tropics 

and the mid-latitudes, using Taylor Diagrams (Fig. 3). In Taylor Diagrams (Taylor, 2001),

the correlation between prediction and reference values is indicated by the radial distance 

with respect to the y-axis and the RMSE is represented by the circle centred on the 

reference value on the x-axis. MHS reaches the highest accuracy in terms of correlation 

index (0.92 for the tropics and 0.91 for the mid-latitudes) and RMSE (0.23 kg/m2 for the 
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tropics, 0.18 kg/m2 for the mid-latitudes). For the other instruments and in the tropics 

(mid-latitudes), we find a correlation index of 0.89 (0.89), 0.85 and 0.78 (0.85) and a 

RSME 0.26 (0.19), 0.35, 0.34 (0.25) kg/m2 for respectively ATMS, SAPHIR and GMI.

Fig. 4. (top left) FSE for tropics, (top right) FSE for mid-latitudes, (bottom left) relative 

bias for tropics and (bottom right) relative bias for mid-latitudes as a function of IWP 

(IWP and FSE are represented in log scale and relative bias is represented in linear scale). 

Observations have been split using IWP then the average FSE and relative bias have been 

computed for each bin.
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In order to characterise the sensitivity of the predictions to the observed IWP, we 

computed the FSE and the relative bias as a function of the observed IWP (Fig. 4). Fig. 4 

(top left and right) indicates that, for all sounders, the FSE decreases continuously as IWP

increases. ATMS and MHS have a similar behaviour for IWP values lower than 0.7 kg/m2 

with a FSE ranging from about 250% (150% in the mid-latitudes) to 70% (90% in the mid-

latitudes), above MHS becomes slightly better than ATMS and reaches 28% for 5.4 kg/m2 

in the Tropics. GMI’s FSE is nearly as good as MHS and ATMS between 0.1 and 0.7 

kg/m2 but when IWP is greater than 0.7 kg/m2, FSE decreases much more slowly and 

reaches 50% (56% in the tropics) at 2.7 kg/m2 (4.2 kg/m2  in the tropics). A similar 

behaviour is found for SAPHIR, with a FSE that ranges from 223% at 0.1 kg/m2 to 47% 

at 4.6 kg/m2. Regarding relative bias, MHS and ATMS have a very low absolute bias in 

the mid-latitudes (lower than +/-15%). Their relative bias is more substantial in the 

tropics (from 40% at 0.1 kg/m2 to about -20% at 5.4 kg/m2) and remains lower (in 

absolute value) for MHS regardless the IWP. SAPHIR predictions are slightly more biased 

for low IWP and, significantly more biased for higher values, as they underestimate true 

IWP up to -37% for 4.6 kg/m2. GMI has the lowest absolute bias of all radiometers for low

IWP in the tropics but it underestimates more strongly observed IWP in case of very high 

values. In the mid-latitudes its predictions are noticeably worse than MHS and ATMS 

reaching, for instance,  -37% for 2.7 kg/m2.

D  C   d  etection  
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Fig. 5. Same as Fig. 2 but for DC detection. q2 stands for the specific humidity at 2 hPa 

and tp7 stands for temperature at 7 hPa.

The variables used by DEEPSTORM for the DC detection (Fig. 5 and Table 2 – 

Supplementary Material) are quite similar to those found in the IWP retrieving section 

(Fig. 2 and Table 1 – Supplementary Material), i.e., three to four high frequency channels 

are used for each radiometer, and two or three low frequency channels are used by ATMS 

and GMI. Specific and relative humidity variables in the low and mid troposphere are also 

used. Ground elevation is chosen by MHS and the viewing angle is used for every 

radiometer prediction except for GMI. It can be noted that more variables are used to 

detect DC with SAPHIR than for retrieving IWP (9 vs 3). In addition, the most 

informative variables for detecting DC are the same than for retrieving IWP (BT at 157 

GHz, 165.5 GHz and 183.31±11 GHz for MHS, ATMS and SAPHIR) except for GMI for 

which it is the BT at 166.5 GHz (horizontal polarisation).

18



Fig. 6. (top) Probability of detection in the tropics (left) and mid-latitudes (right) as a 

function of ice water path (IWP is represented in log scale and POD is represented in 

linear scale). Observations have been split using IWP then the average POD has been 

computed for each bin.

