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Simple Summary: Using tools from the reduced order modeling of parametric ODEs and PDEs,
including a new positivity-preserving greedy reduced basis method, we present a novel forecasting
method for predicting the propagation of an epidemic. The method takes a collection of highly
detailed compartmental models (with different initial conditions, initial times, epidemiological
parameters and numerous compartments) and learns a model with few compartments which best
fits the available health data and which is used to provide the forecasts. We illustrate the promising
potential of the approach to the spread of the current COVID-19 pandemic in the case of the Paris
region during the period from March to November 2020, in which two epidemic waves took place.

Abstract: We propose a forecasting method for predicting epidemiological health series on a two-
week horizon at regional and interregional resolution. The approach is based on the model order
reduction of parametric compartmental models and is designed to accommodate small amounts of
sanitary data. The efficiency of the method is shown in the case of the prediction of the number of
infected people and people removed from the collected data, either due to death or recovery, during
the two pandemic waves of COVID-19 in France, which took place approximately between February
and November 2020. Numerical results illustrate the promising potential of the approach.

Keywords: COVID-19; epidemiology; forecasting; model reduction; reduced basis

1. Introduction

Providing reliable epidemiological forecasts during an ongoing pandemic is crucial to
mitigate the potentially disastrous consequences for global public health and the economy.
As the ongoing pandemic of COVID-19 sadly illustrates, this is a daunting task in the case
of new diseases due to the incomplete knowledge of the behavior of the disease and the
heterogeneities and uncertainties in the health data count. Despite these difficulties, many
forecasting strategies exist, and we can cast them into two main categories: the first type is
purely data-based and involves statistical and learning methods such as time series analysis,
multivariate linear regression, grey forecasting or neural networks [1–5]; the second approach
uses epidemiological models, which are appealing since they provide an interpretable
insight of the mechanisms of the outbreak. They also provide high flexibility in the level of
detail to describe the evolution of a pandemic, ranging from simple compartmental models
that divide the population into a few exclusive categories to highly detailed descriptions
involving numerous compartments or even agent-based models (see, e.g., [6–8] for general
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references on mathematical epidemiological models and [9–11] for some models focused
on COVID-19). One salient drawback of using epidemiological models for forecasting
purposes lies in the very high uncertainty in the estimation of the relevant parameters.
This is due to the fact that the parameters cannot often be inferred from real observations,
and the available data are insufficient or too noisy to provide any reliable estimation.
The situation is aggravated by the fact that the number of parameters can quickly become
large even in moderately simple compartmental models [10]. As a result, forecasting with
these models involves making numerous a priori hypotheses which can sometimes be
difficult to justify by data observations.

In this paper, our goal is to forecast the time-series of infected, removed and dead
patients with compartmental models that involve as few parameters as possible in order to
infer these series solely from the data. The available data are only given for hospitalized
people; one can nevertheless estimate the total number of infected people through an
adjustment factor taken from the literature. Such a factor takes into account the proportion
of asymptomatic people and infected people who do not go to hospital. The model that
includes the least number of parameters is probably the susceptible–infected–removed
(SIR) model [12], which is based on a partition of the population into the following groups:

• Uninfected people, called susceptible (S);
• Infected and contagious people (I), with more or less marked symptoms;
• People removed (R) from the infectious process, either because they were cured or

unfortunately died after being infected.

If N denotes the total population size that we assume to be constant over a certain
time interval [0, T], we have

N = S(t) + I(t) + R(t), ∀t ∈ [0, T],

and the evolution from S to I and from I to R is given for all t ∈ [0, T] by

dS
dt

(t) = − βI(t)S(t)
N

dI
dt

(t) =
βI(t)S(t)

N
− γI(t)

dR
dt

(t) = γI(t).

