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DIGIT FREQUENCIES OF BETA-EXPANSIONS
YAO-QIANG LI

ABSTRACT. Let 8 > 1be a non-integer. First we show that Lebesgue almost every number
has a 3-expansion of a given frequency if and only if Lebesgue almost every number has
infinitely many -expansions of the same given frequency. Then we deduce that Lebesgue
almost every number has infinitely many balanced (-expansions, where an infinite se-
quence on the finite alphabet {0, 1,--- ,m} is called balanced if the frequency of the digit
k is equal to the frequency of the digit m — k for all k € {0, 1, --- ,m}. Finally we consider

variable frequency and prove that for every pseudo-golden ratio 5 € (1,2), there exists a

constant ¢ = ¢(j3) > 0 such that for any p € [2 — ¢, 1 + ¢], Lebesgue almost every = has

infinitely many (-expansions with frequency of zeros equal to p.

1. INTRODUCTION

To represent real numbers, the most common way is to use expansions in integer bases,
especially in base 2 or 10. As a natural generalization, expansions in non-integer bases
were introduced by Rényi [26] in 1957, and then attracted a lot of attention until now (see
for examples [1, 2, 8, 11, 17, 18, 23, 24, 25, 27, 28]). They are known as beta-expansions
nowadays.

Let N = {1,2,3,- -} be the set of positive integers and R be the set of real numbers.
For $ > 1, we define the alphabet by

where [ 3] denotes the smallest integer no less than 3, and similarly we use | 5] to denote
the greatest integer no larger than § throughout this paper. Let x € R. A sequence
(€:)i=1 € A} is called a S-expansion of x if

00 €
r = —_—.
i=1 Bl
For 8 > 1, let I3 be the interval [0, (?__11], and let I be the interior of 15 (i.e. I§ = (0, (21_—11 ).

It is straightforward to check that = has a S-expansion if and only if # € I3. An interesting
phenomenon is that an  may have many $-expansions. For examples, [14, Theorem 3]

shows that if 5 € (1, 1+2\/5), every r € I§ has a continuum of different $-expansions, and
[29, Theorem 1] shows that if § € (1, 2), Lebesgue almost every = € I3 has a continuum of
different S-expansions. For more on the cardinality of S-expansions, we refer the reader
to [7, 15, 19].

In this paper we focus on the digit frequencies of S-expansions, which is a classical
research topic. For examples, Borel’s normal number theorem [9] says that for any integer
f > 1, Lebesgue almost every z € [0, 1] has a f-expansion in which every finite word on
Ajg with length k occurs with frequency 37%; Eggleston [13] proved that for each p € [0, 1],

the Hausdorff dimension (see [16] for definition) of the set, consisting of those = € [0, 1]
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having a binary expansion with frequency of zeros equal to p, is equal to (—plogp — (1 —
p)log(l — p))/(log2). Let By ~ 1.80194 be the unique zero in (1, 2] of the polynomial
x3 — 22 — 22 4 1. Recently, on the one hand, Baker and Kong [6] proved that if 5 € (1, 8],
then every = € Ij has a simply normal 3-expansion (i.e., the frequency of each digit is
the same), and on the other hand, Jordan, Shmerkin and Solomyak [20] proved that if
B € (Br, 2], then there exists x € I§ which does not have any simply normal 3-expansions.
In the recent paper [5], Baker studied the set of frequencies of 3-expansions for a general
B > 1. (See also [10] for the study of the set of frequencies of greedy (-expansions.)

Let m € N. For any sequence (¢;)i>1 € {0,1,---,m}", we define the upper-frequency,
lower-frequency and frequency of the digit k by

Hl1<i<n: gz_k}

Freq,(¢;) := lim

n—o0 n
1<i<n:g=
Freq (¢;) := lim lsisnie=k)
qk n—00 n

and Hl<i< k)
. <:1<n:g =
Freq, (&) := nh_)ngo "
(assuming the limit exists) respectively, where § denotes the cardinality. If p = (py, - - - ., Dyn),

p=(py---p )€ 0,1]™"" satisfy
Freq,(¢;) =P, and Freqk(ei) =p, forall k € {0,1,--- ,m},

we say that (¢;);>1 is of frequency (p, p).
The following theorem is the first main result in this paper.

Theorem 1.1. Forall 3 € (1,+00) \ Nand p, p € [0,1]'1, Lebesgue almost every x € I3 has a
B-expansion of frequency (p,p) if and only if Lebesgue almost every x € I has infinitely many
[B-expansions of frequency (p, p).

