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EXPANSIONS IN MULTIPLE BASES

YAO-QIANG LI

ABSTRACT. Expansion of real numbers is a basic research topic in number theory. Usually
we expand real numbers in one given base. In this paper, we begin to systematically study
expansions in multiple given bases in a reasonable way, which is a generalization in the
sense that if all the bases are taken to be the same, we return to the classical expansions
in one base. In particular, we focus on greedy, quasi-greedy, lazy, quasi-lazy and unique
expansions in multiple bases.

1. INTRODUCTION

As is well known, expansion in a given base is the most common way to represent a
real number. For example, expansions in base 10 are used in our daily lives and expan-
sions in base 2 are used in computer systems. Expansions of real numbers in integer bases
have been widely used. As a natural generalization, in 1957, Rényi [32] introduced ex-
pansions in non-integer bases, which attracted a lot of attention in the following decades.
Until Neunhäuserer [29] began the study of expansions in two bases recently in 2019, all
expansions studied were in one base. In this paper, we begin the study of expansions in
multiple bases.

Let N be the set of positive integers {1, 2, 3, · · · } and R be the set of real numbers. We
recall the concept of expansions in one base first. Let m ∈ N, β ∈ (1,m+ 1] and x ∈ R. A
sequence w = (wi)i≥1 ∈ {0, 1, · · · ,m}N is called a β-expansion of x if

x = πβ(w) :=
∞∑
i=1

wi
βi
.

It is known that x has a β-expansion if and only if x ∈ [0, m
β−1 ] (see for examples [3, 4, 5,

32]).
The following question is natural to be thought of: Given m ∈ N, β0, β1, · · · , βm >

1, x ∈ R and (wi)i≥1 ∈ {0, 1, · · · ,m}N, in which case should we say that (wi)i≥1 is a
(β0, β1, · · · , βm)-expansion of x, such that when β0, β1, · · · , βm are taken to be the same β,
we have x =

∑∞
i=1

wi

βi ? Proposition 1.1 may answer this question.
Let us give some notations first. For all m ∈ N and β0, β1, · · · , βm > 1, we define

ak :=
k

βk
and bk :=

k

βk
+

m

βk(βm − 1)
for all k ∈ {0, · · · ,m}.

Note that a0 = 0 and bm = m
βm−1 . For all m ∈ N, let

Dm :=
{

(β0, · · · , βm) : β0, · · · , βm > 1 and ak < ak+1 ≤ bk < bk+1 for all k, 0 ≤ k ≤ m−1
}
.
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It is worth to note that Dm is large enough to ensure that (β, · · · , β︸ ︷︷ ︸
m+1

) ∈ Dm for all β ∈

(1,m+ 1] and m ∈ N, and (β0, β1) ∈ D1 for all β0, β1 ∈ (1, 2].

Proposition 1.1. Let m ∈ N, (β0, · · · , βm) ∈ Dm and x ∈ R. Then x ∈ [0, m
βm−1 ] if and only if

there exists a sequence w ∈ {0, · · · ,m}N such that

x =
∞∑
i=1

wi
βw1βw2 · · · βwi

.

Thus we give the following.

Definition 1.2 (Expansions in multiple bases). Let m ∈ N, β0, · · · , βm > 1 and x ∈ R. We
say that the sequence w ∈ {0, · · · ,m}N is a (β0, · · · , βm)-expansion of x if

x =
∞∑
i=1

wi
βw1βw2 · · · βwi

.

On the one hand, it is straightforward to see that when β0, · · · , βm are taken to be the
same β, (β0, · · · , βm)-expansions are just β-expansions. On the other hand, we will see
in Section 2 that many properties of β-expansions can be generalized to (β0, · · · , βm)-
expansions. This further confirms that our definition of expansions in multiple bases is
reasonable.

Let σ be the shift map defined by σ(w1w2 · · · ) := w2w3 · · · for any sequence (wi)i≥1.
Given β0, · · · , βm > 1, for every integer k ∈ {0, · · · ,m}, we define the linear map Tk by

Tk(x) := βkx− k for x ∈ R.

a0 a1 a2 a3 3
β3−1

b0 b1 b2 b3

T0 T1 T2 T3

3
β3−1

FIGURE 1. The graph of T0, T1, T2 and T3 for some (β0, β1, β2, β3) ∈ D3.
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The main results in this paper are the following theorem and corollaries, in which g∗

and l∗ denote the quasi-greedy and quasi-lazy expansion maps respectively (see Defini-
tion 2.1 (2) and (4)), and≺,�,�,� denote the lexicographic order. These results focus on
determining greedy, lazy and unique expansions in multiple bases (see Definition 2.1 (1)
and (3)), and generalize some classical results on expansions in one base in some former
well known papers.

Theorem 1.3. Letm ∈ N, (β0, · · · , βm) ∈ Dm, x ∈ [0, m
βm−1 ],w ∈ {0, · · · ,m}N be a (β0, · · · , βm)-

expansion of x and

ξ+ := max
0≤k≤m−1

Tk(ak+1), ξ− := min
0≤k≤m−1

Tk(ak+1),

η+ := max
1≤k≤m

Tk(bk−1), η− := min
1≤k≤m

Tk(bk−1).

(1) 1© If w is a greedy expansion, then σnw ≺ g∗(ξ+) whenever wn < m.
2© If σnw ≺ g∗(ξ−) whenever wn < m, then w is a greedy expansion.

(2) 1© If w is a lazy expansion, then σnw � l∗(η−) whenever wn > 0.
2© If σnw � l∗(η+) whenever wn > 0, then w is a lazy expansion.

(3) 1© If w is a unique expansion, then

σnw ≺ g∗(ξ+) whenever wn < m and σnw � l∗(η−) whenever wn > 0.

2© If

σnw ≺ g∗(ξ−) whenever wn < m and σnw � l∗(η+) whenever wn > 0,

then w is a unique expansion.

For the case that there are at most two different bases, we get the following criteria
directly from Theorem 1.3.

Corollary 1.4. Let β0, β1 ∈ (1, 2], x ∈ [0, 1
β1−1 ] and w ∈ {0, 1}N be a (β0, β1)-expansion of x.

Then
(1) w is a greedy expansion if and only if σnw ≺ g∗(β0

β1
) whenever wn = 0;

(2) w is a lazy expansion if and only if σnw � l∗( β1
β0(β1−1) − 1) whenever wn = 1;

(3) w is a unique expansion if and only if

σnw ≺ g∗(
β0
β1

) whenever wn = 0 and σnw � l∗(
β1

β0(β1 − 1)
− 1) whenever wn = 1.

The following corollary provide some ways to determine whether an expansion is
greedy, lazy or unique by the quasi-greedy expansion of 1 and the quasi-lazy expansion
of m

βm−1 − 1.