The SIR model has only two parameters:

• γ > 0 represents the recovery rate. In other words, its inverse γ−1 can be interpreted
as the length (in days) of the contagious period;

• β > 0 is the transmission rate of the disease. It essentially depends on two factors: the
contagiousness of the disease and the contact rate within the population. The larger
this second parameter is, the faster the transition from susceptible to infectious will
be. As a consequence, the number of hospitalized patients may increase very quickly
and may lead to a collapse of the health system [13]. Strong distancing measures such
as confinement can effectively act on this parameter [14,15], helping to keep it low.

Our forecasting strategy is motivated by the following observation: by allowing the
parameters β and γ to be time-dependent, we can find optimal coefficients β∗(t) and γ∗(t)
that exactly fit any series of infected and removed patients. In other words, we can perfectly
fit any observed health series with an SIR model with time-dependent coefficients.

As we explain below, the high fitting power stems from the fact that the parameters
β and γ are searched in L∞([0, T],R+)—the space of essentially bounded measurable
functions. For our forecasting purposes, however, this space is too large to give any
predictive power, and we need to find a smaller manifold that simultaneously has good
fitting and forecasting properties. To this end, we developed a method based on model
order reduction. The idea of the method was to find a space with a reduced dimension
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that can host the dynamics of the current epidemic. This reduced space is learnt from a
series of detailed compartmental models based on precise underlying mechanisms of the
disease. One major difficulty in these models is the fitting of the correct parameters. In our
approach, we do not seek to estimate these parameters; instead, we consider a large range
of possible parameter configurations with a uniform sampling that allows us to simulate
virtual epidemic scenarios in a longer range than the fitting window [0, T]. We next cast
each virtual epidemic from the family of detailed compartmental models into the family of
SIR models with time-dependent coefficients, as explained below. This procedure yields
time-dependent parameters β and γ for each detailed virtual epidemic. The set of all such
β (or γ) is then condensed into a reduced basis with a small dimension. We finally use
the available health data on the time window [0, T] to find the functions β and γ from
the reduced space that best fit the current epidemic over [0, T]. Since the reduced basis
functions are defined over a longer time range [0, T + τ] with τ > 0 (e.g., two weeks), the
strategy automatically provides forecasts from T to T + τ. Its accuracy will be related to
the pertinence of the mechanistic mathematical models that have been used in the learning
process.

We note that an important feature of our approach is that all virtual simulations are
considered equally important in the first stage, and the procedure automatically learns
what the best scenarios (or linear combinations of scenarios) to describe the available data
are. Moreover, the approach even mixes different compartmental models to accommodate
these available data. This is in contrast to other existing approaches which introduce a
strong a priori belief regarding the quality of a certain particular model. Note also that
we can add models related to other illness and use the large manifold to fit a possible
new epidemic. It is also possible to mix the current approach with other purely statistical
or learning strategies by means of expert aggregation. One salient difference with these
approaches which is important to emphasize is that our method hinges on highly detailed
compartmental models which have clear epidemiological interpretations. Our collapsing
methodology into the time-dependent SIR is a way of “summarizing” the dynamics into
a few terms. One may expect that reducing the number of parameters comes at the cost
of losing the interpretability of parameters, and this is true in general. Nevertheless,
the numerical results of the present work show that a reasonable tradeoff between the
“reduction of the number of parameters” and “interpretability of these few parameters” can
be achieved.

The paper is organized as follows. In Section 2, we present the forecasting method in
the case of a single region with a constant population. For this, in Section 2.1, we briefly in-
troduce the epidemiological models involved in the procedure, namely the SIR model with
time-dependent coefficients and more detailed compartmental models used for the training
step. In Section 2.2, after proving that the SIR model with time-dependent coefficients in
L∞([0, T]) is able to fit any admissible epidemiological evolution (as explained below), we
present the main steps of the forecasting method. The method involves a collapsing step
from detailed models to SIR models with time-dependent coefficients and model reduction
techniques. We detail these points in Sections 2.3 and 2.4. In Section 3, we explain how the
method can easily be extended to a multi-regional context involving population mobility
and regional health data observations (provided, of course, that mobility data are available).
In Section 3.1, we begin by clarifying that the nature of the mobility data will dictate the
kind of multi-regional SIR model to use in this context. In Section 3.2, we outline how
to adapt the main steps of the method to the multi-regional case. Finally, in Section 4,
we present numerical results for the the two pandemic waves of COVID-19 in France in
2020, which took place approximately between February and November 2020. Concluding
comments are given in Section 5, followed by two Appendices A and B that present details
about the processing of the data noise and the forecasting error.



