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ARTICLE

Thermal resistivity and hydrodynamics of the
degenerate electron fluid in antimony
Alexandre Jaoui 1,2✉, Benoît Fauqué1 & Kamran Behnia2

Detecting hydrodynamic fingerprints in the flow of electrons in solids constitutes a dynamic

field of investigation in contemporary condensed matter physics. Most attention has been

focused on the regime near the degeneracy temperature when the thermal velocity can

present a spatially modulated profile. Here, we report on the observation of a hydrodynamic

feature in the flow of quasi-ballistic degenerate electrons in bulk antimony. By scrutinizing the

temperature dependence of thermal and electric resistivities, we detect a size-dependent

departure from the Wiedemann-Franz law, unexpected in the momentum-relaxing picture of

transport. This observation finds a natural explanation in the hydrodynamic picture, where

upon warming, momentum-conserving collisions reduce quadratically in temperature both

viscosity and thermal diffusivity. This effect has been established theoretically and experi-

mentally in normal-state liquid 3He. The comparison of electrons in antimony and fermions in
3He paves the way to a quantification of momentum-conserving fermion-fermion collision

rate in different Fermi liquids.
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The possibility of viscous electronic flow, suggested long ago
by Gurzhi1, has attracted a lot of attention recently 2–4.
When momentum-conserving (MC) collisions among elec-

trons outweigh scattering by boundaries as well as various
momentum-relaxing (MR) collisions, the quasiparticle (QP) flow
profile is expected to change. In this case, momentum and energy of
the QPs will be redistributed over a length much shorter than the
resistive mean free path. As a consequence, the further away the
electron is from the boundaries, the hardest the MC collisions will
make it for the QP to make its way to the boundaries of the system.
If boundary scattering becomes also more frequent than MR col-
lisions, then the QPs the furthest away from the boundaries are less
likely to undergo a dissipative collision. As a consequence, the QP
flow becomes analogous to that of a viscous fluid in a channel
(dubbed the Poiseuille flow). Such viscous corrections to electronic
transport properties have been seen by a number of experiments5–
10. All these studies were performed on mesoscopic ultra-pure
metals. The strongest hydrodynamic signatures have been seen in
graphene near the neutrality point and when electron velocity is set
by the thermal energy. The velocity of degenerate electrons, on the
other hand, is narrowly distributed around the Fermi velocity.
Moreover, since the rate of electron-electron collisions is propor-
tional to the square of the ratio of temperature to the Fermi tem-
perature, MR collisions rarefy with increasing degeneracy.

Nevertheless, quantum liquids (such as both isotopes of
helium) present hydrodynamic features associated with viscos-
ity below their degeneracy temperature. Soon after the conception
of Landau’s Fermi liquid theory, Abrikosov and Khalatnikov11

calculated the transport coefficients of an isotropic Fermi liquid,
focusing on liquid 3He well below its degeneracy temperature.
They showed that since the phase space for fermion-fermion
scattering grows quadratically with temperature T, viscosity η
(which is the diffusion constant for momentum) and thermal
diffusivity D (which is the diffusion constant for energy) both
follow T−2 and, as result, κ ∝ T−1. Subsequent theoretical
studies12,13 confirmed this pioneering study and corrected13 the
prefactors. Thermal conductivity14,15 and viscosity16,17 mea-
surements at very low temperatures found the theoretically pre-
dicted temperature dependence for both quantities below
T = 0.1K, deep inside the degenerate regime.

However, the common picture of transport in metallic solids
does not invoke viscosity (Fig. 1). The phase space for collisions
among electronic quasiparticles is also proportional to the square
of temperature. But the presence of a crystal lattice alters
the context. Electron-electron collisions can degrade the flow of
charge and heat by transferring momentum to the underlying
crystal, if there is a finite amount of disorder. We will see below
that if the electronic mean free path is sufficiently long compared
to the sample dimensions, and if a significant portion of collisions
conserve momentum (by avoiding Umklapp processes), then a
finite κT∣0, equivalent to quadratic thermal resistivity
(WT ¼ ðκTÞ�1), caused by momentum-conserving collisions and
evolving hand-in-hand with viscosity becomes relevant.

