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DISTRIBUTIONS OF FULL AND NON-FULL WORDS IN
BETA-EXPANSIONS

YAO-QIANG LI AND BING LI∗

Abstract. The structures of full words and non-full for β-expansions are completely char-
acterized in this paper. We obtain the precise lengths of all the maximal runs of full and
non-full words among admissible words with same order.

1. Introduction

Let β > 1 be a real number. The β-expansion was introduced by Rényi [Ren57] in
1957, which generalized the usual decimal expansions (generally N -adic expansion with
integers N > 1) to that with any real base β. There are some different behaviors for the
representations of real numbers and corresponding dynamics for the integer and noninteger
cases. For example, when β ∈ N, every element in {0, 1, · · · , β − 1}N (except countablely
many ones) is the β-expansion of some x ∈ [0, 1) (called admissible sequence). However, if
β /∈ N, not any sequence in {0, 1, · · · , bβc}N is the β-expansion of some x ∈ [0, 1) where bβc
denotes the integer part of β. Parry [Pa60] managed to provide a criterion for admissability
of sequences (see Lemma 2.3 below). Any finite truncation of an admissible sequence is called
an admissible word. Denoted by Σn

β the set of all admissible words with length n ∈ N. By
estimating the cardinality of Σn

β in [Ren57], it is known that the topological entropy of
β-transformation Tβ is log β. The projection of any word in Σn

β is a cylinder of order n
(also say a fundamental interval), which is a left-closed and right-open interval in [0, 1).
The lengths of cylinders are irregular for β /∈ N, meanwhile, they are all regular for β ∈ N,
namely, the length of any cylinder of order n equals β−n. Li and Wu [LiWu08] introduced a
classification of β > 1 for characterising the regularity of the lengths of cylinders and then
the sizes of all corresponding classes were given by Li, Persson, Wang and Wu [LPWW14] in
the sense of measure and dimension. Another different classification of β > 1 was provided
by Blanchard [Bla89] from the viewpoint of dynamical system, and then the sizes of all
corresponding classes were given by Schmeling [Schme97] in the sense of topology, measure
and dimension (see [TaWa11], [TWWX13], [BaLi14] for more research on beta-expansions
from the viewpoint of dynamical system).

A cylinder with order n is said to be full if it is mapped by the n-th iteration of β-
transformation T nβ onto [0, 1) (see Definition 2.6 below, [Wal78] or [DK02]) or equivalently
its length is maximal, that is, equal to β−n (see Proposition 3.1 below, [FW12] or [BuWa14]).
An admissible word is said to be full if the corresponding cylinder is full. Full words and
cylinders have very good properties. For example, Walters [Wal78] proved that for any given
N > 0, [0, 1) is covered by the full cylinders of order at least N . Fan and Wang [FW12]
obtained some good properties of full cylinders (see Proposition 3.1 and Proposition 3.2
below). Bugeaud and Wang [BuWa14] studied the distribution of full cylinders, showed
that for n ≥ 1, among every (n + 1) consecutive cylinders of order n, there exists at least
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2 YAO-QIANG LI AND BING LI∗

one full cylinder, and used it to prove a modified mass distribution principle to estimate
the Hausdorff dimension of sets defined in terms of β-expansions. Zheng, Wu and Li proved
that the extremely irregular set is residual with the help of the full cylinders (for details see
[ZWL17]).

In this paper, we are interested in the distributions of full and non-full words in Σn
β, i.e.,

the distributions of full and non-full cylinders in [0, 1). More precisely, we consider the
lexicographically ordered sequence of all order n admissible words, and count the numbers
of successive full words and successive non-full words. Or, in what amounts to the same
thing, we look at all the fundamental intervals of order n, arranged in increasing order
along the unit interval, and ask about numbers of successive intervals where T nβ is onto (and
numbers of intervals where it is not onto). Our main results concern the maximal number
of successive full words, and the maximal number of successive non-full words as a function
of n and β. In particular, the dependence on β is expressed in terms of the expansion of 1
with base β.

The main objective of this paper is to describe the structure of admissible words and the
precise lengths of the maximal runs of full words and non-full words (see Definition 4.3). The
concept of maximal runs is a new way to study the distribution of full words and cylinders.
Firstly Theorem 3.7 gives a unique and clear form of any admissible word, and Theorem 3.8
and Corollary 3.9 provide some convenient ways to check whether an admissible word is full
or not. Secondly Theorem 4.6 describes all the precise lengths of the maximal runs of full
words, which indicates that such lengths rely on the nonzero terms in the β-expansion of 1.
Consequently, the maximal and minimal lengths of the maximal runs of full words are given
in Corollary 4.11 and Corollary 4.12 respectively. Finally by introducing a function τβ in
Definition 5.1, a similar concept of numeration system and greedy algorithm, we obtain a
convenient way to count the consecutive non-full words in Lemma 5.5, which can easily give
the maximal length of the runs of non-full words in Corollary 5.7 and generalize the result
of Bugeaud and Wang mentioned above (see Remark 5.10). Furthermore, all the precise
lengths of the maximal runs of non-full words are stated in Theorem 5.11, which depends
on the positions of nonzero terms in the β-expansion of 1. Moreover, the minimal lengths
of the maximal runs of non-full words are obtained in Corollary 5.12.

This paper is organized as follows. In Section 2, we introduce some basic notation and
preliminary work needed. In Section 3, we study the structures of admissible words, full
words and non-full words as basic results of this paper. In Section 4 and Section 5, we obtain
all the precise lengths of the maximal runs of full words and non-full words respectively as
the main results.

2. Notation and preliminaries

Let us introduce some basic notation and preliminary work needed. Let β > 1.
• Let Tβ : [0, 1)→ [0, 1) be the map:

Tβ(x) := βx− bβxc, x ∈ [0, 1).

Let Aβ = {0, 1, · · · , β − 1} when β ∈ N, Aβ = {0, 1, · · · , bβc} when β /∈ N and

εn(x, β) := bβT n−1β (x)c, n ∈ N, x ∈ [0, 1).

Then εn(x, β) ∈ Aβ and

x =
∞∑
n=1

εn(x, β)β−n.
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The sequence ε(x, β) := ε1(x, β)ε2(x, β) · · · εn(x, β) · · · is called the β-expansion of x. The
system ([0, 1), Tβ) is called a β-dynamical system.
• Define

Tβ(1) := β − bβc and εn(1, β) := bβT n−1β (1)c, n ∈ N.
Then the number 1 can also be expanded into a series, denoted by

1 =
∞∑
n=1

εn(1, β)β−n.

