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Expansion of real numbers is a basic research topic in number theory. Usually we expand real numbers in one given base. In this paper, we begin to systematically study expansions in multiple given bases in a reasonable way, which is a generalization in the sense that if all the bases are taken to be the same, we return to the classical expansions in one base. In particular, we focus on greedy, quasi-greedy, lazy, quasi-lazy and unique expansions in multiple bases.

INTRODUCTION

As is well known, expansion in a given base is the most common way to represent a real number. For example, expansions in base 10 are used in our daily lives and expansions in base 2 are used in computer systems. Expansions of real numbers in integer bases have been widely used. As a natural generalization, in 1957, Rényi [START_REF] Rényi | Representations for real numbers and their ergodic properties[END_REF] introduced expansions in non-integer bases, which attracted a lot of attention in the following decades. Until Neunhäuserer [START_REF] Neunhäuserer | Non-uniform expansions of real numbers[END_REF] began the study of expansions in two bases recently in 2019, all expansions studied were in one base. In this paper, we begin the study of expansions in multiple bases.

Let N be the set of positive integers {1, 2, 3, • • • } and R be the set of real numbers. We recall the concept of expansions in one base first. Let m ∈ N, β ∈ (1, m + 1] and x ∈ R. A sequence w = (w i ) i≥1 ∈ {0, 1,

• • • , m} N is called a β-expansion of x if x = π β (w) := ∞ i=1 w i β i .
It is known that x has a β-expansion if and only if x ∈ [0, m β-1 ] (see for examples [START_REF] Baker | Generalised golden ratios over integer alphabets[END_REF][START_REF] Baker | Digit frequencies and self-affine sets with non-empty interior[END_REF][START_REF] Baker | Numbers with simply normal β-expansions[END_REF][START_REF] Rényi | Representations for real numbers and their ergodic properties[END_REF]).

The following question is natural to be thought of: Given m ∈ N, N , in which case should we say that (w i ) i≥1 is a (β 0 , β 1 , • • • , β m )-expansion of x, such that when β 0 , β 1 , • • • , β m are taken to be the same β, we have x = ∞ i=1 w i β i ? Proposition 1.1 may answer this question. Let us give some notations first. For all m ∈ N and β 0 , β 1 , • • • , β m > 1, we define

β 0 , β 1 , • • • , β m > 1, x ∈ R and (w i ) i≥1 ∈ {0, 1, • • • , m}
a k := k β k and b k := k β k + m β k (β m -1)
for all k ∈ {0, • • • , m}.

Note that a 0 = 0 and b m = m βm-1 . For all m ∈ N, let

D m := (β 0 , • • • , β m ) : β 0 , • • • , β m > 1 and a k < a k+1 ≤ b k < b k+1 for all k, 0 ≤ k ≤ m-1 .
It is worth to note that D m is large enough to ensure that (β, 

w i β w 1 β w 2 • • • β w i .
Thus we give the following.

Definition 1.2 (Expansions in multiple bases

). Let m ∈ N, β 0 , • • • , β m > 1 and x ∈ R. We say that the sequence w ∈ {0,

• • • , m} N is a (β 0 , • • • , β m )-expansion of x if x = ∞ i=1 w i β w 1 β w 2 • • • β w i .
On the one hand, it is straightforward to see that when β 0 , • • • , β m are taken to be the same β, (β 0 , • • • , β m )-expansions are just β-expansions. On the other hand, we will see in Section 2 that many properties of β-expansions can be generalized to (β 0 , • • • , β m )expansions. This further confirms that our definition of expansions in multiple bases is reasonable.

Let σ be the shift map defined by σ(w 1 w 2 • • • ) := w 2 w 3 • • • for any sequence (w i ) i≥1 . Given β 0 , • • • , β m > 1, for every integer k ∈ {0, • • • , m}, we define the linear map T k by

T k (x) := β k x -k for x ∈ R. a 0 a 1 a 2 a 3
The main results in this paper are the following theorem and corollaries, in which g * and l * denote the quasi-greedy and quasi-lazy expansion maps respectively (see Definition 2.1 (2) and ( 4)), and ≺, , , denote the lexicographic order. These results focus on determining greedy, lazy and unique expansions in multiple bases (see Definition 2.1 (1) and ( 3)), and generalize some classical results on expansions in one base in some former well known papers.

Theorem 1.3. Let m ∈ N, (β 0 , • • • , β m ) ∈ D m , x ∈ [0, m βm-1 ], w ∈ {0, • • • , m} N be a (β 0 , • • • , β m )- expansion of x and ξ + := max 0≤k≤m-1 T k (a k+1 ), ξ -:= min 0≤k≤m-1 T k (a k+1 ), η + := max 1≤k≤m T k (b k-1 ), η -:= min 1≤k≤m T k (b k-1 ).
(1) 1 If w is a greedy expansion, then σ n w ≺ g * (ξ + ) whenever w n < m.

2 If σ n w ≺ g * (ξ -) whenever w n < m, then w is a greedy expansion. (2) 1 If w is a lazy expansion, then σ n w l * (η -) whenever w n > 0.

2 If σ n w l * (η + ) whenever w n > 0, then w is a lazy expansion. (3) 1 If w is a unique expansion, then σ n w ≺ g * (ξ + ) whenever w n < m and σ n w l * (η -) whenever w n > 0. 2 

If

σ n w ≺ g * (ξ -) whenever w n < m and σ n w l * (η + ) whenever w n > 0, then w is a unique expansion.

For the case that there are at most two different bases, we get the following criteria directly from Theorem 1.3.

Corollary 1.4. Let β 0 , β 1 ∈ (1, 2], x ∈ [0, 1 β 1 -1
] and w ∈ {0, 1} N be a (β 0 , β 1 )-expansion of x. Then (1) w is a greedy expansion if and only if σ n w ≺ g * ( β 0 β 1 ) whenever w n = 0; (2) w is a lazy expansion if and only if σ n w l * ( β 1 β 0 (β 1 -1) -1) whenever w n = 1; (3) w is a unique expansion if and only if

σ n w ≺ g * ( β 0 β 1 ) whenever w n = 0 and σ n w l * ( β 1 β 0 (β 1 -1)
-1) whenever w n = 1.

The following corollary provide some ways to determine whether an expansion is greedy, lazy or unique by the quasi-greedy expansion of 1 and the quasi-lazy expansion of m βm-1 -1.

Corollary 1.5. Let m ∈ N, (β 0 , • • • , β m ) ∈ D m , x ∈ [0, m βm-1 ] and w ∈ {0, • • • , m} N be a (β 0 , • • • , β m )-expansion of x. (1) 1 Suppose β 0 ≤ β 1 ≤ • • • ≤ β m . If w is a greedy expansion, then σ n w ≺ g * (1) whenever w n < m. 2 Suppose β 0 ≥ β 1 ≥ • • • ≥ β m . If σ n w ≺ g * (1) whenever w n < m, then w is a greedy expansion. (2) 1 Suppose β 0 ≤ β 1 ≤ • • • ≤ β m . If w is a lazy expansion, then σ n w l * ( m βm-1 -1) whenever w n > 0. 2 Suppose β 0 ≥ β 1 ≥ • • • ≥ β m . If σ n w l * ( m βm-1 -1) whenever w n > 0, then w is a lazy expansion. (3) 1 Suppose β 0 ≤ β 1 ≤ • • • ≤ β m . If w is a unique expansion, then σ n w ≺ g * (1) whenever w n < m and σ n w l * ( m β m -1 -1) whenever w n > 0. 2 Suppose β 0 ≥ β 1 ≥ • • • ≥ β m . If σ n w ≺ g * (1) whenever w n < m and σ n w l * ( m β m -1 -1) whenever w n > 0,
then w is a unique expansion.

