

Reply: Two heterozygous Progranulin mutations in progressive supranuclear palsy

Vincent Huin, Mathieu Barbier, Alexandra Durr, Isabelle Le Ber

▶ To cite this version:

Vincent Huin, Mathieu Barbier, Alexandra Durr, Isabelle Le Ber. Reply: Two heterozygous Progranulin mutations in progressive supranuclear palsy. Brain - A Journal of Neurology , 2021, 10.1093/brain/awaa456 . hal-03113276

HAL Id: hal-03113276 https://hal.sorbonne-universite.fr/hal-03113276

Submitted on 18 Jan 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Reply: Two heterozygous Progranulin mutations in progressive supranuclear palsy

Madam, Sir,

Thank you for the opportunity to respond to Yang *et al.*, 2020, reporting a patient diagnosed with progressive supranuclear palsy (PSP) who carried two novel heterozygous missense variants in *GRN* gene. The authors report one case, a 65-year-old man who presented with an akinetic-rigid syndrome, postural instability and supranuclear gaze palsy. Clinical signs fulfilled the Movement Disorder Society's clinical diagnostic criteria for probable PSP (Hoglinger *et al.*, 2017). Sequencing of nine genes which pathogenic variants cause dementia (*GRN*, *MAPT*, *C9orf72*, *VCP*, *TARDP*, *CHMP2B*, *APP*, *PSEN1* and *PSEN2*) revealed two heterozygous missense variants, c.745C>G, p.(Gln249Glu) and c.802A>C, p.(Thr268Pro), in the *GRN* gene. The authors suggested that biallelic *GRN* mutations might cause a PSP-like phenotype, allowing further expansion of the phenotypic spectrum of homozygous *GRN* mutations reported by our team (Huin *et al.*, 2020).

Atypical presentations with parkinsonism are known to be less frequent in heterozygous *GRN* mutations carriers than behavioral variant of FTD or primary progressive aphasias. They mainly manifest as a corticobasal syndrome, or a clinical picture resembling dementia with Lewy bodies (Le Ber *et al.*, 2008; Orme *et al.*, 2020; Carneiro *et al.*, 2020). Conversely to *MAPT* mutations or *C9orf72* repeat expansions, pathogenic *GRN* mutations were reported to be a very rare cause of possible PSP (Ogaki *et al.*, 2013). Only a few studies have reported patients with PSP-like phenotypes associated with heterozygous *GRN* null mutations (Rusina *et al.*, 2011; Tremolizzo *et al.*, 2011; Picillo *et al.*, 2020). We previously reported a patient who carried homozygous *GRN* mutations and initially presented, at age 61, with atypical parkinsonism characterized by akinetic-rigid syndrome, unresponsive to L-DOPA treatment, tremor and postural instability, but not fitting criteria for PSP. He rapidly developed frontal cognitive, behavioral and language impairments, within the two first years of the disease, that were consistent with a behavioral variant of FTD (Huin *et al.*, 2020).

The case reported by Yang *et al.*, raises therefore some concerns. It would have been useful to have access to eye movement recordings, a more in-depth cognitive evaluation (in particular, frontal executive functions), and in particular, to details of the clinical progression. Lastly,

information on genetic screening of other genes involved in parkinsonism (particularly SCNA, LRRK2 and PRKN) would also have been of interest. The absence of a positive family history, without parental censure, does not provide supportive evidence in favor of variant pathogenicity. Additionally, testing of parents or other first-degree relatives is requested to determine the phase, and for establishing if the two variants are carried by two different alleles, i.e. in trans, according to the international guidelines for the interpretation of sequence variants (Richards et al., 2015). The study of Yang et al., does not provide clear evidence that the GRN variants are in trans as no familial segregation analyses were conducted. Without phasing, we cannot exclude that the two variants actually constitute a single pathogenic haplotype, rather than compound heterozygous variants.