As the second main result, the next theorem focuses on a special kind of frequency. Let

m € N. A sequence (g;);>1 € {0,1,--- ,m}" is called balanced if Freqy (s;) =Freq,,_(e;) for
all k € {0,1,--- ,m}.

Theorem 1.2. For all § € (1,400) \ N, Lebesgue almost every x € Iz has infinitely many
balanced (-expansions.

In the following, we consider variable frequency. Recently, Baker proved in [4] that

for any § € (1,14/5), there exists ¢ = ¢(3) > 0 such that for any p € [ — ¢, 1 + ¢] and

x € Ig, there exists a f-expansion of x with frequency of zeros equal to p. This result is

sharp, since for any /5 € [H\[ 2), there exists an = € I} such that for any f-expansion of

x its frequency of zeros exists and is equal to either O or 3 (see the statements between
Theorem 1.1 and Theorem 1.2 in [6]). It is natural to ask for which § € [H\[ 2), the result
can be true for almost every z € I3. We give a class of such 3 in Theorem 1.3 as the third
main result in this paper. They are the pseudo-golden ratios, i.e., the 8 € (1,2) such that
pm—pmt—...— 3 —1=0for some integer m > 2. Note that the smallest pseudo-golden

ratio is the golden ratio 1+*f

Theorem 1.3. Let § € (1, 2) such that g™ — g™~ — ... — B — 1 = 0 for some integer m > 2
and let ¢ = (m_l)@_ﬁ)) (> 0). Then for any p € [5 — ¢, 1 + c|, Lebesgue almost every x € Ig has

2(mpB+p—2m
infinitely many [-expansions with frequency of zeros equal to p.
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We give some notation and preliminaries in the next section, prove the main results in
Section 3 and end this paper with further questions in the last section.

2. NOTATION AND PRELIMINARIES

Let 5 > 1. We define the maps T}, (z) := fx — k forz € Rand k € NU{0}. Given z € I3,
let

Ys(x) = {(51')1'21 €A i% = :L‘}

and
QB(ZE) = {(ai)izl c {Tk, k e .Aﬁ}N : (an O---0 a1)<l’) € Ilg foralln € N}

The following lemma given by Baker is a dynamical interpretation of 3-expansions.

Lemma 2.1 ([3, 4]). For any x € I, we have ¥5(x) = §Q3(x). Moreover, the map which sends
(€i)i>1 to (T%,)i>1 is a bijection between ¥.5(x) and Qg(x).

We need the following concepts and the well known Birkhoff’s Ergodic Theorem in
the proof of our main results.

Definition 2.2 (Absolute continuity and equivalence). Let 1 and v be measures on a mea-
surable space (X, F). We say that y is absolutely continuous with respect to v and denote
itby p < vif, forany A € F, v(A) = 0 implies p(A) = 0. Moreover, if 4 < v and v < p
we say that 1 and v are equivalent and denote this property by p ~ v.

Theorem 2.3 ([30] Birkhoff’s Ergodic Theorem). Let (X, F, u,T) be a measure-preserving
dynamical system where the probability measure y is ergodic with respect to T. Then for any
real-valued integrable function f : X — R, we have

n—1
_ k —
Jim —~ ;f(T r) /fdu

for p-a.e. (almost every) x € X.

3. PROOF OF THE MAIN RESULTS

Proof of Theorem 1.1. The “if” part is obvious. We only need to prove the “only if” part.
Let £ be the Lebesgue measure. Suppose that £-a.e. = € I3 has a S-expansion of fre-

quency (p, p). Let

U = {x € Iz :  has a unique 5-expansion}
and -
N, é)’g = {m € I : x has no -expansions of frequency (p, B>}

On the one hand, it is well known that £(Uj) = 0 (see for examples [12, 21]). On the other
hand, by condition we know L(N, g P) = 0. Let

U= (ug UN5’9> U G U 75t oT;(uﬁ UN?).

n=1ley, ,en€Ag

Then L(¥) = 0. Let z € Iz \ V. It suffices to prove that = has infinitely many different
-expansions of frequency (p, p).
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Let (¢;);>1 be a B-expansions of z. Since ¢ W implies © ¢ Z/{g, x has another B-
expansion (@”)izl. There exists n; € N such that wgl) - 'wflll)_l = €1 Epy—1 and wll)
En,- By

o

_ n1+1
Tw7(L11) o Tgnl_l ©---0 Talx = ngl) -ofT (1)[[ = E

we know that (w,, )+Z)z>1 is a - expansmn of T W © 1., 10---oT,x. Since v ¢ ¥implies