Take β 0 , • • • , β m to be the same β. By Corollary 1.5, Proposition 2.12, Lemma 3.1 and Proposition 2.8, we get the following corollary, in which k (2) 1 0 ≤ x < 1 and w is a greedy expansion if and only if σ n w ≺ g * (1) for all n ≥ 0;

:= m -k for all k ∈ {0, • • • , m} and w := (w i ) i≥1 for all w = (w i ) i≥1 ∈ {0, • • • , m} N . Corollary 1.6. Let m ∈ N, β ∈ (1, m + 1], x ∈ [0, m β-1 ] and w ∈ {0, • • • , m} N be a β-expansion of x. Then: (1)
2 m β-1 -1 < x ≤ m β-1
and w is a lazy expansion if and only if σ n w g * (1) for all n ≥ 0; [START_REF] Parry | On the β-expansions of real numbers[END_REF]Theorem 3]. See also [START_REF] Allouche | On univoque Pisot numbers[END_REF]Theorem 2.1] and [START_REF] Sidorov | Arithmetic dynamics, Topics in dynamics and ergodic theory[END_REF]Lemma 2.11]).

3 m β-1 -1 < x < 1
Many former papers on β-expansions are restricted to bases belonging to (m, m + 1] or expansion sequences belonging to {0, 1, • • • , β -1} N (see for examples [START_REF] Vries | On the number of unique expansions in non-integer bases[END_REF][START_REF] Vries | Unique expansions of real numbers[END_REF][START_REF] Komornik | Unique infinite expansions in noninteger bases[END_REF]), where β denotes the smallest integer no less than β. Even if all β 0 , • • • , β m are taken to be the same β throughout this paper, we are working under a more general framework: bases belonging to (1, m + 1] and expansion sequences belonging to {0, 1, • • • , m} N (for examples Corollary 1.6 and Proposition 2.12. See also [START_REF] Baker | Generalised golden ratios over integer alphabets[END_REF][START_REF] Vries | Topology of the set of univoque bases[END_REF][START_REF] Kalle | On the bifurcation set of unique expansions[END_REF]).

This paper is organized as follows. In Section 2, we give some notations and study some basic properties of greedy, quasi-greedy, lazy and quasi-lazy expansions in multiplebases. Section 3 is devoted to the proof our main results. In the last section, we present some further questions.

GREEDY, QUASI-GREEDY, LAZY AND QUASI-LAZY EXPANSIONS IN MULTIPLE BASES

Let m ∈ N and β 0 , • • • , β m > 1. We define the projection π β 0 ,••• ,βm by (1) The greedy

π β 0 ,••• ,βm (w 1 • • • w n ) := n i=1 w i β w 1 β w 2 • • • β w i for w 1 • • • w n ∈ {0, • • • , m} n and n ∈ N, and 
π β 0 ,••• ,βm (w) = π β 0 ,••• ,βm (w 1 w 2 • • • ) := lim n→∞ π β 0 ,••• ,βm (w 1 • • • w n ) = ∞ i=1 w i β w 1 β w 2 • • • β w i for w = (w i ) i≥1 ∈ {0, • • • , m} n . When β 0 , • • • , β m are
(β 0 , • • • , β m )-transformation G β 0 ,••• ,βm : [0, m βm-1 ] → [0, m βm-1 ] is defined by x → G β 0 ,••• ,βm x := T k x if x ∈ [a k , a k+1 ) for some k ∈ {0, • • • , m -1}; T m x if x ∈ [a m , b m ].
For all x ∈ [0, m βm-1 ] and n ∈ N, let

g n (x; β 0 , • • • , β m ) := k if G n-1 β 0 ,••• ,βm x ∈ [a k , a k+1 ) for some k ∈ {0, • • • , m -1}; m if G n-1 β 0 ,••• ,βm x ∈ [a m , b m ]. We call the sequence g(x; β 0 , • • • , β m ) := (g n (x; β 0 , • • • , β m )) n≥1 the greedy (β 0 , • • • , β m )- expansion of x. (2) The quasi-greedy (β 0 , • • • , β m )-transformation G * β 0 ,••• ,βm : [0, m βm-1 ] → [0, m βm-1 ] is de- fined by x → G * β 0 ,••• ,βm x :=    T 0 x if x ∈ [0, a 1 ]; T k x if x ∈ (a k , a k+1 ] for some k ∈ {1, • • • , m -1}; T m x if x ∈ (a m , b m ].
For all x ∈ [0, m βm-1 ] and n ∈ N, let

g * n (x; β 0 , • • • , β m ) :=    0 if (G * β 0 ,••• ,βm ) n-1 x ∈ [0, a 1 ]; k if (G * β 0 ,••• ,βm ) n-1 x ∈ (a k , a k+1 ] for some k ∈ {1, • • • , m -1}; m if (G * β 0 ,••• ,βm ) n-1 x ∈ (a m , b m ]. We call the sequence g * (x; β 0 , • • • , β m ) := (g * n (x; β 0 , • • • , β m )) n≥1 the quasi-greedy (β 0 , • • • , β m )-expansion of x. (3) The lazy (β 0 , • • • , β m )-transformation L β 0 ,••• ,βm : [0, m βm-1 ] → [0, m βm-1 ] is defined by x → L β 0 ,••• ,βm x := T 0 x if x ∈ [0, b 0 ]; T k x if x ∈ (b k-1 , b k ] for some k ∈ {1, • • • , m}. For all x ∈ [0, m βm-1 ] and n ∈ N, let l n (x; β 0 , • • • , β m ) := 0 if L n-1 β 0 ,••• ,βm x ∈ [0, b 0 ]; k if L n-1 β 0 ,••• ,βm x ∈ (b k-1 , b k ] for some k ∈ {1, • • • , m}. We call the sequence l(x; β 0 , • • • , β m ) := (l n (x; β 0 , • • • , β m )) n≥1 the lazy (β 0 , • • • , β m )- expansion of x. (4) The quasi-lazy (β 0 , • • • , β m )-transformation L * β 0 ,••• ,βm : [0, m βm-1 ] → [0, m βm-1 ] is defined by x → L * β 0 ,••• ,βm x :=    T 0 x if x ∈ [0, b 0 ); T k x if x ∈ [b k-1 , b k ) for some k ∈ {1, • • • , m -1}; T m x if x ∈ [b m-1 , b m ]. For all x ∈ [0, m βm-1 ] and n ∈ N, let l * n (x; β 0 , • • • , β m ) :=    0 if (L * β 0 ,••• ,βm ) n-1 x ∈ [0, b 0 ); k if (L * β 0 ,••• ,βm ) n-1 x ∈ [b k-1 , b k ) for some k ∈ {1, • • • , m -1}; m if (L * β 0 ,••• ,βm ) n-1 x ∈ [b m-1 , b m ].
We call the sequence l * (x;