A fundamental correlation between the electronic thermal
conductivity κe and the electrical conductivity σ is given by the
Wiedemann–Franz (WF) law:

κe
σT

¼ π2

3
k2B
e2

ð1Þ

The left hand of the equation is the (electronic) Lorenz num-
ber, Le, which can be measured experimentally. The right-hand
side is a fundamental constant, called the Sommerfeld value
L0 = 2.44 × 10−8 V2 K−2. The WF law is expected to be valid
when inelastic scattering is absent, i.e., at zero temperature.

Principi and Vignale (PV)3 recently argued that in hydro-
dynamic electron liquids, the WF law is violated because MC
electron–electron (e–e) scattering would degrade thermal current
but not electrical current. As a consequence, by drastically
reducing the Le/L0 ratio, electron hydrodynamics would lead to a
finite-temperature departure from the WF law. However, the
standard transport picture based on MR collisions expects a
similar departure at finite temperature as a consequence of
inelastic small-angle e–e scattering18–22. The two pictures differ in
an important feature: the evolution of the Le/L0 ratio with the
carrier lifetime. In the hydrodynamic picture, the deviation from
the WF law becomes more pronounced with the relative abun-
dance of MC e–e collisions, which can be amplified by reducing
the weight of MR collisions (by enhancing purity or size).

Here, we present a study of heat and charge transport in semi-
metallic antimony (Sb) and find that κ and σ both increase with

Fig. 1 Two routes towards T2 thermal resistivity. T-square thermal resistivity in a Fermi liquid can arise in two distinct pictures of transport. The
momentum-relaxing picture (left) is the one commonly used in metals. Because of the presence of a lattice, Umklapp collisions among electrons can occur.
ki,j and Ei,j respectively refer to the initial momentum and energy of electron j while kf,j and Ef,j correspond to its final momentum and energy. These
collisions decay the momentum current because a unit vector of the reciprocal lattice G is lost during the collision. The momentum-conserving picture
(right) has been applied to the fermionic quasiparticles in 3He. We argue that it becomes relevant to metals, provided that : (i) Umklapp collisions become
rare or impossible (because of the smallness of the Fermi radius) and (ii) the mean free path approaches the sample size.
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sample size. Sb is the most magnetoresistant semi-metal23. The
mean-free-path ℓ0 of its extremely mobile charge carriers depends
on the thickness of the sample at low temperature24. We begin by
verifying the validity of the WF law in the zero-temperature limit
and resolving a clear departure from it at finite temperature. This
arises because of the inequality between the prefactors of the T-
square electrical and thermal resistivities21. In contrast to its
electrical counterpart, the T-square thermal resistivity (which is
equivalent to κ ∝ T−1), can be purely generated by MC scattering
which sets the viscosity of the electronic liquid. We find that the
departure from the WF law is amplified with the increase in the
sample size and the carrier mean free path, in agreement with the
hydrodynamic scenario3. We then quantify κT∣0 and the quad-
ratic lifetime of fermion-fermion collisions, τκT2, for electrons in
Sb and compare it with that of 3He fermions.

Results
The band structure. Figure 2 shows the Fermi surface and the
Brillouin Zone (BZ) of antimony23,25–28. In this compensated
semi-metal, electron pockets are quasi-ellipsoids located at the L-
points of the BZ. The valence band crosses the Fermi level near
the T-points of the Brillouin zone generating a multitude of hole
pockets. The tight-binding picture conceived by Liu and Allen28,
which gives a satisfactory account of experimental data, implies
that these pockets are not six independent ellipsoids scattered
around the T-point26, but a single entity23 centered at the T-point
formed by their interconnection (see Fig. 2c).

One important point is that the pockets are small. The largest
Fermi wave-vector is 0.22 times the reciprocal lattice
parameter23,28. Since in an Umklapp collision between electrons,
the sum of the Fermi wave-vectors should exceed the width of the
BZ, Umklapp events cannot occur when kF < 0.25. The fact that

the FS pockets are too small to allow Umklapp events will play an
important role below.

