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EXPANSIONS IN MULTIPLE BASES
YAO-QIANG LI

ABSTRACT. Expansion of real numbers is a basic research topic in number theory. Usually
we expand real numbers in one given base. In this paper, we begin to systematically study
expansions in multiple given bases in a reasonable way, which is a generalization in the
sense that if all the bases are taken to be the same, we return to the classical expansions
in one base. In particular, we focus on greedy, quasi-greedy, lazy, quasi-lazy and unique
expansions in multiple bases.

1. INTRODUCTION

As is well known, expansion in a given base is the most common way to represent a
real number. For example, expansions in base 10 are used in our daily lives and expan-
sions in base 2 are used in computer systems. Expansions of real numbers in integer bases
have been widely used. As a natural generalization, in 1957, Rényi [32] introduced ex-
pansions in non-integer bases, which attracted a lot of attention in the following decades.
Until Neunhéduserer [29] began the study of expansions in two bases recently in 2019, all
expansions studied were in one base. In this paper, we begin the study of expansions in
multiple bases.

Let N be the set of positive integers {1,2,3,--- } and R be the set of real numbers. We
recall the concept of expansions in one base first. Let m € N, 5 € (I,m + 1]Jand z € R. A
sequence w = (w;);>1 € {0,1,--- ,m}Vis called a 3-expansion of x if

r=mg(w) := Z %
i=1

It is known that = has a f-expansion if and only if z € [0, 3%;] (see for examples [3, 4, 5,
32]).

The following question is natural to be thought of: Given m € N, By, 51, , B >
1,z € Rand (w;)i>1 € {0,1,---,m}Y, in which case should we say that (w;);>; is a
(Bo, B1, - -+, Bm)-expansion of z, such that when 3y, 1, - - - , B, are taken to be the same £,
we have z = 3 7, %:? Proposition 1.1 may answer this question.

Let us give some notations first. For all m € Nand 8y, 81, -+ , B, > 1, we define

k m
ay 5 and by : 5k+5k(ﬁm—1) forall k € {0,--- ,m}.

Note that ag = 0 and b,,, = # For allm € N, let

Dy = {(50,--~ B) : Bov- e B > Land ag < agiy < by, < by for all &, 0§k§m—1}.
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It is worth to note that D,, is large enough to ensure that (8,---,3) € D, forall g €
————

m+1
(1,m+ 1] and m € N, and (5, 81) € D, for all gy, 51 € (1,2].

Proposition 1.1. Let m € N, (Bo, -+, Bn) € Dy and x € R. Then x € [0, g5 ] if and only if
there exists a sequence w € {0, --- ,m}" such that

oo
w;

B ; Bwlﬁwz Bwl

T

Thus we give the following.

Definition 1.2 (Expansions in multiple bases). Letm € N, 3y, --- , 3,, > 1 and x € R. We

say that the sequence w € {0,--- ,m}"isa (B, -, Bm)-expansion of x if
T = —_—.
1’21 61111611)2 e Bwi
On the one hand, it is straightforward to see that when fJ, - - - , 3,,, are taken to be the
same 3, (0o, - , Bm)-expansions are just S-expansions. On the other hand, we will see
in Section 2 that many properties of -expansions can be generalized to (5, - , Bm)-

expansions. This further confirms that our definition of expansions in multiple bases is
reasonable.

Let o be the shift map defined by o(wjwsy---) := wows--- for any sequence (w;);>1.
Given fy, - - - , Bm > 1, for every integer k € {0, - -- ,m}, we define the linear map 7}, by

Ti(x) .= Brx — k forx € R.

T3

Bs—1

o
o
7/
0 1 2 3 3
Bz—1

FIGURE 1. The graph of T}, T, T; and T3 for some (5, 81, B2, B3) € Ds.
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The main results in this paper are the following theorem and corollaries, in which g*
and [* denote the quasi-greedy and quasi-lazy expansion maps respectively (see Defini-
tion 2.1 (2) and (4)), and <, <, >, > denote the lexicographic order. These results focus on
determining greedy, lazy and unique expansions in multiple bases (see Definition 2.1 (1)
and (3)), and generalize some classical results on expansions in one base in some former
well known papers.

Theorem1.3. Letm € N, (fo, -+, B) € Dy, € [0, g5, w € {0, - ,m¥Wbea(Bo, -, Bm)-
expansion of x and

£y = ogri?g%i{qu(akH)’ §- = Oggélrfé_lTk(&kH),

Ny = max Ty(bx_1), n-:= min Tp(bg_1).

1<k<m 1<k<m
(1) ® If w is a greedy expansion, then o™w < g*(&4) whenever w, < m.
@ If o"w < g*(&-) whenever w, < m, then w is a greedy expansion.
(2) ® If wis a lazy expansion, then o™w > *(n_) whenever w, > 0.
@ If o™w > 1*(n;4) whenever w,, > 0, then w is a lazy expansion.
(3) @ If wis a unique expansion, then

o"w < g* (&) whenever w, <m and o"w = I*(n-) whenever w, > 0.
@ If
o"w < g*(&-) whenever w, <m and o"w = [*(n;) whenever w, > 0,

then w is a unique expansion.

For the case that there are at most two different bases, we get the following criteria
directly from Theorem 1.3.

Corollary 1.4. Let 3y, 31 € (1,2], z € [0, 7] and w € {0, 1} be a (B, B1)-expansion of x.

’ B1—1
Then 1
(1) w is a greedy expansion if and only if o™ w < g*(%) whenever w, = 0;
(2) w is a lazy expansion if and only if o™ w > l*(ﬁ — 1) whenever w,, = 1;
(3) w is a unique expansion if and only if
Bo i
o"w < g* (=) whenever w, =0 and o"w = I"(———— — 1) whenever w,, = 1.
5 G -0 Y

The following corollary provide some ways to determine whether an expansion is
greedy, lazy or unique by the quasi-greedy expansion of 1 and the quasi-lazy expansion
of -1

Brm—1

Corollary 1.5. Let m € N, (8, ,Bm) € Dn, x € [0, 5"5] and w € {0, ,m} be a
(Bo, -+, Bm)-expansion of x.
(1) @ Suppose By < 1 < -+ < B If wis a greedy expansion, then oc"w < ¢g*(1) whenever
w, < m.
@ Suppose By > 1 > -+ > B If 0"w < g*(1) whenever w, < m, then w is a greedy
expansion.
(2) @ Suppose fy < 1 < -+ < By If wis a lazy expansion, then o"w > l*(ﬂw’l”_1 - 1)
whenever w,, > 0.
@ Suppose By > 1 > -+ > L. If 0w > l*(@:i1 — 1) whenever w,, > 0, then w is a lazy
expansion.