Corollary 1.5. Let m ∈ N, (β0, · · · , βm) ∈ Dm, x ∈ [0, m
βm−1 ] and w ∈ {0, · · · ,m}N be a

(β0, · · · , βm)-expansion of x.
(1) 1© Suppose β0 ≤ β1 ≤ · · · ≤ βm. If w is a greedy expansion, then σnw ≺ g∗(1) whenever

wn < m.
2© Suppose β0 ≥ β1 ≥ · · · ≥ βm. If σnw ≺ g∗(1) whenever wn < m, then w is a greedy

expansion.
(2) 1© Suppose β0 ≤ β1 ≤ · · · ≤ βm. If w is a lazy expansion, then σnw � l∗( m

βm−1 − 1)

whenever wn > 0.
2© Suppose β0 ≥ β1 ≥ · · · ≥ βm. If σnw � l∗( m

βm−1 − 1) whenever wn > 0, then w is a lazy
expansion.
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(3) 1© Suppose β0 ≤ β1 ≤ · · · ≤ βm. If w is a unique expansion, then

σnw ≺ g∗(1) whenever wn < m and σnw � l∗(
m

βm − 1
− 1) whenever wn > 0.

2© Suppose β0 ≥ β1 ≥ · · · ≥ βm. If

σnw ≺ g∗(1) whenever wn < m and σnw � l∗(
m

βm − 1
− 1) whenever wn > 0,

then w is a unique expansion.

Take β0, · · · , βm to be the same β. By Corollary 1.5, Proposition 2.12, Lemma 3.1 and
Proposition 2.8, we get the following corollary, in which k := m−k for all k ∈ {0, · · · ,m}
and w := (wi)i≥1 for all w = (wi)i≥1 ∈ {0, · · · ,m}N.

Corollary 1.6. Let m ∈ N, β ∈ (1,m+ 1], x ∈ [0, m
β−1 ] and w ∈ {0, · · · ,m}N be a β-expansion

of x. Then:
(1) 1© w is a greedy expansion if and only if σnw ≺ g∗(1) whenever wn < m;

2© w is a lazy expansion if and only if σnw � g∗(1) whenever wn > 0;
3© w is a unique expansion if and only if

σnw ≺ g∗(1) whenever wn < m and σnw � g∗(1) whenever wn > 0.

(2) 1© 0 ≤ x < 1 and w is a greedy expansion if and only if σnw ≺ g∗(1) for all n ≥ 0;
2© m

β−1 − 1 < x ≤ m
β−1 and w is a lazy expansion if and only if σnw � g∗(1) for all n ≥ 0;

3© m
β−1 − 1 < x < 1 and w is a unique expansion if and only if

g∗(1) ≺ σnw ≺ g∗(1) for all n ≥ 0.

This corollary recovers some classical results. See for examples [13, Theorem 1.1], [20,
Lemma 4] and [30, Theorem 3]. See also [1, Theorem 2.1] and [36, Lemma 2.11]).

Many former papers on β-expansions are restricted to bases belonging to (m,m + 1]
or expansion sequences belonging to {0, 1, · · · , dβe − 1}N (see for examples [12, 13, 24]),
where dβe denotes the smallest integer no less than β. Even if all β0, · · · , βm are taken to
be the same β throughout this paper, we are working under a more general framework:
bases belonging to (1,m + 1] and expansion sequences belonging to {0, 1, · · · ,m}N (for
examples Corollary 1.6 and Proposition 2.12. See also [3, 15, 21]).

This paper is organized as follows. In Section 2, we give some notations and study
some basic properties of greedy, quasi-greedy, lazy and quasi-lazy expansions in multiple-
bases. Section 3 is devoted to the proof our main results. In the last section, we present
some further questions.

2. GREEDY, QUASI-GREEDY, LAZY AND QUASI-LAZY EXPANSIONS IN MULTIPLE BASES

Let m ∈ N and β0, · · · , βm > 1. We define the projection πβ0,··· ,βm by

πβ0,··· ,βm(w1 · · ·wn) :=
n∑
i=1

wi
βw1βw2 · · · βwi

for w1 · · ·wn ∈ {0, · · · ,m}n and n ∈ N, and

πβ0,··· ,βm(w) = πβ0,··· ,βm(w1w2 · · · ) := lim
n→∞

πβ0,··· ,βm(w1 · · ·wn) =
∞∑
i=1

wi
βw1βw2 · · · βwi
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for w = (wi)i≥1 ∈ {0, · · · ,m}n. When β0, · · · , βm are understood from the context, we
usually use π instead of πβ0,··· ,βm for simplification.

Definition 2.1 (Transformations and expansions). Let m ∈ N and (β0, · · · , βm) ∈ Dm.
(1) The greedy (β0, · · · , βm)-transformation Gβ0,··· ,βm : [0, m

βm−1 ]→ [0, m
βm−1 ] is defined by

x 7→ Gβ0,··· ,βmx :=

{
Tkx if x ∈ [ak, ak+1) for some k ∈ {0, · · · ,m− 1};
Tmx if x ∈ [am, bm].

For all x ∈ [0, m
βm−1 ] and n ∈ N, let

gn(x; β0, · · · , βm) :=

{
k if Gn−1

β0,··· ,βmx ∈ [ak, ak+1) for some k ∈ {0, · · · ,m− 1};
m if Gn−1

β0,··· ,βmx ∈ [am, bm].

We call the sequence g(x; β0, · · · , βm) := (gn(x; β0, · · · , βm))n≥1 the greedy (β0, · · · , βm)-
expansion of x.

(2) The quasi-greedy (β0, · · · , βm)-transformation G∗β0,··· ,βm : [0, m
βm−1 ] → [0, m

βm−1 ] is de-
fined by

x 7→ G∗β0,··· ,βmx :=

 T0x if x ∈ [0, a1];
Tkx if x ∈ (ak, ak+1] for some k ∈ {1, · · · ,m− 1};
Tmx if x ∈ (am, bm].

For all x ∈ [0, m
βm−1 ] and n ∈ N, let

g∗n(x; β0, · · · , βm) :=


0 if (G∗β0,··· ,βm)n−1x ∈ [0, a1];
k if (G∗β0,··· ,βm)n−1x ∈ (ak, ak+1] for some k ∈ {1, · · · ,m− 1};
m if (G∗β0,··· ,βm)n−1x ∈ (am, bm].

We call the sequence g∗(x; β0, · · · , βm) := (g∗n(x; β0, · · · , βm))n≥1 the quasi-greedy
(β0, · · · , βm)-expansion of x.

(3) The lazy (β0, · · · , βm)-transformation Lβ0,··· ,βm : [0, m
βm−1 ]→ [0, m

βm−1 ] is defined by

x 7→ Lβ0,··· ,βmx :=

{
T0x if x ∈ [0, b0];
Tkx if x ∈ (bk−1, bk] for some k ∈ {1, · · · ,m}.

For all x ∈ [0, m
βm−1 ] and n ∈ N, let

ln(x; β0, · · · , βm) :=

{
0 if Ln−1β0,··· ,βmx ∈ [0, b0];

k if Ln−1β0,··· ,βmx ∈ (bk−1, bk] for some k ∈ {1, · · · ,m}.

We call the sequence l(x; β0, · · · , βm) := (ln(x; β0, · · · , βm))n≥1 the lazy (β0, · · · , βm)-
expansion of x.

(4) The quasi-lazy (β0, · · · , βm)-transformation L∗β0,··· ,βm : [0, m
βm−1 ]→ [0, m

βm−1 ] is defined
by

x 7→ L∗β0,··· ,βmx :=

 T0x if x ∈ [0, b0);
Tkx if x ∈ [bk−1, bk) for some k ∈ {1, · · · ,m− 1};
Tmx if x ∈ [bm−1, bm].

