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Let β > 1 be a non-integer. First we show that Lebesgue almost every number has a β-expansion of a given frequency if and only if Lebesgue almost every number has infinitely many β-expansions of the same given frequency. Then we deduce that Lebesgue almost every number has infinitely many balanced β-expansions, where an infinite sequence on the finite alphabet {0, 1, • • • , m} is called balanced if the frequency of the digit k is equal to the frequency of the digit m -k for all k ∈ {0, 1, • • • , m}. Finally we consider variable frequency and prove that for every pseudo-golden ratio β ∈ (1, 2), there exists a constant c = c(β) > 0 such that for any p ∈ [ 1 2 -c, 1 2 + c], Lebesgue almost every x has infinitely many β-expansions with frequency of zeros equal to p.

INTRODUCTION

To represent real numbers, the most common way is to use expansions in integer bases, especially in base 2 or 10. As a natural generalization, expansions in non-integer bases were introduced by Rényi [START_REF] Rényi | Representations for real numbers and their ergodic properties[END_REF] in 1957, and then attracted a lot of attention until now (see for examples [START_REF] Allouche | Periodic unique beta-expansions: the Sharkovskiȋ ordering[END_REF][START_REF] Allouche | Non-integer bases, iteration of continuous real maps, and an arithmetic self-similar set[END_REF][START_REF] Blanchard | β-expansions and symbolic dynamics[END_REF][START_REF] Bugeaud | Uniform Diophantine approximation related to b-ary and β-expansions, Ergodic Theory Dynam[END_REF][START_REF] Fan | On the lengths of basic intervals in beta expansions[END_REF][START_REF] Frougny | Finite beta-expansions[END_REF][START_REF] Li | Beta-expansion and continued fraction expansion[END_REF][START_REF] Li | Distributions of full and non-full words in beta-expansions[END_REF][START_REF] Parry | On the β-expansions of real numbers[END_REF][START_REF] Schmeling | Symbolic dynamics for β-shifts and self-normal numbers[END_REF][START_REF] Schmidt | On periodic expansions of Pisot numbers and Salem numbers[END_REF]). They are known as beta-expansions nowadays.

Let N = {1, 2, 3, • • • } be the set of positive integers and R be the set of real numbers. For β > 1, we define the alphabet by

A β = {0, 1, • • • , β -1}.
where β denotes the smallest integer no less than β, and similarly we use β to denote the greatest integer no larger than β throughout this paper. Let x ∈ R. A sequence

(ε i ) i≥1 ∈ A N β is called a β-expansion of x if x = ∞ i=1 ε i β i .
For β > 1, let I β be the interval [0, β -1 β-1 ], and let I o β be the interior of I β (i.e. I o β = (0, β -1 β-1 )). It is straightforward to check that x has a β-expansion if and only if x ∈ I β . An interesting phenomenon is that an x may have many β-expansions. For examples, [14, Theorem 3] shows that if β ∈ (1, 1+ √ 5

2 ), every x ∈ I o β has a continuum of different β-expansions, and [29, Theorem 1] shows that if β ∈ (1, 2), Lebesgue almost every x ∈ I β has a continuum of different β-expansions. For more on the cardinality of β-expansions, we refer the reader to [START_REF] Baker | Expansions in non-integer bases: lower order revisited[END_REF][START_REF] Erdös | On the number of q-expansions[END_REF][START_REF] Glendinning | Unique representations of real numbers in non-integer bases[END_REF].