4 YAO-QIANG LI

(3) @ Suppose 5y < [y < -+ < By If wis a unique expansion, then

o"w < g*(1) whenever w, <m and oc"w > l*(ﬁ m . 1)  whenever w, > 0.
@ Suppose fo > p1 = - = . If
o"w < g*(1) whenever w, < m and oc"w > l*(ﬁ m = 1)  whenever w, > 0,

then w is a unique expansion.

Take Sy, - - - , B to be the same 5. By Corollary 1.5, Proposition 2.12, Lemma 3.1 and
Proposition 2.8, we get the following corollary, in which k := m — k forall k € {0,--- ,m}

and W := (W;);>1 for all w = (w;);>1 € {0, -+, m}N.
Corollary 1.6. Let m € N, 8 € (1, m+1], z € [0, 3%] and w € {0, - -- ,m}N be a B-expansion

of x. Then:

(1) O w is a greedy expansion if and only if o™ w < ¢*(1) whenever w,, < m;
@ w is a lazy expansion if and only if o™w > g*(1) whenever w,, > 0;
(® w is a unique expansion if and only if

o"w < g*(1) whenever w, <m and o"w = g*(1) whenever w, > 0.

(2) D 0 <z < land w is a greedy expansion if and only if o™w < g*(1) forall n > 0;

@ g5 — 1 <z < g% and wis a lazy expansion if and only if o"w = g*(1) for all n > 0;
® 325 — 1 <z < landw is a unique expansion if and only if

g*(1) < oc"w < g*(1) foralln > 0.

This corollary recovers some classical results. See for examples [13, Theorem 1.1], [20,
Lemma 4] and [30, Theorem 3]. See also [1, Theorem 2.1] and [36, Lemma 2.11]).

Many former papers on (-expansions are restricted to bases belonging to (m,m + 1]
or expansion sequences belonging to {0,1,---, [3] — 1}" (see for examples [12, 13, 24]),
where [ 3] denotes the smallest integer no less than 5. Even if all fy, - - - , /3, are taken to
be the same 3 throughout this paper, we are working under a more general framework:
bases belonging to (1, m + 1] and expansion sequences belonging to {0,1,--- ,m}" (for
examples Corollary 1.6 and Proposition 2.12. See also [3, 15, 21]).

This paper is organized as follows. In Section 2, we give some notations and study
some basic properties of greedy, quasi-greedy, lazy and quasi-lazy expansions in multiple-
bases. Section 3 is devoted to the proof our main results. In the last section, we present
some further questions.

2. GREEDY, QUASI-GREEDY, LAZY AND QUASI-LAZY EXPANSIONS IN MULTIPLE BASES

Letm € Nand By, -- , B, > 1. We define the projection wg, ... g, by

n
w;

Moo o (W1 Wn) 3= Y | g

forwy - w, € {0,--- ,m}*and n € N, and
T B (W) = T e g (Wrwo -+ ) 1= lim 7g, ... g, (W1 wy) = !

n—00 B ; Buu 61112 c 6wi
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for w = (w;)i>1 € {0,---,m}". When fJy, -, S, are understood from the context, we
usually use 7 instead of 7, ... 5,, for simplification.
Definition 2.1 (Transformations and expansions). Let m € Nand (5o, - , 8n) € Dy,
(1) The greedy (Bo, - -, Bm)-transformation Gg,.... g,, : [0, 5] = [0, g5 is defmed by
| Tyx ifx € [ay,apr) for some k € {0,--- ,m — 1};
T Ggoo o 1= { Twx ifx € [am, by

Forallz € [0, 7™5]and n € N, let

ko if Gy ' . 1 € [ag,apy,) forsome k € {0, ,m —1};
. . — - .Bm 3 +1 )
gn(%ﬁoa 76m) : { m if Gn 1 o c [am,b ]

We Call the sequence g(-T, BD? e 76771) = (gn<x7 Bﬂ? e aﬂm))nZl thegreedy (507 e 7ﬁm)_
expansion of x.

(2) The quasi-greedy (Bo, - - - , B )-transformation G, .. 5 [0, 775] — [0, g75] is de-
tined by

T()JZ ifx S [0 al]
T GEO7"'7Bmx = Ti,x ifze (ak,ak+1] for some k € {1’ ceem— 1};
Thnx ifz € (an, byl

Forallz € [0, 7™5]and n € N, let

0 if(Gh . 5,)" "2 €0,a1];
gu(; By, Bm) =1 ki (G B)” 'z € (an, apy1) forsome k € {1,--- ,m — 1};
m i (Gf . g )"l (

We call the sequence g*(z; 8, , Bm) = (g5:(z;Bo,*+ , Bm))n>1 the quasi-greedy
(Bo, -+, Bm)-expansion of x.

(3) The lazy (Bo, - - - , B )-transformation Lg,... g, : [0, 55| — [0

, 55| is defined by

Tox if z € [0,bl;
Tyx if z € (bg_1,bx] for some k € {1,--- ,m}.

Jand n € N, let

0 if Lj~" 5 x€(0,b;

k if L" ~. 5,7 € (bg_1,by] for some k € {1,--- ,m}.

We call the sequence [(z; By, - - - ,ﬁm) = (ln(z; Boy -+, Bm) )n>1 the lazy (Bo, -+ -, Bin)-
expansion of x.