Most pathogenic GRN mutations are null mutations producing a premature stop codon, leading to the degradation of mutant mRNA and, thereby, to a loss-of-function through haploinsufficiency (Baker et al., 2006; Cruts et al., 2006). PGRN protein, coded by GRN, is secreted in bodily fluids, and can be measured in plasma. As a consequence of haploinsufficiency, plasma progranulin level is decreased in GRN mutations carriers. Plasma progranulin dosage is thus a simple, reliable and cost-effective marker suitable as a screening tool and to support the causative role of GRN mutations with unknown pathogenicity (Guven et al., 2019; Sellami et al., 2020). We and others reported that homozygous GRN mutations were associated with an almost complete loss of function of progranulin, accompanied with very low or undetectable plasma progranulin levels (Smith et al., 2012; Canafoglia et al., 2014; Almeida et al., 2016; Faber et al., 2017; Kamate et al., 2019; Huin et al., 2020). Although *in vitro* experiments in the study of Yang *et al.* suggested that the p.(Gln249Glu) and p.(Thr268Pro) variants reduce the stability of progranulin protein, these results would be strongly reinforced in vivo by plasma level measurement that, if decreased or undetectable, would provide convincing arguments for variants pathogenicity. This would be of importance, as the majority of GRN missense mutations are not, or not proven to be pathogenic, and only rare missense mutations have been associated with reduced gene expression (Shankaran et al., 2008; van der Zee et al., 2007; Saracino et al., 2020) or splice defect (Luzzi et al., 2017), leading to haploinsufficiency as well.

Depending to the interpretation of the level of evidence provided by the *in vitro* experiments, these two missense variants may be classified as "VUS" (Variants of Unknown Significance) according to the American College of Medical Genetics and Genomics guidelines for the interpretation of sequence variants (Richards *et al.*, 2015).

In summary, the study of Yang et al., reports a PSP-like phenotype in a patients carrying two

missense variants in GRN gene, putatively compound heterozygous. Finally, we suggest that

further analyses (including segregation analyses and plasma proganulin dosage) are warranted

to draw definite conclusion about the association of these two missense variants with a PSP-

like phenotype.

Authors:

Vincent Huin, MD, PhD^{1,2}, Mathieu Barbier, PhD¹, Alexandra Durr, MD, PhD¹, Isabelle Le

Ber, MD, PhD^{1,3}

¹ Sorbonne Université, Paris Brain Institute, APHP, INSERM, CNRS, Paris, France

² Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog (JPARC) - Lille Neuroscience &

Cognition, F-59000 Lille, France

³ AP-HP, National Reference center "rare and young dementias", IM2A, Pitié-Salpêtrière

University Hospital, Paris, France

ORCID number:

Vincent Huin = 0000-0001-8201-5406

Mathieu Barbier = 0000-0002-5154-2163

Alexandra Durr = 0000-0002-8921-7104

Isabelle Le Ber = 0000-0002-2508-5181

Competing interests

The authors report no competing interests.

Funding

This work received funding from the VERUM foundation and 'Investissements d'avenir' ANR-11-INBS-0011 – NeurATRIS: Translational Research Infrastructure for Biotherapies in Neurosciences. This work was funded by the Programme Hospitalier de Recherche Clinique (PHRC) FTLD-exome (to I.L.B., promotion by Assistance Publique – Hôpitaux de Paris) and PHRC Predict-progranulin (to I.L.B., promotion by Assistance Publique – Hôpitaux de Paris).

REFERENCES

Almeida MR, Macário MC, Ramos L, Baldeiras I, Ribeiro MH, Santana I. Portuguese family with the co-occurrence of frontotemporal lobar degeneration and neuronal ceroid lipofuscinosis phenotypes due to progranulin gene mutation. Neurobiol Aging 2016; 41: 200.e1-200.e5.

Baker M, Mackenzie IR, Pickering-Brown SM, Gass J, Rademakers R, Lindholm C, et al. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 2006; 442: 916–9.

Canafoglia L, Morbin M, Scaioli V, Pareyson D, D'Incerti L, Fugnanesi V, et al. Recurrent generalized seizures, visual loss, and palinopsia as phenotypic features of neuronal ceroid lipofuscinosis due to progranulin gene mutation. Epilepsia 2014; 55: e56-59.

Carneiro F, Saracino D, Huin V, Clot F, Delorme C, Méneret A, et al. Isolated parkinsonism is an atypical presentation of GRN and C9orf72 gene mutations. Parkinsonism & Related Disorders 2020; 80: 73–81.

Cruts M, Gijselinck I, van der Zee J, Engelborghs S, Wils H, Pirici D, et al. Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature 2006; 442: 920–4.

Faber I, Prota JRM, Martinez ARM, Lopes-Cendes I, França MC. A new phenotype associated with homozygous GRN mutations: complicated spastic paraplegia. Eur J Neurol 2017; 24: e3–4.

Guven G, Bilgic B, Tufekcioglu Z, Erginel Unaltuna N, Hanagasi H, Gurvit H, et al. Peripheral GRN mRNA and Serum Progranulin Levels as a Potential Indicator for Both the Presence of Splice Site Mutations and Individuals at Risk for Frontotemporal Dementia. JAD 2019; 67: 159–67.