B.p (1)
ngl) oT,, 100 Tgla: ¢ N5~ W o 1., 100 Tgla: has a B expansion (g, ;)i>1 of

frequency (p,p). Let 51 . eﬁ}f 15531) = &1 Ep, - Y. Then ( £; )Z>1 is a f-expansion of

v of frequency (p, p) with ell) £ e, , which 1mp11es that (¢;);>1 and (551))1-21 are different.
Note that (£,,,+:)i>1 is a f-expansion of 1., o---oT;x. Since x ¢ U implies T., o---o

T..x gZ uﬁ, T. 2)

- o T,z has another -expansion (w,, " ;
2 2
that merl w,(ml1 = Epy41° Eny—1 and w?) # Eny- By

)i>1. There exists ny > n;y such

ni

n2+z
Tw%)OTanz—lo"'qux:Tw%)O oT @ o(T, o -oT,x)= E

n1+1

n2)+z>l>l isa ﬁ-expansion of T’ W © 1.,,-10---oT,x. Since x ¢ ¥implies

we know that (w

D,P (2)
Tw% oT., —10---oT. x ¢ Ny, @ © T, —10-0 Tglx has a -expansion (e, ;)i>1 of

frequency (p,p). Let 5§ ). 5(2) 155122) = el Epy Y. Then (e; ))121 is a f-expansion of

x of frequency (p, p) with 5n1 =&, and 8;2 # €n,, which implies that (&;);>1, (5(1)

1

)izl and

7

(5(2))@1 are all different.

Generally, suppose that for some j € N we have already constructed (551))121, (82(2))1'21,

-, (5§J ))121, which are all S-expansions of = of frequency (p, p) such that

(1)
5”1 7é 8711’
(2) (2)
8711 - 57117 671 ?é 87127

(3) _ (3 _
En ni €n1,€n2 gnzu €n3 # 5“37

(J) _ (4) _ () ()
\ En1 = 5n175n2 Engs """ &N # En;_1)Eny # En,-

Note that (5nj+i)i21 isa f-expansion of T;, o---oT: x. Sincex ¢ Vimplies T, o---oT. x ¢

. +1 .

U, T. o---oT, xhasanother f-expansion wY Tt ;>1. There exists n;,; > n; such that

Br Len, 1 nj+i /)i Jt+ J

(3+1) (J+1) (5+1)
wnj+1 ’ w”]+1 1= Enyj+1" " Enjya—1 and Wrjiq 7& Enjyrs By

oo (J""l)
wy, +1+2
Lol ,ao-olw=Tgmyo---oT goo(l, ool z)= g —
i+l mj+1 Wnjt1 7

we know that ( 11—1)l>1 is a B-expansion of T’ (1) o T
W1

qjo0---0T. x. Since z ¢ ¥

+1

implies Twwl oT,. 1070 T,z ¢ ./\/’p’B, T Wiy oT., 1001, rhasa -expansion
i1
(G+1) = J+1) (J+1) (J+1) o (G+1)
(€. 4:)i>1 of frequency (p,p). Let e S 1Enj = €17 Enyy Wiy, . Then
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()5, is a S-expansion of z of frequency (p, p) with etV = g, e = En;
and sgjﬂ) + Enjirr which implies that (&;);>1, (551) i>1, (5§]+1))i21 are all different.

It follows from repeating the above process that x has infinitely many different /-
expansions of frequency (p, p). O

Theorem 1.2 follows immediately from Theorem 1.1 and the following lemma.
Lemma 3.1. Forall 3 > 1, Lebesgue almost every x € Ig has a balanced [3-expansion.

Proof. The conclusion follows from the well known Borel’s Normal Number Theorem [9]
if # € N and follows from [6, Theorem 4.1] if 5 € (1,2). Thus we only need to consider
B > 2 with § ¢ Nin the following. Let

_ %(;@1 B WJB_ 1) and 21 = % +% forallk € {1,2,---,|B] —1}.

TO({L‘) = ﬁl’ forz € [0, 21),
T(z) = { Te(z) = Br — k forx € [z, k1) and k € {1,2,--- | |B] — 1},
Tip)(x) = Bz — |B] forz € [z5, 124,
Let
20 2(ﬁ|"ﬁ_J1)—— and Zﬂﬂ Z—Zo+1 2(5\'6_J1)+§
Then T1(21) = Ta(z2) = - = T|5)(218)) = 20 and Tp(z1) = Ti(22) = -+ = Tigj-1(218)) =

<181
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20 +

FIGURE 1. The graph of T for some /5 € (4,5).