(4) The quasi-lazy (Bo, - - -, By )-transformation Ly, .. 5 [0, 35| = [0, 7] is defined
by

T +— L507...75m:v = {

Forall z € [0, 55

bn(@; Bo, -+ Bm) = {

Tox ifx € 0,b)
v Ly g wi=1q Tpr ifz €[byy,b) forsomek € {1, ,m—1};
me ifx e [bmfl, bm]

Forallz € [0, 7™5] and n € N, let
0 if (L5, 5 )" 'x € [0,bo);

U(x; 8oy -y Bm) =< Kk if (Lgof,,,ﬂm)”_lx € [bg_1,by) for some k € {1,--- ,m — 1};
m Af (Lf, 5 )" 2 € (b1, D)
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We call the sequence I*(x; S, - - -, Bm) = (I (25 Bo, - - -, Bm) )n>1 the quasi-lazy (B, - - -
expansion of x.

Generally, let Zj, ... 5, be the set of tuples (lo, - - - , I,,,) which satisfy

Iy € {[0, cl],[(),cl)},

1 € ek, cunnl: ons i), (e caral, (n, i)

forallk € {1,---,m — 1}, and

]me{[cm, m m 1]},

where
¢k € lag,bp—1] forallk e {1,--- ,m}
suchthatc; <cy < -+ < ¢y, UL U---UIL, =0, #] and Iy, Iy, - - - , I, are all disjoint.
For any (ly,---,1L,) € Za,,.. 3,, we define the (ly,---,I1,)-(Bo,- - ,Bm)-transformation
Ty 10, 525) = 0. 525 by
T30 g (x) = Ti(z) forx € I, where k € {0,--- ,m}.

For all z € [0, #] andn € N, let

ta(@; Bo, By Lo, -+ L) =k if (T 5" )" o € I, where k € {0, -+, m}.

We call the sequence t(l’, 50’ T 7ﬁm7 [0’ e 7[m) = (tTL(xa BO: e 76m7 IO? e 7[m))n21 the
(Lo, -+ s Im)-(Bo, -+ -, Bm)-expansion of x.

It is straightforward to see that greedy, quasi-greedy, lazy and quasi-lazy (5o, - - , Bm)-
transformations/expansions are special cases of some (I, - - - , I;,,)-(Bo, - - - , B )-transfor-
mations/expansions. For simplification, on the one hand, if f,- - - , 8,, are understood
from the context, we use G, G*, L, L*, g(x), g* (), l(z) and I* () instead of G, ... 5,., G5, ... 5

76m)_

,Pm”

Lo s Ly g, 903 B0y -+ 5 B0), g% (x5 Bos -+ 5 Bo), U(z; Bo, -+, Bo) and I*(x; Bo, - -+, Bo)

respectively, and if x is also understood, we use g, g;:, [, and [, instead of g,,(x; Bo, - - - , Bm),
gr(x; Bo, -+ Bm), bn(x; Bo, - -+, Bm) and U (z; Bo, - - - , Bn) respectively for all n € N; on the

other hand, if Sy, -+, 3, and Iy, -- , I, are understood, we use 71" and ¢(z) instead of

Tﬁlg,’_’_f ém and t(z; By, - -+, Bm: Lo, - - - , L) respectively, and if z is also understood, we use

t, instead of t,,(z; By, - , Bm; Lo, -+ , In) forall m € N.

For the case of a single base, greedy S-transformations and expansions were studied
in many former papers [6, 7, 8, 18, 19, 33, 34]), lazy S-transformations and expansions

can be found in [9, 10, 14, 17, 22], and quasi-greedy [-expansions were introduced in
[25, 26, 31].

In Proposition 2.3, we will see that the above definition really give (o, - - - , B )-€Xpansions

coincide with Definition 1.2. First we prove the following useful lemma.

Lemma 2.2. Let m € N, (Bo, -+, Bn) € Dy and x € [0, 375]. If (lo, -+, In) € Ly ps
then for all n € N, we have
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In particular, for all n € N, we have
Gz ooy, (G

T = 7r(g1- ) 591 B, 7T(91"'9n) + m
_ Lt ey I
_7T(l1 ln)+ﬁll.”6ln—ﬂ'(l1 l)+/8l1‘ﬁl;

Proof. (By induction) Letk € {0,--- ,m}suchthatx € [. Thent, =k, Tz = Tx = fro—k

and we have
Tx tl + Tz 6kl‘ .

)

Suppose that the conclusion is true for some n € N, we prove that it is also true for n + 1
as follows. In fact, we have

Tty tpyr + T 2
7T<t1"'tn 1)+—:7T(t1-~-t )+—
* /Btl "'/Bt»,H_l /Btl .”/BtrH—l
() VAR
=m(t1--t,) + ——mm—m
( ) Bh e 6tn+1
= fI;,

where the last equality follows from the inductive hypothesis and () can be proved as
follows. Let k € {0, - ,m} such that 7"z € I;. Then t,,; = k and

togr + T e =ty + To(TM2) = k + (BT"x — k) = By, T x.
[
Proposition 2.3. Let m € N, (fo, -+, Bn) € Dipand x € [0, 5] If (o, - -+ Im) € gy s
then the (1o, - - -, Ln)-(Bo, - - - , Bm)-expansion of x is a (B, - - - , B )-expansion of z, i.e.,
r = m(t(z)),
and for all n € N we have
T'x = m(tpsrtniz--+)-

In particular, greedy, quasi-greedy, lazy and quasi-lazy (Bo,-- - , Bm)-expansions of x are all
(Bo, -+, Bm)-expansions of z, i.e.,

z=m(g(r)) = 7(g"(z)) = m(l(z)) = 7(I"(x)),
and for all n € N we have
G"r = 7T<gn+1gn+2 T )7 (G*)nx = W(g;-l-lg;:-ﬂ T )7
L' = wllplnra- ), (L)' = 7l lig - )-

Proof. By Lemma 2.2 and

m

e Bl -
B+ B, — (min{Bo, -+, Bu})"

asn — oo, we get z = lim,,_,oo 7(¢; - - - t,) = w(t(z)). That s,

7T(thr175n+2 e )
tn) + :
By -+ B,

It follows from Lemma 2.2 that 7"z = 7(tp1tnio- -+ )- O
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Greedy, quasi-greedy, lazy and quasi-lazy expansions are not necessarily identical. A
real number may have many different expansions even in one given base (see for exam-
ples [16, 17, 35]).