In this paper we focus on the digit frequencies of β-expansions, which is a classical research topic. For examples, Borel's normal number theorem [START_REF] Borel | Les probabilités dénombrables et leurs applications arithmétiques[END_REF] says that for any integer β > 1, Lebesgue almost every x ∈ [0, 1] has a β-expansion in which every finite word on A β with length k occurs with frequency β -k ; Eggleston [START_REF] Eggleston | The fractional dimension of a set defined by decimal properties[END_REF] proved that for each p ∈ [0, 1], the Hausdorff dimension (see [START_REF] Falconer | Fractal geometry: Mathematical foundations and applications[END_REF] for definition) of the set, consisting of those x ∈ [0, 1] having a binary expansion with frequency of zeros equal to p, is equal to (-p log p -(1p) log(1 -p))/(log 2). Let β T ≈ 1.80194 be the unique zero in [START_REF] Allouche | Periodic unique beta-expansions: the Sharkovskiȋ ordering[END_REF][START_REF] Allouche | Non-integer bases, iteration of continuous real maps, and an arithmetic self-similar set[END_REF] of the polynomial x 3 -x 2 -2x + 1. Recently, on the one hand, Baker and Kong [START_REF] Baker | Numbers with simply normal β-expansions[END_REF] proved that if β ∈ (1, β T ], then every x ∈ I o β has a simply normal β-expansion (i.e., the frequency of each digit is the same), and on the other hand, Jordan, Shmerkin and Solomyak [START_REF] Jordan | Multifractal structure of Bernoulli convolutions[END_REF] proved that if β ∈ (β T , 2], then there exists x ∈ I o β which does not have any simply normal β-expansions. In the recent paper [START_REF] Baker | Exceptional digit frequencies and expansions in non-integer bases[END_REF], Baker studied the set of frequencies of β-expansions for a general β > 1. (See also [START_REF] Boyland | On digit frequencies in β-expansions[END_REF] for the study of the set of frequencies of greedy β-expansions.)

Let m ∈ N. For any sequence (ε i ) i≥1 ∈ {0, 1, • • • , m} N , we define the upper-frequency, lower-frequency and frequency of the digit k by

Freq k (ε i ) := lim n→∞ {1 ≤ i ≤ n : ε i = k} n , Freq k (ε i ) := lim n→∞ {1 ≤ i ≤ n : ε i = k} n and Freq k (ε i ) := lim n→∞ {1 ≤ i ≤ n : ε i = k}
n (assuming the limit exists) respectively, where denotes the cardinality.

If p = (p 0 , • • • , p m ), p = (p 0 , • • • , p m ) ∈ [0, 1] m+1 satisfy Freq k (ε i ) = p k and Freq k (ε i ) = p k for all k ∈ {0, 1, • • • , m}, we say that (ε i ) i≥1 is of frequency (p, p).
The following theorem is the first main result in this paper. As the second main result, the next theorem focuses on a special kind of frequency. Let m ∈ N. A sequence

(ε i ) i≥1 ∈ {0, 1, • • • , m} N is called balanced if Freq k (ε i ) =Freq m-k (ε i ) for all k ∈ {0, 1, • • • , m}.
Theorem 1.2. For all β ∈ (1, +∞) \ N, Lebesgue almost every x ∈ I β has infinitely many balanced β-expansions.

In the following, we consider variable frequency. Recently, Baker proved in [START_REF] Baker | Digit frequencies and self-affine sets with non-empty interior, Ergodic Theory Dynam. Systems[END_REF] that for any β ∈ (1, 1+ √ 5

2 ), there exists c = c(β) > 0 such that for any p ∈ [ 1 2 -c, 1 2 + c] and x ∈ I o β , there exists a β-expansion of x with frequency of zeros equal to p. This result is sharp, since for any β ∈ [ 1+ √ 5 2 , 2), there exists an x ∈ I o β such that for any β-expansion of x its frequency of zeros exists and is equal to either 0 or 1 2 (see the statements between Theorem 1.1 and Theorem 1.2 in [START_REF] Baker | Numbers with simply normal β-expansions[END_REF]). It is natural to ask for which β ∈ [ 1+ √ 5 2 , 2), the result can be true for almost every x ∈ I o β . We give a class of such β in Theorem 1.3 as the third main result in this paper. They are the pseudo-golden ratios, i.e., the β ∈ (1, 2) such that β m -β m-1 -• • • -β -1 = 0 for some integer m ≥ 2. Note that the smallest pseudo-golden ratio is the golden ratio 1+

√ 5 2 . Theorem 1.3. Let β ∈ (1, 2) such that β m -β m-1 -• • • -β -1 = 0 for some integer m ≥ 2 and let c = (m-1)(2-β) 2(mβ+β-2m) (> 0). Then for any p ∈ [ 1 2 -c, 1 2 + c],
Lebesgue almost every x ∈ I β has infinitely many β-expansions with frequency of zeros equal to p.

We give some notation and preliminaries in the next section, prove the main results in Section 3 and end this paper with further questions in the last section.

