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Abstract 

 

The introduction of engineered resonance phenomena on surfaces has opened a new frontier in 

surface science and technology. Pillared phononic crystals, metamaterials, and metasurfaces are an 

emerging class of artificial structured materials, featuring surfaces, that consist of pillars–or branching 

substructures–standing on a substrate or a plate. A pillared phononic crystal exhibits Bragg band gaps 

while a pillared metamaterial may feature both Bragg gaps and local-resonance hybridization gaps. 

These two band-gap phenomena, along with other unique wave dispersion characteristics, have been 

exploited for a variety of applications spanning a range of length scales and covering multipe disciplines 

in applied physics and engineering. The placement of pillars on a semi-infinite surface has similarly 

provided new avenues for the control and manipulation of wave propagation, including Rayleigh and 

Love waves along the surface of substrates, as well as Lamb waves in plates–for frequencies ranging 

from Hz to several GHz. Even a finite placement of pillars along specific directions on a surface has 

been shown to offer unique functionality, such as steering a wavefront in the subwavelength regime. At 

the nanoscale, pillared membranes have been investigated and it was shown that atomic-scale 

resonances–stemming from the nanopillars–alter the fundamental nature of conductive thermal transport 

by reducing the group velocities and generating mode localization across the entire spectrum well into 

the THz regime. In this article, we first overview the history and development of pillared materials, then 

provide a detailed synopsis of a selection of key research topics that involve the utilization of pillars in 

different contexts. The following sections present a review of different configurations, properties, and 
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characteristics, namely: (i) fundamental vibrational and propagation properties of pillared plates; (ii) 

metamaterial phenomena in pillared plates including the opening of low and wide hybridization band 

gaps as well as super-resolution focusing; (iii) pillared metasurfaces and their wave steering functions; 

(iv) topologically protected phononic edge states in pillared plates; and (v) nanophononic metamaterials 

in the form of pillared membranes exhibiting exceptionally low in-plane thermal conductivity. Finally, 

we conclude by providing a short summary on the salient properties of pillared materials and structures 

and outlining some perspectives on the state of the field and its promise for further future development. 

 

Keywords: surface resonance; pillared material; phononic crystal plate; acoustic/elastic metamaterial, 

acoustic/elastic metasurface; nanophononic metamaterial 
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Chapter 1 General introduction 

 
Light and sound are two key information carriers that provide platforms for vast opportunities for 

technological advancement [1-6]. In recent decades, we witnessed a revolution in our ability to 

manipulate and control photons and phonons through the design of functional material systems with 
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properties that extend well beyond what is found in nature and in conventional materials. Inspired by 

an analogy with the quantum mechanical band theory of solids, in which electronic wave fields 

interact with a periodically arranged atomic lattice to form energy bands separated by band gaps [7], 

Yablonovitch [8] and Sajeev [9] proposed the concept of a photonic crystal in 1987. In a photonic 

crystal, the atoms are replaced by macroscopic media with differing dielectric constants and the 

periodic potential is replaced by a periodic dielectric function. The outcome was a new type of 

engineered material that exhibits photonic band gaps in which light is prevented from propagating in 

certain directions at certain frequencies. The notion of phononic crystals then followed by further 

analogy. In contrast to electromagnetic waves which only permit transverse polarization, elastic waves 

admit coupled longitudinal and transverse polarizations–a trait that makes the design for band gaps 

even more challenging. The search for material structures with elastic band gaps and the concept of 

phononic crystals were independently proposed by Sigalas and Economou [10, 11] and by Kushwaha 

et al. [12]. The material systems investigated exhibit partial and full band gaps for propagation of 

acoustic/elastic waves in periodic composites constituted by an array of inclusions placed in a 

background host medium. It is worth mentioning that the constituting media, either in the inclusions or 

in the background, may be a solid or a fluid (liquid or gas). While “fluid materials” support only 

longitudinal modes, solid materials admit both longitudinal and shear waves.  

The field has experienced a burst of interest following these discoveries and increasingly acquired 

a multidisciplinary character involving both bulk and surface materials with features engineering at the 

nanoscale, microscale, and/or macroscale. Now generally referred to as phononics, this emerging field 

encompasses a wide range of interconnected disciplines including condensed matter physics,  

materials science, acoustics, mechanical engineering, electrical engineering, among others . In more 

general terms, a phononic crystal is an artificial material consisting of a periodic inhomogeneous 

elastic medium that can manipulate the propagation of acoustic waves in fluids (or fluid-like solids) 

and/or elastic waves in solids. The propagation of acoustic/elastic waves in a phononic crystal is 

governed by Bloch’s (or Floquet’s) theorem (simply expressed as having the eigenstates of the 

Hamiltonian satisfy 𝜓(𝑟 + 𝑅⃗⃗) = 𝑒𝑖𝑘⃗⃗𝑅⃗⃗𝜓(𝑟), where 𝑟, 𝑅⃗⃗, and 𝑘⃗⃗ denote the position vector, reciprocal 

lattice vector, and wave vector, respectively). This fundamental theorem provides the foundation to 

computing the band structure (dispersion relationship) over the Brillouin zone (the primitive cell in 

reciprocal space) of the periodic medium of interest [13]. Similar to photonic crystals, band gaps 

appearing in a phononic band structure represent frequency ranges where acoustic/elastic waves are 

prohibited from propagation. In periodic materials, the origin of a band gap is the well-known 

mechanism of Bragg scattering, which is based on destructive interferences of waves scattered by 

inclusions, holes, internal interfaces, etc., orderly arranged in a spatially repeated fashion. The 

underlying condition for this linear form of scattering is that the path difference between the 

interfering waves must be equal to an integer multiple of their wavelength [14]. As the path difference 
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depends on the lattice constant of a crystal, when the wavelength is comparable to the lattice constant, 

the Bragg scattering mechanism occurs.  

In an alternate and fundamentally different mechanism, band gaps may form from the avoided 

crossing of two bands of the same symmetry, where at least one of the two bands originate from a 

localized resonance mode of an individual particle, inclusion, or substructure. The emerging band gap 

is termed a hybridization gap [15]. This concept sparked the field of acoustic/elastic metamaterials, 

and led to the proposition of “locally resonant sonic materials” by Sheng and his colleagues [16]. The 

first embodiment of an acoustic metamaterial took the form of a matrix of silicone-coated metallic 

spheres embedded in epoxy. Different from the Bragg scattering mechanism, the relevant wavelength 

corresponding to the local resonance may be orders of magnitude larger than the size of unit cell or the 

size the resonating element; this in turn has opened the door for low-frequency band gaps. This in 

particular opened up the opportunity of achieving sound isolation in the kHz range, while keeping the 

size of the unit cell reasonably small (on the order of a few centimeters). Indeed, with the acoustic 

velocities of common materials, the unit cell needs to be on the order of meters to pull a Bragg gap 

into the sonic regime. Some of the above concepts may easily be understood within the framework of 

very simple academic models in one dimension as briefly described in Chapter 2A. The reader is 

referred to a collection of recent books [2-4, 6] and review articles [17, 18] on this continuously 

emerging field of research.   

      The objective of this review paper is to present properties and functionalities of a unique type of 

phononic material proposed just over a decade ago consisting of an array of pillars on a plate or on a 

substrate [19, 20]. This configuration is characteristically a two-dimensional (2D) material, i.e., has a 

Brillouin zone that can be fully defined in two dimensions, with the branching pillars acting as the 

local resonators. Therefore, similar to Sheng’s bulk metamaterial, the mechanism of local resonance 

and hybridization gaps exists in a pillared 2D medium or surface. Furthermore, Bragg band gaps may 

form as well due to the spatial periodicity of the placement of the pillars (see the simple models 

covered in Chapter 2A). Because of this dual aspect, material systems belonging to this class 

effectively behave both as phononic crystal and metamaterial. Furthermore, when the pillars lie on a 

surface, the outcome is effectively rendered an elastic metasurface. For example, a line of gradient 

pillars on a surface may be regarded as an elastic metasurface with the characteristic pillar diameter 

falling well within the  subwavelength regime. Since their proposition, a sizable body of work has 

been devoted to the investigation of these materials/surfaces/structures and their functionalities as is 

described throughout this review. A general summary is first given in this introduction.   

      Pillared metamaterials with low-frequency band gaps were first studied by Pennec et al. [19] and 

Wu et al. [20] in 2008. In both studies, periodic plates with a single pillar in the unit cell were 

considered. It was reported that if one suitably chooses the geometric parameters of the pillar’s 
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diameter and height, and the thickness of the plate on which it is supported, a low-frequency band gap 

may appear below the first Bragg band gap in the dispersion curves–this subwavelength band gap 

originates from an avoided crossing between a pillar’s local resonance mode and a dispersion branch 

of the plate. Low-frequency band gaps in the kHz [20-23] and MHz [24] frequency ranges were 

subsequently experimentally validated. Since a low-frequency band gap depends on both the pillar’s 

mode and the plate’s mode involved in the coupling, a range of possibilities are available for 

modifying the geometric parameters or material composition to tune the properties of the band gap, 

especially its width. It is found that designing the connection between the pillars and the plate such 

that it consists of a relatively narrow neck [25, 26], or a conic angle [27, 28], or a soft material such as 

rubber [29-34], allows us to shift the low-frequency gap downwards. These changes are effectivity 

analogous to reducing the “stiffness” in a branching mass-spring system, which may be used as an 

idealized model for studying the mechanism of local resonance band-gap formation [35-37]. The 

shape of the deposited resonators (cylindrical pillar, square rod [7, 38-41], sphere [42], spiral [43] or 

Gaussian surface [44]) and the lattice symmetry of the periodic arrangement (triangular [45-47], 

square [45-49], hexagonal [48], honeycomb [45, 49], hybrid [50, 51], or random [52, 53]) have direct 

impact on the properties of the engineered local resonance band gap, such as its width and position in 

the frequency domain. Having pillars on both sides of a plate provide an additional avenue for 

enriching the design space [54-58]. Given that local resonance behavior does not depend on 

periodicity, a hybridization band gap may appear in aperiodic or disordered systems [23, 52, 53]. 

Localized modes corresponding to low-frequency band gaps may be further synthesized by 

introducing hollow parts in the pillars [59-61]. Moreover, the band-gap width may be enhanced with 

multi concentric hollow pillars [62, 63]. Filling the hollow pillars with a liquid enables the generation 

of solid-liquid coupling modes which can be actively tuned by controlling the filling height [60, 64] 

and utilized towards the realization of tunable phononic circuits [65]. In addition to altering the design 

of the pillar(s), removal of material from the plate portion also provides an opportunity for 

performance enhancement and further broadening of the band-gap width, giving rise to the notion of a 

trampoline metamaterial [66] where the base acts as springboard with reduced stiffness. The 

trampoline concept was pursued in a variety of settings and configurations [41, 43, 50, 61, 67-70]. 

Moreover, active tuning of band-gap properties is possible by an applied external magnetostatic field 

[40] or by shunted piezoelectric transducers [71-76]. Similar to pillars on a plate, pillars on a substrate 

were also theoretically and experimentally investigated with a view on their local resonance band gaps 

[24, 77-82]. It is further reported that the number of elements in a phononic crystal can be reduced by 

designing a pillar-in-hole instead of a pillar-on-surface as its band-gap attenuation is about one order-

of-magnitude larger [83]. The coupling of photonics and phononics has added yet another avenue of 

applications. For example, a periodic array of pillars deposited on a thin plate may be designed to 

exhibit dual phononic and photonic band gaps holding promise for the simultaneous confinement and 

tailoring of sound and light waves [45, 84, 85].  
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In the characterization of acoustic/elastic metamaterials, generally a monopole resonance relates 

to negative effective compressibility and a dipole resonance relates to negative effective mass density 

when evaluated within the range of a hybridization band gap. However, a pillared metamaterial 

element tends to bring more difficulties in analyzing negative effective compressibility or mass 

density than conventional 1D, 2D, or 3D metamaterial elements. This is due to the lack of a precise 

effective medium theory describing the complex pillar’s vibrations in free space associated with its 

base. Nevertheless, a pillared metamaterial may be considered as a homogeneous plate with anisotropy 

in the effective mass density matrix [86] or effective wave number [87], exhibiting negativity in the 

effective density [86-88], effective Young’s modulus [87] ,or effective stiffness [89]. Indeed, the 

monopolar or dipolar resonant frequencies of a pillar may be easily tuned by a proper choice of the 

height and/or diameter [90], resulting in easily being able to probe the conditions for either the 

effective mass density negativity or the effective modulus negativity. The effect of pillar resonances in 

the context of scattering and transmission of a single or a line of resonant pillars subject to an incident 

surface wave is also a problem of interest. In such a configuration, the pillars emit waves that can 

interact with an incident wave, allowing for a phase/amplitude shift in the transmission. Fano 

resonance can be induced by introducing two dissimilar pillars in one unit cell along one row of pillars 

[91]. A new geometry proposed recently consists of replacing a homogeneous pillar by a multilayer 

material, a kind of one-dimensional phononic crystal [92], allowing confinement of modes inside a 

cavity or at the interface between the pillar and the substrate. In such a geometry, these highly 

confined modes of the pillars result in very sharp Fano resonaces–or the acoustic analog of 

electromagnetically induced transparency–when they interact with an incident surface Rayleigh or 

Love mode [93, 94]. More generally, owing to the recent growing interest in the topic of metasurfaces, 

where a very thin (sub-wavelength) structure containing phase array elements can manipulate the 

propagation of sound (or light) and give rise to various new effects such as anomalous refraction and 

reflection and focusing or imaging phenomena, a line of resonant pillars on a plate or a substrate 

provides a new tool for exhibiting similar features by manipulating the propagation of plate and 

surface waves.  

     The pillared medium architecture may also be realized for a 1D system consisting of a slender tube 

with stubs grafted on a single side or both sides. The first study on acoustic band gaps with such 

structures was published by Kushwaha et al. [95] in 1998. They found that a periodic pattern of large 

stop bands is obtained with the lowest gap extending possibly down to zero frequency. Large 

magnonic [96] and photonic [97] band gaps were subsequently found with the same structure. The 

grafted stubs can behave as resonators to induce Fano resonances when the resonance is situated 

between two zeros of transmission [98], and can even exhibit the acoustic analog of 

electromagnetically induced transparency [91, 99] and trapped mode phenomenon [100]. If the 

stubstructures are placed between two slender tubes, selected transfer of a single propagating state 
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from one tube to the other is possible, with all other neighboring states remaining unaffected. This 

result has been applied to filtering or multiplexing [101]. The characteristics of the band structure and 

wave transmission when the stubs are grafted to the tube in a single side [102-104], double symmetric 

sides [105-108], and asymmetric sides [109] were theoretically and experimentally investigated. 

Theoretical investigations on the connection between the transmission properties of continuous 

stubbed models and macroscale thermal transport have been proposed [110, 111].  

In the realm of applications, pillared phononic crystals, metamaterials, and metasurfaces make it 

possible to control and manipulate acoustic and/or elastic waves with many potential benefits in 

modern information processing and communication, among other avenues. To follow is a synopsis of 

six possibilities: (I) Negative refraction and superlens. With a proper choice of the pillar’s geometry in 

pillared periodic media, a negative refractive effect can be achieved (i) when a dispersion branch 

reveals opposite signs between the group velocity and the phase velocity yielding a negative effective 

refractive index [112, 113]; and (ii) when the group velocity is never in the opposite direction to the 

phase velocity but the convexity of the iso-frequency contours of a branch leads to negative refraction 

with positive effective index [114]. This latter scenario demonstrates sub-wavelength high resolution 

in superlensing applications. A far-field super-resolution experiment has been demonstrated for a 

metamaterial made out of long pillars attached to a plate with the One-Channel Inverse Filter [115]. 

(II) Waveguides, defect states, and filtering applications. If the travelling frequencies are located 

within a Bragg or a hybridization band gap of the background pillared structures, waveguides may be 

constructed consisting of different sizes of pillars or line- or curved-shape defects [59, 78, 81, 116-

127]. Such design interventions can produce localized modes inside the Bragg or hybridization band 

gaps of the phononic crystal, hence allowing the propagation of confined modes in the waveguide. 

(III) Vibration attenuation. The existence of Bragg and local resonant band gaps in pillared phononic 

crystals and metamaterials play important roles in designing sonic [29, 88, 128-130] and elastic [20-

24, 131] wave insulators. As mentioned earlier, an extra wide band gap combining both Bragg and 

local-resonant band gaps were proposed by tailoring the plate connection between neighboring pillars 

[50, 61, 66-70]; these systems serve as excellent candidates for vibration attenuation in solids. If the 

pillar resonators are in the meter scale, a pillared-metamaterial may in principle prevent Rayleigh 

modes in seismic wave propagation [132, 133] or even shape seismic wave flow [134]. (IV) Graded 

Resonant Devices. Combining a resonant pillar with gradient index lens [135-140], a focusing point 

can be achieved beyond the diffraction limit [141]. Gradually varying the height of the pillars, 

resonant gradient index metalenses for flexural waves [142] and metasurfaces for converting surface 

Rayleigh waves to bulk shear waves [143] were proposed. The guiding of elastic waves with a graded 

radius of pillars in a phononic crystal plate has also been investigated [144]. (V) Phononic Graphene. 

Pillars placed in a hexagonal lattice on a plate can be regarded as spring-loaded resonators, providing a 

promising platform for investigation of the elastic analogue of graphene [145], as well as the quantum 
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valley Hall effect [146] and the quantum spin Hall effect [147] (in analogy to corresponding systems 

in quantum mechanics and condensed matter physics) with novel phonon transport behavior such as 

pseudo diffusion [148], the Zitterbewegung effect [148], the zigzag edge state [145], and topologically 

protected edge modes [149-151]. (VI) Pillared Metasurfaces. A metasurface can be considered as a 

slice of a bulk metamaterial with a subwavelength thickness; such a surface is able to steer wavefronts 

at will by designing an abrupt phase profile on the surface [152-158]. A growing interest is devoted to 

these metasurfaces due to their broad functionalities such as anomalous reflectiion and refraction, or 

focusing and imaging phenomena. Following the generalized Snell’s law [159], a line of pillars can be 

designed to manipulate various wavefront functionalities from the discrete phase response of an array 

of resonant pillars [90]. This is quite attractive in view of the potential practical applications to 

controlling the propagation of Lamb waves on a plate or surface acoustic waves on a substrate. Such 

pillared metasurfaces also demonstrate diverse resonant phenomena [91, 99]; for example, the acoustic 

analogue of a bound state in a continuum, electromagnetically induced transparency, Autler-Townes 

splitting, and others [160].  