Proof of Proposition 1.1. follows from Proposition 2.3.
Letw € {0, - ,m}" and x = 7(w). It suffices to prove r < - in the following. (By

Bm—1
contradiction) We assume = >

Bm—1"
(1) Prove that for allv € {0,--- ,m}" and n € N, we have
T, 0-olyx>--->T, 0T, x>T,x>u.

Letk € {0,--- ,m —1},by (Bo, -, Bm) € D, we get

i + m =bp < bpy1 < < by = =
Bk Bk(ﬁm - 1) g s " ﬁm - 1’
which implies % < %7 Thus forally > 3™ and k € {0,---,m}, we have
y > %, i.e.,, Ty > y. Then we perform the maps 7,,,- - - ,T,, to x one by one to
get the conclusion.
(2) Lets € {0,--- ,m} such that Tsx = ming<j<,, Txx. For all n € N, we prove
Ty 0 0lyw—"T, ool x>Taw—mx.

In fact, it suffices to prove
T,

wpsy 0 0Ly v =Ty, 00Ty x>T, ov—ux

Wni1
This follows from
Twpir © T, 00T @ — Ty @ = (B Tiwn © -+ 0 Ty & — Wng1) — (B @ — W)
= Buwpi1 (L, 0+ 0Ty, x — x)
>Ty, 00Ty, v —2x
where the last inequality follows from f,,,, > land T,,, 0 --- o T,z — 2 > 0 (by

(1)
(3) Deduce a contradiction.
On the one hand, for all n € N, we have

Twno"'OTw1$: (Twno"'OTw1$_Twn_1o"'oTwlx)
_|_ (Twn—l O - oTwlx — Twn72 O -«-- OTwlx)
4+
+ (T, 0 Tz — Ty )

+ (Tyyx — ) + @

by (2)
> n(Tex — ) + x,

where T;x — x > 0 by (1). This implies T}, o - - - o T,z — 00 as n — o0.
On the other hand, by

we get
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oo

w.
Tw2 1) Twlx = Z —z’
2 B P

and then for alln € N,
Wy

/Bwn+1 e 6wi

Twno-..oTwlx:
i=n+1
oo

2 (min{fo, -+, Bm})"

i=n-+1

IN

m
= T <00,

min{ﬁ()a e 7ﬂm} -

which contradicts 7}, 0 --- o T}, x — 0o as n — 0.

We should keep the following lemma in mind.

Lemma 24. Let m €N, (B, , ) € Dy and w € {0, --- ,m}". Then w = m™ if and only
ifW(w) = 5,:1_1'

Proof. is obvious.
(By contradiction) Suppose w # m*™ and

>3 f‘fi_ﬂ_zﬁm_l. 2.1)

i=1

Then there exists k& € N such that w; - - - wy_; = m*! and wy < m. By applying T~ to
(2.1), we get

[o.¢]
Wy, w; m

Bt 2 =

i:k—&-lﬁwk”'ﬁwi /BTI’L_1
It follows from applying T, to the above equality that

o0

Wi+ mﬁwk (2 2)

= — Wg.
i=1 /Bwk+1 e /Bwk+i /Bm - 1

On the one hand, by Proposition 1.1 we know

o0

Wi+ m
< . (2.3)
i=1 ﬁwarl e 5wk+i ﬁm -1
On the other hand, by (5o, - - - , 8n) € Dy, and wy, < m, we get
wy, m m
— by, < by o< b, = ’
Bwk N Bwk (Bm - 1) g = Kt = = 6m - 1
which implies
M B, m
ﬁm -1 e ~ Bm -1
This contradicts (2.2) and (2.3). OJ

The following useful criteria generalize [17, Lemma 1].
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Proposition 2.5 (Basic criteria of greedy, quasi-greedy, lazy and quasi-lazy expansions).
Let m € N, (o, ,Bm) € D, v € [0,575] and w € {0,--- ,m}" bea (8o, -, Bm)-
expansion of x.
(1) w is the greedy expansion if and only if
T(WpWpy1 -+ ) < Qu,+1  Whenever w, < m.
(2) When = # 0, w is the quasi-greedy expansion if and only if it does not end with 0> and
T(WpWpy1 -+ ) < Q11 Whenever w, < m.
(3) w is the lazy expansion if and only if
T(WpWya1 ) > by, 1 whenever w, > 0.
(4) When x # 57, w is the quasi-lazy expansion if and only if it does not end with m®> and

T(WpWpi1 -+ ) > by,—1  whenever w,, > 0.

Proof. (1) Suppose that w is the greedy (5o, - - - , Bm)-expansion of z, i.e., (w;);>1 =
(9:)i>1, and suppose w, < m. By g, = w, and the definition of g,, we get G" 'z < ay, ;1.
It follows from Proposition 2.3 that 7(g,gn+1 -+ ) < Guw,+1- Thus m(wywpi1 -+ ) < Gy 41-
We prove (w;);>1 = (¢;)i>1 by induction. Recall that
| k ifz € |ax,ax4q) forsome k € {0,--- ,m — 1}
9= { m if x € [am, by
and (w;);>1isa (Bo, - - - , Bm)-expansion of z, which implies z > a,,, .
i) If w; = m, then = > a,,, which implies g = m = w;.
ii) If wy < m, by condition m(wjwy--+) < ay,+1 We get x < @y, +1. It follows from
T > ay, that g1 = wy.
Suppose w; -+ -w,—1 = g1 gn—1 for some n > 2. We need to prove w,, = g, in the
following. Recall
[ k G 'z € [ak, apyq) for some k € {0, ,m — 1};
Gn = { m if Gz € [an, by

Since the fact that (w;);>1is a (fo, - - - , B )-expansion of x implies

W(wnwn-i-l o )
51111 e /Bwn_l ’

by Lemma 2.2 we know G" 'z = 7(w,w,,41 - - - ). This implies G" 'z > a,,,.