Electrical and thermal transport measurements. All measure-
ments were carried out using a conventional 4-electrode (two
thermometers, one heater, and a heat sink) setup (further details
are given in the Method section). The Sb crystals are presented in
Table 1. Electrical and heat currents were applied along the
bisectrix direction of all samples. The electrical resistivity, shown
in Fig. 3a, displays a strong size dependence below T = 25K and
saturates to larger values in the two thinner samples, as reported
previously24. As seen in Table 1, the mean free path remains
below the average thickness, but tends to increase with the sample
average thickness.

The thermal conductivity, κ, of the same samples is presented
in Fig. 3b. κ presents a peak whose magnitude and position
correlates with sample size and resistivity. In large samples the
peak is larger in amplitude and occurs at lower temperatures.
Semi-metallic antimony has one electron and one hole for ~600
atoms. The lattice and electronic contributions to the thermal
conductivity are comparable in size. The inset of Fig. 3a shows the
temperature dependence of the Seebeck coefficient in the same
samples. The Seebeck coefficient remains below 5 μV/K, as
reported previously26, because of the cancellation between hole
and electron contributions to the total Seebeck effect. The small
size of the Seebeck response has two important consequences.
First, it implies that the thermal conductivity measured in
absence of charge current is virtually identical to the one
measured in absence of electric field (which is the third Onsager
coefficient29). The second is that the ambipolar contribution to
the thermal transport is negligible and κ= κe+ κph (see the
Supplementary Notes 5 and 6 respectively for a discussion of both
issues).

Fig. 2 Fermi surface and the Brillouin zone of antimony (Sb). a The Fermi surface consists of electron pockets (in green) and hole pockets (in red). All
pockets are located at zone boundaries and have a mirror counterpart due to the inversion symmetry. The Brillouin zone of the A7 crystal structure, nearly
a truncated cuboctahedron, is shown by black solid lines. b Projection to the trigonal plane. c The Fermi surface of holes centered at the T-point. This
structure, dubbed ZONY23, consists of six interconnected pockets (shown in orange).

Table 1 Details of the samples.

Sample Size (mm3) RRR ρ0 (nΩ cm) s (μm) ℓ0 (μm) ρ0s (pΩ m2) A2 (nΩ cm K−2) B2 (nΩ cm K−2)

1 ([0.25 ± 0.05 × 0.5 × 4.1) 260 159 350 17 0.56 0.70 ± 0.03 0.81 ± 0.05
1b (0.2 × 0.5 × 4.6) 250 164 320 16 0.49 0.73 ± 0.04 –
2 (0.4 × 0.4 × 4.1) 430 94.6 400 28 0.38 0.56 ± 0.03 0.74 ± 0.03
3 (1.1 × 1.0 × 10.0) 3000 13.4 1050 197 0.14 0.38 ± 0.03 0.68 ± 0.04
3* (1.1 × 1.0 × 7.0) (cut from 3) 3000 13.4 1050 197 0.14 0.38 ± 0.03 –
4 (1.0 × 5.0 × 10.0) 1700 24.1 2240 110 0.54 0.32 ± 0.04 0.63 ± 0.08
5 (3.0 × 1.0 × 10.0) 3700 11.1 1730 238 0.19 0.33 ± 0.03 –
6 (1.7 × 1.8 × 10.0) 4200 9.8 1800 270 0.18 0.33 ± 0.03 –

Sb crystals used in this study were oriented along the bisectrix crystallographic axis. s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

width ´ thickness
p

represents the average diameter of the conducting cross-section. The residual resistivity ratio
is defined as RRR ¼ ρ300K

ρ0
. The carrier mean free path ℓ0 was calculated from the residual resistivity and the expression for Drude conductivity assuming three spherical hole and three spherical electron

pockets. This is a crude and conservative estimation, because the mean free path of hole-like and electron-like carriers residing in different valleys is likely to differ (See the Supplementary Note 2 for
more details). Also given is the product of ρ0s, a measure of crystalline perfection (Supplementary Note 2). The last two columns give the electrical (A2) and thermal (B2) T2-resistivities prefactors.
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The temperature dependence of the overall Lorenz number
(L = (κρ/T)) divided by L0, is plotted as a function of temperature
in the inset of Fig. 3b. For T < 4K, L/L0 → 1. The Wiedemann-
Franz law is almost recovered below T= 4K in all samples. At
higher temperatures, L displays a non-monotonic and size-
dependent temperature dependence resulting from two different
effects: a downward departure from the WF law in κe and a larger
share of κph in the overall κ.