       Finally, the pillared plate configuration has also found application in smaller scales. In the 

Gigahertz regime, pillared configurations have been investigated giving rise to “hypersonic phononic 

crystal and metamaterials” [161-165] where band gaps have been observed by Brillouin light 

scattering spectroscopy. At the far extreme of scales, reaching down to a few nanometers, the concept 

of a nanophononic metamaterial (NPM) was proposed for the reduction of the lattice thermal 

conductivity [166-171]. An NPM in the form of a suspended silicon membrane with a periodic array 

of nanopillars was proposed as a particularly advantageous configuration for not only thermal 

conductivity reduction, but also thermoelectric energy conversion. In this configuration, the 

nanopillars generate local resonances that, similar to macroscopic systems, couple and hybridize with 

the underlying dispersion curves. However, here the interest is in creating a very large number of local 

resonances (possibly on the order of millions or more) spanning the entire spectrum of thermal 

transport–which may reach up to tens of THz. A recent theoretical study using lattice dynamics 

calculations and molecular dynamics simulations predicted two orders of magnitude reduction in the 

in-plane thermal conductivity of a silicon membrane stemming from the introduction of nanopillars 

with a shape, size, and spacing carefully selected with respect to the base membrane thickness [170, 

171]. In particular, it was shown that increasing the height and width of the nanopillars (up to a limit 

dictated by the phonon mean free path distribution) increases the level of thermal conductivity 

reduction [170, 171]. Other research examined diffuse phonon scattering at the interface between 

pillars and a substrate [172]. 

In this article, we provide a review of the authors’ original contributions to the study and 

development of pillared materials–for both macroscale elastic waves and nanoscale thermal transport–

as well as the progress that emerged afterwards by the phononics community at large. The paper is 
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organized into six sections. The current section provides a background and an overview of the state-of-

the-art in pillared materials and structures. In the second section, we review vibrational properties of 

pillared phononic-crystal plates for wave transport and multiphysical interaction. In the third section, 

we cover pillared metamaterial plates with enhanced low-frequency band gaps and super-resolution 

focusing. In the fourth section, we review pillared acoustic metasurfaces with anomalous resonant and 

transmitted properties. The fifth section focuses on topological pillared phononic plates that exhibit 

topologically protected edge states with immunity to local perturbations. In the sixth and last section, 

we review the concept of a nanophononic metamaterial, which, as an example, is based on a silicon 

thin film or membrane with a periodic array of nanopillars erected on one or two of the free surfaces.  

Finally, we conclude with a summary and an outlook on the future promise of continued research on 

pillared systems at various length scales. 

 

Chapter 2 Wave propagation properties of pillared plates 

A. Basic model 

Some of the concepts related to phononic crystals and in particular pillared structures can easily be 

understood in the frame of very simple and academic models in one dimension. For instance, assume a 

linear monoatomic chain composed of atoms of mass m  connected to each other by a force constant  . 

By writing  the equation of motion for atom n  and inserting a propagating wave solution for the 

displacement, 
)()( tknai

n Aetu −= , the phonon dispersion curve is straightforwardly derived as 

)]cos(1[(22 kam −=  , where k and   are respectively the wavenumber and the frequency of the 

phonon (Fig. 2.1.a). The wavenumber takes a real value as far as the frequency does not exceed

m/4max  = . Above this frequency, it becomes complex ( "' ikkk += ), which means that the 

vibration will be attenuated and is not permitted to propagate along the chain. Now, if a defect in the 

form of a light mass mm '  is inserted at the site 0=n  of the chain, the equations of motion will admit 

a solution associated with a localized mode at a frequency above max , with an eigenfunction that decays 

on both sides far from the defect. This is a simple analogue of a cavity mode inside a phononic crystal.  

This approach can be extended to the case of a biatomic linear chain consisting of two different alternate 

masses m and M connected by the same spring of force constant  . The acoustic and optical phonon 

branches are now separated by a gap at the edge of the Brillouin zone (Fig. 2.1.b). Again, by inserting a 

defect of mass 'm  at site 0, the crystal will exhibit a localized mode associated with the defect inside the 

band gap and the corresponding frequency is presented in the figure as a function of the ratio mm /' .  

A new situation is encountered when a side atom of mass 'm  is attached to the monoatomic linear 

chain at site 0=n , with a force constant ' (Fig. 2.1.c). By eliminating the degree of freedom associated 

with this additional mass, the equation of motion for atom 0 is written exactly as for as for the linear 
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chain containing a mass defect at site 0=n , but now the latter mass becomes a dynamical mass 

depending on the frequency such that
2''

''
)(






m

m
mM

−
+= . At very low frequency, this mass starts 

at 'mm + , then increases until it diverges to  + at a "resonance" frequency '/'0 m = , then jumps 

to − and remains negative until a frequency of  '/)'(''0 mmmm +=   where it vanishes before 

becoming again positive and going to m at very high frequencies. The most interesting observation is 

that at the resonance frequency, the dynamical mass behaves like a very heavy mass which will prevent 

any transmission (assuming that the parameters are chosen in a such a way that 0  falls in the range of 

the propagating waves in the linear chain) and produces a zero in the transmission coefficient (Fig. 2.1.c). 

Also, the additional mass and the atom at site 0 vibrate in phase just below 0  and out of phase just 

above this frequency. Finally, if a periodical array of side atoms is attached to the linear chain, the zero 

of transmission widens into a local-resonance hybridization band gap, as sketched in Fig. 2.1.d. Of 

profound importance is the notion that that the resonance frequency may be chosen to be very low, 

which opens up the field of effective medium theory for metamaterials as will be discussed in-depth 

later. An equivalent model to the one discussed above is also presented in Fig. 2.1.d where each atom 

of the lattice has a resonating internal degree of freedom. 

 

Figure 2.1. Mass-spring models and corresponding dispersions: (a) a linear monoatomic chain made of identical 

atoms; (b) a biatomic linear chain comprising two different atom types; (c) a side atom is attached to monoatomic 

linear chain; (d) a periodic array of side atoms is attached to the linear chain to form a locally resonant periodic 

chain. 
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B. Dual aspects of phononic crystals and metamaterials 

Many efforts have been devoted to the study of absolute band gaps in phononic crystals, particularly 

for applications such as confinement, waveguiding, and filtering. In this subsection, we review the basic 

band structure properties of phononic crystal plates which comprise of a periodic arragment of pillars 

placed on top of a thin homogeneous plate as displayed in Fig. 2.2 forming a square array. Bragg and 

hybridization band gaps can be simultaneously observed in such phononic plates and as such they may 

be  dually classified  as phononic crystals and acoustic metamaterials. The illustrations are given for 

pillars made of steel on a silicon plate. The elastic constants and mass densities of  these materials are 

found in Ref. [19]. Dispersion curves are calculated along the 2D irreducible Brillouin zone and 

presented in the form of reduced frequency =a/(2vt), where vt is the transverse bulk velocity of 

silicon.  

 

Figure 2.2. Geometry of a phononic crystal plate consisting of periodic pillars deposited on a thin plate. In the 

present section, the plate’s thickness is denoted by e, and the height of the pilars by h.  

The dispersion curves in Fig. 2.3 are calculated for the parameters: pillar’s radius r/a=0.42, pillar’s 

height h/a=0.6 and the plate’s thickness e/a=0.1. At low frequencies, three lowest bands appear at  

point (the center of the Brillouin zone)–these are the antisymmetric (A0), shear-horizontal (SH0), and 

symmetric (S0) Lamb modes. As the frequency increases, the three branches bend in such a way as to 

give rise to the opening of a narrow hybridization gap (shaded in blue). At this frequency, the wavelength 

of the S0 Lamb mode is about 15 times the lattice constant a. The simultaneous bending of the acoustic 

branches and the existence of this band gap are intimately related to the choice of the geometrical 

parameters as will be discussed below. Besides, with a choice of the parameters within the common 

range for actual materials and devices, one can also observe the existence of a broad Bragg band gap; 

see region shaded in red in Fig. 2.3.  
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Figure 2.3. Dispersion curves for the following pillared plate: steel pillar’s radius r/a=0.42, pillar’s height h/a=0.6 

and the silicon plate’s thickness e/a=0.1. The red and blue dash zones indicate Bragg and local-resonance 

hybridization band gaps, respectively. Eigenmodes corresponding to the three points A, B and C at X are displayed 

at the right. This figure is based on results from Ref. [19]. 

To provide a deeper insight into the origin of the modes leading to the opening of the hybrydization 

gap, we have calculated the spatial distribution of the eigenmodes at the high symmetry point X of the 

Brillouin zone and plotted them in Figs. 2.3. The modes A and C are clearly associated with a bending 

of the pillar together with, respectively, a weak and a strong bending of the plate. The vibration of mode 

B corresponds to a compressional mode, in the z direction, correlated with a strong vertical displacement 

of the plate. More specifically, the motion of branches A and B are strongly correlated with the opening 

of the absolute low-frequency hybridization band gap. 

In Fig. 2.4, we have fixed the values of the radius of the pillar r/a=0.42 and the thickness of the plate 

e/a = 0.2 while changing the height of the pillar as h/a = 0.6, 1.2 and 1.8. For h/a = 0.6, we note the 

existence of the low-frequency hybridization and the high-frequency Bragg band gaps discussed 

previously. The lowest one closes for h/a = 1.2 and the central frequency of the higher one decreases, 

although appears to change its type. This is observed in the middle panel of Fig. 2.4 which also shows 

that the band structure there exhibits a new band gap, occurring at the reduced frequency 0.42. When 

increasing h/a to 1.8, the central frequencies of the first two band gaps move downwards together with 

the dispersion curves, whereas a new additional absolute band gap appears again at higher frequencies. 

It is interesting to remark that, for some of these band gaps, their opening results from the crossing of 

the normal acoustic branches with almost flat bands, which is the key mechanism that characterizes 

locally resonant materials. 
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Fig. 2.4. Evolution of the band structure for different values of the height of the pillar: (left) h/a = 0.6, (middle) 

h/a = 1.2 and (right) h/a = 1.8. The other geometrical parameters are e/a = 0.2 and r/a=0.42. This figure is based 

on results from Ref. [19]. 

We have also studied the evolution of the band gaps with the thickness of the plate e, keeping 

constant h/a = 1.8 mm and r/a=0.42 (right panel of Fig.2.4). This is useful to demonstrating the evolution 

of the branches when transitioning from a thin plate to a thick plate mimicking a substrate. When 

increasing e/a from 0.1 to 1.0 (Fig. 2.5(a)), we observe a slow variation of the central frequency of the 

gaps. In addition, most of the gaps close at e/a = 1, because many dispersion branches move downwards, 

except for the hybridization one at low frequency which appears more robust and closes for e/a > 1. In 

parallel, when increasing the thickness of the plate from 0.3a to a and higher, the Lamb waves gradually 

tend to become confined at the two opposite surfaces of the thick plate, rendering them as surface 

acoustic waves (SAW) or Rayleigh waves on each of the two sides. In the illustration of the dispersion 

curves, the separation between SAW and bulk waves can be achieved by drawing a sound line which 

corresponds to the lower phase velocity in the bulk substrate, silicon in our example. Fig. 2.5(b) 

represents the dispersion curves obtained for a thickness e/a = 1 in which the sound cone of silicon is 

represented by the grey shaded area. It means that the modes below the sound cone can only propagate 

at the surface. In contrast, inside the cone, the modes can be radiative and coupled to the bulk silicon 

modes. From this analysis, we extend the notion of band gaps to surface acoustic waves by highlighting 

among the corresponding branches the frequency areas that are free of modes. Indeed, in Fig. 2.5(b), the 

blue shaded areas correspond to partial band gaps in one direction X or M of the Brillouin zone while 

the red area corresponds to an absolute band gap for surface acoustic waves. 

 

Figure 2.5. (a) Evolution of the band gaps in the right panel of Fig. 2.4 as a function of the thickness of the plate, 

keeping constant the other geometrical parameters (h/a = 1.8 and r/a=0.42). (b) Representation of the dispersion 

curves for a thick plate (e/a = 1). The triangle grey area corresponds to the sound cone of the silicon plate. The 

blue (red) area shows the existence of partial (absolute) band gap for surface acoustic waves. This figure is based 

on the results from Ref. [19]. 

Finally, we have also investigated the robustness and persistence of the low frequency hybridization 

gap upon different combinations of materials constituting the pillars and the plate among a set of five 

materials displaying very different acoustic properties:  tungsten, steel, silicon, aluminum, and epoxy. 

In the left panel of Fig. 2.6, we show the limits of the low-frequency gap by changing the material of 

the plate when the pillars are made of steel. Similarly, the right panel of Fig.2.6 displays the gap limits 

(a) (b)
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for various materials in the pillars for a plate made of silicon. One can notice the persistence of the 

hybridization gap even if the constituting materials are identical. This supports the understanding that 

the origin of the gap is related to the geometrical rather than the constituent material parameters of the 

extended structure. On the other hand, the central frequency of the gap is very dependent upon the choice 

of the materials and happens at lower frequencies when we combine a high-density material, steel, in 

the cylinders with a low-density material, epoxy, in the plate. It is worthwhile to notice that with this 

choice one can obtain a gap in the audible frequency range, around 2 kHz, for a period of a = 20 mm 

and the other parameters being scaled accordingly. Such solid systems could practically be used as a 

vibrationless environment for high-precision mechanical systems. 

 

Figure 2.6. Evolution of the lowest-frequency gap limits for different combinations of constituting materials. (left) 

Steel pillars on a plate of different materials. (right) Various dots on a silicon plate. The geometrical parameters 

are e/a = 0.1, h/a = 0.6, and r/a= 0.42. For an epoxy pillar on a Si plate, the lowest frequency gap disappears. This 

figure is based on results from Ref. [19]. 

C. Phononic transmission and waveguiding 

From the calculation of both transmission coefficients and dispersion relations of pillared phononic 

crystal plates, we illustrate here the phenomenon of wave guiding when removing one row of pillars in 

a perfect crystal. The flexibility of tuning the acoustic/elastic properties, especially for waveguides, 

makes it particularly suitable for diverse applications from transducer technology to filtering and guiding 

of acoustic/elastic waves.  

Figure 2.7 shows the transmission coefficient for pillared phononic crystal plate made of a square 

array of steel pillars deposited on a thin silicon plate. The band structure is reported in the middle panel 

in the reduced frequency range (0, 0.45) along the high symmetry axes X and M of the first Brillouin 

zone. The choice of the geometrical parameters ensures the existence of two absolute band gaps, 

respectively at low and high frequencies (relative to the frequency range displayed). We also show the 

computed transmission spectra in the directions X and M of the Brillouin zone, displayed on each 

side of the central band diagram. The transmission spectra are given both for a S0 or an A0 incident Lamb 

wave.  
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Figure 2.7. (left and right) Transmission calculation (black solid line for S0 Lamb wave excitation and red dashed 

line for A0 Lamb wave excitation) through a phononic crystal plate consisting of a square lattice of steel pillars 

deposited on a silicon plate. The geometrical parameters are h/a = 0.6 and e/a = 0.2. (Middle) dispersion curves 

calculated along the high symmetry axis X and M of the Brillouin zone. The blue areas correspond to the 

position of the low and high absolute band gaps. This figure is based on results from Ref. [116]. 

We now investigate the possibility of guiding wave modes in both the low and high frequency gaps 

inside an extended linear defect designed by removing one line of pillars as seen in Fig.2.8(a). The 

length of the waveguide is assumed to be 7 periods of the unit cell. In the super-cell calculations, the 

neighboring waveguides are separated from each other by 4 lines of full pillars in order to minimize 

their coupling and hence the leakage effect. Fig. 2.8(b) presents the transmission spectra where the 

incident wave is a S0 (upper) or an A0 Lamb wave (lower). For comparison, we also provide the 

transmission through the perfect (red dashed lines) phononic crystal. The shaded blue areas represent 

the positions of the two band gaps from the corresponding dispersion curves. One can see the occurrence 

of a transmitted signal in the higher band gap for both the S0 and A0 Lamb wave excitations. On the 

contrary, the transmission in the low frequency gap essentially occurs for S0 Lamb wave excitation while 

it remains very low for A0. To highlight the wave guiding properties through the gaps, we show in Fig. 

2.8(c) the propagation of two monochromatic waves, corresponding respectively to a S0 Lamb mode at 

the reduced frequency of 0.393 and to a A0 mode at frequency 0.108.  

 

Figure 2.8. (a) Schematic view of a line-defect waveguide; (b) S0 Lamb wave excitation (upper) and A0 Lamb 

wave excitation (lower) transmission through the waveguide (black solid lines) and through the perfect (red dashed 
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lines) phononic crystal. (c) Example of guided mode for S0 Lamb wave (top right) and A0 Lamb wave (bottom 

right) at the reduced frequencies of 0.393 and 0.108, respectively. A portion of this figure is based on results from 

Ref. [116]. 

D. Example configuration: Hollow pillars and whispering-gallery modes 

1. Whispering-gallery modes of hollow pillars 

The study of whispering-gallery modes (WGMs) dates back to the work of Rayleigh in 1910 on 

the propagation of sound around a gallery in St. Paul’s Cathedral [173]. High quality factor WGM 

resonators may be applied to sensing, filters, modulators, among other applictions in optics and 

photonics, area that have been receiving increasing attention in recent years. In this subsection, hollow 

pillars are employed instead of full-solid pillars in phononic crystal plates. Indeed, the hollow structure 

can introduce WGMs with a high quality factor owing to their confinement and this parameter can even 

be significantly enhanced by insertion of an additional full pillar at the bottom of the hollow pillar to 

isolate the WGM from the plate. We consider a hollow pillared phononic crystal plate with a square 

lattice array and the entire structure made of silicon. The example of a hollow pillar unit cell is displayed 

in Fig. 2.9d.  