We consider the restriction T|[ZO,Zr s (20, 2181) — [20,2781). By Theorem 5.2 in [31],
there exists a T'|(;, ., -invariant ergodic Borel probability measure 1 on [z, 25)) equiv-
alent to the Lebesgue measure £. For any = € [z, 2151) which is not a preimage of a
discontinuity point of 7|, . ,), by symmetry, we know that for any k € {0,1,---, 3]}
andi € {0,1,2,---},

T'(0) € (st 2uer) (1255 — 1) € (ot 1)

For all £ € {0,1,---,[f]}, it follows from Birkhoff’s Ergodic Theorem that for L-a.e.
x € [20, 2187),

n—1

21p1 1 .
1((zh 2041)) = / Loy i) A1t = nh_{gO n Z 1z 2001) <T (x)) (3.1)
0 1=0
n—1
i L8]
,}E{}onzﬂ (218)-k>2181 - k)(T (5_ 1 :c)) (3.2)

=0

and for L-a.e. y € [z, Zf/ﬂ)r

28 1
p((218) k> 2181-1)) :/ La ) —ozran—s) JE& n Zl(zw ko211 k) (T( )>
20
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which implies that for L-a.e. (377 LBJ —x) € (20, 2[8]),

#l(ipy-k 2161 = fm Zﬂ(zw ko Z[3]—k) (Tl(ﬂWJl ))

n—oo 1

So this is also true for £-a.e x € (2o, 2151). Recall (3.2), we get

(20, 201)) = (2151 o 21 #)) for k€ {0,1,++, 18}, (33)
For every x € I3, define a sequence (g;());>1 € {0,1,---, 3]} by

0 T 'z el0,2),
ko if T 'z € [z, 2p41) forsome k € {1,2,--- | 8] — 1},

18] i Tz € [2)9), 225].
Then forall k € {0,1,---,[3]},i € {0,1,2,--- } and = € [20, 247),

gi(z) ==

]l[zkﬁzkﬂ)(Tix) =1& T € [z, 2111) © i) = k.
By (3.1), we know that for all k € {0,1,---, |8]} and L-a.e. x € [z, 2157),

Freq, (e;(x)) = lim 1 <i<n:gx) =k}

n—oo n

= p((2k; 2h41))-
It follows from (3.3) that for all k € {0,1,---, | 5]} and L-a.e. x € |20, 215),
Freq, (¢i(z)) = Freq 5, (&i()). (3.4)

(1) For any z € I, we prove that (¢;(z));>1 is a f-expansion of z, i.e., Y .-, E"ﬁ(f) = 7.
In fact, by Lemma 2.1, it suffices to show T}, 0 - - o T;, (ny(x) € Ig for alln € N.
We only need to prove 7., () o - - - o T, () (x) = T"(x) by induction as follows. Let
n=1.

@ Ifx €]0,2), thene(x) =0and T, x)(x) To(z) = T(x).
@ Ifx € [z, 2341) forsome k € {1,2,--- ,[B] —1}, thene; () = kand T}, () (2) =
Ty(z) = T(x).
® If a € [25), 225, then £1(z) = | B] and Tt w) () = Ty (z) = T(x).
Assumes that for some n € Nwe have T, ;) o -+ o T, () () = T"(x).
O IfT™(x) € [0, 21), then €,41(z) = 0 and
Teist@) © Tenay © - 0 Ty (2) = To o T () = T (x),

@ U T"(x) € [z, 2k+1) for some k € {1,2,--- | |f] — 1}, then €,,41(x) = k and
Te o Tsn(z) 0:+.++0 T€1(I)("E) = Tk; (0] Tn(flf) = Tn—H(I).

n+1(x)

® If T"(x) € [25), 44, then £,.1(x) = | 8] and
Tg (@) Ten(x) 0.+-0 TE1(CC) (:E) = T\ﬁj o Tn(]}) = Tn+1(l‘).

n+1()

Combining (1) and (3.4), we know that £-a.e. = € [z, 23] has a balanced /-expansion.
Let

N := {z € I3 : x has no balanced f-expansions}.