NOTATION AND PRELIMINARIES

Let β > 1. We define the maps T k (x) := βx -k for x ∈ R and k ∈ N ∪ {0}. Given x ∈ I β , let

Σ β (x) := (ε i ) i≥1 ∈ A N β : ∞ i=1 ε i β i = x and Ω β (x) := (a i ) i≥1 ∈ {T k , k ∈ A β } N : (a n • • • • • a 1 )(x) ∈ I β for all n ∈ N .
The following lemma given by Baker is a dynamical interpretation of β-expansions.

Lemma 2.1 ([3, 4]). For any x ∈ I β , we have Σ β (x) = Ω β (x). Moreover, the map which sends

(ε i ) i≥1 to (T ε i ) i≥1 is a bijection between Σ β (x) and Ω β (x).
We need the following concepts and the well known Birkhoff's Ergodic Theorem in the proof of our main results. Definition 2.2 (Absolute continuity and equivalence). Let µ and ν be measures on a measurable space (X, F). We say that µ is absolutely continuous with respect to ν and denote it by µ ν if, for any A ∈ F, ν(A) = 0 implies µ(A) = 0. Moreover, if µ ν and ν µ we say that µ and ν are equivalent and denote this property by µ ∼ ν.

Theorem 2.3 ([30]

Birkhoff's Ergodic Theorem). Let (X, F, µ, T ) be a measure-preserving dynamical system where the probability measure µ is ergodic with respect to T . Then for any real-valued integrable function f : X → R, we have

lim n→∞ 1 n n-1 k=0 f (T k x) = ˆf dµ
for µ-a.e. (almost every) x ∈ X.

PROOF OF THE MAIN RESULTS

Proof of Theorem 1.1. The "if" part is obvious. We only need to prove the "only if" part. Let L be the Lebesgue measure. Suppose that L-a.e. x ∈ I β has a β-expansion of frequency (p, p). Let

U β := x ∈ I β : x has a unique β-expansion and N p,p β := x ∈ I β :
x has no β-expansions of frequency (p, p) . On the one hand, it is well known that L(U β ) = 0 (see for examples [START_REF] Vries | Unique expansions of real numbers[END_REF][START_REF] Kong | Hausdorff dimension of unique beta expansions[END_REF]). On the other hand, by condition we know L(N

p,p β ) = 0. Let Ψ := U β ∪ N p,p β ∪ ∞ n=1 ε 1 ,••• ,εn∈A β T -1 εn • • • • • T -1 ε 1 U β ∪ N p,p β . Then L(Ψ) = 0. Let x ∈ I β \ Ψ.
It suffices to prove that x has infinitely many different β-expansions of frequency (p, p).

Let (ε i ) i≥1 be a β-expansions of x. Since x / ∈ Ψ implies x / ∈ U β , x has another β- expansion (w (1) i ) i≥1 . There exists n 1 ∈ N such that w (1) 1 • • • w (1) n 1 -1 = ε 1 • • • ε n 1 -1 and w (1) n 1 = ε n 1 . By T w (1) n 1 • T εn 1 -1 • • • • • T ε 1 x = T w (1) n 1 • • • • • T w (1) 1 x = ∞ i=1 w (1) n 1 +i β i , we know that (w (1) n 1 +i ) i≥1 is a β-expansion of T w (1) n 1 • T εn 1 -1 • • • • • T ε 1 x. Since x / ∈ Ψ implies T w (1) n 1 • T εn 1 -1 • • • • • T ε 1 x / ∈ N p,p β , T w (1) n 1 • T εn 1 -1 • • • • • T ε 1 x has a β-expansion (ε (1) 
n 1 +i ) i≥1 of frequency (p, p). Let ε (1) 1 • • • ε (1) n 1 -1 ε (1)
n 1 := ε 1 • • • ε n 1 -1 w (1) n 1 . Then (ε (1) i ) i≥1 is a β-expansion of x of frequency (p, p) with ε (1) n 1 = ε n 1 , which implies that (ε i ) i≥1 and (ε (1) i ) i≥1 are different. Note that (ε n 1 +i ) i≥1 is a β-expansion of T εn 1 • • • • • T ε 1 x. Since x / ∈ Ψ implies T εn 1 • • • • • T ε 1 x / ∈ U β , T εn 1 • • • • • T ε 1 x has another β-expansion (w (2) 
n 1 +i ) i≥1 . There exists n 2 > n 1 such that w (2) n 1 +1 • • • w (2) n 2 -1 = ε n 1 +1 • • • ε n 2 -1 and w (2) n 2 = ε n 2 . By T w (2) n 2 • T εn 2 -1 • • • • • T ε 1 x = T w (2) n 2 • • • • • T w (2) n 1 +1 • (T εn 1 • • • • • T ε 1 x) = ∞ i=1 w (2) n 2 +i β i , we know that (w (2) n 2 +i ) i≥1 is a β-expansion of T w (2) n 2 • T εn 2 -1 • • • • • T ε 1 x. Since x / ∈ Ψ implies T w (2) n 2 • T εn 2 -1 • • • • • T ε 1 x / ∈ N p,p β , T w (2) n 2 • T εn 2 -1 • • • • • T ε 1 x has a β-expansion (ε (2) 
n 2 +i ) i≥1 of frequency (p, p). Let ε (2) 1 • • • ε (2) n 2 -1 ε (2) n 2 := ε 1 • • • ε n 2 -1 w (2) n 2 . Then (ε (2) i ) i≥1 is a β-expansion of x of frequency (p, p) with ε (2) n 1 = ε n 1 and ε (2) n 2 = ε n 2 , which implies that (ε i ) i≥1 , (ε (1) i ) i≥1 and (ε (2) i ) i≥1 are all different. • • •
Generally, suppose that for some j ∈ N we have already constructed (ε