We first present the band structure of a full pillared phononic crystal plate along the direction X 

of the reduced Brillouin zone as shown in Fig. 2.9a. The geometrical parameters are: height of pillar  

h/a=0.45, radius of pillar r/a=0.4, and plate’s thickness e/a=0.1, where a is the lattice constant. The 

dispersion curves are plotted in the form of the reduced frequency =a/(2vt), where vt is the 

transverse bulk velocity of silicon. As explained in the previous subsections, such pillar structure 

exhibits both a Bragg band gap and a low frequency hybridization band gap simultaneously and 

therefore behaves as a phononic crystal or as an elastic metamaterial depending on the context. Then, 

the full pillar is replaced by a hollow pillar, whose geometric parameters are the same except for the 

inner radius which is chosen as ri/a=0.145. The dispersion curves of the hollow pillar unit cell is 

presented in Fig. 2.9b, where two new bands in red and pink appear in the Bragg band gap, meanwhile 

all the rest black bands remain almost unchanged. In Fig. 2.9c, the corresponding transmission curve is 

calculated with the fundamental antisymmetric (A0) Lamb mode excitation and the propagation direction 

being along the x coordinate. One observes that only the red band can generate a transmission peak p, 

while the pink band behaves as a deaf mode. This is attributed to the symmetry of the eigenmodes of the 

two bands, as illustrated by the real part of the z-displacement component of the two bands at the  point 

in Fig. 2.9d. Both the red and pink bands are characterized by the quadrupolar whispering-gallery mode 

(WGM4). The displacement field of WGM4 (red band) is symmetric with respect to the x-z plane and 

is therefore compatible with the symmetry of the incident A0 Lamb wave, so that WGM4 can be excited. 

However, it is asymmetric for WGM4-deaf (pink band), resulting in a mode that cannot be observed in 

transmission. It should be mentioned that the quality factor of WGM4 can be significantly enhanced by 

inserting an additional full pillar part between the hollow pillar and the plate. 
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Figure 2.9. (a) Dispersion curves along X direction for full pillar unit cell in a square lattice; (b) same as in (a) 

but for hollow pillar case ; (c) the corresponding transmission curve with respect to (b) ; (d) real part of z-

displacement component of the eigenmode of the red and pink bands at the  point. The geometric parameters are: 

height of pillar h/a=0.45, radius of pillar r/a=0.4, inner radius of hollow pillar ri/a=0.145, plate’s thickness e/a=0.1, 

where a is the lattice constant. This figure is based on results from Ref. [59]. 

The acoustic path of WGM around the hollow pillar of WGM is a multiple integer of the wavelength, 

equal to 2 for the presented WGM4. Therefore, the wavelength qualitatively behaves in the form of 

=(r+ri)/2. By increasing the inner radius, the frequency of WGM4 will redshift even to a low-

frequency band gap. It is has been shown that the WGMs can be efficiently tuned to cross a wide 

frequency band by varying the inner radius of the hollow pillars.  

As the WGMs can be designed to cover the full Bragg band gap by varying the inner radii of the 

hollow pillars, several narrow passbands can be expected for a mixed system composed of different 

inner radii. Here, we demonstrate the design a mono- and multichannel wavelength division multiplexers 

by inserting appropriate waveguides in a (5  5) supercell phononic crystal plate.  

For the multichannel wavelength multiplexer, the phononic plate contains two linear hollow pillar 

waveguides separated from each other by a line of full pillars, which prevents leakage between the two 

waveguides as shown in Fig.2.10a. We present the displacement fields of the transmitted wave through 

the two waveguides corresponding to two narrow pass bands in the Bragg band gap. Actually, the 

transmission of two narrow pass bands does not need two separate waveguides. In Fig. 2.10b, a 

monochannel wavelength multiplexer is considered, where the waveguide is constituted by alternating 

hollow pillars with two different inner radii. It is able to transport two different wavelengths through the 

same channel, as clearly observed in the displacement fields in Fig. 2.10b. The wave transmission 

originates from evanescent waves that allow for the overlapping of the elastic fields between two next 

nearest neighbor hollow pillars with the same inner radius. In Fig.2.10b, the displacement fields at two 

different passing frequencies are exhibited, where the enhancement of the fields inside the corresponding 

hollow pillars is obviously observed for each frequency. 
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Other ways to obtain a high quality factor pass band may also be realized based on WGMs, for 

instance by designing a cavity oriented perpendicularly to the direction of propagation [59]. It is worth 

noticing that such applications of WGMs can also be realized inside a low frequency hybridization band 

gap instead of a Bragg gap [59]. 

 

Figure 2.10. Application of WGM4 in a multichannel wavelength multiplexer (a) and a monochannel wavelength 

multiplexer (b). The upper and lower panels correspond to two different narrow pass bands for each column. This 

figure is adapted from Ref. [59]. 

2. Tunable property by liquid filling of the hollow pillars 

The existence of hollow pillars provides the possibility of filling them with a liquid. As the liquid 

and solid parts are coupled, the frequency of th anomalies e WGMs are affected by the acoustic 

properties of the liquid (e.g., the type of the liquid and its temperature) as well as its height level inside 

the hollow pillar. In general, for a given inner radius, increasing the height level of the liquid will 

decrease the frequency of WGM; however there is room for anomolies. For example, for a given inner 

radius and height level of the liquid, the frequency of WGM is lower when the liquid is mercury than 

that when it is water–since the impedance of mercury is much higher than that of water [60].  

The liquid-filled hollow pillars will also give rise to new localized modes inside the band gaps, 

such as compressional modes of the liquid. Fig. 2.11a shows the dispersion curves of a phononic crystal 

where the hollow pillars are fully filled with water. In this example, the height of each pillar is h/a=0.4, 

the outer and inner radii are respectively r/a=0.4 and ri/a=0.1 and the plate’s thickness is e/a=0.1. The 

parameters of water are taken at room temperature (25°C), namely density of 998 kg/m3 and acoustic 

velocity of 1490 m/s. In Fig. 2.11a, the new blue and cyan bands appear in addition to the black bands 

associated with the solid. The pressure fields for these two bands reveal that they respectively correspond 

to the first compressional mode (blue band) and the second compressional mode (cyan band). This can 

be well explained by the simple physical model of a tube of height hliq with rigid lateral and bottom 

boundaries and a free upper boundary. The expression of the (n+1)th compressional mode is 

fn+1=(2n+1)c/4 hliq, where n is the resonant integer number as 0, 1, 2,…, and c is the acoustic velocity of 
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the liquid. One can easily notice that the frequency of the second mode is three times that of the first 

mode, f2= 3f1, which is also verified by the blue and cyan bands in Fig. 2.11a.  

The liquid compressional modes have high quality factors and owing to their sensitivity to acoustic 

velocity, they are good candidates for sensing applications. For instance, the acoustic velocity of water 

will increase when the temperature rises. In Fig. 2.11b, we show that the frequency of the second liquid 

compressional mode increases within the Bragg band gap when temperature rises from 0 to 70°C, 

demonstrating the application of this structure for temperature sensing in water [60]. In addition, this 

configuration may also be applied to other application fields involving a dependence with the acoustic 

velocity, such as the identification of molar ratio for a mixture of two different liquids. It is to be noted 

that a solid/liquid coupled mode can also be generated by liquid filling in the hollow pillars whose 

frequency is sensitive to both the height level of the liquid and the inner radius of the hollow part.  

 

Figure 2.11. (a) Dispersion of a hollow pillar unit cell fully filled with water. The first and second liquid 

compressional modes are displayed in blue and cyan bands, respectively, along with the corresponding pressure 

fields. (b) The temperature sensing application of the second compressional mode. This figure is based on results 

from Ref. [60]. 

E. Vibration of multilayer pillars 

We show here an illustration of a phononic crystal made of an array of multilayered pillars, for 

surface acoustic waves control. Here each pillar is comprised of a periodic stack of alternating layers as 

seen in Fig. 2.12(a). We refer to this as a phononic pillar. The yellow layers correspond to PMMA and 

the blue ones to silicon. The novelty of this structure is that the pillar in the unit cell behaves like a 1D 

phononic crystal, so it allows band gaps that prohibit wave propagation along the pillar’s vertical axis. 

Therefore, it can support localized modes in a cavity or at its top surface that are very well confined and 

can intercat with the surface acoustic waves of the substrate to give rise to Fano resonances or other 

sharp features relevant for sensing applications. 

Figure 2.12(b) represents the corresponding dispersion curves in the X direction within the 

Brillouin zone. Below the silicon sound line, the modes are localized at the surface of the silicon 

substrate and/or inside the pillars. However, among these modes, three specific modes noted A1, A2, 

and B appear in the orange shaded regions which correspond to the band gap of the periodic multilayer 



21 
 

pillars. In contrast, the displacement fields of the other SAW branches are distributed throughout the 

pillars. The displacement field amplitude together with the vibration of these three modes plotted in Fig. 

2.12 (c) show that their vibrations are mainly localizes at the bottom of the pillar, i.e., at the interface of 

the pillars with the substrate. Moreover, one can see that the motions of modes A1 and A2 resemble the 

bending vibrations of the pillar, while mode B looks like a compressional vibration. 

F.  

Fig.2.12. (a) Phononic crystal structure consisting of a square array of a multilayer phononic pillars on a silicon 

substrate surface. The yellow and blue layers correspond to PMMA and silicon, respectively. The set of 

geometrical parameters are a = 1 µm, h = hsilicon = hPMMA = 3.5 µm and the pillar diameter is d = 5µm. (b) Band 

structure for SAW propagation along the -X direction. (c) Total displacement field in the unit cell for modes 

denoted A1, A2 and B in (b). This is reproduced from Ref. [94]. 

 

Next, we consider one row of such pillars arranged on the surface and study the interaction of an 

incident Rayleigh wave with this line of pillars as shown in Figs. 2.13(a) and 2.13 (b). The transmission 

spectrum plotted in Fig. 2.13(c) shows SAW attenuation in the shaded region where the amplitude of 

the uz component decreases to 0.4 at 161 MHz. The shaded area corresponds to the band gap of the 

phononic pillar. At this frequency, we plot in Fig.2.13(d) the total displacement field in the phononic 

pillar as well as the uz component in the substrate. We deduce that the SAW attenuation is caused by the 

excitation of a localized mode as the confined mode denoted A1 in Fig. 2.12(b). This mode is localized 

at the bottom of the pillar.  

G.  

H.  
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Figure. 2.13. (a) Schematic view for the transmission through one row of phononic pillars. (b) Unit-cell used in 

the simulation. (c) Transmission results: normalized amplitude of out-of-plane displacement Uz. The shaded region 

corresponds to the band gap of the PMMA/Si pillar. (d) Total displacement field in the pillar as well as the uz 

component in the silicon substrate for SAW. This is reproduced from Ref.  [94]. 

 

F. Pillared plate encompassing multiphysics  

The simultaneous existence of photonic and phononic band gaps and the confined phonon-photon 

interaction has opened up the field of cavity optomechanics [174]. The section first provides a brief 

overview on the existence of phoXonic (dual phononic-photonic) band gaps in the type of structure 

comprise of a periodic array of pillars deposited on a plate of finite thickness. Then, we give an example 

of the interaction between elastic waves and localized surface plasmon modes in a system of gold 

nanocylinders separated from a thin gold film by a very thin dielectric spacer of few nanometers. This 

model is used to investigate the efficiency of the coupling between an elastic deformation and the 

plasmonic modes.  

1. Dual phononic and photonic band gaps 

Here we examine theoretically the simultaneous existence of phononic and photonic band gaps in a 

periodic array of silicon pillars deposited on a homogeneous thin silica plate. Square, triangular, and 

honeycomb lattices have been investigated. We discuss the most suitable cases for dual phononic-

photonic band gaps, especially in comparison to the traditional structures made out of periodic holes in 

a plate. The calculations are focused on a structure where silicon pillars are deposited on a silica plate. 

Besides the technological interest on silicon structures, the selection of these materials is also important 

for the simultaneous existence of phononic-photonic band gaps. The existence of phononic gaps is not 

much affected by the choice of the materials as discussed earlier, although the frequency and width of 

the gaps are material-dependent.  

In the closely related field of photonics, Johnson et al. [175] have studied the band structure of a 

periodic array of silicon rods in air and shown the existence of a band gap for odd symmetric modes 

only (inplane magnetic field). However, in this work, the height of the pillars was taken equal to two 

times the lattice parameter and the result displayed similarity with the case of an infinite 2D structure 

where only a TM gap can be created. It is observed thatdecreasing the height of the rods to values lower 

than the lattice parameter allows the opening of a complete photonic gap for the guided modes. Therefore, 

one can expect that the low refractive index of SiO2 may enable us to keep such a property even in 

presence of the thin plate. In Ref. [45]. a detailed study of both the photonic and photonic band structures 

was conducted. A search for the situations displaying band gaps for both excitations was also reported 

[45]. In Fig. 2.14, we give an illustration of the dispersion curves for the three types of lattices 

investigated. It can be seen that it is more suitable to search for a photonic gap around or below the 

reduced frequency 0.4, since above this range the band gap will be restricted only to a small part of the 

Brillouin zone below the light cone.  
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Figure 2.14.  Photonic (left) and phononic (right) dispersions curves calculated for (a) a square array with the set 

of parameters eSiO2/a = 0.2, hSi/a = 0.8 and f = 0.4, (b) a triangular array with the set of parameters e SiO2/a = 0.5, 

hSi/a=0.8 and f = 0.5 and (c) a honeycomb array with the set of parameters e SiO2/a = 0.4, hSi/a = 0.7 and f = 0.3. 

This figure is reproduced from Ref. [45]. 

2. Elasto-plasmonic interaction 

Here we provide an illustration of the theoretical and numerical investigation of the coupling 

between elastic and localized surface plasmon modes in a system of gold nanocylinders separated from 

a thin gold film by a dielectric spacer of few nanometers thick. This system supports plasmon modes 

confined between the bottom of the nanocylinder and the top of the gold film, which arise from the 

formation of interference patterns by short-wavelength metal-insulator-metal propagating plasmons.  

     The structure is displayed in Fig. 2.15a, which consists of a square array of gold nanopillars deposited 

on a multilayered membrane composed of gold and silica. The simultaneous consideration of the 

plasmonic, elastic, and coupled elasto-plasmonic aspects has been numerically studied using the finite-

element method. In order to characterize the elasto-plasmonic interaction, we use a quasistatic 

approximation, which consists of a recalculation of the shape of the elastic modes at several selected 

instants of an elastic period (or several selected material phases) where the shape of the structure being 

fixed at these instants. This is justified by the fact that the plasmonic frequency is several orders of 

magnitude larger than the elastic frequency. 

     In Fig. 2.15b, it shows two elastic modes at F=4.2GHz and F=5.6 GHz (adopting the notation used 

in the Ref. [175]) which correspond to a quadrupolar mode and a vertical compressional mode, 

respectively. The evolution of the absorbance spectrum around the wavelength of the metal-insulator-

metal localized-surface-plasmon (MIM-LSP) mode at 750 nm for these two modes is shown in Fig. 

2.15c. The deformed geometry of each mode is calculated for different phases ψ =  t = 2πFt during 
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half an acoustic period. At 4.2GHz, the mode has observable modifications in absorption spectrum for 

different phases. More obvious modifications are induced for 5.6 GHz in the range of wavelengths where 

the MIM-LSP modes are excited. 

 
Figure 2.15. Geometry of the model. (b) Elastic modes at two frequencies where the left is the total displacement 

field and the right is the deformation under the pillar. (c) Evolution of the absorbance spectra for different values 

of the elastic phase for the elastic modes at 4.2 and 5.6 GHz, around the wavelength of the main (n,p) = (1,2) MIM-

LSP mode. This figure is reproduced from Ref. [176]. 

 

      This study may highlight the coupling mechanisms between localized plasmon modes and elastic 

modes, which is based primarily on the fact that the “elastic function” is mostly supported by the gold 

nanoparticle while the “plasmonic function” is essentially supported by the dielectric cavity under the 

nanoparticle. This aspect, which is in contrast to previously investigated systems, gives additional 

flexibility for the engineering of elasto-plasmonic devices with the possibility of loading or changing 

the volume of the nanoparticle in order to tune the frequencies of elastic modes without significantly 

affecting the plasmonic aspects. Furthermore, the interaction between the elastic and plasmonic modes 

may be influenced by using spacers with different mechanical properties but similar refractive index.  

 

Chapter 3 Pillared metaplates: Advanced geometric configurations 

A. Engineering of large low-frequency band gaps 

1. Trampoline metamaterials 

In most applications in phononics, including metamaterials and metasurfaces, large band-gap size 

is generally desirable. Maximization of band-gap size by unit-cell optimization has been actively 

pursued for phononic crystals[177-179]; in contrast, less attention has been focused on band-gap 

widening in locally resonant acoustic/elastic metamaterials. In this subsection, we review the dispersion 

characteristics of locally resonant elastic metamaterials formed by the erection of pillars on the solid 

regions in a plate patterned by a periodic array of holes [65]. The solid regions effectively act as 

springboards that enhance the resonance behavior by the pillars when compared to the nominal case of 

pillars on a plate with no holes. This local resonance amplification phenomenon, which has been defined 

as the trampoline effect, was shown to cause subwavelength bandgaps to increase in size by up to a 

factor of 4.  
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To demonstrate the trampoline effect, we will examine a plate configuration formed by the merger 

of a periodically pillared plate foundation [Fig. 3.1(b)] with a standard phononic crystal plate created by 

removal of a periodic array of holes [Fig. 3.1(a)] [65]. The outcome is a locally resonant elastic 

metamaterial consisting of pillars standing on the solid regions of a phononic crystal plate [Fig. 3.1(c)]. 

This architecture allows each pillar to be rooted in a more compliant base due to the presence of the 

holes, thus rendering the base to behave effectively as a springboard that allows the pillars’ resonant 

motion to be enhanced. This enhancement is reflected in the relative size of the locally resonant 

subwavelength band gap, which is seen to experience an enlargement in size by a factor of approximately 

2.5 compared to the pillared plated with no holes. 

 

 

Figure 3.1. Demonstration of a trampoline metamaterial. The top panel shows schematics of (a) a standard 

phononic crystal plate (consisting of a periodic array of holes), (b) as elastic metamaterial in the form of a periodic 

array of pillars on a plate, and (c) a trampoline metamaterial consisting of a periodic array of pillars on a plate 

intertwined with a periodic array of holes. The solid material is silicon with properties: density ρ = 2330 Kg/m3, 

and Lamé constants λ = 85.502 GPa, µ = 72.835 GPa. The dispersion diagram of the three configurations for wave 

propagation in the ΓX direction is shown in the bottom panel. In the frequency range displayed, the phononic 

crystal has no bandgaps. (d), the standard pillared plate exhibits a subwavelength bandgap with a relative size of 

0.19 (e), and the proposed trampoline plate features an enhanced subwavelength band gap with a relative size of 

0.48. This figure is obtained from Ref. [66]. 

 

To further examine the trampoline effect, the problems shown in Figs. 3.1(b) and 3.1(c) were 

extended for a range of values of pillar height and hole diameter. A map of the size and location of the 

lowest band gap (also along the ΓX direction) as a function of pillar height for a hole diameter of dh = 

5a/8 is given in Figure 3.2(a). The same results are also presented in Fig. 3.2(b) but in the form of a plot 

of the relative band-gap size,  /c, versus pillar height, where c is the band-gap central frequency. 