Höglinger GU, Respondek G, Stamelou M, Kurz C, Josephs KA, Lang AE, et al. Clinical diagnosis of progressive supranuclear palsy: The movement disorder society criteria: MDS Clinical Diagnostic Criteria for PSP. Mov Disord 2017; 32: 853–64.

Huin V, Barbier M, Bottani A, Lobrinus JA, Clot F, Lamari F, et al. Homozygous GRN mutations: new phenotypes and new insights into pathological and molecular mechanisms. Brain 2020; 143: 303–19.

Kamate M, Detroja M, Hattiholi V. Neuronal ceroid lipofuscinosis type-11 in an adolescent. Brain and Development 2019; 41: 542–5.

Le Ber I, Camuzat A, Hannequin D, Pasquier F, Guedj E, Rovelet-Lecrux A, et al. Phenotype variability in progranulin mutation carriers: a clinical, neuropsychological, imaging and genetic study. Brain 2008; 131: 732–46.

Luzzi S, Colleoni L, Corbetta P, Baldinelli S, Fiori C, Girelli F, et al. Missense mutation in GRN gene affecting RNA splicing and plasma progranulin level in a family affected by frontotemporal lobar degeneration. Neurobiology of Aging 2017; 54: 214.e1-214.e6.

Ogaki K, Li Y, Takanashi M, Ishikawa K-I, Kobayashi T, Nonaka T, et al. Analyses of the MAPT, PGRN, and C9orf72 mutations in Japanese patients with FTLD, PSP, and CBS. Parkinsonism & Related Disorders 2013; 19: 15–20.

Orme T, Hernandez D, Ross OA, Kun-Rodrigues C, Darwent L, Shepherd CE, et al. Analysis of neurodegenerative disease-causing genes in dementia with Lewy bodies. acta neuropathol commun 2020; 8: 5.

Picillo M, Vitale E, Rendina A, Donizetti A, Aliperti V, Tepedino MF, et al. Clinical and Molecular Characterization of a Novel Progranulin Deletion Associated with Different Phenotypes. JAD 2020; 76: 341–7.

; on behalf of the ACMG Laboratory Quality Assurance Committee, Richards S, Aziz N, Bale S, Bick D, Das S, et al. Standards and guidelines for the interpretation of sequence variants: a

joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015; 17: 405–23.

Rusina R, Kovacs GG, Fiala J, Hort J, Ridzoň P, Holmerová I, et al. FTLD-TDP with motor neuron disease, visuospatial impairment and a progressive supranuclear palsy-like syndrome: broadening the clinical phenotype of TDP-43 proteinopathies. A report of three cases. BMC Neurol 2011; 11: 50.

Saracino D, Sellami L, Clot F, Camuzat A, Lamari F, Rucheton B, et al. The missense p.Trp7Arg mutation in GRN gene leads to progranulin haploinsufficiency. Neurobiology of Aging 2020; 85: 154.e9-154.e11.

Sellami L, Rucheton B, Ben Younes I, Camuzat A, Saracino D, Rinaldi D, et al. Plasma progranulin levels for frontotemporal dementia in clinical practice: a 10-year French experience. Neurobiology of Aging 2020; 91: 167.e1-167.e9.

Shankaran SS, Capell A, Hruscha AT, Fellerer K, Neumann M, Schmid B, et al. Missense Mutations in the Progranulin Gene Linked to Frontotemporal Lobar Degeneration with Ubiquitin-immunoreactive Inclusions Reduce Progranulin Production and Secretion. J Biol Chem 2008; 283: 1744–53.

Smith KR, Damiano J, Franceschetti S, Carpenter S, Canafoglia L, Morbin M, et al. Strikingly different clinicopathological phenotypes determined by progranulin-mutation dosage. Am J Hum Genet 2012; 90: 1102–7.

Tremolizzo L, Bertola F, Casati G, Piperno A, Ferrarese C, Appollonio I. Progressive supranuclear palsy-like phenotype caused by progranulin p.Thr272fs mutation: Letters to the Editors. Mov Disord 2011; 26: 1964–6.

van der Zee J, Le Ber I, Maurer-Stroh S, Engelborghs S, Gijselinck I, Camuzat A, et al. Mutations other than null mutations producing a pathogenic loss of progranulin in frontotemporal dementia. Hum Mutat 2007; 28: 416–416.

Yang W, Deng B, Huang Y, Huang Z, Liu J, Chang Z, et al. Two heterozygous progranulin mutations in progressive supranuclear palsy. Brain 2020; *in press*.