We used the variables selected by the genetic algorithm to predict the occurrence of DC  

for each radiometer. In the tropics, MHS and ATMS have the highest HSS of all 

radiometers with 0.72, followed by SAPHIR and GMI with a HSS of 0.67. The probability 

of detection (POD) of DC occurrence is of 0.67, 0.68, 0.69 and 0.59 for SAPHIR, MHS, 

ATMS and GMI respectively, and the false alarm rate (FAR) is of 0.29, 0.20, 0.23, 0.2 for 

SAPHIR, MHS, ATMS and GMI respectively. It shows that, in the tropics, GMI detects 

less events than the other radiometers, and that SAPHIR tends to falsely detect non-DC 

cases more often. In mid-latitudes, the overall predictions are poorer: MHS (ATMS; GMI) 

has a HSS of 0.5 (0.51; 0.46), a POD of 0.38 (0.4; 0.34) and a FAR of 0.26 (0.29; 0.29). In 

Fig. 6, the sensitivity of the POD to the IWP is presented. All satellites have a similar 

behaviour in the tropics with a POD of about 20-30% for IWP at 0.1 kg/m2, i.e, for the 

shallowest atmospheric convection, and that increases with the IWP. For SAPHIR, ATMS

and MHS, the POD exceeds 50% for IWP above 0.7 kg/m2 and 90% for IWP above 4 

kg/m2. For GMI, the POD is lower for all IWP with 50% at 1 kg/m2 and about 78% at 4 
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kg/m2. In mid-latitudes, the detection rate is below 20% for IWP lower than 0.5 kg/m2, 

then it increases and overpasses 50% at about 1.8 kg/m2. It is slightly lower for GMI.

Fig. 7. Median characteristics of detected and missed DC events by DEEPSTORM.

In order to highlight the characteristics of the detected DC events, we extracted the 

median values of bottom and top altitudes of the clouds, and IWP of all detected and all 

missed DC (Fig. 7). Detected cases correspond to clouds with much higher vertical extent, 

i.e., 500 m to 13 km versus 700 m to 8.9 km for missed cases. In addition, detected cases 

have an median IWP about 4 times greater than the one of missed cases.

4. Applications of DEEPSTORM

In spite of the aforementioned limitations for weak cases, DEEPSTORM is able to detect 

DC and retrieve IWP at a quasi global scale. In this section, we present two applications 

of the DEEPSTORM algorithm. First, we analyse the IWP distribution and evolution 

within the Hurricane Matthew, then we show a quasi global climatology of DC occurrence.

20



Hurricane Matthew

Fig. 8. IWP retrieval for the Hurricane Matthew on 2016-09-30 04:12Z with SAPHIR (top 

left), 2016-10-02 06:33Z with ATMS (top right), 2016-10-02 09:40Z with GMI (bottom 

left), 2016-10-02 23:13Z with MHS (bottom right).

Hurricane Matthew was a major hurricane of the 2016 Atlantic hurricane season that lead 

to more than 500 casualties (Stewart, 2017). It emerged on the eastern side of Lesser 

Antilles on September 28, 2016 then moved following a constant latitude (around 15° N) to

the Caribbean Sea and from the October 2, 2016 it began to move northwardly, travelling 
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between Cuba and Haiti on the 4 and 5 October 2016 and reached Florida on the October 

6, 2016 in the afternoon (Miller et al., 2018; Stewart, 2017; Guimond et al., 2020). This 

hurricane was observed by at least 6 passive microwave radiometers (MHS onboard Metop

A/B and N18, ATMS onboard NPP, GMI onboard GPM-core and SAPHIR onboard MT) 

with more than 100 overpasses between the September 28 and the October 6, 2016. In Fig.

8, we selected four timesteps (one for each type of radiometer) for which IWP has been 

retrieved using DEEPSTORM. First, we selected an observation on the September 30, 

2016 from SAPHIR (Fig. 8 (a)) just after the hurricane had entred in the Caribbean Sea. 

At this time, Matthew presented a comma shape with two IWP maxima of about 7 kg/m2 

located in the northwestern part and in the southeastern part of the hurricane. The three 

other panels of Fig. 8 show the evolution of Matthew during October 2, 2016: in the 

morning ATMS observed the cyclone that was wrapped up around an “eye” centred 

around 14°N, 74°W. The active part of the hurricane was found to the southern and 

eastern region of the hurricane. Interestingly, the strongest IWP values occurred in the 

outer active region of the hurricane with values reaching 9 kg/m2. This is also true for 

GMI and MHS observations. Three hours later (bottom left panel of Fig. 8) Matthew’s 

“eye” was clearly formed as highlighted by the 10 x 10 km ice-free region. The overall 

structure did not change much compared to the previous time step but the IWP maximum

was lower, reaching 7 kg/m2. On the final time step (bottom right panel) Matthew moved 

northwestwardly with the active part about to reach the Dominican Republic and Haiti. 