(1) i ) i≥1 , (ε (2) i ) i≥1 , • • • , (ε (j) i ) i≥1 , which are all β-expansions of x of frequency (p, p) such that              ε (1) 
n 1 = ε n 1 , ε (2) 
n 1 = ε n 1 , ε (2) 
n 2 = ε n 2 , ε (3) 
n 1 = ε n 1 , ε (3) 
n 2 = ε n 2 , ε (3) 
n 3 = ε n 3 , • • • ε (j) n 1 = ε n 1 , ε (j) n 2 = ε n 2 , • • • , ε (j) n j-1 = ε n j-1 , ε (j) n j = ε n j . Note that (ε n j +i ) i≥1 is a β-expansion of T εn j •• • ••T ε 1 x. Since x / ∈ Ψ implies T εn j •• • ••T ε 1 x / ∈ U β , T εn j • • • • • T ε 1 x has another β-expansion (w (j+1) 
n j +i ) i≥1 . There exists n j+1 > n j such that w (j+1)

n j +1 • • • w (j+1) n j+1 -1 = ε n j +1 • • • ε n j+1 -1 and w (j+1) n j+1 = ε n j+1 . By T w (j+1) n j+1 • T εn j+1 -1 • • • • • T ε 1 x = T w (j+1) n j+1 • • • • • T w (j+1) n j +1 • (T εn j • • • • • T ε 1 x) = ∞ i=1 w (j+1) n j+1 +i β i , we know that (w (j+1) n j+1 +i ) i≥1 is a β-expansion of T w (j+1) n j+1 • T εn j+1 -1 • • • • • T ε 1 x. Since x / ∈ Ψ implies T w (j+1) n j+1 • T εn j+1 -1 • • • • • T ε 1 x / ∈ N p,p β , T w (j+1) n j+1 • T εn j+1 -1 • • • • • T ε 1 x has a β-expansion (ε (j+1) n j+1 +i ) i≥1 of frequency (p, p). Let ε (j+1) 1 • • • ε (j+1) n j+1 -1 ε (j+1) n j+1 := ε 1 • • • ε n j+1 -1 w (j+1) n j+1 . Then (ε (j+1) i ) i≥1 is a β-expansion of x of frequency (p, p) with ε (j+1) n 1 = ε n 1 , • • • , ε (j+1) n j = ε n j and ε (j+1) n j+1 = ε n j+1 , which implies that (ε i ) i≥1 , (ε (1) i ) i≥1 , • • • , (ε (j+1) i
) i≥1 are all different. • • • It follows from repeating the above process that x has infinitely many different βexpansions of frequency (p, p). Proof. The conclusion follows from the well known Borel's Normal Number Theorem [START_REF] Borel | Les probabilités dénombrables et leurs applications arithmétiques[END_REF] if β ∈ N and follows from [6, Theorem 4.1] if β ∈ (1, 2). Thus we only need to consider β > 2 with β / ∈ N in the following. Let

z 1 := 1 2 β β -1 - β -1 β and z k+1 := z k + 1 β for all k ∈ {1, 2, • • • , β -1}.
Define T :