The sequence ε(1, β) := ε1(1, β)ε2(1, β) · · · εn(1, β) · · · is called the β-expansion of 1. For
simplicity, we write ε(1, β) = ε1ε2 · · · εn · · · .
• If there are infinitely many n with εn 6= 0, we say that ε(1, β) is infinite. Otherwise,

there exists M ∈ N such that εM 6= 0 with εj = 0 for all j > M , ε(1, β) is said to be finite,
sometimes say that ε(1, β) is finite with length M . The modified β-expansion of 1 is defined
as

ε∗(1, β) := ε(1, β)

if ε(1, β) is infinite, and
ε∗(1, β) := (ε1 · · · εM−1(εM − 1))∞

if ε(1, β) is finite with length M . Here for a finite word w ∈ Anβ, the periodic sequence

w∞ ∈ AN
β means that

w∞ := w1w2 · · ·wnw1w2 · · ·wn · · · .
In this paper, we always denote

ε∗(1, β) = ε∗1ε
∗
2 · · · ε∗n · · ·

no matter whether ε(1, β) is finite or not.
• Let ≺ and � be the lexicographic order in AN

β . More precisely, w ≺ w′ means that there
exists k ∈ N such that wi = w′i for all 1 ≤ i < k and wk < w′k. Besides, w � w′ means that
w ≺ w′ or w = w′. Similarly, the definitions of ≺ and � are extended to the sequences by
identifying a finite word w with the sequence w0∞.
• For any w ∈ AN

β , we use w|k to denote the prefix of w with length k, i.e., w1w2 · · ·wk
where k ∈ N. For any w ∈ Anβ, we use |w| := n to denote the length of w and w|k to denote
the prefix of w with length k where 1 ≤ k ≤ |w|.
• Let σ : AN

β → AN
β be the shift

σ(w1w2 · · · ) = w2w3 · · · for w ∈ AN
β

and πβ : AN
β → R be the projection map

πβ(w) =
w1

β
+
w2

β2
+ · · ·+ wn

βn
+ · · · for w ∈ AN

β .

Definition 2.1 (Admissability).

(1) A word w ∈ Anβ is called admissible, if there exists x ∈ [0, 1) such that εi(x, β) = wi
for i = 1, · · · , n. Denote

Σn
β := {w ∈ Anβ : w is admissible} and Σ∗β :=

∞⋃
n=1

Σn
β.

(2) A sequence w ∈ AN
β is called admissible, if there exists x ∈ [0, 1) such that εi(x, β) =

wi for all i ∈ N. Denote

Σβ := {w ∈ AN
β : w is admissible}.
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Obviously, if w ∈ Σβ, then w|n ∈ Σn
β and wn+1wn+2 · · · ∈ Σβ for any n ∈ N. By the

algorithm of Tβ, it is easy to get the following lemma.

Lemma 2.2. For any n ∈ N, ε∗(1, β)|n ∈ Σn
β and is maximal in Σn

β with lexicographic order
.

The following criterion for admissible sequence is due to Parry.

Lemma 2.3 ([Pa60]). Let w ∈ AN
β . Then w is admissible (that is, w ∈ Σβ) if and only if

σk(w) ≺ ε∗(1, β) for all k ≥ 0.

As a corollary of Parry’s criterion, the following lemma can be found in [Pa60].

Lemma 2.4. Let w be a sequence of non-negative integers. Then w is the β-expansion
of 1 for some β > 1 if and only if σkw ≺ w for all k ≥ 1. Moreover, such β satisfies
w1 ≤ β < w1 + 1.

Definition 2.5 (cylinder). Let w ∈ Σ∗β. We call

[w] := {v ∈ Σβ : vi = wi for all 1 ≤ i ≤ |w|}

the cylinder generated by w and

I(w) := πβ([w])

the cylinder in [0,1) generated by w.

Definition 2.6 (full words and cylinders). Let w ∈ Σn
β. If T nβ I(w) = [0, 1), we call the word

w and the cylinders [w], I(w) full. Otherwise, we call them non-full.

Lemma 2.7 ([LiWu08], [FW12], [BuWa14]). Suppose the word w1 · · ·wn is admissible and
wn 6= 0. Then w1 · · ·wn−1w′n is full for any w′n < wn.

3. The structures of admissible words, full words and non-full words

The following proposition is a criterion of full words. The equivalence of (1), (2) and (4)
can be found in [FW12]. We give some proofs for self-contained and more characterizations
(3), (5), (6) are given here.

Proposition 3.1. Let w ∈ Σn
β. Then the following are equivalent.

(1) w is full, i.e., T nβ I(w) = [0, 1);
(2) |I(w)| = β−n;
(3) The sequence ww′ is admissible for any w′ ∈ Σβ;
(4) The word ww′ is admissible for any w′ ∈ Σ∗β;
(5) The word wε∗1 · · · ε∗k is admissible for any k ≥ 1;
(6) σn[w] = Σβ.

Proof. (1)⇒ (2) Since w is full, T nβ I(w) = [0, 1). Noting that

x =
w1

β
+ · · ·+ wn

βn
+
T nβ x

βn
for any x ∈ I(w),

we can get

I(w) = [
w1

β
+ · · ·+ wn

βn
,
w1

β
+ · · ·+ wn

βn
+

1

βn
).
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Therefore |I(w)| = β−n.
(2)⇒ (3) Let x, x′ ∈ [0, 1) such that ε(x, β) = w0∞ and ε(x′, β) = w′. Then

x =
w1

β
+ · · ·+ wn

βn
and x′ =

w′1
β

+
w′2
β2

+ · · · .

Let

y = x+
x′

βn
=
w1

β
+ · · ·+ wn

βn
+

w′1
βn+1

+
w′2
βn+2

· · · .

We need to prove ww′ ∈ Σβ. It suffices to prove y ∈ [0, 1) and ε(y, β) = ww′. In fact,
since I(w) is a left-closed and right-open interval with w1

β
+ · · ·+ wn

βn as its left endpoint and

|I(w)| = β−n, we get

I(w) = [
w1

β
+ · · ·+ wn

βn
,
w1

β
+ · · ·+ wn

βn
+

1

βn
) = [x, x+

1

βn
).

So y ∈ I(w) ⊂ [0, 1) and ε1(y, β) = w1, · · · , εn(y, β) = wn. That is

y =
w1

β
+ · · ·+ wn

βn
+
T nβ y

βn
= x+

T nβ y

βn
,

which implies T nβ y = x′. Then for any k ≥ 1,

εn+k(y, β) = bβT n+k−1β yc = bβT k−1β x′c = εk(x
′, β) = w′k.

Thus ε(y, β) = ww′. Therefore ww′ ∈ Σβ.
(3)⇒ (4) is obvious.
(4)⇒ (5) follows from ε∗1 · · · ε∗k ∈ Σ∗β for any k ≥ 1.
(5) ⇒ (1) We need to prove T nβ I(w) = [0, 1). It suffices to show T nβ I(w) ⊃ [0, 1) since the
reverse inclusion is obvious. Indeed, let x ∈ [0, 1) and u = w1 · · ·wnε1(x, β)ε2(x, β) · · · .
At first, we prove u ∈ Σβ. By Lemma 2.3, it suffices to prove σk(u) ≺ ε∗(1, β) for any k ≥ 0
below.
1© If k ≥ n, we have

σk(u) = εk−n+1(x, β)εk−n+2(x, β) · · · = σk−n(ε(x, β))
by Lemma 2.3
≺ ε∗(1, β).

2© If 0 ≤ k ≤ n− 1, we have

σk(u) = wk+1 · · ·wnε1(x, β)ε2(x, β) · · · .
Since ε(x, β) ≺ ε∗(1, β), there exists m ∈ N such that ε1(x, β) = ε∗1, · · · , εm−1(x, β) = ε∗m−1
and εm(x, β) < ε∗m. Combining wε∗1 · · · ε∗m ∈ Σ∗β and Lemma 2.3, we get

σk(u) ≺ wk+1 · · ·wnε∗1 · · · ε∗m0∞ = σk(wε∗1 · · · ε∗m0∞) ≺ ε∗(1, β).