Two elongated and narrow bands can be seen in the southern part of the hurricane and the

most active part was found in the eastern part with a IWP up to 9 kg/m2. This case study

highlights that DEEPSTORM can be used for the tracking of a hurricane during its whole 

life time without night interruption, that can happen with visible frequency measurements.
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DC occurrence climatology

Fig. 9. DC normalised occurrence from September 2016 to December 2016 retrieved using 

observations from MHS on-board N18, SAPHIR on-board MT, ATMS on-board NPP, 

GMI on-board GPM-Core.

In Fig. 9 the DC normalised occurrence, i.e., the number of DC occurrence over the total 

number of observations, in a 0.2° x 0.2° regular grid, from September to December 2016 

(i.e., summer of the southern hemisphere), between 80°S and 80°N for MHS on-board N18, 

SAPHIR on-board MT, ATMS on-board NPP, GMI on-board GPM, is shown. A value of 

0.3 means that DC has been detected 30% of time during this period. The maximas of DC 

normalised occurrence are found between 15°S and 15°N. Specifically, the areas with the 
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highest rates are found in the maritime continent with maxima over 0.3 on the western 

coast of Sumatra and Java islands and in Papua New Guinea mainland, in the eastern 

coast of Colombia and in a thin band along 8°N in the western Pacific. High values around

0.15 are also found in the Central Atlantic, and over South America and Central Africa. In

addition, DC are detected 10% of time over the Ocean between 45°S and 15°S and between

15°N and 45°N. Finally, DC are found less than 1% of time over 60°N and never over 60°S.

Several studies (Aumann and Ruzmaikin, 2013; Hong and Heygster, 2008; Hong et al., 

2008; Liu et al., 2007, 2008; Liu and Liu, 2016; Wu et al., 2020) investigated deep 

convection and convective clouds distribution in tropical regions (and globally for Liu and 

Liu, 2016) using space observations (precipitation radar and/or microwave and infrared 

radiometers). The DC distribution, highlighted in Fig. 9, matches qualitatively very well 

with those presented in these studies. Similarly to our results, the Maritime Continent, 

Central and South America and Africa are identified, in all studies, as the regions with the

highest rate of convective activity. It can also be noted that more DC occurrences are 

detected in eastern Pacific and central Atlantic in Fig. 9 than in other studies. This could 

be related to the different time frame (September to December 2016) and DC definition 

used in this work.

5. Discussion

Results highlight the capability of DEEPSTORM to detect DC and retrieve IWP. In this 

section, we discuss further those results in particular to understand why some variables 

have been selected by DEEPSTORM, and to investigate the possible origin of the 

discrepancies in prediction accuracy between radiometers.
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Variable selection

DEEPSTORM unsurprisingly selects BT from high-frequency channels which are sensitive 

to frozen hydrometeor occurrence in the troposphere. In addition, the top informative 

variables for each radiometer are always BT with frequencies between 157 GHz and 

183.31±7 GHz. On the other hand, DEEPSTORM never selects the channels closest to the

water vapour absorption line (e.g., 183.31 ± 1.0 GHz for ATMS). This means that these 

channels probe too high in the atmosphere to provide useful information about convection 

in the troposphere or that the information contained in these channels is already provided 

by other channels. Channels with frequencies around 89 GHz are nearly always selected 

but the polarisation of channel is never used in DEEPSTORM (e.g., 166 GHz V and H for 

GMI). This is surprising since, as polarisation is a signature of deep convection (Gong and 

Wu, 2017), we could have expected that the algorithm would use it. This means that 

information contained in one channel (166 GHz V or H) associated with some other 

channels is enough to detect DC and that the difference of polarisation between the two 

polarised channels does not provide additional information for discriminating between DC 

and not DC cases. It is also worth highlighting that some lower frequency channels are 

selected (when available). For instance, 50.3 GHz and 23.8 GHz channels have been 

selected for detection DC with ATMS. These channels are use by DEEPSTORM probably 

because they indicate, over ocean, the occurrence of rainfall associated with DC through 

the warm emission of liquid precipitation process (e.g., Kummerow et al., 2001).