r=m(wy - wp_1)+

i) If w, = m, then G" 'z > a,,, which implies g, = m = w,.
ii) If w, < m, by condition T(w,wy,11-*) < ay,+1 We get G" 'z < ay, +1. It follows
from G" 1z > a,, thatg, = w,.
(2) Suppose that w is the quasi-greedy (fy,- - - , fm)-expansion of z, i.e., (w;);>1 =
(97 )iz1-
i) Prove that w does not end with 0°°.
(By contradiction) Assume that there exists n € N such that w,, 41w, 12 - - - = 0. By
Proposition 2.3, we get (G*)"z = 7(0>°) = 0. It follows from the definition of G*
that (G*)" 'z =0, (G*)" 22 =0, ---,G*xz = 0 and = = 0, which contradicts = # 0.
ii) Suppose w,, < m. Similarly to (1) [=], we get T(w,wn11 ) < Quyp41-

follows in a way similar to (1) [<=].
(3) and (4) follow in a way similar to (1) and (2) noting Lemma 2.4. OJ
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Proposition 2.6 (Lexicographic order on greedy, quasi-greedy, lazy and quasi-lazy ex-
pansions). Let m € N, (fo, -+, Bn) € Dy and x € [0, 5.

(1) Among all the (B, - - - , B )-expansions of x, the greedy expansion and the lazy expansion
are maximal and minimal respectively in lexicographic order.

(2) Among all the (B, - - - , Bm)-expansions of x which do not end with 0°°, the quasi-greedy
expansion is maximal in lexicographic order.

(3) Among all the (B, - - , B )-expansions of x which do not end with m>, the quasi-lazy
expansion is minimal in lexicographic order.

Proof. (1) Letv € {0,--- ,m}Nbea (B, - , Bm)-expansion of z.
@D Prove v < g(z).
(By contradiction) Assume v > g(z). Then there exists n € Nsuch thatv; - --v,_; =
g1+ gn—1 and v, > g,. Since Proposition 2.5 (1) implies 7(gngn+1---) < ag4,+1 and
(Bo, -+, Bm) € Dy, implies ay, 11 < ag,42 < -+ < a,, = 7=, we get T(GnGni1-++) <
5’4 and then

un

ﬂ'(gngnJrl U )
591 e /Bgn—l

(%

61)1 e an71 ﬁvn

v = n(gle)) = 7o+ ga) +

< m(vp-e vpq) +

(Ul .. 'Un)

This contradicts z = 7(v).
@ We can prove v > [(x) in a way similar to () noting that Proposition 1.1 implies
# 2 7T<Un+1’l}n+2 L )
(2) and (3) follow in the same way as (1), noting that v does not end with 0> implies
m(vy -+ vy) < 7(v), and v does not end with m* implies 5= > T (vy11Vn42 - - - ) by Propo-

sition 1.1 and Lemma 2.2 for all n € N. O

The following definition on admissibility is a natural generalization of [28, Definition
2.1 (2)] (see also [27, Definition 2.1]).

Definition 2.7 (Admissibility). Letm € Nand (5o, - - - , ) € Dy, For fixed (1o, - -+ , I,;,) €

Zso. g, @ sequence w € {0,---,m}" is called (ly,-- ,I,)-admissible if there exists
x € |0, #] such that w = t(x). Welet T = T(Bo, -+ ,Bm; Lo, -+ , 1) denote the
set of (Iy,--- , I,)-admissible sequences. In particular, a sequence w € {0,---,m}" is

called greedy, quasi-greedy, lazy and quasi-lazy (admissible) if there exists = € [0, 5]
such that w = g¢(x), g*(z), {(x) and [*(z) respectively. The sets of greedy, quasi-greedy,
lazy and quasi-lazy sequences are denoted respectively by G = G(f5o, - ,0m), §° =
G*(Bo, -+, Bm), L= L(Bo, -+, Pm) and L= = L7 (Bo, -+, ).

Proposition 2.8 (Commutativity). Let m € N, (8o, -+ ,0m) € Dy, and (Lo, - ,I,) €
1.507...757”. Then

(1) moo(w) =Ton(w)forallw € T andtoT(x) =0 o t(x) forall z € [0, g5,

(2) o(T) =T and T([0, 35]) = [0, 5],

(3) tom(w) =w forallw € T and wot(zx) = x forall z € [0, g5,

(4) m|l7: T = [0, g75] and t - [0, 5] — T are both increasing bijections.
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T T
I
0, g —= 0. 5.5

In particular, the above properties hold for the greedy, quasi-greedy, lazy and quasi-lazy cases.

Proof. (1) @D Let w € T. We need to prove m o o(w) = T o w(w). In fact, there exists
x € [0, 775] such that w = #(r), and then 7(w) = x by Proposition 2.3. On the one hand,

? Bm
moo(w) =m(wyws---) :Z—l_
2By B
On the other hand,

Tow(w):Tx(;)Twlx:Bwlx—wl:ﬁwlZﬁ—wl
£ By, -

Yy
w; R ﬁwg T Py
where (%) follows from the fact that ¢, (z) = w, implies = € I,,,.
@ Letz € [0, 375]. We need to prove ¢ o T'(z) = o o t(z). In fact, it follows immediately
from the definition of ¢ thatt (Tx) =t (T" Y (Tx)) = t1(T"x) = t,y1(z) foralln € N,
(2) ([0, 55]) = [0, 5] follows from the definition of . We prove o(7) = T as

follows.
by (1)

C|Letw € 7. Then there exists x € |0, =——| such that w = ¢(z). Thusocw = oot(x

L T. Then there exi 0, 522 such th Th

toT(x)eT.

D|Letw € 7. en there exists y € |0, such that w = t(y) and there exists x €
L T. Then th i 0, 55 h th d th i

[0, 5+ ] such that y = T'z. It follows from w = t(y) = t(Tx) 20 o(t(x)) and t(z) € T

that w € o(T).

(3) @ For any w € T, there exists = € |
implies ¢t o m(w) = t(z) = w.

@ Forany z € [0, 75], n(¢(z)) = = follows from Proposition 2.3.

(4) By (3), it suffices to prove that 7| is increasing.