Therefore u ∈ Σβ.
Let y ∈ [0, 1) such that ε(y, β) = u. Then y ∈ I(w). Since

εk(T
n
β y, β) = bβT n+k−1β yc = εn+k(y, β) = εk(x, β) for any k ∈ N,

we get x = T nβ y ∈ T nβ I(w).
(1) ⇔ (6) follows from the facts that the function ε(·, β) : [0, 1) → Σβ is bijective and the
commutativity ε(Tβx, β) = σ(ε(x, β)). �

Proposition 3.2. Let w,w′ ∈ Σ∗β be full and |w| = n ∈ N. Then

(1) the word ww′ is full;
(2) the word σk(w) := wk+1 · · ·wn is full for any 1 ≤ k < n ;
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(3) the digit wn < bβc if β /∈ N. In particular, wn = 0 if 1 < β < 2.

Proof. (1) A proof has been given in [BuWa14]. We give another proof here to be self-
contained. Since w′ is full, by Proposition 3.1 (5) we get w′ε∗1 · · · ε∗m ∈ Σ∗β for any
m ≥ 1. Then ww′ε∗1 · · · ε∗m ∈ Σ∗β by the fullness of w and Proposition 3.1 (4), which
implies that ww′ is full by Proposition 3.1 (5).

(2) Since w is full , by Proposition 3.1 (5) we get w1 · · ·wnε∗1 · · · ε∗m ∈ Σ∗β, also wk+1 · · ·wnε∗1 · · · ε∗m
∈ Σ∗β for any m ≥ 1. Therefore wk+1 · · ·wn is full by Proposition 3.1 (5).

(3) Since w is full, by (2) we know that σn−1w = wn is full. Then |I(wn)| = 1/β by
Proposition 3.1 (2). Suppose wn = bβc, then I(wn) = I(bβc) = [bβc/β, 1) and
|I(wn)| = 1 − bβc/β < 1/β which is a contradiction. Therefore wn 6= bβc. So
wn < bβc noting that wn ≤ bβc.

�

Proposition 3.3. (1) Any truncation of ε(1, β) is not full (if it is admissible). That is,
ε(1, β)|k is not full for any k ∈ N (if it is admissible).
(2) Let k ∈ N. Then ε∗(1, β)|k is full if and only if ε(1, β) is finite with length M which
exactly divides k, i.e., M |k.

Proof. (1) We show the conclusion by the cases that ε(1, β) is finite or infinite.
Cases 1. ε(1, β) is finite with length M .
1© If k ≥M , then ε(1, β)|k = ε1 · · · εM0k−M is not admissible.
2© If 1 ≤ k ≤ M − 1, combining εk+1 · · · εM0∞ = ε(T kβ 1, β) ∈ Σβ, ε1 · · · εkεk+1 · · · εM0∞ =
ε(1, β) /∈ Σβ and Proposition 3.1 (1) (3), we know that ε(1, β)|k = ε1 · · · εk is not full.
Cases 2. ε(1, β) is infinite. It follows from the similar proof with Case 1 2©.
(2) ⇐ Let p ∈ N with k = pM . For any n ≥ 1, we know that ε∗1 · · · ε∗pMε∗1 · · · ε∗n =
ε∗(1, β)|k+n is admissible by Lemma 2.2. Therefore ε∗(1, β)|k = ε∗1 · · · ε∗pM is full by Proposi-
tion 3.1 (1) (5).
⇒ (By contradiction) Suppose that the conclusion is not true, that is, either ε(1, β) is

infinite or finite with length M , but M does not divide k exactly.
1© If ε(1, β) is infinite, then ε∗(1, β)|k = ε(1, β)|k is not full by (1), which contradicts our
condition.
2© If ε(1, β) is finite with length M , but M - k, then there exists p ≥ 0 such that
pM < k < pM +M . Since ε∗(1, β)|k is full, combining

εk−pM+1 · · · εM0∞ = ε(T k−pMβ 1, β) ∈ Σβ,

and Proposition 3.1 (1) (3), we get ε∗1 · · · ε∗kεk−pM+1 · · · εM−1εM0∞ ∈ Σβ, i.e., ε∗1 · · · ε∗pMε1 · · · εM−1εM0∞

∈ Σβ which is false since πβ(ε∗1 · · · ε∗pMε1 · · · εM−1εM0∞) = 1. �

The following lemma is a convenient way to show that an admissible word is not full.

Lemma 3.4. Any admissible word ends with a prefix of ε(1, β) is not full. That is, if there
exists 1 ≤ s ≤ n such that w = w1 · · ·wn−sε1 · · · εs ∈ Σn

β, then w is not full.

Proof. It follows from Proposition 3.2 (2) and Proposition 3.3 (1). �

Notation 3.5. Denote the first position where w and ε(1, β) are different by

m(w) := min{k ≥ 1 : wk < εk} for w ∈ Σβ

and
m(w) := m(w0∞) for w ∈ Σ∗β.
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Remark 3.6. (1) Let ε(1, β) be finite with the length M . Then m(w) ≤ M for any w in Σβ

or Σ∗β.
(2) Let w ∈ Σn

β and m(w) ≥ n. Then w = ε1 · · · εn−1wn with wn ≤ εn.

Proof. (1) follows from w ≺ ε(1, β).
(2) follows from w1 = ε1, · · · , wn−1 = εn−1 and w ∈ Σn

β. �

We give the complete characterizations of the structures of admissible words, full words
and non-full words by the following two theorems and a corollary as basic results of this
paper.

Theorem 3.7 (The structure of admissible words). Let w ∈ Σn
β. Then w = w1w2 · · ·wn

can be uniquely decomposed to the form

ε1 · · · εk1−1wn1ε1 · · · εk2−1wn2 · · · ε1 · · · εkp−1wnpε1 · · · εl−1wn, (3.1)

where p ≥ 0, k1, · · · , kp, l ∈ N, n = k1 + ... + kp + l, nj = k1 + · · · + kj, wnj
< εkj for all

1 ≤ j ≤ p, wn ≤ εl and the words ε1 · · · εk1−1wn1 , · · · , ε1 · · · εkp−1wnp are all full.
Moreover, if ε(1, β) is finite with length M , then k1, · · · , kp, l ≤ M . For the case l = M ,

we must have wn < εM .

Theorem 3.8 (The structural criterion of full words). Let w ∈ Σn
β and w∗ := ε1 · · · εl−1wn

be the suffix of w as in Theorem 3.7. Then

w is full⇐⇒ w∗ is full⇐⇒ wn < ε|w∗|.

Corollary 3.9. Let w ∈ Σn
β. Then w is not full if and only if it ends with a prefix of

ε(1, β). That is, when ε(1, β) is infinite (finite with length M), there exists 1 ≤ s ≤ n (
1 ≤ s ≤ min{M − 1, n} respectively) such that w = w1 · · ·wn−sε1 · · · εs.