The blue solid line in Fig. 3.2(b) is for the standard, unholed pillared plate and is provided for 

comparison. The dotted, dashed, and solid red lines represent the relative band-gap size for the 

trampoline metamaterial configuration for different values of dh. In addition to dh = 5a/8, two other hole 
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diameters are considered, dh = 3a/8 and dh = 4a/8 (noting a constant increment of a/8 between the three 

diameters). It is observed that for the two additional trampoline plate cases, the relative band-gap size is 

larger than the case of the standard unholed pillared plate. This shows that the trampoline effect is 

present also in the lower hole diameter cases. However, the incremental enlargement of relative bandgap 

size is more significant at higher values of hole diameter, which is due to the quadratic decrease in the 

springboard area as dh is increased.  

 

Figure 3.2. Map of absolute (a) and relative (b) band gap as a function of normalized pillar height for a trampoline 

plate (consisting of pillars and holes) compared to a standard pillared plate (consisting of only pillars). The 

trampoline effect results in an increase of the subwavelength locally resonant band gap by a factor ranging from 

roughly 2 to 4 for geometries, where the original /c is greater or equal to 0.1. This figure is obtained from Ref. 

[66]. 

 

The relative band-gap size attainable by the trampoline effect is remarkable. For the parameter set 

of dh = 5a/8 and hp/a = 0.4, the size of the relative band gap is close to 0.6 (i.e., 60%). This is a significant 

improvement over reported relative band gap sizes in the literature for acoustic/elastic metamaterials in 

general and specifically for pillared metamaterials, which usually fall within the range of 20% – 30% 

for a partial bandgap.  

These results demonstrate that the trampoline effect in a plate facilitates the utilization of 

subwavelength metamaterial properties over relatively broader frequency ranges than the case when 

only pillars are employed. 
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2. Tailored metamaterials 

In the previous section, trampoline metamaterial plates were reviewed as a concept for widening 

and lowering a local reasonace hybridization band-gap. In this section, we discuss a mechanism to 

significantly widen the Bragg band gap and extend it to the low frequency domain, meanwhile the 

relative width of the low-frequency hybridization band gap is also enlarged. The physical model is based 

on the pillared unit cell configuration of Chapter 2.D.1. As seen in the inserts of three geometries in Fig. 

3.3, the pillars are connected to each other by cross bars with tunable widths instead of the use of a 

homogeneous plate as a common base medium. The widths of the bars are b/a=1, 0.5, 0.1 at the left, 

middle and right panels, respectively. The lattice constant is a. The entire unit cell in this example is 

made of silicon.  

To explain the mechanism behind the trend observed in Fig. 3.3, let us first start with the case b/a=1. 

A Bragg (blue) and a hybridization (red) band gap appear in the dispersion curves along the X direction 

with relative size 0.45 and 0.26, respectively. The relative size of a band gap is defined as /c, where 

 is the width and c the central frequency of the gap. The Bragg band gap is divided into two parts 

by a narrow band denoted A, whose eigen mode at the  point is also displayed in Fig. 3.3. One can 

clearly notice that this branch A exhibits a high localization in the plate at the four corners of the unit 

cell. In addition, a relatively flat band B falling in the frequency domain of the bulk bands below the 

Bragg gap is associated to the torsional resonance of the pillars, as can be seen from its eigenmode. The 

presence of band A and the interaction between band B and other bulk bands affect the property of the 

Bragg gap. To eliminate these two effects, we propose the concept of a tailored metamaterial that 

consists of a pillar connected by two tunable crossing bars.  

Indeed, when the width of the bar reduces to 0.5, the four corners of the unit cell turn into eight 

new corners of the two crossed bars. Since the distance of the two corners at one edge of the bar is equal 

to the bar’s width and decreases, the frequency of the mode A moves to a higher frequency, about 0.85 

for b/a=0.5. Meanwhile, the torsional mode B downshifts to lower frequency. These two changes result 

in a wider Bragg band gap with lower gap edge whose relative size increases to 0.76, as seen in the 

model panel of Fig. 3.3. Meanwhile, the hybridization band gap is also enlarged a bit and moves to lower 

frequencies with a relative size as 0.41. When the width of the bar further decreases to 0.1, the Bragg 

band gap extends to the low frequency domain and its relative size greatly increases to 1.22 while the 

relative size for the hybridization gap increases to 0.52. The unit cell with narrow bars makes the pillar 

easier to rotate and bend, so that the band B and the hybridization band gap red shifts. Such dispersion 

properties bring have potential for utilization in subwavelength studies of acoustic/elastic metamaterials. 
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Figure 3.3. Dispersion for pillared phononic crystals connected by thin bars with the bar’s width as b/a=1 (left), 

0.5 (middle) and 0.1(right). The Bragg and hybridization band gaps are respectively marked in blue and red. The 

geometries of the unit cells are displayed on top of each dispersion curve, respectively. The eigen modes of band 

A and B at the  point are also represented at the left. This figure is adapted from Ref. [61]. 

The evolutions of the Bragg and hybridization band gaps in the X direction as a function of the 

bar’s width are summarized in the left panel of Fig. 3.4, where the torsional band is shown in cyan color. 

As the bar’s width reduces, the frequency of the torsional mode blue region shifts towards outside of the 

Bragg band gap. The Bragg band gap becomes much wider and remarkably extends to the low frequency 

domain, hence becoming an extra wide band gap. The hybridization gap gradually moves to lower 

frequencies. The evolutions of the relative sizes of the two gaps are presented in the right panel of Fig. 

3.4. Since the width of the Bragg gap obviously enlarges when the width b/a is smaller than 0.7, its 

relative size almost linearly increases, nearly three times for b/a=0.1 to 1. On the other hand, the relative 

size of the hybridization gap gradually increases and becomes two times higher. As a result, engineering 

dispersion bands by tuning the width of the cross-connecting bars is proven to be an effective approach 

for widening and lowering band gaps.  

 

Figure 3.4. (Left) Evolution of the Bragg (blue) and hybridization (red) band gaps as a function of bar’s width b/a. 

The cyan color represents band A, a torsion mode. (Right) Relative size of band gaps as a function of bar’s width 

b/a. This figure partially includes results from Ref. [61]. 
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B. Pillared GRIN phononic plate  

1. Introduction 

Focusing of acoustic or elastic waves via flat phononic lenses is definitely one of the most striking 

phenomena that arise from the artificial periodicity of phononic crystals (PCs). After the first 

experimental demonstration of the phenomenon was achieved in 2008 [180], an intense activity has 

developed to optimize the geometrical and physical parameters of acoustical lenses in order to realize 

the exceeding high spatial resolution [181-186]. These promising perspectives for acoustic imagery 

relate to the fact that PCs are systems in which one can control the wave propagation at the wavelength 

–a major disadvantage stems from the fact that evanescent waves emerging from the object at cannot 

reach the image plane because of the exponential decay of their amplitude. In contrast, in lenses with 

negative index, the evanescent waves have their amplitude that increases during the transmission 

through the medium. While the waves decay again down to their initial level after emerging from the 

lens, they can still contribute to the resolution of the image.  

From the perspective of super-resolved imaging–which has emerged as one of the ‘hottest’ topics 

in the field–PCs suffer from some drawbacks that may prevent them from large dissemination. First, as 

a consequence of the exponentially decaying amplitude of the evanescent waves, the super-resolution 

attribute applies only to near-field imaging. Actually, if the source is located at a distance from the lens 

that is greater than one wavelength, the decay turns out to be prohibitive for the evanescent component 

to reach the lens and the super-focusing effect cannot be achieved. Then, in PCs the negative refraction 

of elastic waves, which is the starting point of the super-focusing effect, can be controlled through the 

band structure. In fact, this phenomenon is the direct consequence of the bands folding and relates 

therefore to the negative slope of some acoustical branches [187]: only elastic waves with frequencies 

above the first band gap can contribute to the superlensing effect. Their wavelengths are thus comparable 

or even smaller than the period of the PC, and the propagation therein comes with large and even 

prohibitive scattering of the waves. 

Using PCs to focalize elastic waves with frequencies in the first branch of the Brillouin zone where 

negative refraction effects are not involved is however possible if considering gradient-index phononic 

crystals (GRIN PCs) [135, 188-198]. These 2D systems are engineered with a gradual variation of their 

constitutive parameters (e.g., filling factors [189, 195, 199], geometry of the inclusions [135], or material 

properties [188]) along one direction. As a result, they feature a sound velocity gradient along that 

direction, making it possible for collimation, the convergence or the focalization of an incident wave. 

When an acoustic beam propagates through a 2D GRIN PC, it encounters redirection at every virtual 

interface between layers, resulting in successive reorientations of the acoustic beam inside the structure. 

Thus, by gradually modulating the parameters of a GRIN PC, one may create a curved path for the 

acoustic waves [135, 188-195]. Inspired by optical devices that already exist, different designs for 
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acoustic waves have been proposed, including Maxwell’s fish eyes [200] and circular Luneburg lenses 

optimized for focalizing simultaneously the three elastic modes that may propagate in a plate, namely 

shear horizontal, symmetric, and antisymmetric Lamb modes [137]. However, whether it is for optical 

waves [201-203] or for elastic waves [135, 188, 189, 195, 199, 204] none of the proposed designs has 

allowed for overcoming the diffraction limit to date; this is because of the total internal reflection of the 

waves with high k wavecectors which hinders the transmission to the background for external focusing. 

On the optics side, it was further proposed to use metamaterials featuring extraordinary refractive 

properties instead of photonic crystals [193, 194, 198, 205, 206], and the resolution beyond the 

diffraction limit for visible light was actually demonstrated analytically [205]. However, such success 

has not been obtained with elastic waves in solids so far [193, 194, 198, 206], nor has it been investigated 

how large should the acoustical refractive index (i.e., ratio of the k vector in the lens to the k vector in 

the background) be to attain this objective. Metamaterials with local resonances generally fulfill this 

latter requirement since they may display very slow sound velocity, at least near resonances [16, 19, 23, 

66, 77, 86, 116, 117, 131, 186, 207-212]. Besides, depending on the shape and dimensions of the 

resonant inclusions, the resonances may arise at a very low frequency as compared to the Bragg gap, in 

a region of the reduced Brillouin zone where effective theories apply. This has been demonstrated both 

theoretically and experimentally, with 2D PCs made out of an array of cylindrical pillars regularly 

erected on a homogeneous thin slab [19, 77, 86, 116, 117, 131, 212]. This structure, in particular, 

deserves special attention. Indeed, a single pillar on a plate has compressional and bending resonances 

that may lead to the dynamic effective modulus and mass density both being negative when a number 

of them are gathered to form a metamaterial. Moreover, since the compressional resonant frequency and 

the bending resonant frequency are mainly sensitive to the height and to the diameter of the pillar 

respectively, they can be tuned almost independently from each other [90]. When associated with a 

GRIN phononic lens on a plate, it is expected that the bending resonances and the Lamb waves 

propagating in the plate exhibit polarization coherency, thus allowing for the enhancement of the 

evanescent waves and, in turn for the forming at the focus of a spot containing finer information.  

 

2. Trampoline GRIN structure 

Based on GRIN phononic plate concept, Zhao et al. [141] esigned acoustic lenses built on a silicon 

plate by drilling a square lattice of air holes with a period of a and with radii gradually tailored along 

the transverse direction, as shown by the SEM image in Fig. 3.5(a). An array of identical silicon pillars 

was erected on one face of the plate, on each junction between each set of four air holes. This represents 

a combination of the trampoline metamaterial concept [66] and the GRIN concept. The basic unit is 

shown in Fig. 3.5(b). They have shown in Ref. [141] that such a structure, which we may describe as a 

trampoline GRIN structure, allows for the focalization of an A0 Lamb mode within the homogeneous 

substrate behind the metalens, over a spot having a transverse size beyond the diffraction limit. 



31 
 

 

Figure. 3.5. (a) Scanning electron microscope (SEM) image of the back side of a sample of a trampoline GRIN 

structure, (b) SEM image of a silicon pillar centered between four air holes on the front side of the sample. This 

figure is reproduced from Ref. [141]. 

 

In the low frequency region, where the wavelength is much larger than the lattice parameter, the 

refractive index along each line of inclusions (i.e., the ratio of the wave number along X to the wave 

number in the background) was designed to feature a hyperbolic secant profile. This profile, which can 

be formally written as ( ) ( ) ( )ynyn 22

0

2 sech11 −+=  where α is the gradient coefficient, and n0 is the 

refractive index along the central line of inclusions at the working frequency, allows for an exact 

determination of the acoustical rays. Moreover, a lens whose index features a hyperbolic secant profile 

is free of aberration, i.e., any ray normally incident on the lens converges to a single point on the axis 

[48, 209]. 

The band diagram of the trampoline GRIN structure shown in Fig. 3.6 explains the forming of a 

subwavelength spot at the focus of the lens. In this figure, the antisymmetric Lamb mode A0 is drawn 

for a structure with (red solid line) and without (black solid line) pillars. In the inset are shown the 

normalized modal displacements associated with the A0 mode for propagation along X at the frequency 

of the red flat branch. Unambiguously, the hybridization between the A0 mode in the air/silicon PC, 

polarized on the x-z plane, and the lowest-order flexural resonance of the pillar governs the displacement 

field–which is totally dominated by a vibration localized on the pillars. 
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Figure. 3.6. Band structure (dotted curves) of the trampoline GRIN structure along the central layer of the acoustic 

lens. The A0 band is highlighted by the overlapping red line while the black line indicates the A0 band along the 

central layer without pillars. Inset shows the normalized modal displacements of  the A0 mode at the X point in 

the Brillouin zone. This figure is reproduced from Ref. [141]. 

 

It can be deduced from these dispersion curves that, at resonance, the pillars act as elastic sources 

emitting in the plate Lamb waves at the frequency of the bending eigenmode [90], which in turn allows 

for enhancement of the evanescent waves emerging from the lens.  

 

3. Beam path in GRIN plates 

Any ray normally incident on a GRIN lens featuring a refractive index with a secant hyperbolic 

profile converges to a single point on the axis, at the focal length fl. This length only depends on the 

gradient coefficient  through 



21 =f . However, deviation between the focal distance predicted by 

this formula and that derived from numerical simulations, or even experimental measurement, may 

sometimes be significant, even in the homogenization frequency range [135, 188, 189]. There are several 

reasons for this possible deviation. First, the actual 2D acoustic lenses feature discretized indices, which 

may be imperfectly represented by a continuous gradient. However, this is probably not the most 

relevant reason since small deviations of a few percent were observed for a wavelength only five times 

larger than the period [135, 188, 189]. The observed disagreement between the theory and numerical 

simulations can be explained to a larger extent by the overall shape of the equi-frequency contours 

(EFCs). Actually, in PCs with large filling factors, the EFCs may depart from a circle, even at low 

frequency [135, 188, 189], therefore analyzing the trajectories in terms of an effective index may not be 

relevant. Instead, the effects of anisotropy are better described by considering both the group velocity 

and the k vector as the local parameters [213]. Based on the same idea, a Hamiltonian optics approach 
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has been proposed to study light propagation in graded PCs in the short-wavelength regime [214]. 

However, there have only been a few theoretical works able to perform a quantitative analysis of the ray 

trajectory in the homogenization range [215]. This was done, for instance, in Ref. [216] where an 

empirical approach allowed to accurately interpret both the position and the size of the spot 

experimentally measured in GRIN PC lenses with either a square lattice (the holes have different 

diameters and are regularly spaced along the y-axis) or the rectangular lattice (the holes have identical 

diameter but their separating distance varies along the y-axis). 

Experimental evidence of the subdiffraction focusing with the trampoline structure is shown in 

Figs. 3.7(a). In this figure, the maximum of the out-of-plane displacement is measured on the free 

surface of the lens using an interferometric method. The displacement field is symmetric on both sides 

of the central layer at y=0, with the overall maximum just behind the lens, at the distance x=0.6a from 

the outlet interface. The agreement with the numerical simulations shown in Fig. 3.7(b), including both 

the focal position and the pattern of the displacements field, is excellent.  

 

 

Figure. 3.7. (a) Experimental and (b) numerical distribution of the normalized maximum uz behind the acoustic 

lens at the X point in the Brillouin zone (7.2 MHz), together with (c) experimental and (d) numerical snapshots of 

the near field focusing at 7.2 MHz. (c) The gray solid lines and the red dashed lines are for the ray trajectories with 

y Bk k  and 
y Bk k , respectively. This figure is reproduced from Ref. [141]. 

 

Figures. 3.7(c) and 3.7(d) display experimental and numerical snapshots respectively recorded at a 

moment when the amplitude is maximum at the focus. The phase patterns in the two snapshots are in 

good agreement each other. To further analyze the respective role of the propagative and evanescent 

waves, the calculated ray trajectories are drawn in Fig. 3.7(c): the gray solid lines are for the wave with 

y Bk k  along the exit interface (ky is the component along the y-axis of the wave vector in the lens, kB 

is the wavenumber in the background), leading to propagative waves behind the lens; whereas the red 

dashed lines represent waves with 
y Bk k , resulting in evanescent waves in the background. The rays 

corresponding to the propagative waves are converging to a small zone just at the focal position as 



34 
 

shown by the experimental results in Figs. 3.7(a) and 3.7(c) and by the numerical results in Figs. 3.7(b) 

and 3.7(d), giving rise to an overall maximum displacement just behind the lens. Figure 3.8 depicts the 

transverse profile of the normalized maximum uz, measured experimentally (circular markers), 

computed using a finite-elements method (solid line), or analytically derived (dashed black line) [217]. 

 

Figure. 3.8. Experimental (circle markers), numerical (blue solid line), and theoretical (black dashed line) 

transverse profiles of the normalized maximum uz at the focus. This figure is reproduced from Ref. [141]. 

 

The experimental data and the simulation and analytical results are in good agreement with each 

other. Actually, the full width at half maximum (FWHM) of the central peak equates to 0.42λB, 0.43λB, 

and 0.40λB, respectively, i.e., less than half a wavelength and the subdiffraction focusing is achieved. 