β 0 , • • • , β m ) := (l * n (x; β 0 , • • • , β m )) n≥1 the quasi-lazy (β 0 , • • • , β m )- expansion of x.
Generally, let I β 0 ,••• ,βm be the set of tuples (I 0 , • • • , I m ) which satisfy

I 0 ∈ [0, c 1 ], [0, c 1 ) , I k ∈ [c k , c k+1 ], [c k , c k+1 ), (c k , c k+1 ], (c k , c k+1 ) for all k ∈ {1, • • • , m -1}, and 
I m ∈ [c m , m β m -1 ], (c m , m β m -1 ] ,
where

c k ∈ [a k , b k-1 ] for all k ∈ {1, • • • , m} such that c 1 < c 2 < • • • < c m , I 0 ∪ I 1 ∪ • • • ∪ I m = [0, m βm-1 ] and I 0 , I 1 , • • • , I m are all disjoint. For any (I 0 , • • • , I m ) ∈ I β 0 ,••• ,βm , we define the (I 0 , • • • , I m )-(β 0 , • • • , β m )-transformation T I 0 ,••• ,Im β 0 ,••• ,βm : [0, m βm-1 ] → [0, m βm-1 ] by T I 0 ,••• ,Im β 0 ,••• ,βm (x) := T k (x) for x ∈ I k where k ∈ {0, • • • , m}. For all x ∈ [0, m βm-1 ] and n ∈ N, let t n (x; β 0 , • • • , β m ; I 0 , • • • , I m ) := k if (T I 0 ,••• ,Im β 0 ,••• ,βm ) n-1 x ∈ I k where k ∈ {0, • • • , m}. We call the sequence t(x; β 0 , • • • , β m ; I 0 , • • • , I m ) := (t n (x; β 0 , • • • , β m ; I 0 , • • • , I m )) n≥1 the (I 0 , • • • , I m )-(β 0 , • • • , β m )-expansion of x.
It is straightforward to see that greedy, quasi-greedy, lazy and quasi-lazy

(β 0 , • • • , β m )- transformations/expansions are special cases of some (I 0 , • • • , I m )-(β 0 , • • • , β m )-transfor- mations/expansions. For simplification, on the one hand, if β 0 , • • • , β m are understood from the context, we use G, G * , L, L * , g(x), g * (x), l(x) and l * (x) instead of G β 0 ,••• ,βm , G * β 0 ,••• ,βm , L β 0 ,••• ,βm , L * β 0 ,••• ,βm , g(x; β 0 , • • • , β 0 ), g * (x; β 0 , • • • , β 0 ), l(x; β 0 , • • • , β 0 ) and l * (x; β 0 , • • • , β 0 ) respectively, and if x is also understood, we use g n , g * n , l n and l * n instead of g n (x; β 0 , • • • , β m ), g * n (x; β 0 , • • • , β m ), l n (x; β 0 , • • • , β m ) and l * n (x; β 0 , • • • , β m ) respectively for all n ∈ N; on the other hand, if β 0 , • • • , β m and I 0 , • • • , I m are understood, we use T and t(x) instead of T I 0 ,••• ,Im β 0 ,••• ,βm and t(x; β 0 , • • • , β m ; I 0 , • • • , I m ) respectively, and if x is also understood, we use t n instead of t n (x; β 0 , • • • , β m ; I 0 , • • • , I m ) for all n ∈ N.
For the case of a single base, greedy β-transformations and expansions were studied in many former papers [START_REF] Blanchard | β-expansions and symbolic dynamics[END_REF][START_REF] Brucks | Topics from one-dimensional dynamics[END_REF][START_REF] Bugeaud | Distribution of full cylinders and the Diophantine properties of the orbits in β-expansions[END_REF][START_REF] Fan | On the lengths of basic intervals in beta expansions[END_REF][START_REF] Frougny | Finite beta-expansions[END_REF][START_REF] Schmeling | Symbolic dynamics for β-shifts and self-normal numbers[END_REF][START_REF] Schmidt | On periodic expansions of Pisot numbers and Salem numbers[END_REF]), lazy β-transformations and expansions can be found in [START_REF] Dajani | Invariant densities for random β-expansions[END_REF][START_REF] Dajani | From greedy to lazy expansions and their driving dynamics[END_REF][START_REF] Vries | Expansions in non-integer bases[END_REF][START_REF] Erdös | Characterization of the unique expansions 1 = ∞ i=1 q -ni and related problems[END_REF][START_REF] Kalle | Beta-expansions, natural extensions and multiple tilings associated with Pisot units[END_REF], and quasi-greedy β-expansions were introduced in [START_REF] Komornik | On the topological structure of univoque sets[END_REF][START_REF] Lai | Developments in non-integer bases: representability of real numbers and uniqueness[END_REF][START_REF] Pedicini | Greedy expansions and sets with deleted digits[END_REF].

In Proposition 2.3, we will see that the above definition really give (β 0 , • • • , β m )-expansions coincide with Definition 1.2. First we prove the following useful lemma.

Lemma 2.2. Let m ∈ N, (β 0 , • • • , β m ) ∈ D m and x ∈ [0, m βm-1 ]. If (I 0 , • • • , I m ) ∈ I β 0 ,••• ,βm , then for all n ∈ N, we have x = π(t 1 • • • t n ) + T n x β t 1 • • • β tn .
In particular, for all n ∈ N, we have

x = π(g 1 • • • g n ) + G n x β g 1 • • • β gn = π(g * 1 • • • g * n ) + (G * ) n x β g * 1 • • • β g * n = π(l 1 • • • l n ) + L n x β l 1 • • • β ln = π(l * 1 • • • l * n ) + (L * ) n x β l * 1 • • • β l * n . Proof. (By induction) Let k ∈ {0, • • • , m} such that x ∈ I k . Then t 1 = k, T x = T k x = β k x-k and we have π(t 1 ) + T x β t 1 = t 1 + T x β t 1 = β k x β k = x.
Suppose that the conclusion is true for some n ∈ N, we prove that it is also true for n + 1 as follows. In fact, we have

π(t 1 • • • t n+1 ) + T n+1 x β t 1 • • • β t n+1 = π(t 1 • • • t n ) + t n+1 + T n+1 x β t 1 • • • β t n+1 ( ) = π(t 1 • • • t n ) + β t n+1 T n x β t 1 • • • β t n+1 = x,
where the last equality follows from the inductive hypothesis and ( ) can be proved as follows

. Let k ∈ {0, • • • , m} such that T n x ∈ I k . Then t n+1 = k and t n+1 + T n+1 x = t n+1 + T k (T n x) = k + (β k T n x -k) = β t n+1 T n x. Proposition 2.3. Let m ∈ N, (β 0 , • • • , β m ) ∈ D m and x ∈ [0, m βm-1 ]. If (I 0 , • • • , I m ) ∈ I β 0 ,••• ,βm , then the (I 0 , • • • , I m )-(β 0 , • • • , β m )-expansion of x is a (β 0 , • • • , β m )-expansion of x, i.e., x = π(t(x)),
and for all n ∈ N we have