Proof. ⇒ follows from Theorem 3.7 and Theorem 3.8. ⇐ follows from Lemma 3.4. �

Proof of Theorem 3.7. Firstly, we show the decomposition by the cases that ε(1, β) is infi-
nite or finite.
Case 1. ε(1, β) is infinite.
Compare w and ε(1, β). If m(w) ≥ n, then w has the form (3.1) with w = ε1 · · · εn−1wn by
Remark 3.6 (2). If m(w) < n, let n1 = k1 = m(w) ≥ 1. Then w|n1 = ε1 · · · εk1−1wn1 with
wn1 < εk1 . Continue to compare the tail of w and ε(1, β). If m(wn1+1 · · ·wn) ≥ n − n1,
then wn1+1 · · ·wn = ε1 · · · εn−n1−1wn with wn ≤ εn−n1 by Remark 3.6 (2) and w has the
form (3.1) with w = ε1 · · · εk1−1wn1ε1 · · · εn−n1−1wn. If m(wn1+1 · · ·wn) < n − n1, let k2 =
m(wn1+1 · · ·wn) ≥ 1 and n2 = n1 + k2. Then w|n2 = ε1 · · · εk1−1wn1ε1 · · · εk2−1wn2 with
wn2 < εk2 . Continue to compare the tail of w and ε(1, β) for finite times. Then we can get
that w must have the form (3.1).
Case 2. ε(1, β) is finite with length M .
By Remark 3.6(1), we get m(w),m(wn1+1 · · ·wn), · · · , m(wnj+1 · · ·wn), · · · , m(wnp+1 · · ·wn) ≤
M in Case 1. That is, k1, k2, · · · , kp, l ≤ M in (3.1). For the case l = M , combining
wnp+1 = ε1, · · · , wn−1 = εM−1 and wnp+1 · · ·wn ≺ ε1 · · · εM , we get wn < εM .
Secondly, ε1 · · · εk1−1wn1 , · · · , ε1 · · · εkp−1wnp are obviously full by Lemma 2.7. �

Proof of Theorem 3.8. By Proposition 3.2 (1) (2), we know that w is full ⇐⇒ w∗ is full. So
it suffices to prove that w∗ is full ⇐⇒ wn < ε|w∗|.
⇒ By w∗ ∈ Σ∗β, we get wn ≤ εl. Suppose wn = εl, then w∗ = ε1 · · · εl is not full by

Proposition 3.3 (1), which contradicts our condition. Therefore wn < εl.
⇐ Let wn < εl. We show that w∗ is full by the cases that ε(1, β) is infinite or finite.
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Case 1. When ε(1, β) is infinite. we know that w∗ is full by ε1 · · · εl−1εl ∈ Σ∗β, wn < εl and
Lemma 2.7.
Case 2. When ε(1, β) is finite with length M , we know l ≤M by Theorem 3.7.
If l < M , we get ε1 · · · εl−1εl ∈ Σ∗β. Then w∗ is full by wn < εl and Lemma 2.7.
If l = M , we know that ε1 · · · εl−1(εl − 1) = ε1 · · · εM−1(εM − 1) = ε∗1 · · · ε∗M is full by
Proposition 3.3 (2). Then w∗ is full by wn ≤ εl − 1 and Lemma 2.7. �

From Theorem 3.7, Theorem 3.8 and Corollary 3.9 above, we can understand the struc-
tures of admissible words, full words and non-full words clearly, and judge whether an ad-
missible word is full or not conveniently. They will be used for many times in the following
sections.

4. The lengths of the runs of full words

Definition 4.1. Let β > 1. Define {ni(β)} to be those positions of ε(1, β) that are nonzero.
That is,

n1(β) := min{k ≥ 1 : εk 6= 0} and ni+1(β) := min{k > ni : εk 6= 0}

if there exists k > ni such that εk 6= 0 for i ≥ 1. We call {ni(β)} the nonzero sequence of β,
also denote it by {ni} if there is no confusion.

Remark 4.2. Let β > 1, {ni} be the nonzero sequence of β. Then the followings are obviously
true.

(1) n1 = 1;
(2) ε(1, β) is finite if and only if {ni} is finite;
(3) ε(1, β) = εn10 · · · 0εn20 · · · 0εn30 · · · .

Definition 4.3. (1) Denote by [w(1), · · · , w(l)] the l consecutive words from small to large
in Σn

β with lexicographic order, which is called a run of words and l is the length of the run

of words. If w(1), · · · , w(l) are all full, we call [w(1), · · · , w(l)] a run of full words.
(2) A run of full words [w(1), · · · , w(l)] is said to be maximal, if it can not be elongated, i.e.,
“ the previous word of w(1) in Σn

β is not full or w(1) = 0n ” and “ the next word of w(l) is

not full or w(l) = ε∗(1, β)|n ”.
In a similar way, we can define a run of non-full words and a maximal run of non-full words.

Definition 4.4. We use Fnβ to denote the set of all the maximal runs of full words in Σn
β

and F n
β to denote the length set of Fnβ , i.e.,

F n
β := {l ∈ N : there exists [w(1), · · · , w(l)] ∈ Fnβ }.

Similarly, we use N n
β to denote the set of all the maximal runs of non-full words and Nn

β to
denote the length set of N n

β .
In Fnβ ∪N n

β , we use Snmax to denote the maximal run with ε∗(1, β)|n as its last element.

Remark 4.5. For any w ∈ Σn
β with w 6= 0n and wn = 0, the previous word of w in the

lexicographic order in Σn
β is w1 · · ·wk−1(wk − 1)ε∗1 · · · ε∗n−k where k = max{1 ≤ i ≤ n − 1 :

wi 6= 0}.

Notice that we will use the basic fact above for many times in the proofs of the following
results in this paper.
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Theorem 4.6 (The lengths of the maximal runs of full words). Let β > 1 with β /∈ N, {ni}
be the nonzero sequence of β. Then

F n
β =

 {εni
: ni ≤ n} if ε(1, β) is infinite or finite with length M ≥ n;

{εni
} ∪ {ε1 + εM} if ε(1, β) is finite with length M < n amd M |n;

{εni
: ni 6= M} ∪ {ε1 + εM} if ε(1, β) is finite with length M < n and M - n.

Proof. It follows from Definition 4.3, Lemma 4.8, Lemma 4.9 and the fact that ni ≤ M for
any i when ε(1, β) is finite with length M . �

Remark 4.7. By Theorem 4.6, when 1 < β < 2, we have

F n
β =

{
{1} if ε(1, β) is infinite or finite with length M ≥ n;
{1, 2} if ε(1, β) is finite with length M < n.

Lemma 4.8. Let β > 1 with β /∈ N, {ni} be the nonzero sequence of β. Then the length
set of Fnβ \{Snmax}, i.e., {l ∈ N : there exists [w(1), · · · , w(l)] ∈ Fnβ \{Snmax}} is {εni

: ni ≤ n} if ε(1, β) is infinite or finite with length M > n;
{εni

: ni 6= M} if ε(1, β) is finite with length M = n;
{εni

: ni 6= M} ∪ {ε1 + εM} if ε(1, β) is finite with length M < n.