However, the analytical results differ from the other two through the lateral peaks which are predicted 

to be smaller and sharper than it was experimentally and numerically found. Actually, it is assumed in 

Ref. [53] that there is identical contribution of each component ky at the focus. However, in practice, the 

elastic waves undergo damping because of internal reflections and impedance losses at the interface. As 

a consequence, the normal displacements are smaller in the central portion of the lens |y| < 2.5a than 

they are in the edges |y| > 2.5a [Fig. 3.7(d)]. In other words, the losses are larger when
y Bk k  than 

they are when 
y Bk k  along the outlet interface. Accordingly, both in simulations and in experiments 

the focus gathers a rate of propagative (evanescent) waves smaller (larger) than that predicted by the 

theory; this leads to a focus along the y-axis featuring large side peaks.  

 

4. Conclusion 

In conclusion, a GRIN acoustic metalens comprising a locally resonant uniaxial metamaterial 

allows for the nearfield subdiffraction focusing of an A0 Lamb mode. This has been demonstrated both 

experimentally and numerically. Analyzing the profile of the transverse component of the k vector along 

the exit interface between the lens and the homogeneous background puts into evidence the contributions 

of both the propagative and the evanescent waves at the focus. The size of the spot behind the acoustic 
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metalens was both numerically and experimentally quantified: both showed that a focusing beyond the 

diffraction limit with the resolution close to 0.43 times the wavelength is achieved. These uniaxial 

metamaterial-based lenses can be implemented at very low frequencies, and they can be used to handle 

the propagation of other types of waves such as Rayleigh waves. The mechanism by which the 

evanescent waves get localized on the interface and gathered to the focus was investigated. The 

polarization coherence between the flexural resonance of the pillars and the A0 Lamb mode in the plate 

enhances the evanescent wave along the interface through the elastic energy re-emitted by the resonators. 

This enhancement of the evanescent waves through the polarization coherence between the vibration of 

the resonators and the background medium can be seen as an advantageous strategy to designing 

metalens for other types of waves or to restoring the evanescent waves encountered in negative-index 

lenses. 

 

Chapter 4 Metaline of pillars 

A. Properties of a single pillar on a plate 

1. Basic model 

A pillar may exhibit bending (dipolar) and compressional (monopolar) resonances, which relates 

to negative effective mass density and elastic modulus for a pillared metamaterial [218]. The vibrational 

property of a single pillar deserves to be studied as it is the fundamental element of a pillared 

metastructure.  

Let’s consider a pillar deposited on a plate, as shown in Fig. 4.1a. The whole structure is made of 

silicon. Four points are marked on top of the pillar where displacements are detected. We define two 

orthogonal states a  and b  standing for a compressional and a bending modes, respectively. We 

assume that they can be composited into two other states 
1

y = cosq a + sinq b  and 

2
y = - sinq a + cosq b  with a coupling factor q . Then, the vibration on top of the pillar can be defined 

as y = A i 1
ye

1
y + B i 2

ye
2

y . For a compressional mode, all points on top of the pillar have the same 

vibration, so that we can write the vibration of point 1 as  

p1
y = y = [A i 1

y
e cosq - B i 2

y
e sinq ] a + [A i 1

y
e sinq + B i 2

y
e cosq ] b .  (4.1) 

For a bending mode, if the bending direction is along the Point 1-Point 3 line, the vibration of Point 3 

can consequently be written as 

p3
y = [A i 1

y
e cosq - B i 2

y
e sinq] a - [A i 1

y
e sinq + B i 2

y
e cosq] b .   (4.2) 

Therefore, we can further acquire 
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p1
y +

p3
y

2
=[A i 1

y
e cosq-B i 2

y
e sinq ]a , (4.3) 

p1
y -

p3
y

2
= [A i 1

y
e sinq + B i 2

y
e cosq ] b . (4.4) 

From the above two expressions of Eqs. (4.3) and (4.4), we can recover the compressional and bending 

modes by considering the vibrations at Points 1 and 3 with addition and subtraction computations. [219] 

As an example, we choose the geometric parameters : plate’s thickness is 145m, pillar’s diameter 

is 50 m, pillar’s height is 245 m. The fundamental antisymmetric Lamb wave is excited with the 

wavefront perpendicular to the Point 1-Point 3 line. The out-of-plane displacement is detected at Points 

1 and 3, and operated on with Eq. (4.3) and (4.4) by normalizing to that of a point on a pure plate without 

the pillar. The first/second bending and compressional modes are clearly characterized by black and red 

solid lines in Fig. 1b with the associated vibrating motions, which provides a validation of the above 

method. 

The resonant frequency of the pillar depends on the geometric parameters. From Fig. 4.1c, the 

bending modes significantly depend on the pillar’s diameter, especially the second bending mode which 

will upshift to much higher frequency, even overlaps the compressional mode, when the diameter 

increases. In addition, one it is seen that the resonant frequency decreases for increasing pillar’s height, 

decreasing plate’s thickness, and increasing conical angle. The most salient feature is that the 

frequencies of the second bending and the compressional modes will superpose when the diameter of 

the pillar is around 100 m, which may provide some useful properties as discussed in the next section. 

 

Figure 4.1. (a) A model for a single pillar on top of a plate, (b) resonant modes characterization and (c) variations 

of three resonant modes against diameter and height of the pillar (left), thickness of the plate (middle), and conical 

angle of the plate (right). This figure is based on results from Ref. [90]. 
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2. Resonant and scattering property 

When a pillar is in a resonant state, it scatters a wave radially. A scattered wave field can be 

acquired by subtracting incident the wave field from the total wave field. For the pillar in Fig. 4.1b, the 

three resonant states are separate in the frequency domain. Their scattered wave field are derived and 

presented in Fig. 4.2, from where the dipolar and monopolar fields properties are observed for bending 

and compressional modes, respectively. Therefore, the resonant pillar behaves as a point source.  

 

Figure 4.2. Amplitude distribution of the scattered Lamb wave by the pillar at the first (left) and second (middle) 

bending and compressional (right) resonant modes. This figure is based on results from Ref.  [90]. 

3. Huygens-Fresnel principle 

Huygens-Fresnel principle is a well-known concept in the theory of diffraction which says that 

each point on a wavefront can be regarded as a secondary-point wave source. Inversely, the interference 

of a set of point sources will generate a wavefront whose function can be designed. As a simplest 

example, in Fig. 4.3 we demonstrate that a line of identical point sources will generate a plane wavefront.  

The phase and amplitude of a scattered wave by a compressional pillar are exhibited in column (a) 

upper and lower panels, respectively. Mathematically, five identical point sources are arranged in a line. 

The resulting field after interference is exhibited in column (b). The same operation but for nine identical 

point sources is done for column (c). The scattering field by a real line of nine resonant pillars is 

displayed in column (d). Comparing columns (c) and (d), one can observe that their scattering patterns 

are almost the same, which generates a plane wavefront as explained by Huygens-Fresnel principle. Any 

other functional wavefront can be designed by manipulating the phase distribution along the line, being 

a pillared metasurface. 



38 
 

 

Figure 4.3. Phase (upper panel) and amplitude (lower panel) of the scattered wave for (a) a single pillar at a 

compressional mode; (b) adding five single sources with a inter distance of 200 m numerically; (c) similar as (b) 

but for nine single sources; (d) one real line of nine pillars inter distance as 200 m. This figure is reprodcued from 

Ref. [90]. 

B. Properties of a metaline of pillars 

1. Metasurface by phase engineering 

Thanks to the Huygens-Fresnel principle as demonstrated in the previous section, the properties of 

a line of pillars is discussed in this subsection. We first consider the pillar as in Fig. 4.1b, with an internal 

distance of 200 m. The transmission curve and complex phase diagram of a scattered wave normalized 

to an incident wave are calculated in Fig. 4.4a. One can see that three transmission dips occur 

corresponding to the first and second bending modes and the compressional mode, as marked in blue, 

black, and red, respectively. The three intrinsic modes will produce ellipses in the complex phase 

diagram. In this complex plot, a point locates at the +x, +y, -x and -y axes–meaning that the phase of the 

scattered wave is 0, /2, /- , and -  /2, respectively, with respect to the incident wave. The three 

ellipses are symmetric with respect to -x axis, but cut the -x axis at different positions as x=-0.92, x=-

0.59 and x=-0.96, respectively. As the full wave field is a sum of incident and scattered waves, the 

transmission amplitudes are consequently 0.08, 0.41 and 0.04, respectively, after destructive 

interference between the incident and the scattered waves.  

The second bending mode and the compressional mode can be easily tuned to be superposed by diameter 

as already shown in Fig.4.1c. The overlapped mode characterization is displayed in Fig.4.4b as black 

and red solid lines. Although the transmission curve still shows a dip for this superposed mode, the 

amplitude is much higher than their individual ones, being 0.57. From the complex phase diagram, the 

two ellipses merge into a bigger new ellipse that cuts the -x axis at x=-1.57, explaining the amplitude of 

transmission dip after destructive interference. It should be noted that the phase of the transmitted wave 

at the superposed frequency is out-of-phase with respect to the incident wave, which is different from 

separated modes. The out-of-phase property indicates that a line of pillars is possible to any possible 
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phase within the range [- ], thus the generalized Snell’s law can be applied to efficiently design 

metasurface wavefront functions. 

According to the generalized Snell’s law, the phase response can be locally designed nonlinearly 

along an interface between the two media, as any possible distribution profile according to the wavefront 

function’s requirement. In practice, the thickness of the “interface” is much smaller than the working 

wavelength, thus a “metasurface” is named. As an example, Fig.4c shows a line of pillars whose local 

phase responses are designed according to a focusing function. The pillared metasurface will transfer 

the incident plane wave into focusing at the other side, being a promising direction to manipulate Lamb 

waves for compact applications, as the same function for bulk phononic crystals and metamaterials 

requires the thickness size to be much larger than the working wavelength.  

 

Figure 4.4. (a) The left panel displays a transmission curve for a line of pillars whose three intrinsic modes are 

separate. The right panel shows a complex phase diagram of the transmission exhibiting three ellipses 

corresponding to the three modes. (b) The left panel shows the transmission and mode characterization curves for 

a line of pillars whose second bending and compressional modes are superposed; the right panel provides the 

complex phase diagram of the transmission exhibiting the superposed ellipse being a bigger size. (c) Illustration 

of the focusing effect by a line of different pillars whose phase is designed based on generalized Snell’s law. This 

figure partially includes results from Ref. [90]. 

2. Fano resonance and EIT/ATS 

In the previous section, the periodic spacing of the considered metasurface unit is 200 m with a 

pillar diameter of 50 m. Here, we first consider two pillars in the unit cell, which means the interval 

between two neighboring pillars is 100 m. Fano resonance appears in this system, originating from the 

coupling between the neighboring pillars which results in an asymmetric profile in the transmission 

curve. If we fix one pillar’s height as h=245 m and change the other pillar’s height hj/h, the evolution 

of the two dips and the peak in transmission curve is exhibited in Fig.4.5a, where the red solid line 
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presents the resonant frequency of the fixed pillar and the green solid line presents the resonant 

frequency of the varying pillar. The corresponding quality factors are shown in the right panel of 

Fig.4.5a. When hj approaches h, the two transmission dips avoid crossing each other, and the first dip 

and the peak get closer to each other with significantly increasing quality factors, about 3 orders of 

magnitude higher. In the vicinity of hj=h, the quality factor of the Fano resonance tends to be infinity, 

rendering a “trapped mode”.  

Then, we consider two lines of pillars to study the interaction of two metasurfaces. When the 

distance between the two identical lines is 230 m, Fabry-Pérot resonance appears whose frequency 

equals to that of pillars, as the wavelength in the plate is the double of the distance. The transmission of 

such three resonators is displayed as a blue solid line in Fig. 4.5b, showing only one dip that reveals the 

role of Fabry-Pérot resonance as a bound state in the continuum (BIC). If we asymmetrically adjust the 

heights of two pillars, the Fabry-Pérot resonance becomes visible and results in a sharp transmission 

peak from the original dip, as shown in other solid lines in Fig.4.5b. The frequencies of the two dips 

follow the resonant frequencies of the two pillars and the peak is induced by Fano interference from 

Fabry-Pérot resonance, being an acoustic analogue of electromagnetically induced transparency (EIT). 

When the distance between the two identical lines is 100 m, Fabry-Pérot resonance is outside of the 

studied frequency domain, so that no Fano interference will be involved. When the two pillars are 

identical, h1=h2=245m, two transmission dips (black solid line in Fig.4.5c) are observed whose 

frequencies are different from the individual resonant frequencies (red or blue circle-dotted line). This 

is a splitting effect by strong coupling between the two resonant pillars, resulting in an acoustic analogue 

of Autler-Townes splitting (ATS). If h2 deviates from 245 m, the coupling effect between the two 

pillars weakens and finally disappears. As it is seen, the two dips exactly meet the individual resonances 

for h2=220 m or h2=270 m in Fig.4.5c, not as ATS any more.  

The transparent windows in the transmission curves for EIT and ATS are usually similar and 

difficult in discernment. Many efforts are paid to realize differences between them using proposed 

numerical methods in classic systems such as optomechanics, micro-resonators, photonic crystals, 

plasmonics, among others. In our studies, we proposed a fundamental discerning method by utilizing 

their physical mechanisms. The principle of the method is also extended to an acoustic system with 

Helmholtz resonators grafted to a tube which is supported by analytical, numerical, and experimental 

validations as well as the common Akaike Information Criterion (AIC) method[160]. 
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Figure 4.5. Pillared metasurface with two pillars in one unit whose lattice constant is 200 m (interval is 100 m): 

(a) Evolution of dips and peak of Fano transmission profile by changing the height of pillar j while fixing the 

height of the other pillar as 245 m; (b) the corresponding quality factors in (a). Pillared metasurface with two 

lines of pillars: (c) acoustic analogue of EIT with Fano interference by asymmetrically adjusting the two pillar 

heights while keeping the two-line distance as 230 m; (d) acoustic analogue of ATS without Fano interference 

where only one height is changed while keeping the two-line distance as 100 m. This figure is reproduced from 

Ref. [91] and Ref. [99]. 

3. Metagrating by diffraction engineering 

A metasurface requires a gradient profile (e.g., phase response) along the surface to achieve 

wavefront functions. Another way is to design a grating which can channel a wave at a desired 

diffraction order while eliminating other orders. The idea was firstly realized by Torrent [220] with 

inverse design for an acoustic wave  and applied to an acoustic carpet cloak by Jin et al. [157]. 

Afterwards, it was extended to a flexural wave in a thin plate with a pillar-like resonator [221].  

Despite the complex vibrations of a actualpillar configuration, it can be simplified as a mass 

resonator connected to a plate with a spring. Implementing the Kirchhoff plate equation with Newton’s 

second law and Hook’s law, the equation of motion can be solved for the multiple scattering problem 

with a given incident wave for periodically arranged pillar scatterers. In other words, if the positions and 

physical parameters are known, the reflective and refractive properties can be consequently acquired. 

For the wave function considered, reflection and transmition coefficients can be first controlled through 

grating design, then the physical properties of pillar scatterers may then be inversely derived.  

In Fig.4.6a, a cluster is shown that consists of three different scatterers with a given position pattern that 

is periodically arranged as a line on a thin plate. For a given frequency and incident angle, the object of 

wave function is to keep the n=-1 refractive diffraction order while eliminating all other diffraction 

orders. In order to obtain a unique solution, the position pattern of the cluster is linear as shown in 

Fig.4.6b. The impedance of the scatterers can be finally solved. The field of the diffraction of a plane 

wave by infinite grating is computed and displayed in Fig.4.6b, showing the exact n=-1 refractive 
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diffraction effect. In Fig.4.6c, the full wave distribution for a finite grating of 30 clusters is presented 

with the same diffraction effect. It should be noted that clusters of different diffraction effects can also 

be composed to a grating to design focusing lenses, cloaks, and so on. 

 

Figure 4.6. Pillared metagrating. (a) Each unit of grating consists of 3 pillars. For an incident flexural wave, the 

grating will reflect and refract with different diffraction modes. (b) Full wave distribution of grating unit with an 

incident angle and only the n=-1 refracted diffracted mode. (c) Full wave field function as in (b) but for a finite 

number of 30 units. This figure is reproduced from Ref. [221]. 

Chapter 5 Topological pillared phononic plate 

A. Introduction 

Phononic crystal plates consisting of periodic pillars deposited on a thin plate are able to exhibit 

topologically protected edge states, a conept that originates from electronic systems. An analytical 

theory was developed for a pillared phononic plate in terms of flexural waves, by considering the pillar 

as a point-like resonator connected to the plate by a spring for out-of-plane vibrations [222]. For a 

honeycomb lattice of such resonators, Torrent et al. [145] demonstrated Dirac cones due to the lattice 

symmetry as an elastic analog of graphene and found analytical expressions for both Dirac frequency 

and velocity. The Dirac cone is protected by the inversion symmetry and the time-reversal symmetry. 

By breaking either the inversion symmetry within the honeycomb unit cell or the time-reversal 

symmetry, the degeneracy at the Dirac point is lifted giving rise to the opening of a gap. The upper and 

lower bands surrounding the gap have non-zero Chern number (topological invariant), which reveals 

non-trivial property for the gap and allows the existence of topologically protected edge states at the 

interface between two topologically different crystals. The mechanical analogs of topologically 

protected edge states have been widely studied, including analogues with the quantum Hall, quantum 

spin Hall, and quantum valley Hall effects. Detailed information on the topological principles in acoustic 

systems is found in recent reviews [223, 224]. To be noted, topological Fano resonance can be generated 

by combining both topological bright and dark modes in a pillared beam[225].  
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B. Topologically protected states 

Based on analytical model of a pillar-like point resonators on a plate, Pal et al. [146] introduced 

topologically protected edge states by breaking inversion symmetry, which was further experimentally 

demonstrated will actual pillar configuration [149], with the geometry shown in Fig.5.1a. The double-

sided hexagon was shown to possess a Dirac cone at the K/K’ point in the Brillouin zone when the mass 

of the pillars are identical. If the mirror symmetry of the unit cell is broken by introducing different 

masses (through changing the height of the pillars, for example), the Dirac cone degeneracy is lifted and 

a non-trivial band gap is formed with valley Chern number of an upper or lower band equal to 1/2 or -

1/2 at the K or K’ points, which shows opposite polarizations of their eigenmodes ; this illustrates an 

analogy with the quantum valley Hall effect. The symmetry-broken unit can be further taken to build a 

finite stripe with an interface separating two lattices. The dispersion of the stripe supports an interface 

band in the bulk non-trivial band gap, whose eigenmodes are localized at the interface units, as a 

topologically protected edge state. 