For all x ∈ [0, m
βm−1 ] and n ∈ N, let

l∗n(x; β0, · · · , βm) :=


0 if (L∗β0,··· ,βm)n−1x ∈ [0, b0);
k if (L∗β0,··· ,βm)n−1x ∈ [bk−1, bk) for some k ∈ {1, · · · ,m− 1};
m if (L∗β0,··· ,βm)n−1x ∈ [bm−1, bm].
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We call the sequence l∗(x; β0, · · · , βm) := (l∗n(x; β0, · · · , βm))n≥1 the quasi-lazy (β0, · · · , βm)-
expansion of x.

Generally, let Iβ0,··· ,βm be the set of tuples (I0, · · · , Im) which satisfy

I0 ∈
{

[0, c1], [0, c1)
}
,

Ik ∈
{

[ck, ck+1], [ck, ck+1), (ck, ck+1], (ck, ck+1)
}

for all k ∈ {1, · · · ,m− 1}, and

Im ∈
{

[cm,
m

βm − 1
], (cm,

m

βm − 1
]
}
,

where
ck ∈ [ak, bk−1] for all k ∈ {1, · · · ,m}

such that c1 < c2 < · · · < cm, I0 ∪ I1 ∪ · · · ∪ Im = [0, m
βm−1 ] and I0, I1, · · · , Im are all disjoint.

For any (I0, · · · , Im) ∈ Iβ0,··· ,βm , we define the (I0, · · · , Im)-(β0, · · · , βm)-transformation
T I0,··· ,Imβ0,··· ,βm : [0, m

βm−1 ]→ [0, m
βm−1 ] by

T I0,··· ,Imβ0,··· ,βm(x) := Tk(x) for x ∈ Ik where k ∈ {0, · · · ,m}.

For all x ∈ [0, m
βm−1 ] and n ∈ N, let

tn(x; β0, · · · , βm; I0, · · · , Im) := k if (T I0,··· ,Imβ0,··· ,βm)n−1x ∈ Ik where k ∈ {0, · · · ,m}.

We call the sequence t(x; β0, · · · , βm; I0, · · · , Im) := (tn(x; β0, · · · , βm; I0, · · · , Im))n≥1 the
(I0, · · · , Im)-(β0, · · · , βm)-expansion of x.

It is straightforward to see that greedy, quasi-greedy, lazy and quasi-lazy (β0, · · · , βm)-
transformations/expansions are special cases of some (I0, · · · , Im)-(β0, · · · , βm)-transfor-
mations/expansions. For simplification, on the one hand, if β0, · · · , βm are understood
from the context, we useG,G∗, L, L∗, g(x), g∗(x), l(x) and l∗(x) instead ofGβ0,··· ,βm ,G∗β0,··· ,βm ,
Lβ0,··· ,βm , L∗β0,··· ,βm , g(x; β0, · · · , β0), g∗(x; β0, · · · , β0), l(x; β0, · · · , β0) and l∗(x; β0, · · · , β0)
respectively, and if x is also understood, we use gn, g∗n, ln and l∗n instead of gn(x; β0, · · · , βm),
g∗n(x; β0, · · · , βm), ln(x; β0, · · · , βm) and l∗n(x; β0, · · · , βm) respectively for all n ∈ N; on the
other hand, if β0, · · · , βm and I0, · · · , Im are understood, we use T and t(x) instead of
T I0,··· ,Imβ0,··· ,βm and t(x; β0, · · · , βm; I0, · · · , Im) respectively, and if x is also understood, we use
tn instead of tn(x; β0, · · · , βm; I0, · · · , Im) for all n ∈ N.

For the case of a single base, greedy β-transformations and expansions were studied
in many former papers [6, 7, 8, 18, 19, 33, 34]), lazy β-transformations and expansions
can be found in [9, 10, 14, 17, 22], and quasi-greedy β-expansions were introduced in
[25, 26, 31].

In Proposition 2.3, we will see that the above definition really give (β0, · · · , βm)-expansions
coincide with Definition 1.2. First we prove the following useful lemma.

Lemma 2.2. Let m ∈ N, (β0, · · · , βm) ∈ Dm and x ∈ [0, m
βm−1 ]. If (I0, · · · , Im) ∈ Iβ0,··· ,βm ,

then for all n ∈ N, we have

x = π(t1 · · · tn) +
T nx

βt1 · · · βtn
.
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In particular, for all n ∈ N, we have

x = π(g1 · · · gn) +
Gnx

βg1 · · · βgn
= π(g∗1 · · · g∗n) +

(G∗)nx

βg∗1 · · · βg∗n

= π(l1 · · · ln) +
Lnx

βl1 · · · βln
= π(l∗1 · · · l∗n) +

(L∗)nx

βl∗1 · · · βl∗n
.

Proof. (By induction) Let k ∈ {0, · · · ,m} such that x ∈ Ik. Then t1 = k, Tx = Tkx = βkx−k
and we have

π(t1) +
Tx

βt1
=
t1 + Tx

βt1
=
βkx

βk
= x.

Suppose that the conclusion is true for some n ∈ N, we prove that it is also true for n+ 1
as follows. In fact, we have

π(t1 · · · tn+1) +
T n+1x

βt1 · · · βtn+1

= π(t1 · · · tn) +
tn+1 + T n+1x

βt1 · · · βtn+1

(?)
= π(t1 · · · tn) +

βtn+1T
nx

βt1 · · · βtn+1

= x,

where the last equality follows from the inductive hypothesis and (?) can be proved as
follows. Let k ∈ {0, · · · ,m} such that T nx ∈ Ik. Then tn+1 = k and

tn+1 + T n+1x = tn+1 + Tk(T
nx) = k + (βkT

nx− k) = βtn+1T
nx.

�

Proposition 2.3. Let m ∈ N, (β0, · · · , βm) ∈ Dm and x ∈ [0, m
βm−1 ]. If (I0, · · · , Im) ∈ Iβ0,··· ,βm ,

then the (I0, · · · , Im)-(β0, · · · , βm)-expansion of x is a (β0, · · · , βm)-expansion of x, i.e.,

x = π(t(x)),

and for all n ∈ N we have
T nx = π(tn+1tn+2 · · · ).

In particular, greedy, quasi-greedy, lazy and quasi-lazy (β0, · · · , βm)-expansions of x are all
(β0, · · · , βm)-expansions of x, i.e.,

x = π(g(x)) = π(g∗(x)) = π(l(x)) = π(l∗(x)),

and for all n ∈ N we have

Gnx = π(gn+1gn+2 · · · ), (G∗)nx = π(g∗n+1g
∗
n+2 · · · ),

Lnx = π(ln+1ln+2 · · · ), (L∗)nx = π(l∗n+1l
∗
n+2 · · · ).

Proof. By Lemma 2.2 and

T nx

βt1 · · · βtn
≤

m
βm−1

(min{β0, · · · , βm})n
→ 0

as n→∞, we get x = limn→∞ π(t1 · · · tn) = π(t(x)). That is,

x = π(t1 · · · tn) +
π(tn+1tn+2 · · · )
βt1 · · · βtn

.