Let w,v € T such that w < v Then there exists n > 0 such that w; ---w,, = v ---v,, and
Wnt1 < Unt1. Letz,y € [0, 575] such that w = ¢(z) and v = ¢(y). We need to prove = < y.

In fact, by Lemma 2.2 we get

, 5] such that w = ¢(z) and 7(w) = z, which

Trx "y
r=7m(w - w,) +——— and y=mn(vi---v,) + —"7. (2.4)
( ' ) Buq"'ﬁwn (1 ) 6111"'511”
Since t,41(z) = wyy1 and t,41(y) = vp4q imply T"x € Iwn+1 and T"y € I, ., by wyq1 <
Unt1 We get Tz < T"y. It follows from (2.4) and w; - - - w, = vy - - - v, that x < y. OJ

The following is a generalization of [2, Proposition 3.4].

Proposition 2.9 (Relations between greedy/lazy and quasi-greedy/quasi-lazy expan-
sions). Let m € N, (By, -+, Bn) € Dypand x € [0
(1) Suppose = # 0.

D g(z) does not end with 0% if and only if g*(x) = g(x).

BTl
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@ If g(z) ends with 0>, then
9°(x) = g1(x) - gn1(2)g" (ag, @)
= 91(2) -+ gn1 () (9n () = DG (Ty,(2)-1(ag,(x)))
where n is the greatest integer such that g,(x) > 0.
(2) Suppose x # 5.
@ [(x) does not end with m®™ if and only if I*(x) = l(z).
@ If l(z) ends with m>, then
(@) =l(x) - loa ()1 by, (2))
= h() - b (2) (l(@) + DI (T @)1 (b )))

where n is the greatest integer such that l,,(z) < m.

Proof. (1) D follows from Proposition 2.5 (2).

(By contradiction) Assume (g¢;);>1 # (g;)i>1. Then there exists n € N such that
91 Gn—1 = ¢ ---g;_, and g, # g;. Recall the definitions of ¢, ¢*, G and G*. By = # 0
and g1 = ¢j, we get z ¢ {ao, - ,a,}, and then Gz = G*z # 0. By g, = g3, we get
Gr = Gz ¢ {ag, - ,anm}, and then G*z = (G*)*x # 0.--- By repeating the above pro-
cess, we get G" 1z = (G*)" 1z # 0. It follows from

Gn—lx c { [agn’ agn+1) ifo S gn S m — 17

am, 5oz if g =m,

and g, # ¢} that G" 'z = a,, This implies G"z = 0, and then for all i > n, Gz = 0. Thus
Gn+1Gn+2 - -+ = 0°°, which contradicts that (g;);>1 does not end with 0°.
@ Suppose that g(x) ends with 0> and n is the greatest integer such that g, > 0. We need
to consider the following i), ii) and iii).
i) Prove g7 g1 =91 gn-1.
(By contradiction) Assume g --- ¢} _; # ¢1 - - gn—1. Then thereexists k € {1,--- ,n—
1} such that g; -+ g; | = g1~ gx_1 but g} # g. By Lemma 2.2 we get (G*)" 'z =
G*'z. Since g; # gi, there must exist j € {1,--- ,m} such that G*"'z = qa;. This

implies G*z = 0, and then for all i > k we have G’z = 0. Thus gy 19k = 0%,
which contradicts g, > 0.
ii) Prove gy g, - - = g*(ay,). In fact, we have

n— * (*) & *\n— (%) &
0" g (2)) = g"(G")"'2) = g"(ag,).
where (x) follows from Proposition 2.8 (1), and () follows from (G*)" 'z = a,,,
which is a consequence of i), Lemma 2.2 and
agn

r=m(g1gn) =7(01 " Gn1) + 75—
Boi - Bons

iii) Prove g*(ay,) = (gn — 1)g"(Ty,-1(a,))-
In fact, on the one hand, g;(a,,) = g, — 1 follows directly from the definition of gj.
On the other hand, we have

* ) * (%) 4
O-(g (agn)) =9 (G <a9n>> =9 (Tgn_l(agn))7
where () follows from Proposition 2.8 (1), and (x«) follows from g, > 0 and the
definition of G*.

(2) follows in a way similar to (1). O
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In the proof of our main results, we need the following.

Proposition 2.10 (Interactive increase). Let m € N, (5o, -+ , ) € Dy, and x,y € [0, #]
(1) Let (Ioy,--- , L), (L5, -+, 1) € L, .... g, such that forall k € {0,--- ,m}, the intervals

Iy, and I}, are at most different at the end points (i.e., they have the same closure), t(x) be
the (I, -+, Ln)-(Bo, - - -, B )-expansion of x and t'(y) be the (1)), --- , I! )-(Bo, -+ , Bm)-
expansion of y. If x < y, then t(x) < t'(y).

(2) In particular, if v < y, we have g(z) < g*(y) and I*(x) < l(y).

m

Proof. We only need to prove (1). Suppose 0 < 2 <y < 7. Since t(z) = t'(y) will imply
z =7(t(x)) = 7n(t'(y)) = y which contradicts < y, we must have t(x) # ¢'(y). Thus there
exists n > 0 such that ¢,(z)---t,(x) = ti(y)---t;,(y) and t,, .1 () # t,,,,(y). It suffices to
prove t,.1(x) < t;,,,(y) by contradiction.

In fact, by © < y and Lemma 2.2, we get 7"z < (1")"y, where T is the (Iy,- -, I,)-
(Bo,- -+, Bm)-transformation and 7" is the (1(), - - - , I )-(Bo, - - - , B )-transformation. If t,, .1 (x) >
t1(y),byT"x € Iy, () and (T")"y € Ié’nﬂ(y) we get

Tra = inf Iy, @) 2 suply ) = (T)"y,
which contradicts 7"z < (T")™y. O

Given z € [0, z75], let

X gp, B (T) 1= {(wi)iz1 e {0,--- ,m}N  (w;)i>11s a (Bo, - -+ , Bm)-expansion ofx}
and

gy () 1= {(Si)izl € {To,--+ , T} : (Spo---081)() € [0, #] foralln € N}-

As a generalization of [4, Lemma 3.1] and [5, Lemma 2.1] (see also [3]), the following
is a dynamical interpretation of (5, - - - , 5, )-expansions.