The application of a magnetic field provides a straightforward
way to separate κe and κph in a semi-metal with very mobile
carriers30. Indeed, under the effect of a magnetic field, the
electronic conductivity drastically collapses (the low-temperature
magnetoresistance in Sb reaches up to 5.106% at B = 1T, as
shown in Supplementary Fig. 1) while the lattice contribution is
left virtually unchanged. This is visible in the field dependence of
κ, shown in Fig. 4a (for sample S4 at T= 0.56K). One can see a
sharp drop in κ(B) below B* ≈ 0.5T and a saturation at higher
fields. The initial drop represents the evaporation of κe due to the
huge magnetoresistance of the system. The saturation represents
the indifference of κph towards the magnetic field. This
interpretation is confirmed by the logarithmic plot in the inset
and is further proven by the study of the low-temperature
thermal conductivity of Sb as a function of temperature under the

effect of several fields presented in Supplementary Fig. 4. Below
B* ≈ 0.1T, L0T/ρ is close to κ, indicating that in this field window,
heat is carried mostly by electrons and the WF law is satisfied.
However, by B* ≈ 1T, L0T/ρ is three orders of magnitude lower
than κ, implying that at this field, heat is mostly carried by
phonons with a vanishing contribution from electrons. The
electronic component of thermal conductivity separated from the
total thermal conductivity, (κe(T) = κ(B = 0)(T) − κ(B = 1T)(T))
is shown in Fig. 4b. One can see that, for all four samples and at
sufficiently low temperature, κe/T becomes constant (and equal to
L0/ρ0). It is the subsequent downward deviation at higher
temperatures that will become the focus of our attention. We
construct the electronic Lorenz ratio Le = κeρ/T and show its
evolution with temperature in Fig. 5a. Below T < 4K, Le ≃ L0 in all
samples, save for S3, the cleanest. With increasing temperature,
Le/L0 dives down and the deviation becomes larger as the samples
become cleaner.

Let us scrutinize separately the temperature dependence of the
electrical and the thermal resistivities. The latter can be expressed
in the familiar units of resistivity (i.e., Ωm), usingWT = L0T/κe as

Fig. 3 Zero-field transport properties. a Electrical resistivity along the
bisectrix direction, ρ, plotted as a function of temperature for the various
sizes of Sb samples presented in Table 1. Inset shows the zero-field
thermopower Sxx as a function of the temperature of the same samples.
b Temperature dependence of the thermal conductivity, κ, of the
aforementioned Sb samples. Inset shows the Lorenz number L plotted as
L/L0, where L0 is the Sommerfeld number, as a function of temperature.
L/L0 = 1 corresponds to the recovery of the Wiedemann–Franz law.

Fig. 4 Using a magnetic field to extract electronic and phononic
components of thermal conductivity. a Magnetic field dependence of the
thermal conductivity of sample S4 at T= 0.56K. The averaged field-
independent fraction of κ, associated with the phonon contribution to κ is
shown as κph. The inset shows a comparison of κ and κWF ¼ TL0

ρðBÞ as a
function of the magnetic field. For B > 0.5T, the electronic thermal
conductivity becomes negligible in regard of the phonon contribution.
b Temperature dependence of the electronic thermal conductivity
κe = κ − κph plotted as κe/T. Horizontal lines representing L0/ρ0 for the
various samples are featured in the graph.
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a shorthand. Figure 5b shows ρ and WT as a function of T2 for
the four different samples. In the low-temperature limit, an
asymptotic T2 behavior is visible in all samples and the two lines
corresponding to ρ and WT have identical y-axis intercepts, thus
confirming the recovery of the WF Law in the zero-temperature
limit. In every case, the slope of WT(T2) is larger than that of ρ
(T2), indicating that the prefactor of the thermal-T-square
resistivity (dubbed B2) is larger than the prefactor of the
electrical-T-square resistivity (dubbed A2). This behavior,
observed for the first time in Sb, was previously reported in a
handful of metals, namely W19, WP221, UPt331, and CeRhIn520.