It follows from Lemma 2.2 that T nx = π(tn+1tn+2 · · · ). �
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Greedy, quasi-greedy, lazy and quasi-lazy expansions are not necessarily identical. A
real number may have many different expansions even in one given base (see for exam-
ples [16, 17, 35]).

Proof of Proposition 1.1. ⇒ follows from Proposition 2.3.
⇐ Let w ∈ {0, · · · ,m}N and x = π(w). It suffices to prove x ≤ m

βm−1 in the following. (By
contradiction) We assume x > m

βm−1 .

(1) Prove that for all v ∈ {0, · · · ,m}N and n ∈ N, we have

Tvn ◦ · · · ◦ Tv1x > · · · > Tv2 ◦ Tv1x > Tv1x > x.

Let k ∈ {0, · · · ,m− 1}, by (β0, · · · , βm) ∈ Dm, we get
k

βk
+

m

βk(βm − 1)
= bk < bk+1 < · · · < bm =

m

βm − 1
,

which implies k
βk−1

< m
βm−1 . Thus for all y > m

βm−1 and k ∈ {0, · · · ,m}, we have
y > k

βk−1
, i.e., Tky > y. Then we perform the maps Tv1 , · · · , Tvn to x one by one to

get the conclusion.
(2) Let s ∈ {0, · · · ,m} such that Tsx = min0≤k≤m Tkx. For all n ∈ N, we prove

Twn+1 ◦ · · · ◦ Tw1x− Twn ◦ · · · ◦ Tw1x > Tsx− x.
In fact, it suffices to prove

Twn+1 ◦ · · · ◦ Tw1x− Twn ◦ · · · ◦ Tw1x > Twn+1x− x.
This follows from

Twn+1 ◦ Twn ◦ · · · ◦ Tw1x− Twn+1x = (βwn+1Twn ◦ · · · ◦ Tw1x− wn+1)− (βwn+1x− wn+1)

= βwn+1(Twn ◦ · · · ◦ Tw1x− x)

> Twn ◦ · · · ◦ Tw1x− x
where the last inequality follows from βwn+1 > 1 and Twn ◦ · · · ◦ Tw1x − x > 0 (by
(1)).

(3) Deduce a contradiction.
On the one hand, for all n ∈ N, we have

Twn ◦ · · · ◦ Tw1x = (Twn ◦ · · · ◦ Tw1x− Twn−1 ◦ · · · ◦ Tw1x)

+ (Twn−1 ◦ · · · ◦ Tw1x− Twn−2 ◦ · · · ◦ Tw1x)

+ · · ·
+ (Tw2 ◦ Tw1x− Tw1x)

+ (Tw1x− x) + x

by (2)

≥ n(Tsx− x) + x,

where Tsx− x > 0 by (1). This implies Twn ◦ · · · ◦ Tw1x→∞ as n→∞.
On the other hand, by

x =
∞∑
i=1

wi
βw1 · · · βwi

,

we get

Tw1x =
∞∑
i=2

wi
βw2 · · · βwi

,
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Tw2 ◦ Tw1x =
∞∑
i=3

wi
βw3 · · · βwi

,

· · · ,
and then for all n ∈ N,

Twn ◦ · · · ◦ Tw1x =
∞∑

i=n+1

wi
βwn+1 · · · βwi

≤
∞∑

i=n+1

m

(min{β0, · · · , βm})i−n

=
m

min{β0, · · · , βm} − 1
<∞,

which contradicts Twn ◦ · · · ◦ Tw1x→∞ as n→∞.
�

We should keep the following lemma in mind.

Lemma 2.4. Let m ∈ N, (β0, · · · , βm) ∈ Dm and w ∈ {0, · · · ,m}N. Then w = m∞ if and only
if π(w) = m

βm−1 .

Proof. ⇒ is obvious.
⇐ (By contradiction) Suppose w 6= m∞ and

∞∑
i=1

wi
βw1 · · · βwi

=
m

βm − 1
. (2.1)

Then there exists k ∈ N such that w1 · · ·wk−1 = mk−1 and wk < m. By applying T k−1m to
(2.1), we get

wk
βwk

+
∞∑

i=k+1

wi
βwk
· · · βwi

=
m

βm − 1
.

It follows from applying Twk
to the above equality that

∞∑
i=1

wk+i
βwk+1

· · · βwk+i

=
mβwk

βm − 1
− wk. (2.2)

On the one hand, by Proposition 1.1 we know
∞∑
i=1

wk+i
βwk+1

· · · βwk+i

≤ m

βm − 1
. (2.3)

On the other hand, by (β0, · · · , βm) ∈ Dm and wk < m, we get
wk
βwk

+
m

βwk
(βm − 1)

= bwk
< bwk+1 < · · · < bm =

m

βm − 1
,

which implies
mβwk

βm − 1
− wk >

m

βm − 1
.

This contradicts (2.2) and (2.3). �

The following useful criteria generalize [17, Lemma 1].
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Proposition 2.5 (Basic criteria of greedy, quasi-greedy, lazy and quasi-lazy expansions).
Let m ∈ N, (β0, · · · , βm) ∈ Dm, x ∈ [0, m

βm−1 ] and w ∈ {0, · · · ,m}N be a (β0, · · · , βm)-
expansion of x.
(1) w is the greedy expansion if and only if

π(wnwn+1 · · · ) < awn+1 whenever wn < m.

(2) When x 6= 0, w is the quasi-greedy expansion if and only if it does not end with 0∞ and

π(wnwn+1 · · · ) ≤ awn+1 whenever wn < m.

(3) w is the lazy expansion if and only if

π(wnwn+1 · · · ) > bwn−1 whenever wn > 0.

(4) When x 6= m
βm−1 , w is the quasi-lazy expansion if and only if it does not end with m∞ and

π(wnwn+1 · · · ) ≥ bwn−1 whenever wn > 0.

Proof. (1) ⇒ Suppose that w is the greedy (β0, · · · , βm)-expansion of x, i.e., (wi)i≥1 =
(gi)i≥1, and suppose wn < m. By gn = wn and the definition of gn, we get Gn−1x < awn+1.
It follows from Proposition 2.3 that π(gngn+1 · · · ) < awn+1. Thus π(wnwn+1 · · · ) < awn+1.
⇐ We prove (wi)i≥1 = (gi)i≥1 by induction. Recall that

g1 :=

{
k if x ∈ [ak, ak+1) for some k ∈ {0, · · · ,m− 1}
m if x ∈ [am, bm]

and (wi)i≥1 is a (β0, · · · , βm)-expansion of x, which implies x ≥ aw1 .
i) If w1 = m, then x ≥ am, which implies g1 = m = w1.

ii) If w1 < m, by condition π(w1w2 · · · ) < aw1+1 we get x < aw1+1. It follows from
x ≥ aw1 that g1 = w1.

Suppose w1 · · ·wn−1 = g1 · · · gn−1 for some n ≥ 2. We need to prove wn = gn in the
following. Recall

gn :=

{
k if Gn−1x ∈ [ak, ak+1) for some k ∈ {0, · · · ,m− 1};
m if Gn−1x ∈ [am, bm].