Regarding environmental variables, humidity appears as the most essential variable for 

both IWP retrieval and DC detection. It is selected at 3 ranges of altitude : close to the 

surface, in mid-troposphere and in upper-troposphere. This is not a surprise as a moist 
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atmosphere is favourable to DC and large IWP. In addition, we highlighted that HF 

channels are used for the predictions and those channels are highly sensitive to the 

presence of humidity. Thus, having information about tropospheric humidity helps 

DEEPSTORM to use more insightfully the signal measured by those channels. Notably, no

environmental variables are selected for retrieving IWP with SAPHIR radiometer. In 

addition, no environmental variable is neither selected by the other radiometers (except for

MHS which only selects specific humidity at 950 hPa) when coincidences databases are 

limited to the tropics (not shown in the results section). This means that retrieving IWP 

in the tropics only requires BT temperatures measurements. This is probably related to 

the fact that atmospheric humidity is always very high in the Tropics and thus the HF 

channels are not subject to surface contamination as they can be when humidity is low in 

the mid-latitudes.

Overall, this variable selection procedure allowed to identify key variables to retrieve IWP 

and to detect DC for each radiometer. Such a data-driven selection of variables could, for 

instance, be used to help choosing the appropriate channel frequencies for future spatial 

missions devoted to convection.

Radiometers performance

In Section 3, we also evaluated the ability of each radiometer to predict IWP and DC 

occurrence. MHS shows the highest RMSE and the lowest bias for predicting IWP and has

the best HSS for DC detection. These good scores could be due to the fact that MHS is the

radiometer with the lowest noise equivalent delta temperature (NE∆T) for high frequency 

channels (0.41 K). The NE∆T of high-frequency channels of ATMS, GMI and SAPHIR 
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are 0.74, 1.31 and 1.32 K respectively. Given the importance of the high-frequency 

channels for retrieving IWP and detecting DC, the low NE∆T can explain why 

DEEPSTORM performs better for MHS. In addition, the coincident database of MHS (~13

million of observations) is much larger than the ones of ATMS (~4 million), SAPHIR 

(~400,000) and GMI (~300,000). This improves the prediction of DEEPSTORM as 

providing more observations allows the algorithm to adapt to a larger gamut of situations. 

On the other hand, GMI predictions are on average poorer than the other instruments. 

This is surprising as one could have expected that the instrument with the highest spatial 

resolution (5 km for the high frequency channels vs 15 km for MHS) would perform better 

in retrieving IWP and detecting DC. The explanation could lie in a parallax issue as GMI 

scans with a constant viewing angle at 53° while CPR scans at nadir.

Fig. 10. (left) FSE as a function of top altitude of DC for the 4 radiometers and (right) 

Probability of detection as a function of altitude of ice water content maximum.

This hypothesis is supported in Fig. 10 (left) which presents the FSE as a function of the 

maximal altitude reached by DC clouds. We see that when the DC clouds are more 

elevated the FSE is smaller for MHS, ATMS and SAPHIR but that, for GMI, this 

relationship is only true until 10 km. Above the FSE remains constant around 70%. This 
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likely means that when DC clouds reaches high altitudes, more ice is located in higher 

altitudes and the parallax problem between CPR and GMI becomes acute. This is 

particularly problematic in the tropics where deep convective clouds can be very elevated. 

On the other hand, GMI is as good as MHS and NPP for altitudes below 10 km meaning 

that it is more appropriate for the shallower mid-latitudes DC. This is also why GMI show

a better correlation index and a better RMSE in the mid-latitudes than in the tropics (Fig.

4).

In addition, results in Fig. 6 highlight the better DC detection skills in the tropics than in 

mid-latitudes. This is partially due to the lowest detection rate when convective clouds are

shallow. This is illustrated in Fig. 10 (right) where it appears that the probability of 

detection of DC is considerably reduced when the altitude of maximum of ice is below 3.5 

km (POD < 40%). This figure also shows why it is easier to detect DC in the tropics since 

no convective clouds with a maximum ice altitude is found below 4 km while those shallow

clouds represent 68% of DC cases in the mid-latitudes. We can also notice in Fig. 10 

(right) that when the altitude of ice water content maximum is very elevated (> 10 km), 

convective clouds are more difficult to detect. This means that overshooting clouds could 

be particularly challenging to detect with passive microwave radiometers.