Discussion
T-square resistivity arises due to e–e collisions. In the
momentum-relaxing picture, the common explanation for the
experimentally observed B2 > A2 inequality is the under-
representation of small-angle scattering in the electrical chan-
nel, which damps the electric prefactor A2, but not its thermal
counterpart B218–22. This picture cannot explain that, as seen in
Fig. 5b, the two slopes are further apart in the cleaner samples.
The evolution of the two prefactors with sample dimensions is
presented in Fig. 5c. The figure also includes previous data on the
slope of electrical T2-resistivity23,32,33. One can see the emergence
of a consistent picture: the electrical (A2) prefactor displays a
significant size dependence and the A2/B2 ratio substantially
decreases with the increase in sample size and electronic mean
free path.

Because of momentum conservation, e−e collisions cannot
decay the momentum flow by themselves. Such collisions can
relax momentum through two mechanisms known as Umklapp
and interband (or Baber) scattering. There are two known cases
of T-square resistivity in absence of either mechanisms34,35.

The smallness of the Fermi surface in Sb excludes the Umklapp
mechanism. However, the interband mechanism is not excluded.
It can generate both a T-square and a A2/B2 ratio lower than
unity22. Li and Maslov22 have argued that the ratio of the two
prefactors (and therefore the deviation from the WF law) in a
compensated semi-metal like Sb is tuned by two material-
dependent parameters: (i) the screening length and (ii) the rela-
tive weight of interband and intraband scattering. In their picture,
increasing the screening length would enhance B2 and leave A2

unchanged. Enhancing interband scattering would also reduce the
Lorenz ratio. Given that neither of these two is expected to change
with the crystal size or imperfection, the evolution seen in Fig. 5c
cannot be explained along either of these two lines.

In contrast, the hydrodynamic picture provides a straightfor-
ward account of our observation. The Principi and Vignale sce-
nario3 predicts that the deviation from the WF law should
become more pronounced with increasing carrier lifetime (or
equivalently mean free path ℓ0): Le/L0 = 1/(1 + ℓ0/ℓee). Such a
picture provides a reasonable account of our observation, as seen
in Fig. 6a, which shows the variation of Le/L0 at different tem-
peratures with carrier mean free path. In this picture, the evo-
lution of the Lorenz ratio with ℓ0 would imply a mean free path
for MC e−e scattering, ℓee, which ranges from 0.15 mm at
T = 10K to 1.1 mm at T = 3.5K.

These numbers are to be compared with ℓee extracted from the
magnitude of (B2,A2), assuming that MC e − e collisions generate
the difference between these two quantities and the Drude for-
mula. As seen in Fig. 6b, while the two numbers closely track each
other between T = 3K and T = 10K, a difference is found. ℓee
extracted from the isotropic Drude formula is 1.6 times smaller
than the one yielded by the isotropic Principi-Vignale formula.
Now, the electronic structure of antimony is strongly anisotropic
with a tenfold difference between the longest and the shortest
Fermi wave-vectors along different orientations28. In such a
context, one expects an anisotropic ℓee, with different values along
different orientations. Moreover, intervalley scattering between
carriers remaining each in their only valley and scattering
between electrons and holes should also have characteristic length
scales. Therefore, the present discrepancy is not surprising and
indicates that at this stage, only the order of magnitude of the
experimental observation is accounted for by a theory conceived
for isotropic systems3. Note the macroscopic ( ~ mm) magnitude
of ℓee near T ~ 4K which reflects the fact that electrons are in the
ultra-degenerate regime (T/TF ~ 4 × 10−3) and therefore, the
distance they travel to exchange momentum with another elec-
tron is almost six orders of magnitude longer than the distance
between two electrons.