Since the fact that (wi)i≥1 is a (β0, · · · , βm)-expansion of x implies

x = π(w1 · · ·wn−1) +
π(wnwn+1 · · · )
βw1 · · · βwn−1

,

by Lemma 2.2 we know Gn−1x = π(wnwn+1 · · · ). This implies Gn−1x ≥ awn .
i) If wn = m, then Gn−1x ≥ am, which implies gn = m = wn.

ii) If wn < m, by condition π(wnwn+1 · · · ) < awn+1 we get Gn−1x < awn+1. It follows
from Gn−1x ≥ awn that gn = wn.

(2) ⇒ Suppose that w is the quasi-greedy (β0, · · · , βm)-expansion of x, i.e., (wi)i≥1 =
(g∗i )i≥1.

i) Prove that w does not end with 0∞.
(By contradiction) Assume that there exists n ∈ N such that wn+1wn+2 · · · = 0∞. By
Proposition 2.3, we get (G∗)nx = π(0∞) = 0. It follows from the definition of G∗
that (G∗)n−1x = 0, (G∗)n−2x = 0, · · · , G∗x = 0 and x = 0, which contradicts x 6= 0.

ii) Suppose wn < m. Similarly to (1) ⇒ , we get π(wnwn+1 · · · ) ≤ awn+1.
⇐ follows in a way similar to (1) ⇐ .

(3) and (4) follow in a way similar to (1) and (2) noting Lemma 2.4. �
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Proposition 2.6 (Lexicographic order on greedy, quasi-greedy, lazy and quasi-lazy ex-
pansions). Let m ∈ N, (β0, · · · , βm) ∈ Dm and x ∈ [0, m

βm−1 ].

(1) Among all the (β0, · · · , βm)-expansions of x, the greedy expansion and the lazy expansion
are maximal and minimal respectively in lexicographic order.

(2) Among all the (β0, · · · , βm)-expansions of x which do not end with 0∞, the quasi-greedy
expansion is maximal in lexicographic order.

(3) Among all the (β0, · · · , βm)-expansions of x which do not end with m∞, the quasi-lazy
expansion is minimal in lexicographic order.

Proof. (1) Let v ∈ {0, · · · ,m}N be a (β0, · · · , βm)-expansion of x.
1© Prove v � g(x).

(By contradiction) Assume v � g(x). Then there exists n ∈ N such that v1 · · · vn−1 =
g1 · · · gn−1 and vn > gn. Since Proposition 2.5 (1) implies π(gngn+1 · · · ) < agn+1 and
(β0, · · · , βm) ∈ Dm implies agn+1 ≤ agn+2 ≤ · · · ≤ avn = vn

βvn
, we get π(gngn+1 · · · ) <

vn
βvn

and then

x = π(g(x)) = π(g1 · · · gn−1) +
π(gngn+1 · · · )
βg1 · · · βgn−1

< π(v1 · · · vn−1) +
vn

βv1 · · · βvn−1βvn
= π(v1 · · · vn)

≤ π(v).

This contradicts x = π(v).
2© We can prove v � l(x) in a way similar to 1© noting that Proposition 1.1 implies

m
βm−1 ≥ π(vn+1vn+2 · · · ).

(2) and (3) follow in the same way as (1), noting that v does not end with 0∞ implies
π(v1 · · · vn) < π(v), and v does not end withm∞ implies m

βm−1 > π(vn+1vn+2 · · · ) by Propo-
sition 1.1 and Lemma 2.2 for all n ∈ N. �

The following definition on admissibility is a natural generalization of [28, Definition
2.1 (2)] (see also [27, Definition 2.1]).

Definition 2.7 (Admissibility). Letm ∈ N and (β0, · · · , βm) ∈ Dm. For fixed (I0, · · · , Im) ∈
Iβ0,··· ,βm , a sequence w ∈ {0, · · · ,m}N is called (I0, · · · , Im)-admissible if there exists
x ∈ [0, m

βm−1 ] such that w = t(x). We let T = T (β0, · · · , βm; I0, · · · , Im) denote the
set of (I0, · · · , Im)-admissible sequences. In particular, a sequence w ∈ {0, · · · ,m}N is
called greedy, quasi-greedy, lazy and quasi-lazy (admissible) if there exists x ∈ [0, m

βm−1 ]

such that w = g(x), g∗(x), l(x) and l∗(x) respectively. The sets of greedy, quasi-greedy,
lazy and quasi-lazy sequences are denoted respectively by G = G(β0, · · · , βm), G∗ =
G∗(β0, · · · , βm), L = L(β0, · · · , βm) and L∗ = L∗(β0, · · · , βm).

Proposition 2.8 (Commutativity). Let m ∈ N, (β0, · · · , βm) ∈ Dm and (I0, · · · , Im) ∈
Iβ0,··· ,βm . Then

(1) π ◦ σ(w) = T ◦ π(w) for all w ∈ T and t ◦ T (x) = σ ◦ t(x) for all x ∈ [0, m
βm−1 ];

(2) σ(T ) = T and T ([0, m
βm−1 ]) = [0, m

βm−1 ];
(3) t ◦ π(w) = w for all w ∈ T and π ◦ t(x) = x for all x ∈ [0, m

βm−1 ];
(4) π|T : T → [0, m

βm−1 ] and t : [0, m
βm−1 ]→ T are both increasing bijections.
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T σ //

π

��

T
π

��
[0, m

βm−1 ]
T //

t

OO

[0, m
βm−1 ]

t

OO

In particular, the above properties hold for the greedy, quasi-greedy, lazy and quasi-lazy cases.

Proof. (1) 1© Let w ∈ T . We need to prove π ◦ σ(w) = T ◦ π(w). In fact, there exists
x ∈ [0, m

βm−1 ] such that w = t(x), and then π(w) = x by Proposition 2.3. On the one hand,

π ◦ σ(w) = π(w2w3 · · · ) =
∞∑
i=2

wi
βw2 · · · βwi

.

On the other hand,

T ◦ π(w) = Tx
(?)
= Tw1x = βw1x− w1 = βw1

∞∑
i=1

wi
βw1 · · · βwi

− w1 =
∞∑
i=2

wi
βw2 · · · βwi

,

where (?) follows from the fact that t1(x) = w1 implies x ∈ Iw1 .
2© Let x ∈ [0, m

βm−1 ]. We need to prove t ◦ T (x) = σ ◦ t(x). In fact, it follows immediately
from the definition of t that tn(Tx) = t1(T

n−1(Tx)) = t1(T
nx) = tn+1(x) for all n ∈ N.