I β → I β by T (x) :=    T 0 (x) = βx for x ∈ [0, z 1 ), T k (x) = βx -k for x ∈ [z k , z k+1 ) and k ∈ {1, 2, • • • , β -1}, T β (x) = βx -β for x ∈ [z β , β β-1 ]. Let z 0 := β 2(β -1) - 1 2 and z β := z 0 + 1 = β 2(β -1) + 1 2 . Then T 1 (z 1 ) = T 2 (z 2 ) = • • • = T β (z β ) = z 0 and T 0 (z 1 ) = T 1 (z 2 ) = • • • = T β -1 (z β ) = z β . 0 z 0 z 1 z 2 z 3 z 4 z 5 β β-1 z 0 z 5 β β-1 FIGURE 1.
The graph of T for some β ∈ (4, 5).

We consider the restriction T | [z 0 ,z β ) : [z 0 , z β ) → [z 0 , z β ). By Theorem 5.2 in [START_REF] Wilkinson | Ergodic properties of a class of piecewise linear transformations[END_REF], there exists a T | [z 0 ,z β ) -invariant ergodic Borel probability measure µ on [z 0 , z β ) equivalent to the Lebesgue measure L. For any x ∈ [z 0 , z β ) which is not a preimage of a discontinuity point of T | [z 0 ,z β ) , by symmetry, we know that for any k ∈ {0, 1,

• • • , β } and i ∈ {0, 1, 2, • • • }, T i (x) ∈ (z k , z k+1 ) ⇔ T i β β -1 -x ∈ (z β -k , z β -k ).
For all k ∈ {0, 1, • • • , β }, it follows from Birkhoff's Ergodic Theorem that for L-a.e.

x ∈ [z 0 , z β ),

µ((z k , z k+1 )) = ˆz β z 0 1 (z k ,z k+1 ) dµ = lim n→∞ 1 n n-1 i=0 1 (z k ,z k+1 ) T i (x) (3.1) = lim n→∞ 1 n n-1 i=0 1 (z β -k ,z β -k ) T i β β -1 -x (3.2)
and for L-a.e. y ∈ [z 0 , z β ),

µ((z β -k , z β -k )) = ˆz β z 0 1 (z β -k ,z β -k ) dµ = lim n→∞ 1 n n-1 i=0 1 (z β -k ,z β -k ) T i (y) ,
which implies that for L-a.e.

( β β-1 -x) ∈ (z 0 , z β ), µ((z β -k , z β -k )) = lim n→∞ 1 n n-1 i=0 1 (z β -k ,z β -k ) T i β β -1 -x .
So this is also true for L-a.e x ∈ (z 0 , z β ). Recall (3.2), we get

µ((z k , z k+1 )) = µ((z β -k , z β -k )) for k ∈ {0, 1, • • • , β }. (3.3) 
For every x ∈ I β , define a sequence

(ε i (x)) i≥1 ∈ {0, 1, • • • , β } N by ε i (x) :=    0 if T i-1 x ∈ [0, z 1 ), k if T i-1 x ∈ [z k , z k+1 ) for some k ∈ {1, 2, • • • , β -1}, β if T i-1 x ∈ [z β , β β-1 ]. Then for all k ∈ {0, 1, • • • , β }, i ∈ {0, 1, 2, • • • } and x ∈ [z 0 , z β ), 1 [z k ,z k+1 ) (T i x) = 1 ⇔ T i x ∈ [z k , z k+1 ) ⇔ ε i+1 (x) = k.

By (3.1), we know that for all

k ∈ {0, 1, • • • , β } and L-a.e. x ∈ [z 0 , z β ), Freq k (ε i (x)) = lim n→∞ {1 ≤ i ≤ n : ε i (x) = k} n = µ((z k , z k+1 )). It follows from (3.3) that for all k ∈ {0, 1, • • • , β } and L-a.e. x ∈ [z 0 , z β ), Freq k (ε i (x)) = Freq β -k (ε i (x)). (3.4) 
(1) For any x ∈ I β , we prove that