T n x = π(t n+1 t n+2 • • • ).
In particular, greedy, quasi-greedy, lazy and quasi-lazy

(β 0 , • • • , β m )-expansions of x are all (β 0 , • • • , β m )-expansions of x, i.e., x = π(g(x)) = π(g * (x)) = π(l(x)) = π(l * (x)),
and for all n ∈ N we have

G n x = π(g n+1 g n+2 • • • ), (G * ) n x = π(g * n+1 g * n+2 • • • ), L n x = π(l n+1 l n+2 • • • ), (L * ) n x = π(l * n+1 l * n+2 • • • ). Proof. By Lemma 2.2 and T n x β t 1 • • • β tn ≤ m βm-1 (min{β 0 , • • • , β m }) n → 0 as n → ∞, we get x = lim n→∞ π(t 1 • • • t n ) = π(t(x)). That is, x = π(t 1 • • • t n ) + π(t n+1 t n+2 • • • ) β t 1 • • • β tn . It follows from Lemma 2.2 that T n x = π(t n+1 t n+2 • • • ).
Greedy, quasi-greedy, lazy and quasi-lazy expansions are not necessarily identical. A real number may have many different expansions even in one given base (see for examples [START_REF] Erdös | On the uniqueness of the expansions 1 = q -ni[END_REF][START_REF] Erdös | Characterization of the unique expansions 1 = ∞ i=1 q -ni and related problems[END_REF][START_REF] Sidorov | Almost every number has a continuum of β-expansions[END_REF]). 

T vn • • • • • T v 1 x > • • • > T v 2 • T v 1 x > T v 1 x > x. Let k ∈ {0, • • • , m -1}, by (β 0 , • • • , β m ) ∈ D m , we get k β k + m β k (β m -1) = b k < b k+1 < • • • < b m = m β m -1 , which implies k β k -1 < m βm-1 .
Thus for all y > m βm-1 and k ∈ {0, • • • , m}, we have y > k β k -1 , i.e., T k y > y. Then we perform the maps T v 1 , • • • , T vn to x one by one to get the conclusion.

(2) Let s ∈ {0, • • • , m} such that T s x = min 0≤k≤m T k x. For all n ∈ N, we prove

T w n+1 • • • • • T w 1 x -T wn • • • • • T w 1 x > T s x -x.
In fact, it suffices to prove

T w n+1 • • • • • T w 1 x -T wn • • • • • T w 1 x > T w n+1 x -x.

This follows from

T w n+1 • T wn • • • • • T w 1 x -T w n+1 x = (β w n+1 T wn • • • • • T w 1 x -w n+1 ) -(β w n+1 x -w n+1 ) = β w n+1 (T wn • • • • • T w 1 x -x) > T wn • • • • • T w 1 x -x
where the last inequality follows from β w n+1 > 1 and

T wn • • • • • T w 1 x -x > 0 (by (1)).
(3) Deduce a contradiction.

On the one hand, for all n ∈ N, we have

T wn • • • • • T w 1 x = (T wn • • • • • T w 1 x -T w n-1 • • • • • T w 1 x) + (T w n-1 • • • • • T w 1 x -T w n-2 • • • • • T w 1 x) + • • • + (T w 2 • T w 1 x -T w 1 x) + (T w 1 x -x) + x by (2) 
≥ n(T s x -x) + x,

where T s x -x > 0 by [START_REF] Allouche | On univoque Pisot numbers[END_REF]. This implies

T wn • • • • • T w 1 x → ∞ as n → ∞.
On the other hand, by

x = ∞ i=1 w i β w 1 • • • β w i ,
we get

T w 1 x = ∞ i=2 w i β w 2 • • • β w i , T w 2 • T w 1 x = ∞ i=3 w i β w 3 • • • β w i ,
• • • , and then for all n ∈ N,

T wn • • • • • T w 1 x = ∞ i=n+1 w i β w n+1 • • • β w i ≤ ∞ i=n+1 m (min{β 0 , • • • , β m }) i-n = m min{β 0 , • • • , β m } -1 < ∞, which contradicts T wn • • • • • T w 1 x → ∞ as n → ∞.
We should keep the following lemma in mind.

Lemma 2.4. Let m ∈ N, (β 0 , • • • , β m ) ∈ D m and w ∈ {0, • • • , m} N . Then w = m ∞ if and only if π(w) = m βm-1 . Proof. ⇒ is obvious. ⇐ (By contradiction) Suppose w = m ∞ and ∞ i=1 w i β w 1 • • • β w i = m β m -1 . (2.1) 
Then there exists k ∈ N such that

w 1 • • • w k-1 = m k-1 and w k < m. By applying T k-1 m to (2.1), we get w k β w k + ∞ i=k+1 w i β w k • • • β w i = m β m -1 .
It follows from applying T w k to the above equality that

∞ i=1 w k+i β w k+1 • • • β w k+i = mβ w k β m -1 -w k . (2.2)
On the one hand, by Proposition 1.1 we know

∞ i=1 w k+i β w k+1 • • • β w k+i ≤ m β m -1 . (2.3)
On the other hand, by

(β 0 , • • • , β m ) ∈ D m and w k < m, we get w k β w k + m β w k (β m -1) = b w k < b w k +1 < • • • < b m = m β m -1 , which implies mβ w k β m -1 -w k > m β m -1 .
This contradicts (2.2) and (2.3).

The following useful criteria generalize [17, Lemma 1].

Proposition 2.5 (Basic criteria of greedy, quasi-greedy, lazy and quasi-lazy expansions).

Let m ∈ N, (β 0 , • • • , β m ) ∈ D m , x ∈ [0, m βm-1 ] and w ∈ {0, • • • , m} N be a (β 0 , • • • , β m )- expansion of x.
(1) w is the greedy expansion if and only if π(w n w n+1 • • • ) < a wn+1 whenever w n < m.

(2) When x = 0, w is the quasi-greedy expansion if and only if it does not end with 0 ∞ and π(w n w n+1 • • • ) ≤ a wn+1 whenever w n < m.

(3) w is the lazy expansion if and only if 

π(w n w n+1 • • • ) > b wn-1 whenever w n > 0. (4) When x = m βm-1 ,
g 1 := k if x ∈ [a k , a k+1 ) for some k ∈ {0, • • • , m -1} m if x ∈ [a m , b m ] and (w i ) i≥1 is a (β 0 , • • • , β m )-expansion of x, which implies x ≥ a w 1 . i) If w 1 = m, then x ≥ a m , which implies g 1 = m = w 1 . ii) If w 1 < m, by condition π(w 1 w 2 • • • ) < a w 1 +1 we get x < a w 1 +1 . It follows from x ≥ a w 1 that g 1 = w 1 . Suppose w 1 • • • w n-1 = g 1 • • • g n-1
for some n ≥ 2. We need to prove w n = g n in the following. Recall

g n := k if G n-1 x ∈ [a k , a k+1 ) for some k ∈ {0, • • • , m -1}; m if G n-1 x ∈ [a m , b m ].
Since the fact that