(2) T ([0, m
βm−1 ]) = [0, m

βm−1 ] follows from the definition of T . We prove σ(T ) = T as
follows.
⊂ Let w ∈ T . Then there exists x ∈ [0, m

βm−1 ] such that w = t(x). Thus σw = σ◦ t(x)
by (1)

=====

t ◦ T (x) ∈ T .
⊃ Let w ∈ T . Then there exists y ∈ [0, m

βm−1 ] such that w = t(y) and there exists x ∈

[0, m
βm−1 ] such that y = Tx. It follows from w = t(y) = t(Tx)

by (1)
===== σ(t(x)) and t(x) ∈ T

that w ∈ σ(T ).
(3) 1© For any w ∈ T , there exists x ∈ [0, m

βm−1 ] such that w = t(x) and π(w) = x, which
implies t ◦ π(w) = t(x) = w.
2© For any x ∈ [0, m

βm−1 ], π(t(x)) = x follows from Proposition 2.3.
(4) By (3), it suffices to prove that π|T is increasing.
Let w, v ∈ T such that w ≺ v. Then there exists n ≥ 0 such that w1 · · ·wn = v1 · · · vn and
wn+1 < vn+1. Let x, y ∈ [0, m

βm−1 ] such that w = t(x) and v = t(y). We need to prove x < y.
In fact, by Lemma 2.2 we get

x = π(w1 · · ·wn) +
T nx

βw1 · · · βwn

and y = π(v1 · · · vn) +
T ny

βv1 · · · βvn
. (2.4)

Since tn+1(x) = wn+1 and tn+1(y) = vn+1 imply T nx ∈ Iwn+1 and T ny ∈ Ivn+1 , by wn+1 <
vn+1 we get T nx < T ny. It follows from (2.4) and w1 · · ·wn = v1 · · · vn that x < y. �

The following is a generalization of [2, Proposition 3.4].

Proposition 2.9 (Relations between greedy/lazy and quasi-greedy/quasi-lazy expan-
sions). Let m ∈ N, (β0, · · · , βm) ∈ Dm and x ∈ [0, m

βm−1 ].
(1) Suppose x 6= 0.

1© g(x) does not end with 0∞ if and only if g∗(x) = g(x).
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2© If g(x) ends with 0∞, then

g∗(x) = g1(x) · · · gn−1(x)g∗(agn(x))

= g1(x) · · · gn−1(x)(gn(x)− 1)g∗(Tgn(x)−1(agn(x)))

where n is the greatest integer such that gn(x) > 0.
(2) Suppose x 6= m

βm−1 .
1© l(x) does not end with m∞ if and only if l∗(x) = l(x).
2© If l(x) ends with m∞, then

l∗(x) = l1(x) · · · ln−1(x)l∗(bln(x))

= l1(x) · · · ln−1(x)(ln(x) + 1)l∗(Tln(x)+1(bln(x)))

where n is the greatest integer such that ln(x) < m.

Proof. (1) 1© ⇐ follows from Proposition 2.5 (2).
⇒ (By contradiction) Assume (gi)i≥1 6= (g∗i )i≥1. Then there exists n ∈ N such that
g1 · · · gn−1 = g∗1 · · · g∗n−1 and gn 6= g∗n. Recall the definitions of g, g∗, G and G∗. By x 6= 0
and g1 = g∗1 , we get x /∈ {a0, · · · , am}, and then Gx = G∗x 6= 0. By g2 = g∗2 , we get
Gx = G∗x /∈ {a0, · · · , am}, and then G2x = (G∗)2x 6= 0.· · · By repeating the above pro-
cess, we get Gn−1x = (G∗)n−1x 6= 0. It follows from

Gn−1x ∈
{

[agn , agn+1) if 0 ≤ gn ≤ m− 1,
[am,

m
βm−1 ] if gn = m,

and gn 6= g∗n that Gn−1x = agn This implies Gnx = 0, and then for all i ≥ n, Gix = 0. Thus
gn+1gn+2 · · · = 0∞, which contradicts that (gi)i≥1 does not end with 0∞.
2© Suppose that g(x) ends with 0∞ and n is the greatest integer such that gn > 0. We need

to consider the following i), ii) and iii).
i) Prove g∗1 · · · g∗n−1 = g1 · · · gn−1.

(By contradiction) Assume g∗1 · · · g∗n−1 6= g1 · · · gn−1. Then there exists k ∈ {1, · · · , n−
1} such that g∗1 · · · g∗k−1 = g1 · · · gk−1 but g∗k 6= gk. By Lemma 2.2 we get (G∗)k−1x =
Gk−1x. Since g∗k 6= gk, there must exist j ∈ {1, · · · ,m} such that Gk−1x = aj . This
implies Gkx = 0, and then for all i ≥ k we have Gix = 0. Thus gk+1gk+2 · · · = 0∞,
which contradicts gn > 0.

ii) Prove g∗ng∗n+1 · · · = g∗(agn). In fact, we have

σn−1(g∗(x))
(?)
= g∗((G∗)n−1x)

(??)
= g∗(agn),

where (?) follows from Proposition 2.8 (1), and (??) follows from (G∗)n−1x = agn ,
which is a consequence of i), Lemma 2.2 and

x = π(g1 · · · gn) = π(g1 · · · gn−1) +
agn

βg1 · · · βgn−1

.

iii) Prove g∗(agn) = (gn − 1)g∗(Tgn−1(agn)).
In fact, on the one hand, g∗1(agn) = gn− 1 follows directly from the definition of g∗1 .
On the other hand, we have

σ(g∗(agn))
(?)
= g∗(G∗(agn))

(??)
= g∗(Tgn−1(agn)),

where (?) follows from Proposition 2.8 (1), and (??) follows from gn > 0 and the
definition of G∗.

(2) follows in a way similar to (1). �
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In the proof of our main results, we need the following.

Proposition 2.10 (Interactive increase). Let m ∈ N, (β0, · · · , βm) ∈ Dm and x, y ∈ [0, m
βm−1 ].

(1) Let (I0, · · · , Im), (I ′0, · · · , I ′m) ∈ Iβ0,··· ,βm such that for all k ∈ {0, · · · ,m}, the intervals
Ik and I ′k are at most different at the end points (i.e., they have the same closure), t(x) be
the (I0, · · · , Im)-(β0, · · · , βm)-expansion of x and t′(y) be the (I ′0, · · · , I ′m)-(β0, · · · , βm)-
expansion of y. If x < y, then t(x) ≺ t′(y).

(2) In particular, if x < y, we have g(x) ≺ g∗(y) and l∗(x) ≺ l(y).

Proof. We only need to prove (1). Suppose 0 ≤ x < y ≤ m
βm−1 . Since t(x) = t′(y) will imply

x = π(t(x)) = π(t′(y)) = y which contradicts x < y, we must have t(x) 6= t′(y). Thus there
exists n ≥ 0 such that t1(x) · · · tn(x) = t′1(y) · · · t′n(y) and tn+1(x) 6= t′n+1(y). It suffices to
prove tn+1(x) < t′n+1(y) by contradiction.

In fact, by x < y and Lemma 2.2, we get T nx < (T ′)ny, where T is the (I0, · · · , Im)-
(β0, · · · , βm)-transformation and T ′ is the (I ′0, · · · , I ′m)-(β0, · · · , βm)-transformation. If tn+1(x) >
t′n+1(y), by T nx ∈ Itn+1(x) and (T ′)ny ∈ I ′t′n+1(y)

we get

T nx ≥ inf Itn+1(x) ≥ sup I ′t′n+1(y)
≥ (T ′)ny,

which contradicts T nx < (T ′)ny. �

Given x ∈ [0, m
βm−1 ], let

Σβ0,··· ,βm(x) :=
{

(wi)i≥1 ∈ {0, · · · ,m}N : (wi)i≥1 is a (β0, · · · , βm)-expansion of x
}

and

Ωβ0,··· ,βm(x) :=
{

(Si)i≥1 ∈ {T0, · · · , Tm}N : (Sn ◦ · · · ◦ S1)(x) ∈
[
0,

m

βm − 1

]
for all n ∈ N

}
.