(ε i (x)) i≥1 is a β-expansion of x, i.e., ∞ i=1 ε i (x) β i = x. In fact, by Lemma 2.1, it suffices to show T εn(x) • • • • • T ε 1 (x) (x) ∈ I β for all n ∈ N. We only need to prove T εn(x) • • • • • T ε 1 (x) (x) = T n (x) by induction as follows. Let n = 1. 1 If x ∈ [0, z 1 ), then ε 1 (x) = 0 and T ε 1 (x) (x) = T 0 (x) = T (x). 2 If x ∈ [z k , z k+1 ) for some k ∈ {1, 2, • • • , β -1}, then ε 1 (x) = k and T ε 1 (x) (x) = T k (x) = T (x). 3 If x ∈ [z β , β β-1 ], then ε 1 (x) = β and T ε 1 (x) (x) = T β (x) = T (x). Assumes that for some n ∈ N we have T εn(x) • • • • • T ε 1 (x) (x) = T n (x). 1 If T n (x) ∈ [0, z 1 ), then ε n+1 (x) = 0 and T ε n+1 (x) • T εn(x) • • • • • T ε 1 (x) (x) = T 0 • T n (x) = T n+1 (x). 2 If T n (x) ∈ [z k , z k+1 ) for some k ∈ {1, 2, • • • , β -1}, then ε n+1 (x) = k and T ε n+1 (x) • T εn(x) • • • • • T ε 1 (x) (x) = T k • T n (x) = T n+1 (x). 3 If T n (x) ∈ [z β , β β-1 ], then ε n+1 (x) = β and T ε n+1 (x) • T εn(x) • • • • • T ε 1 (x) (x) = T β • T n (x) = T n+1 (x).
Combining (1) and (3.4), we know that L-a.e. x ∈ [z 0 , z β ] has a balanced β-expansion. Let N := x ∈ I β : x has no balanced β-expansions .

We have already proved L(N ∩ [z 0 , z β ]) = 0. To end the proof of this lemma, we need to show L(N ) = 0. In fact, it suffices to prove L(N ∩ (0,

z 0 )) = L(N ∩ (z β , β β-1 )) = 0. i) Prove L(N ∩ (0, z 0 )) = 0. By L(N ∩ [z 0 , z β ]) = 0, we know that for any n ∈ N, L(T -n 0 (N ∩ [z 0 , z β ])) = 0. It suffices to prove N ∩ (0, z 0 ) ⊂ ∞ n=1 T -n 0 (N ∩ [z 0 , z β ]). (By contradiction) Let x ∈ N ∩ (0, z 0 ) and assume x / ∈ ∞ n=1 T -n 0 (N ∩ [z 0 , z β ]). By x ∈ (0, z 0 ), one can verify that there exists k ≥ 1 such that T k 0 x ∈ [z 0 , z β ]. Since x / ∈ T -k 0 (N ∩ [z 0 , z β ]
), we must have T k 0 x / ∈ N . This means that there exists a balanced sequence

(w i ) i≥1 ∈ A N β such that T k 0 x = ∞ i=1 w i
β i , and then

x = 0 β + 0 β 2 + • • • + 0 β k + ∞ i=1 w i β k+i =: ∞ i=1 ε i β i
where

ε 1 = • • • = ε k := 0 and ε k+i := w i for i ≥ 1. It follows that (ε i ) i≥1 is a balanced β-expansion of x, which contradicts x ∈ N . ii) The fact L(N ∩ (z β , β β-1
)) = 0 follows in a similar way as i) by applying

T β instead of T 0 . Proof of Theorem 1.3. Let β ∈ (1, 2) such that β m -β m-1 -• • • -β -1 = 0 for some integer m ≥ 2 and let c = (m-1)(2-β) 2(mβ+β-2m) . We have c > 0 since m-1 > 0, 2-β > 0 and mβ+β-2m > 0, which is a consequence of m + 1 < 2m < 2(β m-1 + • • • + β + 1) = 2β m = 2 2 -β ,
where the equalities follows from