Proposition 2.11 (Dynamical interpretation). Let m € N and (5o, -+ ,Sm) € Dy,. For
all v € [0, 35|, the map which sends (w;)i>1 to (Tw,)i>1 is a bijection from g, ... g, (x) to

Qo o ().

Proof. (1) Prove that the mentioned map is well-defined.

Let (w;)i>1 € {0,---,m} be a (8o, ,Bn)-expansion of z and n € N. It suffices to
prove T, o --- o T,z € [0, 775]. In fact, by a simple calculation as in (3) in the proof of
Proposition 1.1, we get

o0
wy

Bwn-&-l e 5wi .

Twno-..oTwlx:
1=n-+1

Thus

> Wy 44 m
= (W Whyao - - - 0, ——
T(Wns1Wns2 ) € [ 5m_1]

Ty,0--0oT,x=
2 B By,

by Proposition 1.1.

(2) The mentioned map is obviously injective. We prove that it is surjective as follows.

Let (w;)i>1 € {0,--+ ,m}"N such that T, o--- 0T, x € [0, .| foralln € N. By

0< Ty, o---oTyx<

m
_ﬁm_l,




EXPANSIONS IN MULTIPLE BASES 15

we get
w w m
By, = Twerrelnr S gt 5 Ty
Wn, Wn, wn \Mm
Wn—1 w Wnp,—1 W, m

T,

Wn—2

o...oTwle

Bwrhl * ﬂwn,15wn T Bwn,lﬂwn(ﬁm - 1)’

L. N S S S SR L — i
) — < a;‘ < ) s
Bwl ﬁwlﬂwz Bwl e Bwn 6@01 ﬁw1 ﬂwz Bwl e Bwn ﬁuu e ﬁwn (ﬁm - 1)

which implies

+ <
Bunr BuwniBuwn

m
rlon ) S @ S mwnwn) ¥ B B )
for alln € N. Let n — oo, we get z = m(wyws - - - ). Thus (w;)i>1 € X, g, (7). O

The following proposition on expansions in one base, which will be used in the proof
of Corollary 1.6, implies that w is lazy if and only if w is greedy (recall Definition 2.7) for
all w = (w;)i>1 € {0,--- ,m}Y, where W := (w;);>; and k := m — k forall k € {0,--- ,m}.
By Proposition 2.6 (1), we recover [11, Theorem 2.1] and [23, Lemma 1].

Proposition 2.12 (Reflection principle in one base). Let m € Nand € (1,m + 1. For all
z € [0, 3], we have

l(%—x) = g(z) and l*(%—x) = g*(x).

1
Proof. (1) Prove I(5%; — z) = g(z). Let w = g(z). By Proposition 2.5 (1) we get

T(WpWpy1 -+ ) < Gy,+1 Whenever w,, < m.

It follows from m(wy,wp 11+ ) + T(WyWpyq -+ ) = o and a,, 11 + by, 1 = i that

7 (WpWps1 -+ ) > by,—1 wWhenever w, > 0. (2.5)
Since w = g(z) implies 7(w) = z*; — x, by Proposition 2.5 (3) and (2.5) we get w =
(g2 — ). -
(2) l*(% — x) = g*(x) follows in a way similar to (1) by applying Proposition 2.5 (2) and
(4). O

3. PROOFS OF THE MAIN RESULTS

First we give the following lemma, which is essentially stronger than Theorem 1.3 (1)
@, (2) ® and (3) O.
Lemma 3.1. Let m € N, (Bo, - ,0m) € Dpm, x € [0,#] and w € {0,--- ,m} bea
(Bo, -+, Bm)-expansion of x.
(1) If w is the greedy expansion and w # m>°, then

o"w < g* (&) foralln > p,

where p ;= min{i > 0 : G'z < £, } exists, and £, := maxo<gp<m—1 Tk(api1).
(2) If w is the lazy expansion and w # 0%, then

o"w = 1"(n-) foralln > q,

where q := min{i > 0 : L'z > n_} exists, and n_ := miny<g<,, Tj.(br_1)-
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Proof. (1) By (8o, -, Bm) € D, we get
ap < app1 < by
forall £ € {0,--- ,m — 1}. This implies 0 < &, < yom

(D Prove that there exists i > 0 such that G’z < &,.
(By contradiction) Assume G’z > &, for all i > 0. Let r be the greatest integer in
{0,-+- ,m} such thata, < ¢, and

= c(z) = T — Bnr+m if r =m;
c=ar) = min{z — B,z +m,a,.1 — &} ifr<m-—1.
It follows from w # m> (which implies z < - by Lemma 2.4) and the definition

of r that ¢ > 0.
i) Prove that for all y € [, 2], we have y — Gy > c.
In fact, if y > a,,, theny — Gy = y— B,y +m > v — B,,x+m > c. We only need
to consider £, < y < a,, in the following. By &, < a,,, we know r < m — 1
and

€4y am) C lar, ari1) Ularir, @ryo) U Uam_1, am)-

There exists k € {r,r + 1,--- ;m — 1} such that y € [ay, axy1). Thus

y—Gy=y—(Bry—k) = (1=By+k > (1= Fr)ar +k = arr1 — Ti(ars) > a1 —&4 > ¢

ii) Deduce a contradiction.
Recall that we have assumed G’z > ¢, foralli > 0. Firstby 2 > ¢, and i), we
getx — Gz > c. Then by £, < Gz < x and i) again, we get Gz — G?x>c. ---
For all n > 1, we can get G" 'z — Gz > c. It follows from the summation of
the above inequalities that + — G"z > nc, where nc — +oo as n — +oo. This
contradicts G'z > &, for all i > 0.
@ Foralln > p, c"w < g*(&+) follows from

ow = o"(g(2)) L g(Gme) 2 g€y,

where () follows from Proposition 2.8 (1), and (%) follows from Proposition 2.10
and G"z < &, which can be proved as follows. First we have Gz < £, by the
definition of p. It suffices to prove that for all y € [0,&,), we have Gy < £, In fact,
lety € [0,&4) C [0,-2=). If y > a,,, then

» BT
Gy =Tny = By —m <y <&
If y < a,, then there exists k € {0,--- ,;m — 1} such that y € [ay, ax,1) and we have

Gy =Ty < Ti(aps1) < &5

(2) follows in a way similar to (1) by using a;, < by_1 < by instead of a;, < ay41 < by, for all
kEe{l,--- m}. O

Proof of Theorem 1.3. (1) @ Suppose that w is the greedy (5, - - - , fn)-expansion of = and
w, < m. Then G" 'z € [ay,, Gy, +1) and

an = G(Gnill’) = Twn (anlx) < Twn(awn+1> S €+.