(w i ) i≥1 is a (β 0 , • • • , β m )-expansion of x implies x = π(w 1 • • • w n-1 ) + π(w n w n+1 • • • ) β w 1 • • • β w n-1 , by Lemma 2.2 we know G n-1 x = π(w n w n+1 • • • ). This implies G n-1 x ≥ a wn . i) If w n = m, then G n-1 x ≥ a m , which implies g n = m = w n . ii) If w n < m, by condition π(w n w n+1 • • • ) < a wn+1 we get G n-1 x < a wn+1 . It follows from G n-1 x ≥ a wn that g n = w n . (2) ⇒ Suppose that w is the quasi-greedy (β 0 , • • • , β m )-expansion of x, i.e., (w i ) i≥1 = (g * i ) i≥1 .
i) Prove that w does not end with 0 ∞ . (By contradiction) Assume that there exists n ∈ N such that

w n+1 w n+2 • • • = 0 ∞ . By Proposition 2.3, we get (G * ) n x = π(0 ∞ ) = 0. It follows from the definition of G * that (G * ) n-1 x = 0, (G * ) n-2 x = 0, • • • , G * x = 0 and x = 0, which contradicts x = 0. ii) Suppose w n < m. Similarly to (1) ⇒ , we get π(w n w n+1 • • • ) ≤ a wn+1 .
⇐ follows in a way similar to (1) ⇐ .

(3) and ( 4) follow in a way similar to (1) and (2) noting Lemma 2.4.

Proposition 2.6 (Lexicographic order on greedy, quasi-greedy, lazy and quasi-lazy expansions

). Let m ∈ N, (β 0 , • • • , β m ) ∈ D m and x ∈ [0, m βm-1 ]. (1 
) Among all the (β 0 , • • • , β m )-expansions of x, the greedy expansion and the lazy expansion are maximal and minimal respectively in lexicographic order. (2) Among all the (β 0 , • • • , β m )-expansions of x which do not end with 0 ∞ , the quasi-greedy expansion is maximal in lexicographic order. (3) Among all the (β 0 , • • • , β m )-expansions of x which do not end with m ∞ , the quasi-lazy expansion is minimal in lexicographic order.

Proof.

(1) Let v ∈ {0, • • • , m} N be a (β 0 , • • • , β m )-expansion of x.
1 Prove v g(x).

(By contradiction) Assume v g(x). Then there exists n ∈ N such that

v 1 • • • v n-1 = g 1 • • • g n-1 and v n > g n . Since Proposition 2.5 (1) implies π(g n g n+1 • • • ) < a gn+1 and (β 0 , • • • , β m ) ∈ D m implies a gn+1 ≤ a gn+2 ≤ • • • ≤ a vn = vn βv n , we get π(g n g n+1 • • • ) < vn βv n
and then

x = π(g(x)) = π(g 1 • • • g n-1 ) + π(g n g n+1 • • • ) β g 1 • • • β g n-1 < π(v 1 • • • v n-1 ) + v n β v 1 • • • β v n-1 β vn = π(v 1 • • • v n ) ≤ π(v).
This contradicts x = π(v). 2 We can prove v l(x) in a way similar to 1 noting that Proposition 1.1 implies

m βm-1 ≥ π(v n+1 v n+2 • • • ).
(2) and (3) follow in the same way as [START_REF] Allouche | On univoque Pisot numbers[END_REF], noting that v does not end with The following definition on admissibility is a natural generalization of [28, Definition 2.1 ( 2)] (see also [START_REF] Li | Beta-expansion and continued fraction expansion[END_REF]Definition 2.1]).

0 ∞ implies π(v 1 • • • v n ) < π(v),

Definition 2.7 (Admissibility

). Let m ∈ N and (β 0 , • • • , β m ) ∈ D m . For fixed (I 0 , • • • , I m ) ∈ I β 0 ,••• ,βm , a sequence w ∈ {0, • • • , m} N is called (I 0 , • • • , I m )-admissible if there exists x ∈ [0, m βm-1 ] such that w = t(x). We let T = T (β 0 , • • • , β m ; I 0 , • • • , I m ) denote the set of (I 0 , • • • , I m )-admissible sequences.
In particular, a sequence w ∈ {0, • • • , m} N is called greedy, quasi-greedy, lazy and quasi-lazy (admissible) if there exists x ∈ [0, m βm-1 ] such that w = g(x), g * (x), l(x) and l * (x) respectively. The sets of greedy, quasi-greedy, lazy and quasi-lazy sequences are denoted respectively by

G = G(β 0 , • • • , β m ), G * = G * (β 0 , • • • , β m ), L = L(β 0 , • • • , β m ) and L * = L * (β 0 , • • • , β m ). Proposition 2.8 (Commutativity). Let m ∈ N, (β 0 , • • • , β m ) ∈ D m and (I 0 , • • • , I m ) ∈ I β 0 ,••• ,βm . Then (1) π • σ(w) = T • π(w) for all w ∈ T and t • T (x) = σ • t(x) for all x ∈ [0, m βm-1 ]; (2) σ(T ) = T and T ([0, m βm-1 ]) = [0, m βm-1 ]; (3) t • π(w) = w for all w ∈ T and π • t(x) = x for all x ∈ [0, m βm-1 ]; (4) π| T : T → [0, m βm-1 ] and t : [0, m βm-1 ] → T are both increasing bijections. T σ / / π T π [0, m βm-1 ] T / / t O O [0, m βm-1 ] t O O
In particular, the above properties hold for the greedy, quasi-greedy, lazy and quasi-lazy cases.

Proof.

(1) 1 Let w ∈ T . We need to prove π • σ(w) = T • π(w). In fact, there exists

x ∈ [0, m βm-1 ] such that w = t(x), and then π(w) = x by Proposition 2.3. On the one hand,

π • σ(w) = π(w 2 w 3 • • • ) = ∞ i=2 w i β w 2 • • • β w i .
On the other hand,

T • π(w) = T x ( ) = T w 1 x = β w 1 x -w 1 = β w 1 ∞ i=1 w i β w 1 • • • β w i -w 1 = ∞ i=2 w i β w 2 • • • β w i ,
where ( ) follows from the fact that t

1 (x) = w 1 implies x ∈ I w 1 . 2 Let x ∈ [0, m βm-1 ]. We need to prove t • T (x) = σ • t(x). In fact, it follows immediately from the definition of t that t n (T x) = t 1 (T n-1 (T x)) = t 1 (T n x) = t n+1 (x) for all n ∈ N. (2) T ([0, m βm-1 ]) = [0, m βm-1 ]
follows from the definition of T . We prove σ(T ) = T as follows. ⊂ Let w ∈ T . Then there exists x ∈ [0, m βm-1 ] such that w = t(x). Thus σw = σ • t(

= === = t • T (x) ∈ T . ⊃ Let w ∈ T . Then there exists y ∈ [0, m βm-1 ] such that w = t(y) and there exists x ∈ [0, m βm-1 ] such that y = T x. It follows from w = t(y) = t(T x)

by

= === = σ(t(x)) and t(x) ∈ T that w ∈ σ(T ).