We have already proved L(N N [z, z75)]) = 0. To end the proof of this lemma, we need to
show L(N) = 0. In fact, it suffices to prove L(N N (0, z)) = LN N (z[g7, 3 181 o)) = 0.
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i) Prove L(N N (0, z)) = 0.
By L(N N [z, 215]) = 0, we know that forany n € N, L(T;" (N N [20, 215])) = 0. It
suffices to prove N N (0, z0) C U,—, Ty " (N N [20, 2141])-
(By contradiction) Let x € N N (0, 2o) and assume = ¢ (J,~ Ty (N N [20, z51])- By
z € (0,z), one can verify that there exists k¥ > 1 such that Tfz € [z, z4)]. Since
x & Ty "(N N [20, 215]), we must have Tz ¢ N. This means that there exists a
balanced sequence (w;);>1 € Aj such that Tz = Y %, and then

_1 51[
0 o .y
==+ = + = e
5 52 ﬁk Z BkJr’L ; 5
where ey = -+ = ¢, := 0 and €;4; := w; for i > 1. It follows that (g;);>1 is a

balanced -expansion of z, which contradicts z € N.
ii) The fact L(N N (274, 3 181 -)) = 0 follows in a similar way as i) by applying T}z
instead of Tj,.

U
Proof of Theorem 1.3. Let 8 € (1,2) such that g™ — g™t — ... — § — 1 = 0 for some integer
m > 2and letc = % We have ¢ > O0sincem—1 > 0,2—3 > 0and mg+5—2m > 0,
which is a consequence of
m—1 m 2
m+1<2m<2(" " +---+5+1)=2p :m’
where the equalities follows from
m __ om—1 . _ ﬁm -1
pr=p"" 4+ 8+1 o1
For any z € [0, ﬁ — 1], define
B—1)(1—(m—1
fay o (B D0 (m 1))
mpB+ B —2m
Then
B—1 1 1 mB+1—2m 1
i ————— - 1 = —_— = = =
O =5 —am 2 ¢ ™ S - V=055 am 3 ¢
ie., [f(z57 —1), f(0)] =[5 — ¢, 5 +]. Since f is continuous, forany p € [5 — ¢, 3 + ], there
exists b € [0, 517 — 1] such that f(b) = p. We only consider b € [0, 577 — 1) in the following,

since the proof for the case b € (0 — 1] is similar. Define 7" : I3 — I3 by

_L
» B—1

To(z) = Sz for z € [0, b—l),
T(w):= { Ti(z) = Bxr —1 forx € [%£
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FIGURE 2. The graph of T'.

Noting that Ty(5*) = b+ 1 and Ty(*5!) = b, by Section 3 in [22], there exists a T-
invariant ergodic measure yu < £ (Lebesgue measure) on I such that for L-a.e. x € I,

d Lig1n =1 Lo 7n(
dg( ) . Z 20,7 (o+D)]\L) (b+1 Z 0,1 b)] (3.5)
n=0 n=0

o 1 . . . . o1
and v := 1) M is a T-invariant ergodic probability measure on /3.

(1) For1 <n <m —1, prove T™(b) = "b < b;%l <pH+pr—prt—. 1=
T™(b+1). Note that f™ = ﬁm—l + 4+ B+1=7
@Byb<ﬂ1 1_6’” - ﬁnﬂ 1,wegetﬁ”b<”§1

@By g+ +gm <5+ +gs=1wegetf'+- -+ [+1< 5" and then

B+ +14b < 6”“—}—6”“() which implies bgl < Bro+pr—prt— - —p—1.

(2) For n > m, prove T"(b) = T™(b+ 1).
It suffices to prove 7™ (b) = T™(b+ 1). In fact, this follows from (1) and b =

Combining (3.5) and (2), we know that for L-a.e. x € I3,

m—1

Lio,rn 1)) () — Lo, (b)) ()
’ ) (3.6)
=> - o

n=0
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Thus
b1, 5 dp
N O
mz: min{7"(b+ 1), b+1} min{7"(b), b%l}
N n=0 6”
by (1) m—1 % _ ﬁnb
n=0 ﬁn
= 1—-(m-=1)

where the last equality follows from % +--+ ﬁim = 1. By

sy = [T B

LT b+ 1) — T
. ( 6)" (b)

n=0

m—1 1
by 1 n_pgnl g1
y () 1+Zﬁ f = B
n=1

m—1 1 1
= 1+ l— = — i —
205
m—1 m-—2 1
— m — — —_— e e — ,
ERCE g
we get
1 m_ m—-1 m-2 1
Z (I - _ ————
3= T g
It follows from the subtraction of the above two equalities that ;(1s) = mﬁ;# There-
fore v = mﬁfﬁ-uand

b1, (B0 = (m—1)b)
g mp + 5 —2m

Since T': Ig — I3 is ergodic with respect to v, it follows from Birkhoff’s Ergodic Theorem
that for v-a.e. x € Iz we have

v[0, = [(b) =p.