Biology 2021, 10, 22 4 of 42

2. Methodology for a Single Region

For the sake of clarity, we first consider the case of a single region with a constant
population and no population fluxes with other regions. Here, the term region is generic
and may be applied to very different geographical scales, ranging from a full country to a
department within a country or even smaller partitions of a territory.

2.1. Compartmental Models

The final output of our method is a mono-regional SIR model with time-dependent
coefficients as explained below. This SIR model with time-dependent coefficients is eval-
uated with reduced modeling techniques involving a large family of models with finer
compartments proposed in the literature. Before presenting the method in the next section,
we here introduce all the models that we use in this paper along with useful notations for
the rest of the paper.

2.1.1. SIR Models with Time-Dependent Parameters

We fit and forecast the series of infected and removed patients (dead and recovered)
with SIR models where the coefficients β and γ are time-dependent:

dS
dt

(t) = − β(t)I(t)S(t)
N

dI
dt

(t) =
β(t)I(t)S(t)

N
− γ(t)I(t)

dR
dt

(t) = γ(t)I(t).

In the following, we use bold-faced letters for past-time quantities. For example,
f := { f (t) : 0 ≤ t ≤ T} for any function f ∈ L∞([0, T]). Using this notation, for any given
β and γ ∈ L∞([0, T]) we denote by

(S, I, R) = SIR(β, γ, [0, T])

the solution of the associated SIR dynamics in [0, T].

2.1.2. Detailed Compartmental Models

Models involving many compartments offer a detailed description of epidemiological
mechanisms at the expense of involving many parameters. In our approach, we use
them to generate virtual scenarios. One of the initial motivations behind the present
work is to provide forecasts for the COVID-19 pandemic; thus, we have selected the two
following models which are specific for this disease, but note that any other compartmental
model [9,10,16] or agent-based simulation could also be used.

• First model, SEI5CHRD: This model is inspired by the one proposed in [10]. It involves
11 different compartments and a set of 19 parameters (see Table 1). The dynamics of
the model are illustrated in Figure 1, and the system of equations reads as follows:
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dS
dt

(t) = − 1
N

S(t)
(

βp Ip(t) + βa Ia(t) + βps Ips(t) + βms Ims(t) + βss Iss(t) + βH H(t) + βCC(t)
)

dE
dt

(t) =
1
N

S(t)
(

βp Ip(t) + βa Ia(t) + βps Ips(t) + βms Ims(t) + βss Iss(t) + βH H(t) + βCC(t)
)
− εE(t)

dIp

dt
(t) = εE(t)− µp Ip(t)

dIa

dt
(t) = paµp Ip(t)− µIa(t)

dIps

dt
(t) = pps(1− pa)µp Ip(t)− µIps(t)

dIms

dt
(t) = pms(1− pa)µp Ip(t)− µIms(t)

dIss

dt
(t) = pss(1− pa)µp Ip(t)− µIss(t)

dC
dt

(t) = pcµIss(t)− (λC,R + λC,D)C(t)

dH
dt

(t) = (1− pc)µIss(t)− (λH,R + λH,D)H(t)

dR
dt

(t) = λC,RC(t) + λH,RH(t)

dD
dt

(t) = λC,DC(t) + λH,D H(t)

The different parameters involved in the model are described in Table 2 and detailed in the
appendix of [10].