(3) 1 For any w ∈ T , there exists x ∈ [0, m βm-1 ] such that w = t(x) and π(w) = x, which implies t • π(w) = t(x) = w. 2 For any x ∈ [0, m βm-1 ], π(t(x)) = x follows from Proposition 2.3. ( 4) By (3), it suffices to prove that π| T is increasing. Let w, v ∈ T such that w ≺ v. Then there exists n ≥ 0 such that

w 1 • • • w n = v 1 • • • v n and w n+1 < v n+1 . Let x, y ∈ [0, m βm-1
] such that w = t(x) and v = t(y). We need to prove x < y. In fact, by Lemma 2.2 we get

x = π(w 1 • • • w n ) + T n x β w 1 • • • β wn and y = π(v 1 • • • v n ) + T n y β v 1 • • • β vn . (2.4) 
Since t n+1 (x) = w n+1 and t n+1 (y) = v n+1 imply T n x ∈ I w n+1 and T n y ∈ I v n+1 , by w n+1 < v n+1 we get T n x < T n y. It follows from (2.4) and

w 1 • • • w n = v 1 • • • v n that x < y.
The following is a generalization of [2, Proposition 3.4].

Proposition 2.9 (Relations between greedy/lazy and quasi-greedy/quasi-lazy expansions).

Let m ∈ N, (β 0 , • • • , β m ) ∈ D m and x ∈ [0, m βm-1 ]. (1) Suppose x = 0. 1 g(x) does not end with 0 ∞ if and only if g * (x) = g(x). 2 If g(x) ends with 0 ∞ , then g * (x) = g 1 (x) • • • g n-1 (x)g * (a gn(x) ) = g 1 (x) • • • g n-1 (x)(g n (x) -1)g * (T gn(x)-1 (a gn(x) ))
where n is the greatest integer such that g n (x) > 0.

(2) Suppose x = m βm-1 . 1 l(x) does not end with m ∞ if and only if l * (x) = l(x). 2 If l(x) ends with m ∞ , then l * (x) = l 1 (x) • • • l n-1 (x)l * (b ln(x) ) = l 1 (x) • • • l n-1 (x)(l n (x) + 1)l * (T ln(x)+1 (b ln(x) ))
where n is the greatest integer such that l n (x) < m.

Proof.

(1) 1 ⇐ follows from Proposition 2.5 [START_REF] Baiocchi | Greedy and quasi-greedy expansions in non-integer bases[END_REF].

⇒ (By contradiction) Assume (g i ) i≥1 = (g * i ) i≥1 . Then there exists n ∈ N such that g 1 • • • g n-1 = g * 1 • • • g * n-1 and g n = g * n .
Recall the definitions of g, g * , G and G * . By x = 0 and g

1 = g * 1 , we get x / ∈ {a 0 , • • • , a m }, and then Gx = G * x = 0. By g 2 = g * 2 , we get Gx = G * x / ∈ {a 0 , • • • , a m }, and then G 2 x = (G * ) 2 x = 0.• • • By repeating the above pro- cess, we get G n-1 x = (G * ) n-1 x = 0. It follows from G n-1 x ∈ [a gn , a gn+1 ) if 0 ≤ g n ≤ m -1, [a m , m βm-1 ] if g n = m, and g n = g * n that G n-1 x = a gn This implies G n x = 0, and then for all i ≥ n, G i x = 0. Thus g n+1 g n+2 • • • = 0 ∞ , which contradicts that (g i ) i≥1
does not end with 0 ∞ . 2 Suppose that g(x) ends with 0 ∞ and n is the greatest integer such that g n > 0. We need to consider the following i), ii) and iii).

i

) Prove g * 1 • • • g * n-1 = g 1 • • • g n-1 . (By contradiction) Assume g * 1 • • • g * n-1 = g 1 • • • g n-1 . Then there exists k ∈ {1, • • • , n- 1} such that g * 1 • • • g * k-1 = g 1 • • • g k-1 but g * k = g k . By Lemma 2.2 we get (G * ) k-1 x = G k-1 x. Since g * k = g k , there must exist j ∈ {1, • • • , m} such that G k-1
x = a j . This implies G k x = 0, and then for all i ≥ k we have

G i x = 0. Thus g k+1 g k+2 • • • = 0 ∞ , which contradicts g n > 0. ii) Prove g * n g * n+1 • • • = g * (a gn ).
In fact, we have

σ n-1 (g * (x)) ( ) = g * ((G * ) n-1 x) ( ) = g * (a gn ),
where ( ) follows from Proposition 2.8 (1), and ( ) follows from (G * ) n-1 x = a gn , which is a consequence of i), Lemma 2.2 and

x = π(g 1 • • • g n ) = π(g 1 • • • g n-1 ) + a gn β g 1 • • • β g n-1
.

iii) Prove g * (a gn ) = (g n -1)g * (T gn-1 (a gn )).

In fact, on the one hand, g * 1 (a gn ) = g n -1 follows directly from the definition of g * 1 . On the other hand, we have σ(g * (a gn ))

( ) = g * (G * (a gn )) ( ) = g * (T gn-1 (a gn )),
where ( ) follows from Proposition 2.8 (1), and ( ) follows from g n > 0 and the definition of G * .

(2) follows in a way similar to [START_REF] Allouche | On univoque Pisot numbers[END_REF].

In the proof of our main results, we need the following. (2) In particular, if x < y, we have g(x) ≺ g * (y) and l * (x) ≺ l(y).

Proof. We only need to prove [START_REF] Allouche | On univoque Pisot numbers[END_REF]. Suppose 0 ≤ x < y ≤ m βm-1 . Since t(x) = t (y) will imply x = π(t(x)) = π(t (y)) = y which contradicts x < y, we must have t(x) = t (y). Thus there exists n ≥ 0 such that t 1 (x) • • • t n (x) = t 1 (y) • • • t n (y) and t n+1 (x) = t n+1 (y). It suffices to prove t n+1 (x) < t n+1 (y) by contradiction.

In fact, by x < y and Lemma 2.2, we get T n x < (T ) n y, where T is the

(I 0 , • • • , I m )- (β 0 , • • • , β m )-transformation and T is the (I 0 , • • • , I m )-(β 0 , • • • , β m )-transformation. If t n+1 (x) > t n+1 ( 
y), by T n x ∈ I t n+1 (x) and (T ) n y ∈ I t n+1 (y) we get

T n x ≥ inf I t n+1 (x) ≥ sup I t n+1 (y) ≥ (T ) n y, which contradicts T n x < (T ) n y. Given x ∈ [0, m βm-1 ], let Σ β 0 ,••• ,βm (x) := (w i ) i≥1 ∈ {0, • • • , m} N : (w i ) i≥1 is a (β 0 , • • • , β m )-expansion of x
and

Ω β 0 ,••• ,βm (x) := (S i ) i≥1 ∈ {T 0 , • • • , T m } N : (S n • • • • • S 1 )(x) ∈ 0, m β m -1 for all n ∈ N .
As a generalization of [4, Lemma 3.1] and [5, Lemma 2.1] (see also [START_REF] Baker | Generalised golden ratios over integer alphabets[END_REF]), the following is a dynamical interpretation of (β 0 , • • • , β m )-expansions. 