-1 1
lim — Z 1 b+1 Tk / b+1 = V[O; b%) =D,

which implies that for v-a.e. x € [b,b+ 1],

n—1

Jim 3y ) =
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By (3.6) and (1), we know that for L-a.e. x € [b,b+ 1], 4 o
on [b, b+ 1], and then for L-a.e. x € [b, b+1] we have

nh_)rxolo - Z IL[O b+1)T

For every = € I3, define a sequence (ai( ))is1 € {0,1}" by

0 if 71 clo b+1
gi(z) == { ; . [i )L] foralli > 1.
A1

(z) > 1. This implies £ < p(~ v)

1 if Tl e [P
Then by
1 The) =16 T e 0,21 0
[o,%l)( r)=1T"¢€| 7T)@€k+1( z) =0,
we know that for L-a.e. z € [b,0+ 1],
<i1<n:g =
i HLSisnia@ =0k Freq, (&:(x)) = p. (3.7)

n—oo n
By the same way as in the proof of Lemma 3.1, we know that for every =z € Iz, the
(ei(z))i>1 defined above is a f-expansion of x, and Lebesgue almost every = € I3 has a
p-expansion with frequency of zeros equal to p. Then we finish the proof by applying
Theorem 1.1. O

4. FURTHER QUESTIONS
First we wonder whether Theorem 1.1 can be generalized.

Question 4.1. Let 8 € (1,400)\Nand 7, p € [0, 1]/?]. Is it true that Lebesgue almost every
z € I has a f-expansion of frequency (7, p) if and only if Lebesgue almost every z € I
has a continuum of 3-expansions of frequency (7, p)?

If a positive answer is given to this question, by Theorem 1.1 and 1.2, there is also a
positive answer to the following question.

Question 4.2. Let § € (2,400) \ N. Is it true that Lebesgue almost every = € I3 has a
continuum of balanced -expansions?

Even if a negative answer is given to Question 4.1, there may be a positive answer to
Question 4.2. An intuitive reason is that, when 5 > 2, we have §43 > 3 and balanced
p-expansions are much more flexible than simply normal 5-expansions.

The last question we want to ask is on the variability of the frequency related to The-
orem 1.3. Let § > 1. If there exists ¢ = ¢(f) > 0 such that for any po,p1,--- ,prs-1 €
[ﬁ — ¢, ﬁ + ] with pg +p1 + -+ +prg-1 = 1, every z € I§ has a f-expansion (g;);>1 with

Freq,(¢:) = po, Freq,(e:) =p1,- -+, Freqs (1) = prgy-1,
we say that [ is a variational frequency base. Similarly, if there exists ¢ = ¢(3) > 0 such
that for any po, p1,--- ,pra1—1 € [Uﬂ %1 + c] with pg +p1 + - - - + prsj—1 = 1, Lebesgue
almost every x € Ig has a f-expansion (¢;);>; with

Freq,(¢:) = po, Freq, (&) =p1,-- -, Freq[m_1<5z’) = Prsl-1

we say that /3 is an almost variational frequency base.
Obviously, all variational frequency bases are almost variational frequency bases. Baker’s
results (see the statements between Theorem 1.2 and Theorem 1.3) say that all numbers in
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(1, ”2\/5) are variational frequency bases and all numbers in [%g, 2) are not variational

frequency bases. Fortunately, Theorem 1.3 says that pseudo-golden ratios (which are all
in [LtY5

2
[1+2\/57 2) are almost variational frequency bases.

For all integers § > 1, we know that Lebesgue almost every x € [0, 1] has a unique
[-expansion (g;);>1, and this expansion satisfies

,2)) are almost variational frequency bases. We wonder whether all numbers in

1
Freq,(e;) = Freq,(e;) = --- = Freq,_, (&) = 3

by Borel’s normal number theorem. Therefore all integers are not almost variational
frequency bases. It is natural to ask the following question.

Question 4.3. Is it true that all non-integers greater than 1 are almost variational fre-
quency bases?

A positive answer is expected.
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