Chaunsali et al. [147, 226] demonstrated the pseudospin Hall effect for flexural waves with local 

resonators  as shown in Fig.5.1b. The arrangement of six bolt-like pillars in a hexagon lattice has 

different sizes, shrunken or expanded. Since the bigger unit cell with six resonators are chosen instead 

of the unit cell with two resonators, a double Dirac cone at the  point is possible to be constructed by 

adjusting the proper radius and zone-folding of bands. It should be noted that the double Dirac cone is 

also possible to occur at the K/K’ point for a patterned plate with proper parameters [227, 228]. A Bragg 

band gap is formed from the degeneracy of the double Dirac cone when the six resonators expand due 

to the change in translational periodicity. However, a nontrivial band gap is formed when they shrink 

and the degenerated bands have a nonzero spin Chern number. Therefore, the emergence of topological 

edge modes appears at the interface which separates trivial and non-trivial lattices. This bolt-resonator 

configuration was recently taken to construct a Kekule distorted mechanical graphene and a 

topologically bound state was demonstrated [229]. A mechanical analogue of Majorana bound states is 

also demonstrated by creating a Kekule distortion vortex onn a bolt-resonator honeycomb 

superlattice[230]. Very recently, double-side pillared phononic plate whose plate is drilled with 

patterned holes was shown to emulate the quantum spin Hall and the quantum valley Hall effects with 

different Lamb modes [231, 232]. 

Similar to the geometry in Fig.1a, the dispersion of a large unit cell containing six resonators 

(marked in green hexagon in Fig.5.1c) can exhibit a double Dirac cone at the  point due to band folding. 

The lattice can be expanded or shrunken by tuning the red and blue connecting bars, which degenerates 

the double Dirac cone and forms a band gap. A hexagon-shaped sample with shrunken unit cells as 

shown in Fig.5.1c displays gapped edge modes, topological corner modes, and trivial corner modes in 
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the degenerated band gap. When defects are applied to the red-dotted boxes, trivial corner modes will 

shift frequencies while the edge and topological corner modes are robust [233].   

 

Figure 5.1. A structure exhibiting the acoustic analogue of the quantum valley Hall effect for flexural waves by 

breaking inversion symmetry in the unit cell. This figure is reproduced from Ref. [149] (b) A structure exhibiting 

the acoustic analogue of the pseudospin Hall effect for flexural waves by shrinking the six-resonator unit size. This 

figure is reproduced from Ref. [226] (c) Elastic higher-order topological insulator with topologically protected 

corner states by a shrunken unit cell with six resonators. This figure is reproduced from Ref. [233]. 

C. Robustness of topologically protected edge states 

Topology is an effective tool to describe properties of wavefunctions over a band and it may be 

utilized to produce waveguides that are robust against certain perturbations [224]. It is widely 

demonstrated that a topologically protected edge state is immune to the back-scattering effect thus 

enabling it to propagate through a sharp corner without energy loss. With respect to the existence of 

defects, the topologically protected edge state is robust to such local perturbation without any influence 

on wave transport. This is illustrated in Fig. 5.2a where a point defect is added along a zig-zag 

topologically protected edge state. 

If local perturbations are strong enough so that the non-trivial band gap is closed or the edge band 

is disturbed, the robustness of topologically protected edge states will consequently fail to preserve edge 

propagations. In Fig.5.2b, we minimize the size of the bulk structures surrounding the zigzag interface. 

When there is only one hexagon surrounding the interface, more leaky waves are observed especially at 

the sharp corners. The wave amplitude decreases significantly after two sharp corners, meanwhile the 

zigzag interface propagating is still preserved. It is further found that once the surrounding bulk media 
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for the sharp corner continues to be minimized, the edge wave cannot even pass the first corner and the 

zigzag interface propagation disappears. It is suggested that two or more hexagons should be considered 

for the size of the bulk structures in order to preserve the non-trivial band gap [233].  

In Fig. 5.2c, we discuss the transmission along a linear edge when all the pillars along the interface 

are subject to height disorder. A disorder degree of x% means that the heights of all the pillars at the 

interface can randomly be increased or decreased within the range of x%. From the left panel of Fig. 

5.2c, it is noticed that the transmission through the topologically protected interface state is not affected 

for a wide range of height disorder and the transmission remains close to unity up to a disorder degree 

of about 40%. However, an abrupt drop occurs in transmission when the height disorder increases from 

40% to 50%, then the transmission oscillates around 0.4 for a higher degree of disorder. The sudden 

drop behaves like a transition threshold in the propagating states that can be seen from the wave fields 

at the right panel of Fig. 5.2c. The transmission is close to unity for values of height disorder of 8.3% 

and 25%. For higher disorders of 42% and 66%, it is seen that the incident wave hardly enters the 

interface as the interface mode disappears. As such, the low transmission value is from the wave 

reflecting effect at the entrance [233]. 

 

Figure 5.2. (a) Topologically protected zigzag interface state against a defect. (b) The same zigzag state against a 

minimized bulk size with only one hexagon unit beside the interface. (c) In the left panel, transmission property 

versus height disorder level of the pillars of the interface; in the right panel, the flexural wave propagation field 

for four selected height disorders.This figure is adapted from Ref. [151]. 

6 Nanophononic metamaterials: Nanopillared membranes for thermal conductivity 

reduction 

A. Introduction 

The previous sections provide a thorough review of pillared phononic crystals, metamaterials, and 

metasurfaces at the “macroscale” where the phenomena of interest pertain either to acoustic or elastic 

waves. The length scales relevant to this class of problems are typically on the order of micrometers and 
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larger, reaching meters, and the frequencies range from Hertz to Megahertz, and possibly Gigahertz. 

The common and effective modeling framework of macrophononics lies within the continuum 

hypothesis.    

In this section, we transition to a fundamentally different class of problems where we enter into the 

domain of nanophononics. Here, the interest is primarily in heat transfer by conduction; the length scales 

are in the nanometer range, and the relevant frequencies are in Terahertz–often spanning tens of 

Terahertz. Because of the very high frequencies and the size dependence of the underlying physics 

(among other factors), the modeling paradigm for nanoscale thermal transport is necessarily atomistic. 

This regime has been investigated within the nanoscale heat transfer community for the past few decades, 

primarily focusing on low-dimensional materials [234] until recently when a merge with concepts and 

themes from phononic crystals and metamaterials began taking shape attracting a growth in cross-

disciplinary research. 

1. Nanophononic crystals (NPC) 

The notion of a phononic crystal at the nanoscale, i.e., nanophononic crystal (NPC), was first 

explored in the context of 1D layered crystals [235, 236] and shortly afterwards was advanced to two 

[237-240] and three dimensions [241-243]; see, for example, the Fig. 6.1a and Fig. 6.1b schematics of 

a uniform membrane and a membrane in the form of a nanophononic crystal, respectively. While the 

interest in macroscopic phononic crystals is usually dominated by the presence of band gaps, at the 

nanoscale (when a 3D crystal is modeled atomistically) a complete band gap is unlikely to emerge [242]. 

The interest, instead, is primarily in the flattening of the dispersion curves that arise due to Bragg 

scattering. Flatter dispersion curves have lower group velocities and this, in turn, leads to a reduction in 

the thermal conductivity, k. This mapping between the group velocities and the total lattice thermal 

conductivity (i.e., not considering thermal transport by electrons) is best understood by examining the 

integrand in the Boltzmann transport equation (BTE) following the single-mode-relaxation time (SMRT) 

approximation [244, 245], For a membrane-like material, this equation is 

𝑘 =
1

𝑉

𝐴𝑐

4𝜋
∑ ∫ 𝐶(𝜅,𝑚)𝑣𝑔

2(𝜅,𝑚)𝜏(𝜅,𝑚)𝜅𝑑𝜅
𝜅𝑚 ,                                            (6.1) 

where Ac is the unit-cell base, V is total volume of the system, C is the specific heat, and vg, and τ denote 

the group velocity and the scattering time constant (lifetime), respectively. The integration is over all 

phonon wave numbers for branch number m and the summation is over all the phonon branches. The 

division by V stems from the fact that k is an intrinsic property [170]. From Eq. (6.1), it is seen that that 

a prediction of k is constructed by summing over all phonon modes in the spectrum and integrating along 

the direction of interest over the Brillouin zone. The thermal conductivity is therefore dependent on the 

phonon band structure, which in turn is affected by the unit-cell structure and lattice symmetry. The 

integrand consists of a product of the specific heat, the group velocity squared, and the lifetime–all 
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quantities defined for each mode of phonon motion as determined by the dispersion diagram. An NPC 

membrane consisting of a host semiconducting material, silicon for example, and a periodic array of 

holes or inclusions may exhibit a lower in-plane thermal conductivity compared to a corresponding 

uniform membrane due to the dispersion curves flattening. A practical disadvantage, however, is that 

the surfaces of the periodic features, e.g., the holes or inclusions, must be considerably smooth to 

preserve the phase information required for the Bragg effects to take place−especially when the features 

are of relatively large sizes compared to the phonon wavelengths [240, 246, 247].  At a more 

fundamental level, the degree and intensity of group-velocity reductions are limited to what the available 

Bragg interference patterns can provide, which is somewhat modest leading usually to an order of 

magnitude reduction at most [240]. One possibility is to allow the boundaries or interfaces of the holes 

or inclusions to be rough, which would induce mostly boundary scattering, possibly in combination with 

some level of Bragg scattering. In this scenario, one may increase the size and concentration of the holes 

or inclusions to the point where the phonon motion gets inhibited excessively by the scattering 

component. Here, the effective thermal conductivity in the overall medium may be reduced significantly, 

however at the expense of having extremely small/thin segments of the host material, e.g., see Ref. [243]. 

This approach would therefore not be favorable if the interest is to reduce the thermal conductivity 

without negatively impacting the electrical conductivity–as needed in thermoelectrics [248-250]. 

 

Figure 6.1: Three silicon membrane configurations: (a) Uniform, (b) nanophononic crystal, and (c) nanophononic 

metamaterial. 

2. Nanophononic metamaterials (NPM) 

The notion of a metamaterial for the reduction of the thermal conductivity by local resonances has 

been introduced by Hussein and co-workers, first in 2014 [166, 167] and followed by a series of 

systematic investigations [168, 169, 171, 251]. The underlying concept in this new class of 

metamaterials, termed nanophononic metamaterial (NPM), is to intrinsically introduce nanoresonating 

substructures to a host crystalline material, typically a semiconductor, such that a very large number of 

local resonances emerge and contribute through several mechanisms to the reduction of the overall 

lattice thermal conductivity. The local resonances couple with heat-carrying phonon modes of the host 

medium. This atomic-scale coupling mechanism gives rise to a resonance hybridization between pairs 

of the wavenumber-independent vibration modes of the local substructure (vibrons) and wavenumber-
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dependent wave modes of the host medium (phonons). Vibron-phonon coupling creates curve flattening 

and, consequently, reductions in the group velocities and hence the overall thermal conductivity.  

Stronger couplings produce sharper curve flattenings and larger reductions in the group velocities. The 

local resonances also confine the atomic modal motion within the nanoresonators, which in turn causes 

further reduction in the thermal conductivity. In addition, the phonon lifetimes drop due to changes in 

the scattering environment, including both phonon-phonon scattering and boundary scattering. The 

power of this approach stems from the fact that the local resonances may be tuned by design to be 

numerous and span the entire phonon spectrum of the host material, and, moreover, conform in their 

density-of-states (DOS) distribution to the host material phonons DOS (see Sections 6.2.1 and 6.4), thus 

maximizing the three effects mentioned above and increasing the thermal conductivity reduction. In the 

limit, the number of local resonances is three times the number of atoms in a unit nanoresonator.  

It is worth noting the fundamental contrast with conventional metamaterials where the aim is to 

generate subwavelength band gaps or create negative long-wave effective properties as is the case for 

locally resonant electromagnetic [252, 253], acoustic [16], and elastic [19, 20, 254] metamaterials 

(Sections 2-5 focus on conventional metamaterials). The target in NPM design is to optimally enable 

the thermal conductivity reduction mechanisms: group velocities reduction, energy localization, and 

lifetimes reduction. Another practical goal is to do so without affecting the electrical properties in order 

to effectively increase the thermoelectric energy conversion figure of merit ZT [170, 171].  

The NPM configuration proposed in Refs. [166-171] consists of an array of silicon nanopillars 

distributed on the surface(s) of a freestanding silicon membrane with no interior scatterers; see 

illustration in Fig. 6.1c. Here the nanopillars act as the resonating substructures. Since the nanopillars 

are located outside the main body of the membrane, which serves as the transport zone, the electronic 

band structure is only mildly affected and electron scattering occurs only near the membrane surfaces 

and not in the interior. Compared to all common phonon scattering-based approaches (where the 

scatterers are in the main body of the transport medium), this NPM configuration therefore provides the 

unique advantage of practically decoupling the lattice thermal conductivity from the Seebeck coefficient 

and the electrical conductivity−which is essential to creating significant increases in ZT. In addition, an 

NPM in the form of a nanopillared membrane naturally exhibits dimensionality reduction (compared to 

the bulk form). Therefore, the powerful rewards of resonance-induced thermal conductivity reduction 

are gained over and above the benefits of phonon confinement [255] and surface roughness[256] (as 

well as the benefits to the electrical properties [257]). Equation (6.1) applies to an NPM as it does for a 

NPC, keeping in consideration that for an nanopillared NPM the volume V includes both the base 

membrane and nanopillar portions. 

Since the publication of Ref. [166] in 2014, several investigations of NPMs by other groups followed. 

Several papers examined computationally a variety of NPM configurations for thermal conductivity 

reduction. Using atomic-level modeling, Wei et al. explored the effects of varying the nanopillars 

spacing and dimensions in silicon nanopillared membranes and analyzed mode localization [258]. Xiong 
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et al. studied silicon NPMs in the form of rods/wires with branching structures and explored the effects 

of alloying and temperature [259]. Another investigation of rod/wire-based NPMs was conducted by 

Ma et al.[260]. Ma et al. studied local resonant effects in 3D silicon nanowire cages [261], and Zhu et 

al. [262] considered bulk silicon with internal amorphous regions acting as the nanoresonators (see Ref. 

[263] for a survey of potential configurations using atomically-disordered inclusions). Thermal 

conductivity reduction in branched nanoribbon materials composed of molybdenum disulfide (MoS2) 

was reported by Liu et al. [264]. Giri and Hopkins [265] and Yang and coworkers [266] extended the 

NPM theme to carbon nanotubes and graphene sheets, respectively. Another intriguing NPM 

architecture is based on a graphene sheet decorated with branching fullerene nanoresonators[267]. 

Examination of the impact of nanopillars on the heat capacity was investigated by Iskander et al. using 

both theory and experiments [268]. The NPM concept has also been employed for thermal rectification, 

in Indium Arsenic (InAs) nanowires [269, 270], nanopillared graphene structures [271], and graphene 

nanoribbons [272]. A range of possible NPM geometric configurations, including 1D, 2D, and 3D 

systems is given in Ref. [167], noting that one of the unique features of NPMs is that they may be 

realized using a wide range of materials for both the host medium and the nanoresonator medium. Other 

studies examined NPMs using finite-element (FE) analysis as often done for macroscale acoustic or 

elastic metamaterials [111, 172, 273-275]. While linear continuous modeling may provide some insights, 

atomistic modeling is necessary for accurate qualitative and quantitative capturing of the effects of the 

three key NPM mechanisms responsible for the thermal conductivity reduction. This can be seen in the 

inherent dependence of the thermal conductivity on (1) the number, range, and detailed characteristics 

of the dispersion branches in the phonon band structure, as evidenced in Eq. (6.1) and the intricate band 

structure of Figs. 6.3b and 6.4 (noting that these figures only show a small portion of the spectrum), and 

(2) the anharmonic interatomic interactions. A study of the convergence of the FE-based thermal 

conductivity reduction predictions to those obtained by atomic modeling is given in the Supplementary 

Material accompanying Ref. [166]. The importance of atomic resolution and nonlinear effects is further 

reinforced by observation of the profound size and geometry dependence of the underlying physics of 

nanoscale thermal transport in NPMs [170].  

3. NPM versus NPC 

Compared to NPCs, NPMs are not dependent on periodicity and phased travelling wave 

interferences, and are therefore more robust to disorder in the arrangement of the nanoresonators and to 

surface roughness. Furthermore, the intensity of group-velocity reductions, mode localization, and 

controlled lifetime reductions may be continuously enhanced by simply increasing the size and packing 

efficiency of the nanoresonators[169, 258]. Future research may consider a hybrid between an NPC with 

holes and an NPM with nanopillars, that is, a nanoscale version of the trampoline configuration of 

Section 3.A.1. This way, additional Bragg scattering from the holes and relatively lower resonance 

frequencies from the “more compliant” nanopillars may be realized. As long as there is enough spacing 

between the holes not to impede the electron transport, it is conceivable that this mixed hole-nanopillar 
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configuration would harness more thermoelectric energy conversion compared to having only 

nanopillars.  

B. Lattice dynamics and vibron-phonon couplings 

In an NPM, the substructure resonances–denoted as vibrons–are distinct from phonons by virtue of 

their wavenumber-independent standing-wave character. The frequency spectrum of vibrons may be 

designed to couple with heat-carrying wavenumber-dependent phonon modes belonging to all or most 

of the dispersion branches across the full spectrum of the host medium. As described in Section 6.1, this 

atomic-scale coupling mechanism gives rise to a resonance hybridization between pairs of vibrons and 

phonons. This phenomenon may be demonstrated theoretically using lattice dynamics (LD) calculations 

on a unit cell of the NPM.  

Here we review the wave propagation characteristics of two freestanding NPM configurations: 

membrane with nanopillars (i) on one surface (single nanopillared) and (ii) on each of the surfaces 

(double nanopillared). In all cases, both base membrane and nanopillar(s) are made of defect-free single-

crystal silicon. Figure 6.2 displays the unit cells of these two configurations as well as the structure of a 

conventional cell (CC) and a unit cell of a corresponding uniform (unpillared) membrane. The geometry 

of a membrane with nanopillars on each surface is represented as b×b×d+c×c×hT+c×c×hB nm (which 

may be converted to CC by dividing each dimension by the atomic spacing a). The last two terms 

represent the size of the top and bottom nanopillars, respectively, and these are dropped when 

representing an unpillared membrane. If only a single nanopillar is included in the unit cell, the 

nanopillar height is denoted simply by h. All geometric parameters are pictorially defined in Fig. 6.2. 