(w i ) i≥1 to (T w i ) i≥1 is a bijection from Σ β 0 ,••• ,βm (x) to Ω β 0 ,••• ,βm (x). Proof. (1) Prove that the mentioned map is well-defined. Let (w i ) i≥1 ∈ {0, • • • , m} N be a (β 0 , • • • , β m )-expansion of x and n ∈ N. It suffices to prove T wn • • • • • T w 1 x ∈ [0, m βm-1 ].
In fact, by a simple calculation as in (3) in the proof of Proposition 1.1, we get

T wn • • • • • T w 1 x = ∞ i=n+1 w i β w n+1 • • • β w i . Thus T wn • • • • • T w 1 x = ∞ i=1 w n+i β w n+1 • • • β w n+i = π(w n+1 w n+2 • • • ) ∈ [0, m β m -1 ]
by Proposition 1.1.

(2) The mentioned map is obviously injective. We prove that it is surjective as follows.

Let

(w i ) i≥1 ∈ {0, • • • , m} N such that T wn • • • • • T w 1 x ∈ [0, m βm-1 ] for all n ∈ N. By 0 ≤ T wn • • • • • T w 1 x ≤ m β m -1 , we get w n β wn ≤ T w n-1 • • • • • T w 1 x ≤ w n β wn + m β wn (β m -1) , w n-1 β w n-1 + w n β w n-1 β wn ≤ T w n-2 • • • • • T w 1 x ≤ w n-1 β w n-1 + w n β w n-1 β wn + m β w n-1 β wn (β m -1) , • • • , w 1 β w 1 + w 2 β w 1 β w 2 +• • •+ w n β w 1 • • • β wn ≤ x ≤ w 1 β w 1 + w 2 β w 1 β w 2 +• • •+ w n β w 1 • • • β wn + m β w 1 • • • β wn (β m -1) , which implies π(w 1 • • • w n ) ≤ x ≤ π(w 1 • • • w n ) + m (β m -1)(min{β 0 , • • • , β m }) n for all n ∈ N. Let n → ∞, we get x = π(w 1 w 2 • • • ). Thus (w i ) i≥1 ∈ Σ β 0 ,••• ,βm (x).
The following proposition on expansions in one base, which will be used in the proof of Corollary 1.6, implies that w is lazy if and only if w is greedy (recall Definition 2.7) for all w = (w i ) i≥1 ∈ {0, • • • , m} N , where w := (w i ) i≥1 and k := m -k for all k ∈ {0, 

(1, m + 1]. For all x ∈ [0, m β-1 ], we have l m β -1 -x = g(x) and l * m β -1 -x = g * (x). Proof. (1) Prove l( m β-1 -x) = g(x). Let w = g(x)
. By Proposition 2.5 (1) we get π(w n w n+1 • • • ) < a wn+1 whenever w n < m.

It follows from π(w

n w n+1 • • • ) + π(w n w n+1 • • • ) = m β-1 and a wn+1 + b wn-1 = m β-1 that π(w n w n+1 • • • ) > b wn-1 whenever w n > 0.
(2.5)

Since w = g(x) implies π(w) = m β-1 -x, by Proposition 2.5 (3) and (2.5) we get w

= l( m β-1 -x). (2) l * ( m β-1 -x) = g * (x)
follows in a way similar to (1) by applying Proposition 2.5 (2) and (4).

PROOFS OF THE MAIN RESULTS

First we give the following lemma, which is essentially stronger than Theorem 1.3 (1) 1 , (2) 1 and (3) 1 .

Lemma 3.1. Let m ∈ N, (β 0 , • • • , β m ) ∈ D m , x ∈ [0, m βm-1 ] and w ∈ {0, • • • , m} N be a (β 0 , • • • , β m )-expansion of x.
(1) If w is the greedy expansion and w = m ∞ , then

σ n w ≺ g * (ξ + ) for all n ≥ p,
where p := min{i ≥ 0 : G i x < ξ + } exists, and ξ + := max 0≤k≤m-1 T k (a k+1 ). (2) If w is the lazy expansion and w = 0 ∞ , then σ n w l * (η -) for all n ≥ q, where q := min{i ≥ 0 : L i x > η -} exists, and η -:= min 1≤k≤m T k (b k-1 ).

First by condition σ

n w ≺ g * (ξ -), we get w n+1 w n+2 • • • ≺ g * 1 g * T wn i (a wn i +1 ) β w n+1 β w n+2 • • • β wn i - T wn i+1 (a wn i+1 +1 ) β w n+1 β w n+2 • • • β wn i+1
where n 0 := n and β w n+1 β w n+2 ) for all i ≥ 0.

In fact, for all i ≥ 0, by w n i +1 • • • w n i+1 -1 = g * 1 • • • g * s i+1 -1 and w n i+1 + 1 ≤ g * s i+1 (which implies a wn i+1 +1 ≤ a g * s i+1 ), we get

π(w n i +1 • • • w n i+1 -1 ) + a wn i+1 +1 β w n i +1 β w n i +2 • • • β w n i+1 -1 ≤ π(g * 1 • • • g * s i+1 -1 ) + a g * s i+1 β g * 1 β g * 2 • • • β g * s i+1 -1 = π(g * 1 • • • g * s i+1 ) ( )
< π(g * (ξ -)) = ξ -≤ T wn i (a wn i +1 ),

where ( ) follows from the fact that g * (ξ -) does not end with 0 ∞ (by Proposition 2.5 (2)).

(2) follows in a way similar to (1).

(3) follows immediately from (1), (2) and Proposition 2. Proof of Corollary 1.6. (1) follows immediately from Corollary 1.5 and Proposition 2.12.

(2) 1 ⇒ follows from Lemma 3.1 [START_REF] Allouche | On univoque Pisot numbers[END_REF], in which ξ + = 1 and p = 0. ⇐ First by (1) 1 , we know that w is the greedy expansion g(x). Then it follows from g(x) = w < g * (1) ≤ g(1) and the strictly increase of g (by Proposition 2.8 (4)) that x < 1. 2 ⇒ follows from Proposition 2.12 and Lemma 3.1 [START_REF] Baiocchi | Greedy and quasi-greedy expansions in non-integer bases[END_REF], in which η -= m β-1 -1 and q = 0. ⇐ First by (1) 2 , we know that w is the lazy expansion l(x). Then it follows from l(x) = w > g * (1) = l * ( m β-1 -1) ≥ l( m β-1 -1) and the strictly increase of l (by Proposition 2.8 (4)) that x > m β-1 -1. 3 follows from 1 , 2 and Proposition 2.6 (1).

FURTHER QUESTIONS

On the one hand, although necessary and sufficient conditions for sequences to be greedy, lazy and unique expansions in two bases and one base are obtained in Corollary 1.4 and 1.6 respectively, for general cases, i.e., in more than two bases, Theorem 1.3 and Corollary 1.5 can only give necessary conditions and sufficient conditions separately. We look forward to getting necessary and sufficient conditions for general cases.