Finally, it is also interesting to understand why SAPHIR has the lowest accuracy for IWP 

retrieval. It is certainly related to the fact that SAPHIR only has channels with frequencies

close to the water vapour absorption line at 183.3 GHz which probe only in the upper 

layers of the cloud and miss the possible strong IWC in the lower layers. This is confirmed 
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by the fact that the variable selection procedure retains, for the other radiometers, lower 

frequency variables (e.g., 89 GHz) to retrieve IWP.

6. Conclusion

In this study, the DEEPSTORM (DEEP moiSt aTmospheric cOnvection from micRowave 

radioMeter) algorithm, able to detect deep convection (DC) and retrieve ice water path 

(IWP) using passive radiometer measurements, is presented. In order to train 

DEEPSTORM, we used collocated measurements between four passive microwave 

radiometers (ATMS, MHS, SAPHIR and GMI) and the spaceborne radar CPR (Cloud 

Profiling Radar) on-board CloudSat. Specifically, DEEPSTORM uses brightness 

temperatures and viewing angle from the passive microwave radiometers, ground elevation,

and vertical profiles of specific humidity, relative humidity and temperature from ERA-5 

reanalysis. The variables necessary to retrieve IWP and to predict DC occurrence are 

identified, then a neural network and a gradient boosting algorithm are fitted, tuned and 

combined to provide the predictions based on 80% of the collocation datasets. Finally, we 

used the remaining 20% of the data to evaluate the output of DEEPSTORM. Regarding 

IWP retrievals, DEEPSTORM predictions show a RMSE ranging between 0.21 kg/m2 (for 

MHS) and 0.34 kg/m2 (for SAPHIR) and that the overall accuracy increases strongly with 

the IWP for all radiometers. In the tropics, DC predictions reach a HSS of 0.72 for MHS 

and ATMS and 0.67 for GMI and SAPHIR. In the mid-latitudes, predictions are poorer 

with an average HSS of 0.49. Similarly to IWP retrieval, the POD (FAR) increases 

(decreases) with IWP. We highlighted that DEEPSTORM detects mainly the most 

vertically extended convective clouds and those containing the heaviest ice content and 
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that DC detection (IWP retrieval) is more (less) accurate in the tropics than in mid-

latitudes. Eventually, we illustrated DEEPSTORM potential with two applications : by 

retrieving IWP of Hurricane Matthew using observations of SAPHIR, ATMS, MHS and 

GMI, then by constructing a global climatology of DC occurrence between September and 

December 2016. These results illustrate the potential of DEEPSTORM for better 

characterising the DC distribution and intensity. In addition, as DEEPSTORM can be 

used for MHS, ATMS, GMI and SAPHIR radiometers, it will be possible to characterise 

DC occurrence and intensity at a quasi global scale on a 20-year period as the first 

radiometer of this type have been placed in orbit in 1999 and since then more than 10 

instruments have been launched.

DEEPSTORM has several limitations in addition to those presented in the results (e.g., for

weak DC events) that are discussed in the following. First, DEEPSTORM fully relies on 

two products (DARDAR for IWP and 2B-CLDCLASS for DC detection) based on 

CloudSat CPR radar observations. Yet, those products have several sources of bias which 

in turn can bias DEEPSTORM algorithm. First, CPR does not probe close to the surface 

due to ground clutter contamination. Therefore measurements from the lowest layers of 

the convective clouds can be missed, which could artificially reduce IWP when clouds are 

close to the Earth’s surface. The IWC retrieved by DARDAR is also subjected to 

uncertainties as CPR measured reflectivity using a single frequency and thus the inversion 

problem is not fully constrained. This is why DARDAR requires the use of an empirical 

relationship using the radar reflectivity factor and temperature implying uncertainties in 

IWC estimates (Delanoë and Hogan, 2008). In addition to limitations associated with 

CloudSat observations, some uncertainties arise from the building of the coincidence 
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dataset. Indeed, the aggregation of CPR pixels on the radiometer pixels lead to cases 

where a radiometer pixel may contain both CPR pixels with and without DC. In these 

case, we arbitrarily decided that the whole radiometer pixel was associated with DC which

could be a factor of uncertainty. The same issue appears with IWP computation : in some 

cases, ice water content from CPR was highly heterogeneous vertically and horizontally 

within the corresponding radiometer pixel. This can also affect the retrieval procedure. 

Finally, the machine learning procedure itself could be a source of uncertainties. Machine 

learning models, from their design, have some limitations that tend to bias the results. For

instance some of them are prone to overfit, some have difficulties to predict extreme 

values, some do not handle well non-linear relationship between input and output data. 