Version December 10, 2020 submitted to Biology 5 of 41

Ips

Ims

Iss

Ia

IpES

C D

R

H

Figure 1. SEI5CHRD model

• First model, SEI5CHRD: This model is inspired from the one proposed in [10]. It involves 11
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We denote by

u = SEI5CHRD(u0, βp,βa, βps, βms, βss, βH , βC,

ε, µp, pa, µ, pps, pms, pss, pC,

λCR, λCD, λHR, λHD, [0, T])

the parameter-to-solution map where u = (S, E, Ip, Ia, Ips, Ims, Iss, C, H, R, D).126

Figure 1. SEI5CHRD model.
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Table 1. Description of the compartments in Model SEI5CHRD.

Compartment Description

S Susceptible
E Exposed (non infectious)
Ip Infected and pre-symptomatic (already infectious)
Ia Infected and a-symptomatic (but infectious)
Ips Infected and paucisymptomatic
Ims Infected with mild symptoms
Iss Infected with severe symptoms
H Hospitalized
C Intensive Care Unit
R Removed
D Dead

Table 2. Description of the parameters involved in Model SEI5CHRD.

Parameter Description

βp Relative infectiousness of Ip
βa Relative infectiousness of Ia
βps Relative infectiousness of Ips
βms Relative infectiousness of Ims
βss Relative infectiousness of Iss
βH Relative infectiousness of IH
βC Relative infectiousness of IC
ε−1 Latency period
µ−1

p Duration of prodromal phase
pa Probability of being asymptomatic
µ−1 Infectious period of Ia, Ips, Ims, Iss
pps If symptomatic, probability of being paucisymptomatic
pms If symptomatic, probability of developing mild symptoms
pss If symptomatic, probability of developing severe symptoms (note that pps + pms + pss = 1)
pC If severe symptoms, probability of going in C
λCR If in C, daily rate entering in R
λCD If in C, daily rate entering in D
λHR If hospitalized, daily rate entering in R
λHD If hospitalized, daily rate entering in D

We denote by

u = SEI5CHRD(u0, βp,βa, βps, βms, βss, βH , βC,

ε, µp, pa, µ, pps, pms, pss, pC,

λCR, λCD, λHR, λHD, [0, T])

the parameter-to-solution map where u = (S, E, Ip, Ia, Ips, Ims, Iss, C, H, R, D).

• Second model, SE2IUR: This model is a variant of the one proposed in [9]. It involves
five different compartments (see Table 3) and a set of six parameters. The dynamics of
the model are illustrated in Figure 2 and the set of equations is as follows:
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dS
dt

(t) = − 1
N

βS(t)(E2(t) + U(t) + I(t))

dE1

dt
(t) =

1
N

βS(t)(E2(t) + U(t) + I(t))− δE1(t)

dE2

dt
(t) = δE1(t)− σE2(t)

dI
dt

(t) = νσE2(t)− γ1 I(t)

dU
dt

(t) = (1− ν)σE2(t)− γ2U(t)

dR
dt

(t) = γ1 I(t) + γ2U(t)Version December 10, 2020 submitted to Biology 7 of 41
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We denote by
u = SE2IUR(u0, β, δ, σ, ν, γ1, γ2, [0, T])

the parameter-to-solution map where u = (S, E1, E2, I, U, R). The different parameters
involved in the model are described in Table 4.

Table 3. Description of the compartments in model SE2IUR.

Compartment Description

S Susceptible
E1 Exposed (non infectious)
E2 Infected and pre-symptomatic (already infectious)
I Infected and symptomatic
U Un-noticed
R dead and removed

Table 4. Description of the parameters involved in model SE2IUR.