It follows from Lemma 3.1 (1) that 0" w < ¢g*(&4).
@ Suppose w,, < m. By Proposition 2.5 (1), we only need to prove 7(w,wpt1 -+ ) < G, +1,
which is equivalent to m (w12 -+ ) < T, (G 41)-

For simplification, we use g; to denote g/ (£_) for all i € N in the following.
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First by condition o"w < ¢*(£_), we get w4 1Wy42 - - < ¢7¢5 - - - . Then there exist s; € N
and n; = n + s; such that

* * *
Wp1 - Wpy—1 =Gy " 981—1 and Wy < gsl'

By condition 0™ w < ¢*(£_), we get Wy, 41Wn 42 - - < G765 - - - . Then there exist s, € Nand
ny = N1 + S9 such that

W41 Wpy1 = g1+~ Gy ANA Wy, < g,
For general j > 2, if there already exist s; € Nand n; = n;_; + s; such that
Wnj_ 41" Wny—1 = gf e ‘g:j,1 and Wy, < g:jv

by condition 0w < g*(£-) we get wy,, 41wy, 12+ < gigs ---. Then there exist s;,; € N
and Njy1 =Ny + Sj4+1 such that

*

_ * *
W41 Wnj—1 = g1 gsj+171 and Wnj 44 < gsJ'H‘

Forall ¢ > 1, s; and n; are well defined by the above process. Since

) - ﬂ-(wnrf-l tU wm‘+1)

i=0 ﬁwn+1ﬁwn+g e ﬁwni

W(wn—&-lwn—i—Q e

and

wn awn—l—l

i ( wn awn +1) Twni+1 (a’wni+1 +1)
i— 5wn+1 ﬁwn+2 e 611)711. ﬁwn.H 5wn+2 T Bwni+1

where ng :=nand By, Bu,,» ** Bu,, = 1, we only need to prove

Twni+1 (a’wn i1 +1)

6wni+1/8wni+2 : /Bwn

W(wni—f—l e 'wn¢+1) < Twni (awni+1) -
i+1

Ay, &w"¢+1+1 — Qu nit1

e < Twn' (aw7z-+1>_

i.e., W(wni—‘rl e wni+1_1)+

/Bwni+1/8wni+2 ' 6wni+171 ’ ‘ /Bwni+16wni+2 : ,Bwnzﬂ 1
Ay, +1

Bwn +1ﬂwn +2 " ﬁwni+1_1

In fact, for all i > 0, by wp, 41+ wn,,-1 = 9795, and wy,, +1 < g7 (which

implies ay,,,,, +1 < a9§i+1)’ we get

ie, m(Wnp41 Wnyy-1) + < T, (awniH) forall i > 0.

a ,*
+1 9s;
—+1 * * i+1

< ﬂ-(gl e gSiJrlfl)

610” +16wn 12 ° ﬁwnzﬂ 1 69{695 te 'ﬁgz
T G5)

ﬂ-(wnﬁ-l o 'wm‘+1—1>
it1—1
=7(g; -
® .,
< m(g*(§-)) = & < T, (Qw,,+1),
where () follows from the fact that ¢*(£_) does not end with 0 (by Proposition 2.5 (2)).
(2) follows in a way similar to (1).

(3) follows immediately from (1), (2) and Proposition 2.6 (1). OJ
Corollary 1.4 follows directly from Theorem 1.3.
Corollary 1.5 follows from Theorem 1.3, the facts that 5, < ; < --- < Bm implies
& <landn_ > 30 —1,B80>B3 > > By, implies§_ > 1and 7y < — 1, and the

increase of g* and T (by Proposition 2.8 (4)).
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Proof of Corollary 1.6. (1) follows immediately from Corollary 1.5 and Proposition 2.12.
2 @® follows from Lemma 3.1 (1), in which £, = 1 and p = 0.

First by (1) D, we know that w is the greedy expansion g(x). Then it follows from
g(z) =w < g*(1) < g(1) and the strictly increase of g (by Proposition 2.8 (4)) that « < 1.
® follows from Proposition 2.12 and Lemma 3.1 (2), in which . = 7%; — 1 and
q=0.

First by (1) @, we know that w is the lazy expansion [(x). Then it follows from
l(z) =w>g*(1) =I"(3%; — 1) = {(3%; — 1) and the strictly increase of [ (by Proposition
2.8 (4)) thatz > %7 — 1.

® follows from (1), @ and Proposition 2.6 (1). OJ

4. FURTHER QUESTIONS

On the one hand, although necessary and sufficient conditions for sequences to be
greedy, lazy and unique expansions in two bases and one base are obtained in Corollary
1.4 and 1.6 respectively, for general cases, i.e., in more than two bases, Theorem 1.3 and
Corollary 1.5 can only give necessary conditions and sufficient conditions separately. We
look forward to getting necessary and sufficient conditions for general cases.

On the other hand, in our main results, including Theorem 1.3, Corollary 1.4, 1.5 and
1.6, we can see that some special expansions of £, ¢, 75,7, 1 and 7™ — 1 play impor-
tant roles in determining greedy, lazy and unique expansions of general z. Thus we think
that it is meaningful to characterize the greedy, quasi-greedy, lazy, quasi-lazy and unique
expansions of £, ,&_,n4,n—,1 and g — lin multiple bases, especially in combinatorial
ways. See [17] for combinatorial characterizations of greedy, lazy and unique expansions
of 1in one base.
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