Thus no perfect model exists and our choice to select gradient boosting and neural 

networks model implies some bias in the final results. In order to mitigate this problem, we

evaluated several machine learning models and input variable combinations before 

obtaining the final algorithm described in this article.

Several avenues of improvement will be considered in the future developments of 

DEEPSTORM. First, it would be interesting to add new observations to extend the 

training dataset. For instance, it could be interesting to use the DPR (Dual Polarization 

Radar) on-board GPM-core since it provides observations since 2014 on a 100 km-wide 

swath with two different frequencies (13.6 and 35.55 GHz). Including this dataset could 

increase drastically the number of coincidence with radiometer observations. Yet, as we 

showed with GMI, parallax can be a significant issue when collocating instruments with 

different viewing angles. In this article, we also highlighted the difficulties to retrieve IWP 

in the strongest cases. In particular, a negative bias has been identified for all radiometers. 
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It could therefore be interesting to develop a specific model for the strongest events. We 

also showed that lower frequency channels can be useful to characterize convection. 

Therefore, it might be worthwhile to include in DEEPSTORM the measurements of 

AMSU-A radiometers that are installed on-board the same satellites that carry AMSU-B 

and MHS. Finally, this work will lead to the building of a long term database of DC 

occurrence and associated IWP. We will use observations from all radiometers for which 

DEEPSTORM has been developed (MHS/AMSU-B, SAPHIR, ATMS and GMI). The first

instrument has been launched in 1999 and since 2002 at least 3 radiometers fly conjointly 

which will ensure a good temporal sampling together with a good spatial resolution of the 

DC on a two decades period. Such a long term database will be of great interest for 

climatic studies.
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Tools

This project has been conducted using the R software (version 3.5 (RCoreTeam, 2013)) 

with the following packages: rhdf5 (Fischer, 2015), ncdf4 (Pierce, 2012), rpart (Therneau 
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et al., 2015), data.table (Dowle et al., 2014), hydroGOF (Zambrano-Bigiarini, 2014), nabor

(Elseberg et al., 2012), snow (Tierney et al., 2008), snowfall (Knaus, 2010), mlr (Bischl et 

al., 2016), mlrMBO (Bischl et al., 2017), xgboost (T. Chen et al., 2018), keras (Allaire and 

Chollet, 2019) and tensorflow (Allaire and Tang, 2019). 
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Supplementary material

Radiometer Variables selected

MHS viewing angle, elevation, R125, q650, q700, 
q750, q1000, BT157, BT183.31 ± 3.0, 
BT190.311, BT89

ATMS viewing angle, elevation, q300, q600, q775, 
q1000, BT89.5, BT165.5, BT183.31 ± 7.0, 
BT183.31 ± 4.5, BT183.31 ± 3.0, BT50.3

SAPHIR viewing angle, BT183.31 ± 11, BT183.31 ± 
4.2

GMI Elevation, tp2, R400, q700, q975, 
BT10.65V, BT166.5H, BT183.31 ± 7, 
BT18.7V, BT36.5H, BT89V

Table 1. Variables needed to retrieve IWP for each radiometer. R stands for relative 

humidity, q stands for specific humidity, tp stands for temperature.

All these variables are followed by a number that indicates the corresponding pressure 

level (hPa). BT stands for brightness temperature and is followed by the corresponding 

frequency (Ghz) and the polarisation (for GMI). The most informative variables are 

indicated in red.

Radiometer Variables selected

MHS viewing angle, elevation, tp7, tp300, R1000, 
q2, q1000, BT157, BT183.31 ± 3.0, 
BT190.311, BT89

ATMS viewing angle, tp975, q100, q700, q950, 
q975, BT165.5, BT183.31 ± 4.5, BT183.31 
± 3.0,    BT183.31 ± 1.8, BT23.8, BT50.3

SAPHIR viewing angle, R500, R600, R750, q925, 
BT183.31 ± 11, BT183.31 ± 6.6,
BT183.31 ± 4.2,  BT183.31 ± 2.7
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GMI R450, q925, q1000, BT10.65V, BT166.5H, 
BT183.31 ± 3, BT183.31 ± 7, BT36.5H, 
BT36.5V, BT89V

Table 2 Variables needed to detect DC for each radiometer. R stands for relative

humidity, q stands for specific humidity, tp stands for temperature.

All these variables are followed by a number that indicates the corresponding 

pressure level (hPa). BT stands for brightness temperature and is followed 

by the corresponding frequency (Ghz) and the polarisation (for GMI). The 

most informative variables are indicated in red.
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