Proof. Let [w(l), w(l−1), · · · , w(2), w(1)] ∈ Fnβ \{Snmax} and w which is not full be the next

word of w(1). By Corollary 3.9, there exist 1 ≤ s ≤ n, 0 ≤ a ≤ n − 1 with a + s = n
(s ≤M − 1, when ε(1, β) is finite with length M), such that w = w1 · · ·waε1 · · · εs.
(1) If s = 1, that is, w = w1 · · ·wn−1ε1, then w(1) = w1 · · ·wn−1(ε1−1), w(2) = w1 · · ·wn−1(ε1−
2), · · · , w(ε1) = w1 · · ·wn−10 are full by Lemma 2.7.
1© If n = 1 or w1 · · ·wn−1 = 0n−1, it is obvious that l = ε1.
2© If n ≥ 2 and w1 · · ·wn−1 6= 0n−1, there exists 1 ≤ k ≤ n − 1 such that wk 6= 0 and
wk+1 = · · · = wn−1 = 0. Then the previous word of w(ε1) is

w(ε1+1) = w1 · · ·wk−1(wk − 1)ε∗1 · · · ε∗n−k.
i) If ε(1, β) is infinite or finite with length M ≥ n, then w(ε1+1) = w1 · · ·wk−1(wk −

1)ε1 · · · εn−k is not full by Lemma 3.4. Therefore l = ε1.
ii) If ε(1, β) is finite with length M < n, we divide this case into two parts according

to M - n− k or M |n− k.
a© If M - n− k, then ε∗1 · · · ε∗n−k is not full by Proposition 3.3 (2) and w(ε1+1) is also
not full by Proposition 3.2 (2). Therefore l = ε1.
b© If M |n − k, then ε∗1 · · · ε∗n−k is full by Proposition 3.3 (2) and w(ε1+1) is also

full by Lemma 2.7 and Proposition 3.2 (1). Let w′1 · · ·w′n−M := w1 · · ·wk−1(wk −
1)ε∗1 · · · ε∗n−k−M . Then

w(ε1+1) = w′1 · · ·w′n−Mε1 · · · εM−1(εM − 1).

The consecutive previous words

w(ε1+2) = w′1 · · ·w′n−Mε1 · · · εM−1(εM − 2)
w(ε1+3) = w′1 · · ·w′n−Mε1 · · · εM−1(εM − 3)

· · ·
w(ε1+εM ) = w′1 · · ·w′n−Mε1 · · · εM−10

are all full by Lemma 2.7. Since ε1 6= 0 and M > 1, there exists 1 ≤ t ≤M − 1 such
that εt 6= 0 and εt+1 = · · · = εM−1 = 0. Then, as the previous word of w(ε1+εM ),

w(ε1+εM+1) = w′1 · · ·w′n−Mε1 · · · εt−1(εt − 1)ε1 · · · εM−t
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is not full by Lemma 3.4. Therefore l = ε1 + εM .

(2) If 2 ≤ s ≤ n, we divide this case into two parts according to εs = 0 or not.
1© If εs = 0, there exists 1 ≤ t ≤ s− 1 such that εt 6= 0 and εt+1 = · · · = εs = 0 by ε1 6= 0.
Then w = w1 · · ·waε1 · · · εt0s−t, and w(1) = w1 · · ·waε1 · · · εt−1(εt − 1)ε1 · · · εs−t is not full by
Lemma 3.4, which contradicts our assumption.
2© If εs 6= 0, then

w(1) = w1 · · ·waε1 · · · εs−1(εs − 1)
w(2) = w1 · · ·waε1 · · · εs−1(εs − 2)

· · ·
w(εs) = w1 · · ·waε1 · · · εs−10

are full by Lemma 2.7. By nearly the same way of 1©, we can prove that the previous word
of w(εs) is not full. Therefore l = εs.

i) If ε(1, β) is infinite or finite with length M > n, combining 2 ≤ s ≤ n and εs 6= 0,
we know that the set of all values of l = εs is {εni

: 2 ≤ ni ≤ n}.
ii) If ε(1, β) finite with length M ≤ n, combining 2 ≤ s ≤ M − 1 and εs 6= 0, we know

that the set of all values of l = εs is {εni
: 2 ≤ ni < M}.

By the discussion above, we can see that in every case, every value of l can be achieved.
Combining ni ≤M for any i when ε(1, β) is finite with length M , εn1 = ε1 and all the cases
discussed above, we get the conclusion of this lemma. �

Lemma 4.9. Let β > 1 with β /∈ N. If ε(1, β) is finite with length M and M |n, then
Snmax ∈ Fnβ and the length of Snmax is εM . Otherwise, Snmax ∈ N n

β .

Proof. Let w(1) = ε∗1 · · · ε∗n.
If ε(1, β) is finite with length M and M |n, then w(1) is full by Proposition 3.3 (2). We get
Snmax ∈ Fnβ . Let p = n/m − 1 ≥ 0. As the consecutive previous words of w(1), w(2) =

(ε1 · · · εM−1(εM − 1))pε1 · · · εM−1(εM − 2), · · · , w(εM ) = (ε1 · · · εM−1(εM − 1))pε1 · · · εM−10 are
full by Lemma 2.7. By nearly the same way in the proof of Lemma 4.8 (2) 1©, we know
that the previous word of w(εM ) is not full. Therefore the number of Snmax is εM .
Otherwise, w(1) is not full by Proposition 3.3 (2). We get Snmax ∈ N n

β . �

Remark 4.10. All the locations of all the lengths in Theorem 4.6 can be found in the proof
of Lemma 4.8 and Lemma 4.9.

Corollary 4.11 (The maximal length of the runs of full words). Let β > 1 with β /∈ N.
Then

maxF n
β =

{
bβc+ εM if ε(1, β) is finite with length M < n;
bβc if ε(1, β) is infinite or finite with length M ≥ n.

Proof. It follows from εni
≤ εn1 = ε1 = bβc for any i and Theorem 4.6. �

Corollary 4.12 (The minimal length of the maximal runs of full words). Let β > 1 with
β /∈ N, {ni} be the nonzero sequence of β. Then

minF n
β =

{
min
ni<M

εni
if ε(1, β) is finite with length M < n and M - n;

min
ni≤n

εni
otherwise.

Proof. It follows from ni ≤ M for any i when ε(1, β) is finite with length M and Theorem
4.6. �

Remark 4.13. It follows from Theorem 4.6 that the lengths of maximal runs of full words
rely on the nonzero terms in ε(1, β), i.e., {εni

}.
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5. The lengths of runs of non-full words

Let {ni} be the nonzero sequence of β. We will use a similar concept of numeration
system and greedy algorithm in the sense of [AlSh03, Section 3.1] to define the function τβ
below. For any s ∈ N, we can write s =

∑
i≥1 aini greedily and uniquely where ai ∈ N∪{0}

for any i and then define τβ(s) =
∑

i≥1
ai. Equivalently, we have the following.

Definition 5.1 (The function τβ). Let β > 1, {ni} be the nonzero sequence of β and s ∈ N.
Define τβ(s) to be the number needed to add up to s greedily by {ni} with repetition. We
define it precisely below.
Let ni1 = max{ni : ni ≤ s}. (Notice n1 = 1.)
If ni1 = s, define τβ(s) := 1.
If ni1 < s, let t1 = s− ni1 and ni2 = max{ni : ni ≤ t1}.

If ni2 = t1, define τβ(s) := 2.
If ni2 < t1, let t2 = t1 − ni2 and ni3 = max{ni : ni ≤ t2}.

· · ·
Generally for j ∈ N. If nij = tj−1(t0 := s), define τβ(s) := j.

If nij < tj−1, let tj = tj−1 − nij and nij+1
= max{ni : ni ≤ tj}.