An account of boundary scattering is also missing. The
decrease in ρ0 with sample size in elemental metals have been
widely documented and analyzed by pondering the relative
weight of specular and diffusive scattering36. This can also weigh

Fig. 5 The WF law, the T-square resistivities, and their evolution with disorder. a Electronic fraction of the Lorenz number Le = κeρ/T plotted as Le/L0,
where L0 is the Sommerfeld number, as a function of temperature. Le/L0 = 1 corresponds to the recovery of the Wiedemann-Franz law. b Thermal (WT)
and electrical (ρ) resistivities plotted as functions of T2 for the four sizes of Sb samples.WT is featured as symbols while ρ is shown as a solid line. All four
graphs share a common x-axis and y-axis span. c Evolution of the electrical and thermal T2-resistivities prefactors with sample size in Sb. Data points
from23,32,33 are featured. Error-bars along the x-axis are defined by the uncertainty on the geometry of the samples while they are defined along the y-axis
by the standard deviation of the T2-fit to the resistivity data.
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on the magnitude of A2
37. However, a quantitative account of the

experimental data, by employing Soffer’s theory38, remains
unsuccessful24,37,39. The role of surface roughness acquires ori-
ginal features in the hydrodynamic regime40, which are yet to be
explored by experiments on samples with mirror/matt surface
dichotomy.

Having shown that the experimentally-resolved T2 resistivity
is (at least) partially caused by thermal amplification of
momentum exchange between fermionic quasiparticles, we are in
a position to quantify κT∣0 in antimony and compare it with the
case of 3He.

Its lower boundary is L0/(A2−B2) and the upper boundary L0/
B2. This yields 3900 < κT∣0 < 7900 in units of Wm−1. This is six
orders of magnitude larger than in normal liquid 3He15 (see
Table 2). Such a difference is not surprising since: (i) κT∣0 of a

Fermi liquid is expected to scale with the cube of the Fermi
momentum (pF) and the square of the Fermi velocity (vF)41; and
(ii) 3He is a strongly correlated Fermi liquid while Sb is not. More
specifically κT∣0 can be written in terms of the Fermi wave-vector
(kF) and the Fermi energy (EF):

κTj0 ¼
1
B0

E2
FkF
_

ð2Þ

This equation is identical to equation 17 in ref. 41. The
dimensionless parameter B0 (See Supplementary Note 7 for more
details) quantifies the cross-section of fermion-fermion collisions.

In the case of 3He, measuring the temperature dependence of
viscosity16,17 leads to ηT2

0 and measuring the temperature
dependence of thermal conductivity15 leads to κT∣0. The rate of
fermion-fermion collisions obtained with these two distinct
experimental techniques are almost identical : τηT2 ≈ τκT2 17.
Calkoen and van Weert41 have shown that the agreement
between the magnitude of κT∣0, the Landau parameters and the
specific heat42 is of the order of percent.

3He is a dense strongly-interacting quantum fluid, which can
be solidified upon a one-third enhancement in density. As a
consequence, B0 ≫ 1. In contrast, the electronic fluid in antimony
is a dilute gas of weakly interacting fermions and B0 is two orders
of magnitude lower, as one can see in Table 2. The large differ-
ence in B0 reflects the difference in collision cross-section caused
by the difference in density of the two fluids.

The T2 fermion-fermion scattering rate can be extracted and
τκT2 can be compared with the case of 3He15–17,43 (See Table 2).
As expected, it is many orders of magnitude smaller in Sb than in
its much denser counterpart. A similar quantification is yet to be
done in strongly-correlated electronic fluids.

In summary, we found that the ratio of the thermal-to-
electrical T-square resistivity evolves steadily with the elastic
mean free path of carriers in bulk antimony. The momentum-
conserving transport picture provides a compelling explanation
for this observation. In this approach, thermal resistivity is in the
driver’s seat and generates a finite electrical resistivity which
grows in size as the sample becomes dirtier.

This a hydrodynamic feature, since the same fermion–fermion
collisions, which set momentum diffusivity (that is viscosity) set
energy diffusivity (the ratio of thermal conductivity to specific
heat). Note that this is a feature specific to quantum liquids, in
contrast to the upward departure from the WF law reported in
graphene when carriers are non-degenerate7.

The observation of this feature in Sb was made possible for a
combination of properties. (i) The mean free path of carriers
was long enough to approach the sample dimensions; (ii) The
Normal collisions outweigh Umklapp collisions because the
Fermi surface radii of all pockets are less than one-fourth of the
width of the Brillouin zone. Finally, at the temperature of
investigation, resistive scattering by phonons is marginal. All
these conditions can be satisfied in low-density semimetals such
as Bi44 or WP29,21. In contrast, in a high-density metal such as
PdCoO2

6, such a feature is hard to detect. Not only, due to the
large Fermi energy, the T-square resistivity is small and unde-
tectable45, but also due to the large Fermi radius46,
electron–electron collisions are expected to be mostly of
Umklapp type.