On the other hand, in our main results, including Theorem 1.3, Corollary 1.4, 1.5 and 1.6, we can see that some special expansions of ξ + , ξ -, η + , η -, 1 and m βm-1 -1 play important roles in determining greedy, lazy and unique expansions of general x. Thus we think that it is meaningful to characterize the greedy, quasi-greedy, lazy, quasi-lazy and unique expansions of ξ + , ξ -, η + , η -, 1 and m βm-1 -1 in multiple bases, especially in combinatorial ways. See [START_REF] Erdös | Characterization of the unique expansions 1 = ∞ i=1 q -ni and related problems[END_REF] for combinatorial characterizations of greedy, lazy and unique expansions of 1 in one base.
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 m+111 ∈ D m for all β ∈ (1, m + 1] and m ∈ N, and (β 0 , β 1 ) ∈ D 1 for all β 0 , β 1 ∈ (1, 2]. Let m ∈ N, (β 0 , • • • , β m ) ∈ D m and x ∈ R. Then x ∈ [0, m βm-1 ] if and only if there exists a sequence w ∈ {0, • • • , m} N such that x = ∞ i=1
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 21 understood from the context, we usually use π instead of π β 0 ,••• ,βm for simplification. Transformations and expansions). Let m ∈ N and (β 0 , • • • , β m ) ∈ D m .

Proof of Proposition 1 . 1 .

 11 ⇒ follows from Proposition 2.3. ⇐ Let w ∈ {0, • • • , m} N and x = π(w). It suffices to prove x ≤ m βm-1 in the following. (By contradiction) We assume x > m βm-1 . (1) Prove that for all v ∈ {0, • • • , m} N and n ∈ N, we have

  and v does not end with m ∞ implies m βm-1 > π(v n+1 v n+2 • • • ) by Proposition 1.1 and Lemma 2.2 for all n ∈ N.
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 210 Interactive increase). Let m ∈ N, (β 0 , • • • , β m ) ∈ D m and x, y ∈ [0, m βm-1 ]. (1) Let (I 0 , • • • , I m ), (I 0 , • • • , I m ) ∈ I β 0 ,••• ,βm such that for all k ∈ {0, • • • , m},the intervals I k and I k are at most different at the end points (i.e., they have the same closure), t(x) be the (I 0 , • • • , I m )-(β 0 , • • • , β m )-expansion of x and t (y) be the (I 0 , • • • , I m )-(β 0 , • • • , β m )expansion of y. If x < y, then t(x) ≺ t (y).

Proposition 2 . 11 (

 211 Dynamical interpretation). Let m ∈ N and (β 0 , • • • , β m ) ∈ D m . For all x ∈ [0, m βm-1 ], the map which sends

  6 (1). Corollary 1.4 follows directly from Theorem 1.3. Corollary 1.5 follows from Theorem 1.3, the facts thatβ 0 ≤ β 1 ≤ • • • ≤ β m implies ξ + ≤ 1 and η -≥ m βm-1 -1, β 0 ≥ β 1 ≥ • • • ≥ β m implies ξ -≥ 1 and η + ≤ m βm-1 -1,and the increase of g * and l * (by Proposition 2.8 (4)).

  1 w is a greedy expansion if and only if σ n w ≺ g * (1) whenever w n < m; 2 w is a lazy expansion if and only if σ n w g * (1) whenever w n > 0; 3 w is a unique expansion if and only if σ n w ≺ g * (1) whenever w n < m and σ n w g * (1) whenever w n > 0.

  and w is a unique expansion if and only if g

	This corollary recovers some classical results. See for examples [13, Theorem 1.1], [20,
	Lemma 4] and

* 

(1) ≺ σ n w ≺ g * (1) for all n ≥ 0.

  w is the quasi-lazy expansion if and only if it does not end with m ∞ and π(w n w n+1 • • • ) ≥ b wn-1 whenever w n > 0.

Proof. (1) ⇒ Suppose that w is the greedy (β 0 , • • • , β m )-expansion of x, i.e., (w i ) i≥1 = (g i ) i≥1 , and suppose w n < m. By g n = w n and the definition of g n , we get G n-1 x < a wn+1 . It follows from Proposition 2.3 that π(g

n g n+1 • • • ) < a wn+1 . Thus π(w n w n+1 • • • ) < a wn+1 . ⇐ We prove (w i ) i≥1 = (g i ) i≥1 by induction. Recall that

  • • • , m}. By Proposition 2.6 (1), we recover [11, Theorem 2.1] and [23, Lemma 1]. Reflection principle in one base). Let m ∈ N and β ∈

	Proposition 2.12 (

  • • • β wn 0 := 1, we only need to proveπ(w n i +1 • • • w n i+1 ) < T wn i (a wn i +1 ) -T wn i+1 (a wn i+1 +1 ) β w n i +1 β w n i +2 • • • β wn i+1 , i.e., π(w n i +1 • • • w n i+1 -1 )+ a wn i+1 β w n i +1 β w n i +2 • • • β w n i+1 -1 < T wn i (a wn i +1 )-a wn i+1 +1 -a wn i+1 β w n i +1 β w n i +2 • • • β w n i+1 -1 , i.e., π(w n i +1 • • • w n i+1 -1 ) + a wn i+1 +1 β w n i +1 β w n i +2 • • • β w n i+1 -1 < T wn i (a wn i +1

β3-1 b 0 b 1 b 2 b 3
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Proof. (1) By (β 0 , • • • , β m ) ∈ D m , we get a k < a k+1 ≤ b k for all k ∈ {0, • • • , m -1}. This implies 0 < ξ + ≤ m βm-1 . 1 Prove that there exists i ≥ 0 such that G i x < ξ + .

(By contradiction) Assume G i x ≥ ξ + for all i ≥ 0. Let r be the greatest integer in {0, • • • , m} such that a r ≤ ξ + and

It follows from w = m ∞ (which implies x < m βm-1 by Lemma 2.4) and the definition of r that c > 0.

i) Prove that for all y ∈ [ξ + , x], we have y -Gy ≥ c.

In fact, if y ≥ a m , then y -Gy = y -β m y + m ≥ x -β m x + m ≥ c. We only need to consider ξ + ≤ y < a m in the following. By ξ + < a m , we know r ≤ m -1 and

There exists

ii) Deduce a contradiction.

Recall that we have assumed G i x ≥ ξ + for all i ≥ 0. First by x ≥ ξ + and i), we get x -Gx ≥ c. Then by ξ + ≤ Gx ≤ x and i) again, we get Gx -

It follows from the summation of the above inequalities that x -G n x ≥ nc, where nc → +∞ as n → +∞. This contradicts G i x ≥ ξ + for all i ≥ 0. 2 For all n ≥ p, σ n w ≺ g * (ξ + ) follows from

where ( ) follows from Proposition 2.8 (1), and ( ) follows from Proposition 2.10 and G n x < ξ + , which can be proved as follows. First we have G p x < ξ + by the definition of p. It suffices to prove that for all y ∈ [0, ξ + ), we have Gy < ξ + . In fact, let y

) and we have

(2) follows in a way similar to (1) by using

Proof of Theorem 1.3. (1) 1 Suppose that w is the greedy (β 0 , • • • , β m )-expansion of x and w n < m. Then G n-1 x ∈ [a wn , a wn+1 ) and

It follows from Lemma 3.1 (1) that σ n w ≺ g * (ξ + ).

2 Suppose w n < m. By Proposition 2.5 (1), we only need to prove π(w n w n+1 • • • ) < a wn+1 , which is equivalent to π(w n+1 w n+2 • • • ) < T wn (a wn+1 ).

For simplification, we use g * i to denote g * i (ξ -) for all i ∈ N in the following.