· · ·
Noting that n1 = 1, it is obvious that there exist ni1 ≥ ni2 ≥ · · · ≥ nid all in {ni} such that
s = ni1 + ni2 + · · ·+ nid , i.e., nid = td−1. Define τβ(s) := d.

In the following we give an example to show how to calculate τβ.

Example 5.2. Let β > 1 such that ε(1, β) = 302000010∞ (such β exists by Lemma 2.4).
Then the nonzero sequence of β is {1, 3, 8}. The way to add up to 7 greedily with repetition
is 7 = 3 + 3 + 1. Therefore τβ(7) = 3.

Proposition 5.3 (Properties of τβ). Let β > 1, {ni} be the nonzero sequence of β and
n ∈ N. Then

(1) τβ(ni) = 1 for any i;
(2) τβ(s) = s for any 1 ≤ s ≤ n2 − 1, and τβ(s) ≤ s for any s ∈ N;
(3) {1, 2, · · · , k} ⊂ {τβ(s) : 1 ≤ s ≤ n} for any k ∈ {τβ(s) : 1 ≤ s ≤ n};
(4) {τβ(s) : 1 ≤ s ≤ n} = {1, 2, · · · , max

1≤s≤n
τβ(s)}.

Proof. (1) and (2) follow from Definition 5.1 and n1 = 1.

(3) Let k ∈ {τβ(s) : 1 ≤ s ≤ n}. If k = 1, the conclusion is obviously true. If k ≥ 2, let
2 ≤ t0 ≤ n such that k = τβ(t0), ni1 = max{ni : ni ≤ t0} and t1 = t0 − ni1 . Then
1 ≤ t1 < t0 ≤ n and it is obvious that k − 1 = τβ(t1) ∈ {τβ(s) : 1 ≤ s ≤ n} by
Definition 5.1. By the same way, we can get k−2, k−3, · · · , 1 ∈ {τβ(s) : 1 ≤ s ≤ n}.
Therefore {1, 2, · · · , k} ⊂ {τβ(s) : 1 ≤ s ≤ n}.

(4) The inclusion {τβ(s) : 1 ≤ s ≤ n} ⊂ {1, 2, · · · , max
1≤s≤n

τβ(s)} is obvious and the reverse

inclusion follows from max
1≤s≤n

τβ(s) ∈ {τβ(s) : 1 ≤ s ≤ n} and (3).

�

For n ∈ N, we use rn(β) to denote the maximal length of the strings of 0’s in ε∗1 · · · ε∗n as
in [FWL16], [HTY16] and [TYZ16], i.e.,

rn(β) = max{k ≥ 1 : ε∗i+1 = · · · = ε∗i+k = 0 for some 0 ≤ i ≤ n− k}
with the convention that max ∅ = 0.

The following relation between τβ(s) and rs(β) will be used in the proof of Corollary 5.9.
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Proposition 5.4. Let β > 1. If ε(1, β) is infinite, then τβ(s) ≤ rs(β) + 1 for any s ≥ 1. If
ε(1, β) is finite with length M , then τβ(s) ≤ rs(β) + 1 is true for any 1 ≤ s ≤M .

Proof. Let {ni} be the nonzero sequence of β and ni1 = max{ni : ni ≤ s}. No matter ε(1, β)
is infinite with s ≥ 1 or finite with length M ≥ s ≥ 1, we have

τβ(s)− 1 = τβ(s− ni1) ≤ s− ni1 ≤ rs(β)

since s− ni1 = 0 or ε∗ni1
+1ε
∗
ni1

+2 · · · ε∗s = εni1
+1εni1

+2 · · · εs = 0s−ni1 . �

Lemma 5.5. Let n ∈ N, β > 1 with β /∈ N and w ∈ Σn
β end with a prefix of ε(1, β), i.e.,

w = w1 · · ·wn−sε1 · · · εs where 1 ≤ s ≤ n. Then the previous consecutive τβ(s) words starting
from w in Σn

β are not full, but the previous (τβ(s) + 1)-th word is full.

Remark 5.6. Notice that w = w1 · · ·wn−sε1 · · · εs does not imply that w1 · · ·wn−s is full.
For example, when β > 1 with ε(1, β) = 1010010∞, let w = 001010 = w1 · · ·w4ε1ε2. But
w1 · · ·w4 = 0010 is not full by Lemma 3.4.

Proof of Lemma 5.5. Let {ni} be the nonzero sequence of β and

w(1) := w
(1)
1 · · ·w(1)

a1
ε1 · · · εs := w1 · · ·wn−sε1 · · · εs = w,

where a1 = n− s. It is not full by Lemma 3.4.
· · ·
Generally for any j ≥ 1, suppose w(j), w(j−1), · · · , w(2), w(1) to be j consecutive non-full

words in Σn
β where w(j) = w

(j)
1 · · ·w

(j)
aj ε1 · · · εtj−1

, tj−1 > 0 (t0 := s). Let w(j+1) ∈ Σn
β be the

previous word of w(j) and nij := max{ni : ni ≤ tj−1}.
If nij = tj−1, then εtj−1

> 0 and w(j+1) = w
(j)
1 · · ·w

(j)
aj ε1 · · · εtj−1−1(εtj−1

− 1) is full by Lemma
2.7. We get the conclusion of this lemma since τβ(s) = j at this time.

If nij < tj−1, let tj = tj−1 − nij . Then w(j) = w
(j)
1 · · ·w

(j)
aj ε1 · · · εnij

0tj and the previous word

is
w(j+1) = w

(j)
1 · · ·w(j)

aj
ε1 · · · εnij

−1(εnij
− 1)ε1 · · · εtj =: w

(j+1)
1 · · ·w(j+1)

aj+1
ε1 · · · εtj ,

where aj+1 = aj+nij . By Lemma 3.4, w(j+1) is also not full. At this time, w(j+1), w(j), · · · , w(2), w(1)

are j + 1 consecutive non-full words in Σn
β.

· · ·
Noting that n1 = 1, it is obvious that there exist d ∈ N such that w(d), · · · , w(1) are
not full, and s = ni1 + ni2 + · · · + nid , i.e., nid = td−1. Then εtd−1

> 0 and w(d+1) =

w
(d)
1 · · ·w

(d)
ad ε1 · · · εtd−1−1(εtd−1

− 1) is full by Lemma 2.7. We get the conclusion since τβ(s) =
d. �

Corollary 5.7 (The maximal length of the runs of non-full words). Let β > 1 with β /∈ N.
Then

maxNn
β =

{
max{τβ(s) : 1 ≤ s ≤ n} if ε(1, β) is infinite;
max{τβ(s) : 1 ≤ s ≤ min{M − 1, n}} if ε(1, β) is finite with length M.

Proof. Let l ∈ Nn
β and [w(l), w(l−1), · · · , w(2), w(1)] ∈ N n

β . Then, by Corollary 3.9, there
exists {

1 ≤ s0 ≤ n if ε(1, β) is infinite
1 ≤ s0 ≤ min{M − 1, n} if ε(1, β) is finite with length M

such that w(1) = w
(1)
1 · · ·w

(1)
n−s0ε1 · · · εs0 and we have l = τβ(s0) by Lemma 5.5. Therefore

maxNn
β ≤

{
max{τβ(s) : 1 ≤ s ≤ n} if ε(1, β) is infinite
max{τβ(s) : 1 ≤ s ≤ min{M − 1, n}} if ε(1, β) is finite with length M
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by the randomicity of the selection of l. On the other hand, the equality follows from the
fact that 0n−t0ε1 · · · εt0 ∈ Σn

β included, the previous consecutive τβ(t0) words are not full by
Lemma 5.5 where

τβ(t0) =

{
max{τβ(s) : 1 ≤ s ≤ n} if ε(1, β) is infinite;
max{τβ(s) : 1 ≤ s ≤ min{M − 1, n}} if ε(1, β) is finite with length M.