β m = β m-1 + • • • + β + 1 = β m -1 β -1 . For any x ∈ [0, 1 β-1 -1], define f (x) := (β -1)(1 -(m -1)x) mβ + β -2m .
Then

f (0) = β -1 mβ + β -2m = 1 2 + c and f ( 1 β -1 -1) = mβ + 1 -2m mβ + β -2m = 1 2 -c, i.e., [f ( 1 β-1 -1), f (0)] = [ 1 2 -c, 1 2 + c]. Since f is continuous, for any p ∈ [ 1 2 -c, 1 2 + c], there exists b ∈ [0, 1 β-1 -1] such that f (b) = p. We only consider b ∈ [0, 1 β-1 -1) in the following, since the proof for the case b ∈ (0, 1 β-1 -1] is similar. Define T : I β → I β by T (x) := T 0 (x) = βx for x ∈ [0, b+1 β ), T 1 (x) = βx -1 for x ∈ [ b+1 β , 1 β-1 ]. 0 b b+1 β b + 1 1 β-1 b b + 1 1 β-1 FIGURE 2. The graph of T .
Noting that T 0 ( b+1 β ) = b + 1 and T 1 ( b+1 β ) = b, by Section 3 in [START_REF] Kopf | Invariant measures for piecewise linear transformations of the interval[END_REF], there exists a Tinvariant ergodic measure µ L (Lebesgue measure) on I β such that for L-a.e. x ∈ I β ,

dµ dL (x) = ∞ n=0 1 [0,T n (b+1)] (x) β n - ∞ n=0 1 [0,T n (b)] (x) β n (3.5) and ν := 1 µ(I β ) • µ is a T -invariant ergodic probability measure on I β . (1) For 1 ≤ n ≤ m -1, prove T n (b) = β n b < b+1 β ≤ β n b + β n -β n-1 -• • • -β -1 = T n (b + 1). Note that β m = β m-1 + • • • + β + 1 = β m -1 β-1 . 1 By b < 1 β-1 -1 = 1 β m -1 ≤ 1 β n+1 -1 , we get β n b < b+1 β . 2 By 1 β + • • • + 1 β n+1 ≤ 1 β + • • • + 1 β m = 1, we get β n + • • • + β + 1 ≤ β n+1 and then β n +• • •+β+1+b ≤ β n+1 +β n+1 b which implies b+1 β ≤ β n b+β n -β n-1 -• • •-β-1. (2) For n ≥ m, prove T n (b) = T n (b + 1).
It suffices to prove T m (b) = T m (b + 1). In fact, this follows from (1) and

β m b = β m b + β m -β m-1 -• • • -β -1.
Combining (3.5) and (2), we know that for L-a.e. x ∈ I β , where the last equality follows from

dµ dL (x) = m-1 n=0 1 [0,T n (b+1)] (x) -1 [0,T n (b)] (x) β n . ( 3 
1 β + • • • + 1 β m = 1. By µ(I β ) = ˆ1 β-1 0 dµ dL (x)dx = m-1 n=0 T n (b + 1) -T n (b) β n by (1) = === = 1 + m-1 n=1 β n -β n-1 -• • • -β -1 β n = 1 + m-1 n=1 (1 - 1 β -• • • - 1 β n ) = m - m -1 β - m -2 β 2 -• • • - 1 β m-1 ,
we get

1 β • µ(I β ) = m β - m -1 β 2 - m -2 β 3 -• • • - 1 β m .
It follows from the subtraction of the above two equalities that µ(I β ) = mβ+β-2m β-1

. Therefore ν = β-1 mβ+β-2m • µ and

ν[0, b + 1 β ) = (β -1)(1 -(m -1)b) mβ + β -2m = f (b) = p.
Since T : I β → I β is ergodic with respect to ν, it follows from Birkhoff's Ergodic Theorem that for ν-a.e. x ∈ I β we have 

lim n→∞ 1 n n-1 k=0 1 [0, b+1 β ) T k (x) = ˆ1 β-1 0 1 [0, b+1 β ) dν = ν[0, b + 1 β ) = p, which implies that for ν-a.e. x ∈ [b, b + 1], lim n→∞ 1 n n-1 k=0 1 [0, b+1 β ) T k (x) = p.
n-1 k=0 1 [0, b+1 β ) T k (x) = p. For every x ∈ I β , define a sequence (ε i (x)) i≥1 ∈ {0, 1} N by ε i (x) := 0 if T i-1 x ∈ [0, b+1 β ) 1 if T i-1 x ∈ [ b+1 β , 1 β-1 ]
for all i ≥ 1.