Parameter Description

β Relative infectiousness of I, U, E2
δ−1 Latency period
σ−1 Duration of prodromal phase
ν Proportion of I among I + U
γ1 If I, daily rate entering in R
γ2 If U, daily rate entering in R
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• Generalization: In the following, we abstract the procedure as follows. For any
Detailed_Model with d compartments involving a vector µ ∈ Rp of p parameters, we
denote by

u(µ) = Detailed_Model(µ, [0, T̃]), u(µ) ∈ L∞([0, T̃],Rd)

the parameter-to-solution map, where T̃ is some given time simulation that can be
as large as desired because this is a virtual scenario. Note that, because the initial
condition of the illness at time 0 is not known, we include the initial condition u0 in
the parameter set.

2.2. Forecasting Based on Model Reduction of Detailed Models

We assume that we are given health data in a time window [0, T], where T > 0 is
assumed to be the present time. The observed data are the series of infected people, denoted
Iobs, and removed people, denoted Robs. They are usually given at a national or a regional
scale and on a daily basis. For our discussion, it is useful to work with time-continuous
functions, and t→ Iobs(t) denotes the piecewise constant approximation in [0, T] from the
given data (and similarly for Robs(t)). Our goal is to give short-term forecasts of the series
in a time window τ > 0 whose size is about two weeks. We denote by I(t) and R(t) the
approximations to the series Iobs(t) and Robs(t) at any time t ∈ [0, T].

As mentioned above, we propose to fit the data and provide forecasts with SIR models
with time-dependent parameters β and γ. The main motivation for using such a simple
family is that it possesses optimal fitting and forecasting properties for our purposes, as
explained above. We define the cost function

J (β, γ | Iobs(t), Robs(t), [0, T]) :=
∫ T

0

(
|I(t)− Iobs(t)|2 + |R(t)− Robs(t)|2

)
dt (1)

such that
(S, I, R) = SIR(β, γ, [0, T]),

and the fitting problem can be expressed at the continuous level as the optimal control
problem of finding

J∗ = inf
(β,γ)∈L∞([0,T])×L∞([0,T])

J (β, γ | Iobs, Robs, [0, T]). (2)

The following result ensures the existence of a unique minimizer under very mild con-
straints.

Proposition 1. Let N ∈ N∗ and T > 0. For any real-valued functions Sobs, Iobs, Robs of class C1,
defined on [0, T] satisfying

(i) Sobs(t) + Iobs(t) + Robs(t) = N for every t ∈ [0, T],
(ii) Sobs in nonincreasing on [0, T],
(iii) Robs is nondeacreasing on [0, T],

there exists a unique minimizer (β∗obs, γ∗obs) to Equation (2).

Proof. One can set




β∗obs(t) := − N
Iobs(t)Sobs(t)

dSobs
dt

(t)

γ∗obs(t) :=
1

Iobs(t)
dRobs

dt
(t)

(3)

so that
(Sobs, Iobs, Robs) = SIR(β∗, γ∗, [0, T])
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and
J (β∗obs, γ∗obs, [0, T]) = 0

which obviously implies that J∗ = 0.

Note that one can equivalently set




β∗obs(t) := − N
Iobs(t)Sobs(t)

dSobs
dt

(t)

γ∗obs(t) :=
1

Iobs(t)

[
dIobs

dt
(t)− β∗obs(t)Iobs(t)Sobs(t)

N

]

or again




γ∗obs(t) :=
1

Iobs(t)
dRobs

dt
(t)

β∗obs(t) :=
N

Iobs(t)Sobs(t)

[
dIobs

dt
(t)− γ∗obs(t)Iobs(t)

]

This simple observation means that there exists a time-dependent SIR model which
can perfectly fit the data of any (epidemiological) evolution that satisfies properties (i), (ii),
and (iii). In particular, we can perfectly fit the series of sick people with a time-dependent
SIR model (with a smoothing of the local oscillations due to noise). Since the health data
are usually given on a daily basis, we can approximate β∗obs, γ∗obs by approximating the
derivatives by classical finite differences in Equation (3).