�

In the following we give an example to show how to calculate the maximal length of the
runs of non-full words in Σn

β.

Example 5.8. Let n = 8 and ε(1, β) = εn10εn2000εn30 · · · 0εn40 · · · 0εn50 · · · , where n1 =
1, n2 = 3, n3 = 7, n4 > 8, εni

6= 0 for any i. Then, by Corollary 5.7, the maximal length of
the runs of non-full words in Σ8

β is max{τβ(s) : 1 ≤ s ≤ 8}. Since

1 = 1 ⇒ τβ(1) = 1; 2 = 1 + 1 ⇒ τβ(2) = 2; 3 = 3 ⇒ τβ(3) = 1;
4 = 3 + 1 ⇒ τβ(4) = 2; 5 = 3 + 1 + 1 ⇒ τβ(5) = 3; 6 = 3 + 3 ⇒ τβ(6) = 2;
7 = 7 ⇒ τβ(7) = 1; 8 = 7 + 1 ⇒ τβ(8) = 2,

we get that max{τβ(s) : 1 ≤ s ≤ 8} = 3 is the maximal length.

Corollary 5.9. Let β > 1. We have maxNn
β ≤ rn(β) + 1 for any n ∈ N. Moreover, if

ε(1, β) is finite with length M , then maxNn
β ≤ rM−1(β) + 1 for any n ∈ N.

Proof. If ε(1, β) is infinite, then

maxNn
β = max{τβ(s) : 1 ≤ s ≤ n} ≤ max{rs(β) + 1 : 1 ≤ s ≤ n} = rn(β) + 1.

If ε(1, β) is finite with length M , then

maxNn
β = max{τβ(s) : 1 ≤ s ≤ min{M−1, n}} ≤ max{rs(β)+1 : 1 ≤ s ≤ min{M−1, n}}.

and we have maxNn
β ≤ rn(β) + 1 and maxNn

β ≤ rM−1(β) + 1. �

Remark 5.10. Combining Corollary 5.7 and τβ(n) ≤ n (or Corollary 5.9 and rn(β) + 1 ≤ n),
we have maxNn

β ≤ n for any n ∈ N which contains the result about the distribution of full
cylinders given by Bugeaud and Wang [BuWa14, Theorem 1.2]. Moreover, if ε(1, β) is finite
with length M , then maxNn

β ≤M − 1 for any n ∈ N. If β ∈ A0 which is a class of β given
by Li and Wu [LiWu08], then maxNn

β has the upper bound max
s≥1

rs(β) + 1 which does not

rely on n.

Theorem 5.11 (The lengths of the maximal runs of non-full words). Let β > 1 with β /∈ N
and {ni} be the nonzero sequence of β. Then Nn

β is given by the following table.

Condition Conclusion
Case

β ε(1, β) Nn
β =

β > 2
infinite D1 (1)

finite with length M D2 (2)

1 < β < 2

infinite
n < n2 {n} (3)
n ≥ n2 D5 (4)

finite with length M

n2 = M
n < M {n} (5)
n = M {M − 1} (6)
n > M D4 (7)

n2 < M
n < n2 {n} (8)

n2 ≤ n < M D5 (9)
n ≥M D3 (10)
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Here D1 = {1, 2, · · · ,max{τβ(s) : 1 ≤ s ≤ n}};
D2 = {1, 2, · · · ,max{τβ(s) : 1 ≤ s ≤ min{M − 1, n}}};
D3 = {1, 2, · · · ,max{τβ(s) : 1 ≤ s ≤M − 1}};
D4 = {1, 2, · · · ,min{n−M,M − 1}} ∪ {M − 1};
D5 = {1, 2, · · · ,min{n2 − 1, n− n2 + 1}} ∪ {τβ(s) : n2 − 1 ≤ s ≤ n}.

Corollary 5.12 (The minimal length of the maximal runs of non-full words). Let β > 1
with β /∈ N and {ni} be the nonzero sequence of β. Then

minNn
β =

 M − 1 if 1 < β < 2 and ε(1, β) is finite with length M = n2 = n;
n if 1 < β < 2 and n < n2;
1 otherwise.

Proof. It follows from Theorem 5.11. �

Proof of Theorem 5.11. We prove the conclusions for the cases (1)-(10) from simple ones to
complicate as below.

Cases (3), (5) and (8) can be proved together. When 1 < β < 2 and n < n2, no matter
ε(1, β) is finite or not, noting that bβc = 1 and ε(1, β)|n2 = 10n2−21, we get ε1 · · · εn = 10n−1.
Then all the elements in Σn

β from small to large are 0n, 0n−11, 0n−210, · · · , 10n−1, where 0n

is full and the others are all not full by Lemma 3.4. Therefore Nn
β = {n}.

Case (6). When 1 < β < 2, ε(1, β) is finite with length M and n = n2 = M , noting that
bβc = 1 and ε(1, β) = 10M−210∞, all the elements in Σn

β from small to large are 0M , 0M−11,

0M−210, · · · , 010M−2, 10M−1, where 0M is full, 10M−1 is also full by Proposition 3.3 (2) and
the others are all not full by Lemma 3.4. Therefore Nn

β = {M − 1}.
Case (1). When β > 2 and ε(1, β) is infinite, it suffices to prove Nn

β ⊃ D1 since the reverse
inclusion follows immediately from Corollary 5.7. By Proposition 5.3 (4), it suffices to show
Nn
β ⊃ {τβ(s) : 1 ≤ s ≤ n}. In fact:

1© For any 1 ≤ s ≤ n − 1, let u = 0n−s−110s. It is full by ε1 = bβc ≥ 2 and Corollary
3.9. The previous word u(1) = 0n−sε1 · · · εs is not full by Lemma 3.4. So τβ(s) ∈ Nn

β

by Lemma 5.5.
2© For s = n, combining the fact that ε1 · · · εs is maximal in Σn

β and Lemma 5.5, we get
τβ(s) ∈ Nn

β .

Therefore Nn
β = D1.