Then by

1 [0, b+1 β ) (T k x) = 1 ⇔ T k x ∈ [0, b + 1 β ) ⇔ ε k+1 (x) = 0, we know that for L-a.e. x ∈ [b, b + 1], lim n→∞ {1 ≤ i ≤ n : ε i (x) = 0} n = p, i.e., Freq 0 (ε i (x)) = p. (3.7) 
By the same way as in the proof of Lemma 3.1, we know that for every x ∈ I β , the (ε i (x)) i≥1 defined above is a β-expansion of x, and Lebesgue almost every x ∈ I β has a β-expansion with frequency of zeros equal to p. Then we finish the proof by applying Theorem 1.1.

FURTHER QUESTIONS

First we wonder whether Theorem 1.1 can be generalized. If a positive answer is given to this question, by Theorem 1.1 and 1.2, there is also a positive answer to the following question. Even if a negative answer is given to Question 4.1, there may be a positive answer to Question 4.2. An intuitive reason is that, when β > 2, we have A β ≥ 3 and balanced β-expansions are much more flexible than simply normal β-expansions.

The last question we want to ask is on the variability of the frequency related to Theorem 1. A positive answer is expected.

Theorem 1 . 1 .

 11 For all β ∈ (1, +∞) \ N and p, p ∈ [0, 1] β , Lebesgue almost every x ∈ I β has a β-expansion of frequency (p, p) if and only if Lebesgue almost every x ∈ I β has infinitely many β-expansions of frequency (p, p).

Theorem 1 .Lemma 3 . 1 .

 131 2 follows immediately from Theorem 1.1 and the following lemma. For all β > 1, Lebesgue almost every x ∈ I β has a balanced β-expansion.

= 1 -

 1 (m -1)b

By ( 3 . 6 )

 36 and (1), we know that for L-a.e. x ∈ [b, b + 1], dµ dL (x) ≥ 1. This implies L µ(∼ ν) on [b, b + 1], and then for L-a.e. x ∈ [b, b + 1], we have lim n→∞ 1 n

Question 4 . 1 .

 41 Let β ∈ (1, +∞) \ N and p, p ∈ [0, 1] β . Is it true that Lebesgue almost every x ∈ I β has a β-expansion of frequency (p, p) if and only if Lebesgue almost every x ∈ I β has a continuum of β-expansions of frequency (p, p)?

Question 4 . 2 .

 42 Let β ∈ (2, +∞) \ N. Is it true that Lebesgue almost every x ∈ I β has a continuum of balanced β-expansions?

3 . 5 2) 5 2 , 2 ) 5 2 , 2 ) 5 2 , 2 )Question 4 . 3 .

 3552525243 Let β > 1. If there exists c = c(β) > 0 such that for any p 0 , p 1 ,• • • , p β -1 ∈ [ 1 β -c, 1 β + c] with p 0 + p 1 + • • • + p β -1 = 1, every x ∈ I o β has a β-expansion (ε i ) i≥1 with Freq 0 (ε i ) = p 0 , Freq 1 (ε i ) = p 1 , • • • , Freq β -1 (ε i ) = p β -1 ,we say that β is a variational frequency base. Similarly, if there exists c = c(β) > 0 such that for any p0 , p 1 , • • • , p β -1 ∈ [ 1 β -c, 1 β + c] with p 0 + p 1 + • • • + p β -1 = 1, Lebesgue almost every x ∈ I β has a β-expansion (ε i ) i≥1 with Freq 0 (ε i ) = p 0 , Freq 1 (ε i ) = p 1 , • • • , Freq β -1 (ε i ) = p β -1 ,we say that β is an almost variational frequency base.Obviously, all variational frequency bases are almost variational frequency bases. Baker's results (see the statements between Theorem 1.2 and Theorem 1.3) say that all numbers in (1, 1+ √ are variational frequency bases and all numbers in [ 1+ √ are not variational frequency bases. Fortunately, Theorem 1.3 says that pseudo-golden ratios (which are all in [ 1+ √ ) are almost variational frequency bases. We wonder whether all numbers in [ 1+ √ are almost variational frequency bases. For all integers β > 1, we know that Lebesgue almost every x ∈ [0, 1] has a unique β-expansion (ε i ) i≥1 , and this expansion satisfiesFreq 0 (ε i ) = Freq 1 (ε i ) = • • • = Freq β-1 (ε i ) = 1 βbyBorel's normal number theorem. Therefore all integers are not almost variational frequency bases. It is natural to ask the following question. Is it true that all non-integers greater than 1 are almost variational frequency bases?
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