Unless explicitly specified, all the analyses presented in this section are at a room temperature of T = 

300 K, and the Stillinger-Weber empirical potential is used in all models to represent the interatomic 

interactions[276]. Also, to keep our focus on the core effects of local resonances, we only consider 

defect-free crystals. 

Figure 6.3 shows a portion of the dispersion curves for an NPM in the form of a nanopillared 

membrane and, for comparison, the corresponding dispersion curves for an NPC in the form of a 

membrane with holes. The NPC has the same membrane thickness as the NPM and the cross-sectional 

size of the holes is chosen to be equal to that of the nanopillar. Also, for comparison, dispersion curves 

for a uniform membrane with the same thickness are shown. Compared to the uniform membrane, the 

NPC curves appear to be flatter especially at the righthand-side edge of the Brillouin zone–this is a 

manifestation of Bragg scattering. In contrast to the NPC, the NPM features the vibron local resonances, 

appearing as horizontal lines that veer off with the underlying phonon dispersion curves of the 

membrane. Because the nanopillars are laid out periodically, curve flattening at the edge of the Brillouin 

zone due to Bragg scattering is also observed. The reader is referred to Refs. [2-4, 6, 17, 18] for more 

discussion on the difference between a phononic crystal and a locally resonant metamaterial in general, 

regardless of scale.   
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Figure 6.2: (a) Conventional 8-atom unit cell for silicon and unit cells for a (b) uniform membrane, (c) single-

pillared NPM, and (d) double-pillared NPM. In (b), (c) and (d), the unit cell is repeated in the x and y directions, 

and the top and bottom surfaces are free. Heat transfer takes place in the in-plane directions along a uniform 

membrane and, correspondingly, along the membrane portion of an NPM. Figure adapted from Ref.[170]. 

 

Figure 6.3: (a) Schematics and (b) phonon band structure for a uniform membrane, a nanophononic crystal 

membrane, and a nanophononic metamaterial membrane.  For the NPC, the size of the unit cell is 3.26×3.26×3.26 

and the size of the centrally located hole is 2.17×2.17×2.17 nm. For the NPM, the size of the base membrane is 

3.26×3.26×3.26 and the size of the centrally located nanopillar is 2.17×2.17×3.26 nm. The dimensions of the 

uniform membrane unit cell are 3.26×3.26×3.26 nm. 
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Figure 6.4: Illustration of local resonances and the resonance hybridization phenomenon from a lattice dynamics 

perspective. (a) Phonon band structure and group velocity distribution of a silicon membrane with (green) or 

without (red) silicon nanopillars erected on one surface. (b) Uniform membrane atomic displacements for a heat 

carrying phonon mode in the acoustic regime contrasted to NPM atomic displacements of the same mode upon 

resonance hybridization. Significant motion within the uniform membrane is seen. In contrast, the atomic 

displacements of the NPM hybridized mode reveals localized nanopillar motion and almost no motion in the base 

membrane portion.   In (a), a zoom-in is provided for two hybridization zones including the one illustrated in (b). 

A magnification factor of 2000 is applied to the atomic displacements in the mode-shape images. Figure adapted 

from Ref. [170]. 

Figure 6.4 provides a more in-depth demonstration of the resonance hybridization phenomenon, as 

manifested in the phonon band structure, group-velocity distributions, and associated mode shapes. For 

this purpose, we consider an 9.78×9.78×9.78+6.52×6.52×19.55 nm NPM unit cell (consisting of 88128 

atoms). To economically obtain the phonon band structure for such a large unit cell, we used the reduced 

Bloch mode expansion (RBME) technique [277] to solve the corresponding eigenvalue problem over 

the 0-0.5 THz range. The effects of the phonon-vibron mode couplings phenomenon are clearly 

displayed in both the dispersion diagram and the corresponding group velocities diagram, as shown in 

Fig. 6.4a. The profound reduction in the group velocities is evident across the entire frequency range 

plotted (and the same effect extends throughout the entire spectrum). As noted earlier, reduction in 

phonon group velocities directly implies reduction in the thermal conductivity. Figure 6.4b focuses on 

a particular mode in the band structure and displays the unit cell mode shape without and with resonance 

hybridization. The confinement of the atomic motion solely in the nanopillar region represents a case of 

extreme localization of energy. This localization phenomenon in itself also contributes to the reduction 

in the thermal conductivity.  

 

Impact of mode localizaiton on the thermal conductivity As noted earlier, while the nanopillar adds 

modes (vibrons) to the total unit-cell system, most of these modes are severely localized (i.e., exhibiting 

zero group velocity in the band structure). Therefore, even though these modes add to the number of 

terms summed in Eq. (1), the actual additional quantities that are summed are not significant. Given that 
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the entire integration is finally divided by the total unit-cell volume, the net effect on the thermal 

conductivity is that it decreases. This summarizes the cause of thermal conductivity reduction by atomic-

scale mode localization.    

 

1. Comformity of phonon and vibron density of states 

As described earlier, the coupling between phonons and vibrons is the key enabling factor for the 

thermal conductivity reduction mechanisms in an NPM. The phonon motion is confined to the in-plane 

directions within the base membrane and the vibron motion is limited primarily to the domain of each 

nanopillar. At each phonon-vibron coupling, the phonon group velocities decrease, a pathway opens up 

for localization, and the phonon-phonon scattering increases. The more we have of these couplings 

across the full spectrum, the stronger the net reduction in the thermal conductivity. In Fig. 6.5, we 

examine how the overall size of the nanopillar affects the phonon and vibron density of states (DOS) 

distributions, collectively (i.e., when considering the integrated nanopillared membrane unit cell), and 

separately (i.e., when considering isolated membrane and nanopillar components). For the collective 

DOS picture, one can observe a subtle change in the DOS distribution due to the addition of a nanopillar. 

A more refined picture is seen from the separate DOS distributions. A key factor is the degree of phonon 

DOS and vibron DOS conformity, which may be quantified. For this purpose, we have introduced a 

metric to represent the inverse of conformity, namely, the nonconformity factor 𝑅̂pv [170]. This factor 

is defined as 

𝑅̂𝑝𝑣 = ‖𝑅𝑝𝑣 − 𝑅𝑝𝑝‖,                                                      (6.2) 

where Rpv is the cross-correlation between the separate phonon and vibron DOS, Rpp is the 

autocorrelation of the phonon DOS, and ‖. ‖ denotes the double norm. The reader may refer to Rabiner 

and Gold (1975)[278] for the definitions of correlation functions. The nonconformity factor varies 

between 0 (perfect conformity) and ∞ (no conformity). We see in Fig. 6.5 that for the same base 

membrane size within the unit cell, the value of the nonconformity factor is significantly lower (i.e., the 

level of conformity is significantly higher) when the size (width and height) of the nanopillars is 

increased for a given base-membrane thickness. This characteristic of the phonon-vibron conformity 

provides an opportunity for an up-scaling design pathway that creates vibrons compensation (Honarvar 

and Hussein 2018) [170]. Vibrons compensation is achieved by having the size of the nanopillar 

increased at a higher rate than that of the base membrane when an NPM is scaled up in size. The outcome 

is that not only (1) the phonon band structure gets enriched with a higher vibrons-to-phonons ratio, but 

also (2) the level of conformity between the phonon and vibron DOS distributions across the full 

spectrum, gets significantly increased. Both these factors lead to increased reduction of the thermal 

conductivity upon up-scaling.  

 



54 
 

2. Size limitation of NPMs 

While the design process of upscaling with vibrons compensation yields improved NPM 

performance with size, there is a limit to the sizes that may be reached. Improvement in performance 

will be realized as long as the characteristic length scales of the indovidual components of an NPM, the 

base membrane and the nanopillars, are considerably within the span of the phonon mean free path 

(MFP) distribution at the temperature of interest. As the NPM feature sizes start approaching the far end 

of the MFP distribution, phonon–phonon scattering mechanisms will dominate and the impact of the 

three resonance-based effects that reduce the thermal conductivity will gradually diminish. This 

underscores the design necessity of preserving the NPM system within the realm of the nanoscale.  

 

Figure 6.5: (a) Relative distributions of all modes (black), phonons in base membrnae (red) and vibrons in 

nanopillar (blue) DOS for an NPM configuration with a small nanopillar, i.e., small Vr (left) and a large nanopillar, 

i.e., large Vr (right). The quantity Vr represents the ration of the volume of the nanopillar to the volume of the 

base membrane. The vibron DOS are obtained by considering the nanopillar as an independent nanostructure with 

free boundary conditions. All quantities are normalized with respect to their maximum values. A large nanopillar 

with a large packing concentation leads to higher phonon-vibron conformity, which corresponds to lower values 

of 𝑅̂pv and a more intense resonance hybridizations effect. Figure adapted from Ref. [170]. 

C. Molecular dynamics and spectral energy density analysis: Evidence of localized 

resonances and resonance hybridizations 

The NPM phonon band structures shown in Figs. 6.3(b) and 6.4 display the occurrence of local 

resonances, which feature as horizontal lines, and also the resonance hybridization phenomenon, which 

manifests as avoided crossings between these horizontal lines and the original dispersion curves of the 

base membrane. These phonon band structure diagrams, however, are obtained by solving an eigenvalue 

problem for the quasiharmonic (i.e., linear) version of the problem. In reality, the atomic interactions 

are anharmonic (i.e., nonlinear) at finite temperatures. The anharmonicities give rise to phonon-phonon 

scattering, which is noncoherent. Furthermore, the top and bottom surfaces of the unit cell are not 
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necessarily ideal surfaces, which implies the possibility of boundary scattering at the surfaces, including 

the surfaces of the nanopillars. This too is a noncoherent effect.  

In order to examine whether the vibrons and the resonance-hybridization mechanism do indeed 

exist and unfold in the presence of these nonlinearities (and other scattering mechanisms), we resort to 

equilibrium MD simulations and seek to obtain the dispersion behavior (if it exists) straight from the 

simulations. This is done by computing the spectral energy density (SED) [279-283], which is a quantity 

representing effectively the space-time Fourier transform of the simulated nonlinear response. There are 

two SED formulations reported in the literature for phonon transport problems. In one SED formulation, 

referred to as Φ, the MD atom velocities are projected onto the phonon normal modes of the constituent 

unit cell, which are obtained separately from quasiharmonic lattice dynamics calculations. In an 

alternative formulation, referred to as Φ′, the SED expression requires knowledge of only the crystal 

unit-cell structure and does not require any a priori knowledge of the phonon mode eigenvectors. Both 

the as Φ and Φ′ formulations allow for an accurate prediction of both phonon frequencies and lifetimes 

[283]. In Ref. [168], we intentionally sought the Φ′ version of the technique since it enables us to 

establish whether or not wave behavior (including local resonances and resonance hybridization) is 

present in the simulations without any enforcement of wave characteristics in the calculations. 

As provided in Ref. [279], the SED expression for Φ′ is a function of wave vector κ and frequency 

ω, and is given by 

Φ′(𝜿,𝜔) =
1
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where ms is the atomic mass (which is the mass of a silicon atom for the cases considered in this section), 

τ0 is the total simulation time, r0 is the equilibrium position vector of the lth unit cell, and 𝑢̇𝛼 is the α 

component of the velocity of the sth atom in the lth unit cell at time t. There is a total of N = Nx×Ny×Nz 

unit cells in the simulated computational domain with n atoms per unit cell. We note that in Eq. (6.3), 

the phonon frequencies can only be obtained at the set of allowed wave vectors as dictated by the crystal 

structure. For our model, the Γ–X-path wave vectors are κx =2πj/(NxAx), j = 0 to Nx/2. We consider a 

single-nanopillared unit cell of dimensions 3.26×3.26×3.26+1.09×1.09×3.26 nm, i.e., b = 3.26 nm, c = 

1.09, d = 3.26 nm, and h = 3.26 nm. For the computational domain, we set Nx = 50 and Ny = Nz = 1, 

which gives a Γ–X wave-vector resolution of Δκx = 0.04. Room-temperature MD simulations under 

NVE (constant mass, volume, and energy) ensembles were executed for this system for 222 time steps 

and based on a time-step increment Δt = 0.5 fs. Equation (6.3) is evaluated by computing the SED field 

corresponding to the velocity trajectories extracted every 25 steps. The results from these calculations 

are shown in Fig. 6.6. As a reference, the phonon band structure as obtained from standard 

quasiharmonic LD calculations is shown in dashed red lines in Fig. 6.6(a) for a uniform membrane with 

the same d and in Figs. 6.6(b) and 6.6(c) for the NPM. The full SED spectrum is shown in Fig. 6.6(a) 

for the uniform membrane and in Fig. 6.6(b) for the NPM. Only the frequency range 0  ≤ ω ≤ 1.5 THz 

is shown because higher frequencies are relatively difficult to distinguish in the SED field. This 
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frequency range is responsible for a significant portion of the total lattice thermal conductivity [166]. 

We observe that the phonon dispersion emerging from the MD simulations matches very well with that 

obtained by the independent LD calculations, thus providing direct evidence for the existence of vibrons 

and phonon-vibron coupling. In particular, the first two nanopillar local resonances (present at nearly 

0.2 THz) are clearly observed in the NPM SED spectrum, appearing as horizontal lines. Moreover, the 

interaction of these resonances with the acoustic branches of the underlying membrane are distinctly 

observed and follow closely the hybridization profiles featured in the LD dispersion curves. Resonance 

hybridizations are also clearly observed at higher frequencies in the figure where local resonance modes 

interact with optical dispersion branches.  

Given our interest in the effects of the nanopillar resonances on the heat-carrying phonons within 

the base membrane, we also calculated the SED spectrum for the NPM considering only the 

contributions of the atoms housed in the base membrane (i.e., discounting the SED contributions of the 

nanopillar atoms). The outcome of this calculation is shown in Fig. 6.6(c), where we see clearly that the 

nanopillar resonances alter the fundamental nature of the phonon traveling waves within the membrane. 

These alterations in the phonon band structure result in a significant reduction in the phonon group 

velocities at each location in the band structure where an interaction takes place, and in mode localization 

around and away from the coupling regions. Both these effects contribute significantly to a reduction in 

the in-plane lattice thermal conductivity as analyzed in the next subsection. While phonon-phonon and 

phonon-boundary scatterings are still important mechanisms in the membrane-based systems we have 

considered, the results are consistent with the understanding that the mean free path (MFP) distribution 

for silicon comfortably spans, at a minimum, the length scale of the membrane thickness. Such a MFP 

distribution is sufficiently broad to allow at least a portion of the nanopillar standing waves to impact 

the phonons traveling in-plane across the entire cross section of the membrane.  

 

Figure 6.6: Phonon dispersion of a NPM and a corresponding uniform membrane with the same thickness. (a) and 

(b) show the SED spectrum for the uniform membrane and NPM, respectively. The SED spectrum of the NPM 
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considering only the membrane atoms is displayed in (c). Dispersion curves obtained by quasi-static LD 

calculations are overlaid in dashed red lines. The NPM unit-cell dimensions are 3.26×3.26×3.26+1.09×1.09×1.63 

nm; the uniform membrane unit-cell dimensions are 3.26×3.26×3.26 nm. Each inset presents a schematic of the 

unit cell analyzed, with the orange color representing the portion accounted for in the SED calculation. Figure 

adapted from Ref. [168]. 

D. Thermal conductivity predictions: Size effects and the compensatory effect 

In this sections, we review some recent predictions we obtained for the reduction in the thermal 

conductivity for NPMs at room temperature, and consider (1) the effect of the size of the nanopillar (for 

example, by varying its height) while keeping the base membrane thickness and the nanopillar lattice 

spacing constant, and (2) the effect of the membrane thickness while keeping the nanopillar-height-to-

membrane-thickness aspect ratio constant. For this purpose, we used equilibrium MD simulations 

followed by post-processing the results using the Green-Kubo [284-286] method. In the GK method, 

the lattice thermal conductivity tensor is calculated from the heat current auto-correlation function 

(HCACF) by 

𝑘 =
1

𝑘𝐵𝑉𝑇2
∫〈𝑱(0) ⊗ 𝑱(𝑡)〉,                                                 (6.4) 

where 𝑘𝐵 is the Boltzmann constant, V is the total volume of the system including both base membrane 

and nanopillar portions (as defined earlier), J is the heat current vector (in the unit of energy times length 

per unit time) computed over all atoms in the system, and ⊗ denotes the tensor product operation. 

Following common notation, T is the temperature and t is the time. The integrand represents the time 

average of the HCACF. The evaluation of the heat current vector is done using the stress-based formula 

𝑱 = −∑𝑺𝑖𝒗𝑖 ,                                                           (6.5) 

where Si and vi, respectively, denote the virial stress tensor and the velocity vector for atom i. 

The equilibrium MD simulations were conducted on a set of NPM models and corresponding 

uniform membrane models (similar to the configurations shown in Fig. 6.2). The computational domain 

for the NPM and uniform membrane models consists in each case of one unit cell with standard periodic 

boundary conditions applied at the in-plane boundaries and free boundary conditions applied at the top 

and bottom surfaces in the z direction [168-170]. The results we present are for systems that were 

initially equilibrated for 1 ns, with a time step Δt = 0.8 fs, under the NPT ensemble (zero-pressure cell 

size based on constant number of atoms, pressure, and temperature). The simulations were subsequently 

allowed to run under the NVE ensemble for an additional 6 ns to collect heat fluxes that were recorded 

every 4 fs. The 6-ns time span is sufficiently long compared to the longest phonon lifetime to reliably 

predict the thermal conductivity. With these parameters, the HCACFs generally converged within the 

first 1 ns, with the rate of convergence depending on the type of the material system (e.g., uniform 

membrane or NPM). The smaller the value of the predicted thermal conductivity, the shorter the 

convergence time. The LAMMPS software [287] was used for the implementation of the simulations. 

To minimize modeling error, we focus our attention on the reduction of the thermal conductivity when 

a nanopillar (or more) is added to an otherwise uniform membrane. This reduction is expressed as the 
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ratio kr = kNPM/kUniform, where kNPM and kUniform denote the in-plane lattice thermal conductivity of the 

NPM and corresponding uniform membrane, respectively.  