Case (2) can be proved by similar way as Case (1).
Case (10). When 1 < β < 2, ε(1, β) is finite with length M and n2 < M ≤ n, we have

ε(1, β) = 10n2−21εn2+1 · · · εM0∞. It suffices to prove Nn
β ⊃ D3 since the reverse inclusion

follows immediately from Corollary 5.7. By Proposition 5.3 (4), it suffices to show Nn
β ⊃

{τβ(s) : 1 ≤ s ≤M − 1}. In fact:

1© For any n2−1 ≤ s ≤M −1, let u = 0n−s−110s. It is full by s ≥ n2−1 and Corollary
3.9. The previous word u(1) = 0n−sε∗1 · · · ε∗s = 0n−sε1 · · · εs is not full by Lemma 3.4.
So τβ(s) ∈ Nn

β by Lemma 5.5.
2© For any 1 ≤ s ≤ n2− 2, we get n2− 1 ≤ n3−n2 by Lemma 2.4. So 1 ≤ s ≤ n2− 2 ≤
n3 − n2 − 1 ≤M − n2 − 1 ≤ n− n2 − 1 and then n− n2 − s ≥ 1. Let

u = 0n−n2−s10n2+s−1.
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It is full by n2 + s− 1 ≥ n2− 1 and Corollary 3.9. Noting that n2 ≤ n2 + s− 1 < n3,
the previous word of u is

u(1) = 0n−n2−s+1ε∗1 · · · ε∗n2+s−1
= 0n−n2−s+1ε1 · · · εn2+s−1
= 0n−n2−s+110n2−210s−1

= 0n−n2−s+110n2−2ε1 · · · εs
which is not full by Lemma 3.4. So τβ(s) ∈ Nn

β by Lemma 5.5.

Therefore Nn
β = D3.

Case (7). When 1 < β < 2, ε(1, β) is finite with length M and n > n2 = M , we have
ε(1, β) = 10M−210∞.
On the one hand, we prove Nn

β ⊂ D4. Let l ∈ Nn
β and [w(l), w(l−1), · · · , w(2), w(1)] ∈ N n

β . By
Corollary 3.9, there exist 1 ≤ s ≤ M − 1, 2 ≤ n−M + 1 ≤ a ≤ n− 1 such that a + s = n
and w(1) = w1 · · ·waε1 · · · εs. Then l = τβ(s) = s by Lemma 5.5 and s ≤ n2 − 1. Moreover,
w(1) = w1 · · ·wa10s−1.

1© If w1 · · ·wa = 0a, then the next word of w(1) is w := 0a−110s which is full by [w(l),
w(l−1), · · · , w(2), w(1)] ∈ N n

β . Combining s ≤ M − 1 and Corollary 3.9, we get
s = M − 1. Hence l = M − 1 ∈ D4.

2© If w1 · · ·wa 6= 0a, we get a ≥ M by wk+1 · · ·wa10∞ ≺ ε(1, β) = 10M−210∞ for any
k ≥ 0. Hence s ≤ n−M and l = s ∈ D4.

On the other hand, we prove Nn
β ⊃ D4.

1© For M − 1, let u = 0n−M10M−1 which is full by Corollary 3.9. The consecutive
previous words are u(1) = 0n−M+110M−2, · · · , u(M−1) = 0n−11, u(M) = 0n where
u(1), · · · , u(M−1) are not full by Lemma 3.4, and u(M) is full. Therefore M − 1 ∈ Nn

β .
2© For any 1 ≤ s ≤ min{n−M,M − 1}, let

u(1) = 0n−M−sε∗1 · · · ε∗M+s = 0n−M−s10M−110s−1 = 0n−M−s10M−1ε1 · · · εs.

i) If s = n−M , then u(1) = ε∗1 · · · ε∗M+s is maximal in Σn
β.

ii) If s < n−M , i.e.,n−M − s−1 ≥ 0, then the next word of u(1) is 0n−M−s−110M+s

which is full by Corollary 3.9.
Hence we must have s = τβ(s) ∈ Nn

β by s ≤ n2 − 1 and Lemma 5.5.

Therefore Nn
β = D4.

Cases (4) and (9) can be proved together. When 1 < β < 2, ε(1, β) is infinite with n ≥ n2

or ε(1, β) is finite with length M and n2 ≤ n < M , we have ε(1, β) = 10n2−21εn2+1εn2+2 · · · .
By Proposition 5.3 (2), we get

D5 = {τβ(s) : 1 ≤ s ≤ min{n2 − 1, n− n2 + 1} or n2 − 1 ≤ s ≤ n}.
On the one hand, we prove Nn

β ⊂ D5. Let l ∈ Nn
β and [w(l), w(l−1), · · · , w(2), w(1)] ∈ N n

β .
By Corollary 3.9, there exist 1 ≤ s ≤ n, 0 ≤ a ≤ n − 1 such that a + s = n and
w(1) = w1 · · ·waε1 · · · εs. Then l = τβ(s) by Lemma 5.5.

1© If a = 0, then s = n and l = τβ(n) ∈ D5.
2© If a ≥ 1, we divide it into two cases.

i) If w1 · · ·wa = 0a, then the next word of w(1) is 0a−110s which is full by [w(l), w(l−1),
· · · , w(2), w(1)] ∈ N n

β . Combining ε(1, β) = 10n2−21εn2+1εn2+2 · · · and Corollary 3.9,
we get s ≥ n2 − 1. Hence l = τβ(s) ∈ D5.
ii) If w1 · · ·wa 6= 0a, we get a ≥ n2−1 by wk+1 · · ·wa10∞ ≺ ε(1, β) = 10n2−21εn2+1εn2+2 · · ·
for any k ≥ 0. Hence s ≤ n− n2 + 1.
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a© If s ≥ n2 − 1, then l = τβ(s) ∈ {τβ(s) : n2 − 1 ≤ s ≤ n} ⊂ D5.
b© If s ≤ n2 − 1, then l = τβ(s) ∈ {τβ(s) : 1 ≤ s ≤ min{n2 − 1, n− n2 + 1}} ⊂ D5.

On the other hand, we prove Nn
β ⊃ D5.

1© For any n2− 1 ≤ s ≤ n, let u(1) = 0n−sε∗1 · · · ε∗s. No matter whether ε(1, β) is infinite
or finite with length M > n (which implies s < M), we get u(1) = 0n−sε1 · · · εs which
is not full by Lemma 3.4.
i) If s = n, then u(1) = ε∗1 · · · ε∗n is maximal in Σn

β.

ii) If n2 − 1 ≤ s ≤ n − 1, then the next word of u(1) is 0n−s−110s which is full by
s ≥ n2 − 1 and Corollary 3.9.
Hence we must have τβ(s) ∈ Nn

β by Lemma 5.5.
2© For any 1 ≤ s ≤ min{n2 − 1, n− n2 + 1}, let

u(1) = 0n−n2−s+1ε∗1 · · · ε∗n2+s−1.

No matter ε(1, β) is infinite or finite with length M > n (which implies n2 + s− 1 ≤
n < M), we get

u(1) = 0n−n2−s+1ε1 · · · εn2+s−1.

Since Lemma 2.4 implies n2 − 1 ≤ n3 − n2, we get 1 ≤ s ≤ n2 − 1 ≤ n3 − n2 and
then n2 ≤ n2 + s− 1 < n3. Hence

u(1) = 0n−n2−s+110n2−210s−1

= 0n−n2−s+110n2−2ε1 · · · εs
which is not full by Lemma 3.4.
i) If s = n− n2 + 1, then u(1) = ε∗1 · · · ε∗n is maximal in Σn

β.

ii) If s < n−n2 +1, i.e., n−n2−s ≥ 0, then the next word of u(1) is 0n−n2−s10n2+s−1

which is full by Corollary 3.9.
Hence we must have τβ(s) ∈ Nn

β by Lemma 5.5.

Therefore Nn
β = D5. �

Remark 5.13. It follows from Theorem 5.11 that the lengths of the maximal runs of non-full
words rely on the positions of nonzero terms in ε(1, β), i.e., {ni}.
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