As a generalization of [4, Lemma 3.1] and [5, Lemma 2.1] (see also [3]), the following
is a dynamical interpretation of (β0, · · · , βm)-expansions.

Proposition 2.11 (Dynamical interpretation). Let m ∈ N and (β0, · · · , βm) ∈ Dm. For
all x ∈ [0, m

βm−1 ], the map which sends (wi)i≥1 to (Twi
)i≥1 is a bijection from Σβ0,··· ,βm(x) to

Ωβ0,··· ,βm(x).

Proof. (1) Prove that the mentioned map is well-defined.
Let (wi)i≥1 ∈ {0, · · · ,m}N be a (β0, · · · , βm)-expansion of x and n ∈ N. It suffices to
prove Twn ◦ · · · ◦ Tw1x ∈ [0, m

βm−1 ]. In fact, by a simple calculation as in (3) in the proof of
Proposition 1.1, we get

Twn ◦ · · · ◦ Tw1x =
∞∑

i=n+1

wi
βwn+1 · · · βwi

.

Thus

Twn ◦ · · · ◦ Tw1x =
∞∑
i=1

wn+i
βwn+1 · · · βwn+i

= π(wn+1wn+2 · · · ) ∈ [0,
m

βm − 1
]

by Proposition 1.1.
(2) The mentioned map is obviously injective. We prove that it is surjective as follows.
Let (wi)i≥1 ∈ {0, · · · ,m}N such that Twn ◦ · · · ◦ Tw1x ∈ [0, m

βm−1 ] for all n ∈ N. By

0 ≤ Twn ◦ · · · ◦ Tw1x ≤
m

βm − 1
,
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we get
wn
βwn

≤ Twn−1 ◦ · · · ◦ Tw1x ≤
wn
βwn

+
m

βwn(βm − 1)
,

wn−1
βwn−1

+
wn

βwn−1βwn

≤ Twn−2 ◦ · · · ◦ Tw1x ≤
wn−1
βwn−1

+
wn

βwn−1βwn

+
m

βwn−1βwn(βm − 1)
,

· · · ,
w1

βw1

+
w2

βw1βw2

+· · ·+ wn
βw1 · · · βwn

≤ x ≤ w1

βw1

+
w2

βw1βw2

+· · ·+ wn
βw1 · · · βwn

+
m

βw1 · · · βwn(βm − 1)
,

which implies

π(w1 · · ·wn) ≤ x ≤ π(w1 · · ·wn) +
m

(βm − 1)(min{β0, · · · , βm})n

for all n ∈ N. Let n→∞, we get x = π(w1w2 · · · ). Thus (wi)i≥1 ∈ Σβ0,··· ,βm(x). �

The following proposition on expansions in one base, which will be used in the proof
of Corollary 1.6, implies that w is lazy if and only if w is greedy (recall Definition 2.7) for
all w = (wi)i≥1 ∈ {0, · · · ,m}N, where w := (wi)i≥1 and k := m − k for all k ∈ {0, · · · ,m}.
By Proposition 2.6 (1), we recover [11, Theorem 2.1] and [23, Lemma 1].

Proposition 2.12 (Reflection principle in one base). Let m ∈ N and β ∈ (1,m + 1]. For all
x ∈ [0, m

β−1 ], we have

l
( m

β − 1
− x
)

= g(x) and l∗
( m

β − 1
− x
)

= g∗(x).

Proof. (1) Prove l( m
β−1 − x) = g(x). Let w = g(x). By Proposition 2.5 (1) we get

π(wnwn+1 · · · ) < awn+1 whenever wn < m.

It follows from π(wnwn+1 · · · ) + π(wnwn+1 · · · ) = m
β−1 and awn+1 + bwn−1 = m

β−1 that

π(wnwn+1 · · · ) > bwn−1 whenever wn > 0. (2.5)

Since w = g(x) implies π(w) = m
β−1 − x, by Proposition 2.5 (3) and (2.5) we get w =

l( m
β−1 − x).

(2) l∗( m
β−1 − x) = g∗(x) follows in a way similar to (1) by applying Proposition 2.5 (2) and

(4). �

3. PROOFS OF THE MAIN RESULTS

First we give the following lemma, which is essentially stronger than Theorem 1.3 (1)
1©, (2) 1© and (3) 1©.

Lemma 3.1. Let m ∈ N, (β0, · · · , βm) ∈ Dm, x ∈ [0, m
βm−1 ] and w ∈ {0, · · · ,m}N be a

(β0, · · · , βm)-expansion of x.
(1) If w is the greedy expansion and w 6= m∞, then

σnw ≺ g∗(ξ+) for all n ≥ p,

where p := min{i ≥ 0 : Gix < ξ+} exists, and ξ+ := max0≤k≤m−1 Tk(ak+1).
(2) If w is the lazy expansion and w 6= 0∞, then

σnw � l∗(η−) for all n ≥ q,

where q := min{i ≥ 0 : Lix > η−} exists, and η− := min1≤k≤m Tk(bk−1).
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Proof. (1) By (β0, · · · , βm) ∈ Dm, we get

ak < ak+1 ≤ bk

for all k ∈ {0, · · · ,m− 1}. This implies 0 < ξ+ ≤ m
βm−1 .

1© Prove that there exists i ≥ 0 such that Gix < ξ+.
(By contradiction) Assume Gix ≥ ξ+ for all i ≥ 0. Let r be the greatest integer in
{0, · · · ,m} such that ar ≤ ξ+ and

c = c(x) :=

{
x− βmx+m if r = m;
min{x− βmx+m, ar+1 − ξ+} if r ≤ m− 1.

It follows fromw 6= m∞ (which implies x < m
βm−1 by Lemma 2.4) and the definition

of r that c > 0.
i) Prove that for all y ∈ [ξ+, x], we have y −Gy ≥ c.

In fact, if y ≥ am, then y−Gy = y−βmy+m ≥ x−βmx+m ≥ c. We only need
to consider ξ+ ≤ y < am in the following. By ξ+ < am, we know r ≤ m − 1
and

[ξ+, am) ⊂ [ar, ar+1) ∪ [ar+1, ar+2) ∪ · · · ∪ [am−1, am).

There exists k ∈ {r, r + 1, · · · ,m− 1} such that y ∈ [ak, ak+1). Thus

y−Gy = y−(βky−k) = (1−βk)y+k > (1−βk)ak+1 +k = ak+1−Tk(ak+1) ≥ ar+1−ξ+ ≥ c.

ii) Deduce a contradiction.
Recall that we have assumed Gix ≥ ξ+ for all i ≥ 0. First by x ≥ ξ+ and i), we
get x−Gx ≥ c. Then by ξ+ ≤ Gx ≤ x and i) again, we get Gx−G2x ≥ c. · · ·
For all n ≥ 1, we can get Gn−1x−Gnx ≥ c. It follows from the summation of
the above inequalities that x − Gnx ≥ nc, where nc → +∞ as n → +∞. This
contradicts Gix ≥ ξ+ for all i ≥ 0.