Beyond weakly correlated semi-metals, our results point to a
novel research horizon in the field of strongly correlated elec-
trons. One needs quasi-ballistic single crystals (which can be
provided thanks to Focused-Ion-Beam technique) of low-density
correlated metals. URu2Si247 and PrFe4P1248, known to be low-
density strongly correlated Fermi liquids, appear as immediate
candidates but other systems may qualify. The electron-electron

Fig. 6 The evolution of the Wiedemann-Franz correlation with the ratio of
momentum-relaxing and momentum conserving mean free paths. a The
electronic Lorenz number Le at T = 10K, normalized by the Sommerfeld
value L0, plotted as a function of the residual mean free path ℓ0 at various
temperatures. The solid lines correspond to a fit given by the equation
L=L0 ¼ 1=ð1þ ‘0=‘eeÞ proposed by Principi and Vignale (PV) 3. ℓ0 refers to
the zero-temperature Drude mean free path while ℓee(T) is the typical
distance traveled by a charge carrier in-between two momentum-
conserving collisions. Error bars are defined from the experimental
uncertainty on Le featured in Fig. 5a. b Comparison of lee determined by the
fit to the aforementioned PV formula and what is yielded by assuming that
the difference between the two T-square resistivities represents the
fraction of collisions which conserve momentum. In that case,
‘ee ¼ ‘0ρ0

ðB2�A2ÞT2.
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collision cross-section, which can be quantified by a study similar
to ours should be much larger than what is found here for a
weakly correlated system such as Sb.

Methods
Samples. Sb crystals were commercially obtained through MaTeck GmbH. Their
dimensions are given in Table 1 of the main text. Samples S1, S1b, and S2 were cut
from a ingot of Sb using a wire saw. Samples S3, S4, S5, and S6 were prepared by
MaTeck to the aforementioned dimensions: sample S4 was cut while samples S3,
S5, and S6 were etched to these dimensions. Sample S3 was measured before and
after a cut of a few mm perpendicular to the bisectrix direction. The long axis of all
samples were oriented along the bisectrix direction.

Measurements. The thermal conductivity measurements were performed with a
home-built one-heater-two-thermometers set-up. Various thermometers (Cernox
chips 1010 and 1030 as well as RuO2) were used in this study. Our setup was
designed to allow the measurement of both the thermal conductivity, κ and the
electrical resistivity, ρ with the same electrodes.

The thermometers were either directly glued to the samples with Dupont
4922N silver paste or contacts were made using 25 μm-diameter silver wires
connected to the samples via silver paste (Dupont 4922N). Contact resistance
was inferior to 1Ω. The thermometers were thermally isolated from the sample
holder by manganin wires with a thermal conductance several orders of
magnitude lower than that of the Sb samples and silver wires. The samples were
connected to a heat sink (made of copper) with Dupont 4922N silver paste on
one side and to a RuO2 chip resistor serving as a heater on the other side. Both
heat and electrical currents were applied along the bisectrix direction. The heat
current resulted from an applied electrical currentI from a DC current source
(Keithley 6220) to the RuO2 heater. The heating power was determined by I × V
where V is the electric voltage measured across the heater by a digital
multimeter (Keithley 2000). The thermal conductivity was checked to be
independent of the applied thermal gradient by changing ΔT/T in the range of
10%. Special attention was given not to exceed ΔT/T∣max = 10%.

The thermometers were calibrated in-situ during each experiment and showed
no evolution with thermal cycling. Special attention was given to suppress any
remanent field applied to the sample and self-heating effects.

The accuracy of our home-built setup was checked by the recovery of the
Wiedemann–Franz law in an Ag wire at B= 0T and B= 10T through
measurements of the thermal conductivity and electrical resistivity. At
both magnetic fields, the WF was recovered at low temperatures with an
accuracy of 1%21.

Data availability
All data supporting the findings of this study are available from the corresponding
authors upon request.
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