First, we examined an NPM unit cell with the following dimensions: 9.78×9.78×9.78 nm for the 

base membrane and 8.69×8.69×9.78 nm for a single nanopillar. The predicted kr for this configuration 

is 0.27; this corresponds to a reduction of the thermal conductivity by 73% (a factor of 3.7) compared 

to a uniform membrane with the same thickness.  A valid question concerning this result is whether the 

nanopillars caused this reduction primarily due to the introduction of local resonances, or if it is simply 

due to the changes incurred to the scattering environment. To address this question, we considered a few 

more NPM configurations with the same dimensions except for the nanopillar height, which is varied. 

The kr predictions for these systems are plotted in Fig. 6.7, where we see a significant dependence on 

the nanopillar height. The drop in kr extends from the already significant value of 73% reduction (with 

a 9.78-nm tall single nanopillar, which is the same height as the membrane thickness) to a remarkable 

value of 98.7% reduction (with a 586.5-nm tall nanopillar, which is sixty times taller than the membrane 

thickness). The latter value corresponds to a factor of 75.1 reduction compared to a uniform membrane 

with the same thickness. Display of such strong dependence on the nanopillar height is consistent with 

what we expect from the local resonance mechanism because, as described earlier, the number of the 

local resonances (vibrons) is proportional to the nanoresonator size, and therefore a tall nanopillar 

produces more sizable mode localizations as well as more group-velocity reductions for the heat-

carrying phonons compared to a short nanopillar. These results are obtained by comparing, and 

replotting in a different format, several data points reported in Ref. [170]. The observed dependency in 

nanopillar height is in contrast to the conclusions drawn in Ref. [274] where the authors select for their 

analysis data points from Ref. [170] that correspond to an NPM with a smaller membrane thickness and 

smaller nanopillar-to-base membrane volume fraction–where the effect of increating the nanopillar 

height is less profound.  

 

Figure 6.7: Thermal conductivity ratio kr versus nanopillar height for a membrane with a thickness of 9.78 nm. 

Numbers in parenthesis indicate the thermal conductivity reduction due to addition of the nanopillar, given as a 
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factor (first number) and as a percentage (second number). Due to the elevated Vr values, the curve demonstrates 

very strong dependence of the thermal conductivity reduction on the nanopillar height. Results are obtained from 

Ref. [170]. 

 

The overall size of the NPM determines the strength of the dependency of kr on the nanopillar height 

[170]. To examine this aspect of the problem, we refer to a broader set of results from Ref. [170], where 

we consider three sets of NPMs of different membrane thicknesses and nanopillar spacings and widths, 

for both cases with a single nanopillar (top) and cases with double nanopillars (top and bottom). Using 

compact notation, the cases we consider are NPMs with the following dimensions: 6α×6α×6α+(6α-

2)×(6α-2)×6α CC, 6α×6α×6α+(6α-2)×(6α-2)×6α2 CC, and 6α×6α×6α+(6α-2)×(6α-2)×6αβ CC (for 

single nanopillars) or 6α×6α×6α+(6α-2)×(6α-2)×6αβ+(6α-2)×(6α-2)×6αβ CC (for double nanopillars), 

where CC denotes units of conventional cells, α is a scaling size factor, and β = h/d. Figure 6.8 provides 

a summary of the results for a selection of NPM configurations corresponding to α = 1, 2, and 3 and β 

= 20, 30, and 60. To guide the eye, schematics of the considered unit cells are shown in Figs. 6.8(a) and 

6.8(b). As explained in Ref. [170], the higher the value of α in these cases, the more reduction in the 

thermal conductivity is obtained with increase in nanopillar height. In other words, the larger the value 

of α, the more delayed is the saturation of kr with nanopillar height. This is because the larger the width 

of the base membrane, the more width is available for a nanopillar with a given height–this attribute is 

encoded in selecting the nanopillar width to be  (6α-2)×(6α-2), instead of, for example, 5α×5α. Larger 

nanopillar width corresponds a larger volume and number of atoms, which in turn means more vibrons 

are available for contribution to the thermal conductivity reduction. The ratio of nanopillar volume to 

base-membrane volume Vr is ultimately the key quantity that determines the performance of a 

nanopillared NPM. 

Figure 6.8(c) collects the results for the largest h in each of the three α sets. For the double nanopillar 

case with a membrane thickness of d = 9.78 nm and a nanopillar height of 586.55 nm, an exceptionally 

strong value of thermal conductivity reduction is recorded: a factor of 130.0 reduction compared to a 

corresponding uniform membrane. Not only this is a very promising result for thermoelectric energy 

conversion, it is also advantageous from a practical point of view because it demonstrates the ability to 

maintain high performance with upscaling of the size of the NPM unit cell–via the vibron compensation 

scheme described earlier. This later advantage is vital for enabling industrial-scale deployment for waste 

heat conversion to electricity and for cooling and refrigeration.  

As discussed in Section 6.B.1, the degree of conformity between the phonons and vibrons DOS 

directly influences the strength of the thermal conductivity reduction. High conformity means more 

matching between the nanopillar local resonance frequencies and the base-membrane phonon dispersion 

curves. This, in turn, means more decrease in kr due to higher occurrence of the three resonance-related 

effects mentioned earlier, namely, the phonon group velocity reductions, the mode localizations, and the 

reduction in lifetimes. MD simulations with the same run-time parameters mentioned above were 
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conducted on the two NPM unit cells featured in Fig. 6.5. The unit cell with the smaller nanopillar 

[shown in Fig. 6.5(a)] has a nonconformity factor of 𝑅̂pv = 654 and a value of kr = 0.41. In contrast, 

the unit cell with the large nanopillar [shown in Fig. 6.5(b)] has a nonconformity factor of 𝑅̂pv = 47 

and a value of kr = 0.19. This confirms the direct correlation between phonon-vibron DOS conformity 

and reduction in the thermal conductivity. 

A recent study of NPMs produced results that are perfectly explained by the phonon-vibron DOS 

conformity measure and its relation to the strength of the thermal conductivity reduction. Ma et al. [266] 

investigated a graphene nanoribbon with a periodic arrangement of branched substructures acting as 

nanoresonators. The substructures, also referred to as pillars in their work, branched out perpendicularly 

from the sides along the main axis of the nanoribbon. Several MD simulations where conducted where 

in each simulation a different isotope of carbon was used for the atoms forming the pillars, while all 

atoms in the central region of the graphene sheet (i.e., the backbone region where the pillars are 

branching from) was formed from C12. The thermal conductivity along the axis of the nanoribbon was 

calculated for each case. The results have shown that the lowest thermal conductivity is for the case 

where the isotope used in the pillars was C12, i.e., the same isotope as the one used in the central region. 

As the isotope mass in the pillars was decreased or increased from C12, the level of thermal conductivity 

reduction decreased (i.e., the absolute thermal conductivity increased compared to the optimal case). 

This result provides compelling evidence that the prime cause of the thermal conductivity reduction is 

the presence of the pillar local resonances. When the pillars and the central regions are made out of the 

same carbon isotope, the degree of conformity between the phonon and vibron DOS is maximized, 

similar to the case shown in Fig. 6.5(b). As the isotope of the pillars deviates from that of the central 

region, the pillar vibrons DOS distribution alters due to shifts in the local resonances, and therefore 

deviates from the DOS of the phonons propagating in the central region. The degree of the conformity 

gets weaker as the value of the difference in atomic mass between the pillar and central region isotopes 

increases. The lower the conformity, the less intense the mode localization, resonance hybridizations, 

and resonance-related lifetime drops, and therefore the less the reduction in the thermal conductivity. 

The resutls by Ma et al. [266] also confirm that the reduction cannot be primarily due to boundary 

scattering. This is becasue their pillar sizes and shapes are kept constant, thus if boundary scattering was 

the prime effect then the thermal conductivity reduction verses pillar isotope value curve would have 

been mostly constant rather than exhibit a strong minimum value at the point where the isotopes of the 

pillars and the central region are equal. For the analysis of this system to be complete, the effects of 

interface scattering across materials with dissimilar isotopes should also be taken into account.  
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Figure 6.8: Thermal conductivity ratio kr versus nanopillar height for a variety of (a) single-pillared and (b) double-

pillared membranes with progressively increasing membrane thickness, nanopillar spacing, nanopillar width, and 

nanopillar height. The relative geometries are based on the α-formulae provided in the text; Vr values are noted. 

(c) Thermal conductivity ratio kr versus membrane thickness for configuration 6α×6α×6α+(6α-2)×(6α-

2)×6αβ+(6α-2)×(6α-2)×6αβ CC (single) and 6α×6α×6α+(6α-2)×(6α-2)×6αβ+(6α-2)×(6α-2)×6αβ CC (double) and 

a nanopillar height selected such that the aspect ratio is β = h/d = 60. Numbers in parenthesis indicate the thermal 

conductivity reduction due to addition of the nanopillar, given as a factor (first number) and as a percentage (second 

number). It is shown the onset of saturation with nanopillar height is delayed as we advance the α value in theses 

formulae. Results are obtained from Ref. [170]. 

 

E. Summary  

In this section, the concept of a nanophononic metamaterial has been reviewed and discussed with 

a focus on the particular configuration of a nanopillared membrane. Similar to the pillared elastic 
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metamaterials discussed in the previous sections, at the nanoscale we also benefit from the phenomenon 

of local resonance and its coupling with the underlying dispersion curves of the base membrane (or 

plate). The differences, however, are both fundamental and numerous. First, NPMs are engineered to 

manipulate nanoscale thermal transport properties ; therefore, they are necessarily formed at very small 

scales corresponding to frequencies reaching a few Terahertz. This is in significant contrast to the at 

least an order-of-magnitude lower frequencies at the larger size scales. Second, the interest here is not 

in subwavelength band gaps and/or effective properties. Instead the target resonance-induced effects are 

(1) the flattenings of the dispersion curves, (2) the mode localizations (within the nanopillars), and (3) 

the moderate reductions in the phonon lifetimes. The notion of phonon lifetimes in itself underscores 

yet another key contrast with most macroscale metamaterials, that is because it is a manifestation of the 

highly nonlinear nature of nanoscale thermal transport. Third, and of critical importance, is that all these 

effects take place due to the presence of an extremely large number of local resonances, referred to as 

vibrons in this context, that span the entire frequency spectrum covered by the phonon dispersion curves 

characterizing wave motion in the host medium. Unlike macroscopic metamaterials, an NPM benefits 

from local resonances in both the subwavelength and superwavelength regimes. When the unit cell of 

the nanopillared membrane is designed such (1) that number of vibrons is maximized and (2) the overall 

conformity between the vibrons and phonons DOS across the spectrum is maximized, the total impact 

of these three effects in turn gets maximized, and so does the reduction in the in-plane lattice thermal 

conductivity of the NPM. 

Maximizing these NPM design factors requires the ratio Vr of nanopillar volume to base-membrane 

volume to be as large as possible. A large nanoresonator increases both the number of vibrons and the 

DOS conformity factor; the latter is illustrated in Fig. 6.5. Increasing Vr requires the membrane width 

in the unit cell to be as large as possible, as this enables ample increase in nanopillar width. The rewards 

of increasing the nanopillar height become more significant for wider sized NPM unit cells, as illustrated 

in Fig. 6.8. Increasing the base-membrane size, however, should not reach the point where the ratio of 

noncoherent-to-coherent phonon transport becomes excessively large [170]. Key to this limitation is the 

range and distribution of the phonon mean free path at the temperature of interest. As the dimensions of 

the NPM components increase, less of the phonon MFP distribution becomes available for the 

resonance-induced wave effects to take place. An immense advantage of silicon is that it exhibits a wide 

MFP that ranges from a few nanometers to a few micrometers at room temperature [288]. It is also 

noteworthy that as the size of the nanopillar increases, width and/or height, eventually the spectrum 

starts getting saturated with vibrons, which also contributes to the slowing rate of the thermal 

conductivity rediction observed in Fig. 6.7. The reader is referred to Ref. [170] for a comprehensive 

investigation on the impact of base-membrane and nanopillar size on the reduction of the thermal 

conductivity in NPMs. 
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7 Summary and perspective 

Since the seminal works published in 2008, pillared materials and structures have been 

witnessing continuous growth as a new form of phononic crystals and metamaterials by researchers 

from broad disciplines. In these systems, numerous avenues are available for manipulating wave 

dispersion along the base plate or substrate by tailoring the local resonance properties of the branching 

pillar(s). This platform continues to inspire new fundamental and applied research. In this review, we 

first gave an overview of the historical developments as well as the current state-of-the-art of pillared 

phononic crystals and metamaterials. Then we reviewed the mechanism for opening a low-frequency, 

hybridization band gap and discussed its tunability and applications such as waveguiding. The 

interaction with electromagnetic waves was covered especially considering the simultaneous existence 

of phononic and photonic band gaps, a concept which has been termed phoXonic band gaps. The 

support of elasto-plasmonic interaction was also presented with an elaboration on the fundamental 

coupling mechanisms between localized plasmon modes and elastic modes. In addition, the tunability 

and application of whispering-gallery modes and liquid compressional modes were discussed for 

phononic crystal plates with hollow pillars. In the third section, we reviewed the metamaterial aspect 

of pillared plates. Trampoline and tailored metamaterial plates were analyzed for widening and 

lowering band gaps.  We reviewed acoustic metalens with locally resonant pillars and discussed how it 

allows for nearfield subdiffraction focusing. It was explained that the polarization coherence between 

flexural resonances of the pillars and the anti-symmetric Lamb mode in the base plate enhances the 

evanescent wave along the interface through the elastic energy re-emitted by the resonators. In the 

fourth section, we discussed how the intrinsic resonances of a single pillar or a line of pillars can 

provide a second source to emit Lamb waves that interfere with incident Lamb waves, a mechanism 

that results in a dip in amplitude or/and phase changing of the transmitted wave. Wavefront 

manipulation by phase and diffraction engineering of pillared metasurfaces was reviewed. The 

existence and behavior of Fano resonance, EIT, and ATS were also discussed. In the fifth section, the 

basic concept of a topological mechanism for a pillared phononic plate was described. We reviewed 

the robustness of topologically protected edge sates against back scattering, defect, and random 

perturbations. In the sixth section, the concept of a nanophononic metamaterial for thermal 

conductivity reduction was reviewed. Unlike macroscopic metamaterials, including pillared 

metamaterials, an NPM is a highly nonlinear medium that utilizes resonances across the entire 

spectrum and not only in the subwavelength regime. The NPM resonances may be in the millions. We 

provided an overview of the three resonance-induced effects that cause thermal conductivity reduction 

in a nanopillared membrane, namely, group-velocity reduction of the heat-carrying phonons in the 

base membrane, mode localizations in the nanopillars, and controlled reductions in the lifetimes. We 

also discussed the key aspect of size dependence in this class of problems, and how NPM design may 

be optimized for sustained performance with upscaling in size up to the limit where the transport 

transitions from primarily wave based to complete diffusive transport. 
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Pillared phononic crystals, metamaterials, and metasurfaces have proven to provide an enormous 

platform for a wide range of novel physical phenomena and potentially high-impact applications in 

industry and everyday life. A non-exhaustive list of some challenges and open topics for the future 

include: 

1. A pillar can be regarded as a resonator exhibiting compressional, bending, and torsional modes 

with different orders. By combining the classic plate theory and the plane-wave expansion 

method, simplified mathematical models considering out-of-plane displacement 

(antisymmetric Lamb mode) and a pillar’s compressional mode were developed [145, 147, 

289]. However, there is still an opportunity for the development of rigorous mathematical 

treatments–using techniques such as the homogenization method and the multiple scattering 

method–considering in-plane displacements and the pillar’s full modes.  

2. Most studies of pillared phononic crystals and metamaterials consider pillars arranged on a 

periodic lattice. On the other hand, random systems have rich physical properties in their own 

right and also a potentially wide spectrum of applications. The random induced properties on 

band gaps, localizations, acoustic transmission, mode conversion, phase transition, nanoscale 

thermal transport, among others, provide a rich potential for new advancements in applied 

physics or related disciplines. This track can take shape in the form of disordered pillared 

phononic crystals or completely random pillared metamaterials, since the key local resonance 

effects do not depend on periodicity. 

3. Robust wave phenomena under topological protection in a pillared platform provides a range 

of yet to be explored avenues. In addition to the conventional elastic wave theory based on 

Newtonian equations, topological concepts provide new tools to describe band theory and to 

synthesize wave functionality based on novel properties. As long as introduced local 

perturbations are not overly strong to close nontrivial bandgaps, the generalized properties of 

wavefunctions sweeping a band described by topology are conserved against these local 

perturbations. In a pillared platform, there is great potential in achieving robust elastic wave 

states as a mechanical analogue of higher-order topological insulators, Anderson topological 

insulators, topological bound states in the continuum, topological phases in Moiré 

superlattices , among others. A wide range of  application such as nanomechanical devices, 

on-chip phononic networks, and information process stand to benefit from this quantum 

mechanics-inspired track of research.     

4. New functionalities and applications of a pillar line as an analog of a metasurface is another 

promising direction for further research. There is a growing interest in the field of metasurfaces 

where very thin (sub-wavelength) structures with a modulation of the transmission and 
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reflection (phase and amplitude) properties of the constitutive unit cells allow various 

functionalities for anomalous refraction and imaging. The rich resonant properties of an array 

of pillars opens the opportunity to design a metaline of pillars, in analogy to the metasurfaces, 

to steer elastic waves (Lamb waves, Rayleigh waves, transverse beam waves, etc.) with 

advanced functions, especially in non-Hermitian and parity-time symmetry systems. 

Promising diverse applications such as cloaking, energy absorbing, asymmetric transmission, 

realization of topological states or bound states in the continuum, wave isolation, focusing, 

wave deflection, energy harvesting, among others, can be achieved at different size scales and 

with the possibility of controlled interaction with other physical fields. The pillar platform is 

naturally of particular interest in view of the engineering applications of Lamb and surface 

acoustic waves.  

5. Deep learning, which is an artificial intelligence method for the exploration of new horizons 

of recognition and processing of data, is growing significantly and penetrating multiple 

disciplines such as device design in optics [290], acoustics [291], plasmonics [292, 293] and 

metamaterials [294]. With the help of deep learning, pillared phononic sensors [295], for 

example, will be able to detect and predict objects fast and more efficiently. More opportunities 

for pillared phononic crystals, metamaterials, and metasurfaces are anticipated in this area. 

6. The upscaling of nanophononic metamaterials, and their effective integration into practical 

thermoelectric device architectures are two key steps for the near future. This presents both a 

rich materials physics problem because of the inherent size effects of conductive thermal 

transport, and a challenging technological problem because of the need for both high efficiency 

and low cost for industrial competitiveness. 
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