2© For all n ≥ p, σnw ≺ g∗(ξ+) follows from

σnw = σn(g(x))
(?)
= g(Gnx)

(??)
≺ g∗(ξ+),

where (?) follows from Proposition 2.8 (1), and (??) follows from Proposition 2.10
and Gnx < ξ+, which can be proved as follows. First we have Gpx < ξ+ by the
definition of p. It suffices to prove that for all y ∈ [0, ξ+), we have Gy < ξ+. In fact,
let y ∈ [0, ξ+) ⊂ [0, m

βm−1). If y ≥ am, then

Gy = Tmy = βmy −m < y < ξ+.

If y < am, then there exists k ∈ {0, · · · ,m− 1} such that y ∈ [ak, ak+1) and we have

Gy = Tky < Tk(ak+1) ≤ ξ+.

(2) follows in a way similar to (1) by using ak ≤ bk−1 < bk instead of ak < ak+1 ≤ bk for all
k ∈ {1, · · · ,m}. �

Proof of Theorem 1.3. (1) 1© Suppose that w is the greedy (β0, · · · , βm)-expansion of x and
wn < m. Then Gn−1x ∈ [awn , awn+1) and

Gnx = G(Gn−1x) = Twn(Gn−1x) < Twn(awn+1) ≤ ξ+.

It follows from Lemma 3.1 (1) that σnw ≺ g∗(ξ+).
2© Supposewn < m. By Proposition 2.5 (1), we only need to prove π(wnwn+1 · · · ) < awn+1,

which is equivalent to π(wn+1wn+2 · · · ) < Twn(awn+1).
For simplification, we use g∗i to denote g∗i (ξ−) for all i ∈ N in the following.
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First by condition σnw ≺ g∗(ξ−), we getwn+1wn+2 · · · ≺ g∗1g
∗
2 · · · . Then there exist s1 ∈ N

and n1 = n+ s1 such that

wn+1 · · ·wn1−1 = g∗1 · · · g∗s1−1 and wn1 < g∗s1 .

By condition σn1w ≺ g∗(ξ−), we get wn1+1wn1+2 · · · ≺ g∗1g
∗
2 · · · . Then there exist s2 ∈ N and

n2 = n1 + s2 such that

wn1+1 · · ·wn2−1 = g∗1 · · · g∗s2−1 and wn2 < g∗s2 .

For general j ≥ 2, if there already exist sj ∈ N and nj = nj−1 + sj such that

wnj−1+1 · · ·wnj−1 = g∗1 · · · g∗sj−1 and wnj
< g∗sj ,

by condition σnjw ≺ g∗(ξ−) we get wnj+1wnj+2 · · · ≺ g∗1g
∗
2 · · · . Then there exist sj+1 ∈ N

and nj+1 = nj + sj+1 such that

wnj+1 · · ·wnj+1−1 = g∗1 · · · g∗sj+1−1 and wnj+1
< g∗sj+1

.

For all i ≥ 1, si and ni are well defined by the above process. Since

π(wn+1wn+2 · · · ) =
∞∑
i=0

π(wni+1 · · ·wni+1
)

βwn+1βwn+2 · · · βwni

and

Twn(awn+1) =
∞∑
i=0

( Twni
(awni+1)

βwn+1βwn+2 · · · βwni

−
Twni+1

(awni+1+1)

βwn+1βwn+2 · · · βwni+1

)
where n0 := n and βwn+1βwn+2 · · · βwn0

:= 1, we only need to prove

π(wni+1 · · ·wni+1
) < Twni

(awni+1)−
Twni+1

(awni+1+1)

βwni+1βwni+2 · · · βwni+1

,

i.e., π(wni+1 · · ·wni+1−1)+
awni+1

βwni+1βwni+2 · · · βwni+1−1

< Twni
(awni+1)−

awni+1+1 − awni+1

βwni+1βwni+2 · · · βwni+1−1

,

i.e., π(wni+1 · · ·wni+1−1) +
awni+1+1

βwni+1βwni+2 · · · βwni+1−1

< Twni
(awni+1) for all i ≥ 0.

In fact, for all i ≥ 0, by wni+1 · · ·wni+1−1 = g∗1 · · · g∗si+1−1 and wni+1
+ 1 ≤ g∗si+1

(which
implies awni+1+1 ≤ ag∗si+1

), we get

π(wni+1 · · ·wni+1−1) +
awni+1+1

βwni+1βwni+2 · · · βwni+1−1

≤ π(g∗1 · · · g∗si+1−1) +
ag∗si+1

βg∗1βg∗2 · · · βg∗si+1−1

= π(g∗1 · · · g∗si+1
)

(?)
< π(g∗(ξ−)) = ξ− ≤ Twni

(awni+1),

where (?) follows from the fact that g∗(ξ−) does not end with 0∞ (by Proposition 2.5 (2)).
(2) follows in a way similar to (1).
(3) follows immediately from (1), (2) and Proposition 2.6 (1). �

Corollary 1.4 follows directly from Theorem 1.3.
Corollary 1.5 follows from Theorem 1.3, the facts that β0 ≤ β1 ≤ · · · ≤ βm implies

ξ+ ≤ 1 and η− ≥ m
βm−1 − 1, β0 ≥ β1 ≥ · · · ≥ βm implies ξ− ≥ 1 and η+ ≤ m

βm−1 − 1, and the
increase of g∗ and l∗ (by Proposition 2.8 (4)).
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Proof of Corollary 1.6. (1) follows immediately from Corollary 1.5 and Proposition 2.12.
(2) 1© ⇒ follows from Lemma 3.1 (1), in which ξ+ = 1 and p = 0.
⇐ First by (1) 1©, we know that w is the greedy expansion g(x). Then it follows from
g(x) = w < g∗(1) ≤ g(1) and the strictly increase of g (by Proposition 2.8 (4)) that x < 1.
2© ⇒ follows from Proposition 2.12 and Lemma 3.1 (2), in which η− = m

β−1 − 1 and
q = 0.
⇐ First by (1) 2©, we know that w is the lazy expansion l(x). Then it follows from
l(x) = w > g∗(1) = l∗( m

β−1 − 1) ≥ l( m
β−1 − 1) and the strictly increase of l (by Proposition

2.8 (4)) that x > m
β−1 − 1.

3© follows from 1©, 2© and Proposition 2.6 (1). �

4. FURTHER QUESTIONS

On the one hand, although necessary and sufficient conditions for sequences to be
greedy, lazy and unique expansions in two bases and one base are obtained in Corollary
1.4 and 1.6 respectively, for general cases, i.e., in more than two bases, Theorem 1.3 and
Corollary 1.5 can only give necessary conditions and sufficient conditions separately. We
look forward to getting necessary and sufficient conditions for general cases.

On the other hand, in our main results, including Theorem 1.3, Corollary 1.4, 1.5 and
1.6, we can see that some special expansions of ξ+, ξ−, η+, η−, 1 and m

βm−1 − 1 play impor-
tant roles in determining greedy, lazy and unique expansions of general x. Thus we think
that it is meaningful to characterize the greedy, quasi-greedy, lazy, quasi-lazy and unique
expansions of ξ+, ξ−, η+, η−, 1 and m

βm−1 − 1 in multiple bases, especially in combinatorial
ways. See [17] for combinatorial characterizations of greedy, lazy and unique expansions
of 1 in one base.
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