The fact that we can build β∗obs and γ∗obs such that J (β∗obs, γ∗obs) = J∗ = 0 implies that
the family of time-dependent SIR models is rich enough not only to fit the evolution of
any epidemiological series but also to deliver perfect predictions of the health data. It is
however important to note that since the β∗obs, γ∗obs are derived exclusively from the data
and depend on time, we lose the direct interpretations of these coefficients in terms of
the length of the contagious period or the transmission rate that these coefficients present
when they are considered constant. The great approximation power comes also at the cost
of defining the parameters β and γ in L∞([0, T]) which is a space that is too large to be able
to define any feasible prediction strategy.

In order to pin down a smaller manifold where these parameters may vary without
sacrificing much in terms of the fitting and forecasting power, our strategy is the following:

1. Learning phase: The fundamental hypothesis of our approach is that the specialists of
epidemiology have understood the mechanisms of infection transmission sufficiently
well. The second hypothesis is that these accurate models suffer from the proper
determination of the parameters they contain. We thus propose to generate a large
number of virtual epidemics, following these mechanistic models, with parameters
that can be chosen in the vicinity of the suggested parameter values, including the
different initial conditions.

(a) Generate virtual scenarios using detailed models with constant coefficients:

• Define the notion of a Detailed_Model which is most appropriate for
the epidemiological study. Several models could be considered. For our
numerical application, the detailed models are defined in Section 2.1.

• Define an interval range P ⊂ Rp where the parameters µ of
Detailed_Model vary. We call the solution manifold U the set of vir-
tual dynamics over [0, T + τ], namely

U := {u(µ) = Detailed_Model(µ, [0, T + τ]) : µ ∈ P}.

• Draw a finite training set

Ptr = {µ1, . . . , µK} ⊆ P
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of K � 1 parameter instances and compute u(µ) = Detailed_Model
(µ, [0, T + τ]) for µ ∈ Ptr. Each u(µ) is a virtual epidemiological scenario.
An important detail for our prediction purposes is that the simulations
are done in [0, T + τ]; that is, we simulate not only in the fitting time
interval but also in the prediction time interval. We call

Utr = {u(µ) : µ ∈ Ptr}

the training set of all virtual scenarios.

(b) Collapse every detailed model u(µ) ∈ Utr into an SIR model following the
ideas explained in Section 2.3. For every u(µ), the procedure gives time-
dependent parameters β(µ) and γ(µ) and associated SIR solutions (S, I, R)(µ)
in [0, T + τ]. This yields the sets

Btr := {β(µ) : µ ∈ Ptr} and Gtr := {γ(µ) : µ ∈ Ptr}. (4)

(c) Compute reduced models:
We apply model reduction techniques using Btr and Gtr as training sets in
order to build two bases

Bn = span{b1, . . . , bn}, Gn = span{g1, . . . , gn} ⊂ L∞([0, T + τ],R),

which are defined over [0, T + τ]. The space Bn is such that it approximates
all functions β(µ) ∈ Btr well (or all γ(µ) ∈ Gtr can be well approximated by
elements of Gn). In Section 2.4, we outline the methods we have explored in
our numerical tests.

2. Fitting on the reduced spaces: We next solve the fitting problem (2) in the interval
[0, T] by searching β (or γ) in Bn (or in Gn) instead of in L∞([0, T]); that is,

J∗(Bn ,Gn)
= min

(β,γ)∈Bn×Gn
J (β, γ | Iobs, Robs, [0, T]). (5)

Note that the respective dimensions of Bn and Gn can be different; for simplicity, we
consider them to be equal in the following. Obviously, since Bn and Gn ⊂ L∞([0, T]),
we obtain

J∗ ≤ J∗(Bn ,Gn)
,

but we numerically observe that the function n 7→ J∗(Bn ,Gn)
decreases very rapidly as n

increases, which indirectly confirms the fact that the manifold generated by the two
above models accommodates the COVID-19 epidemic well.
The solution of problem (5) gives us the coefficients (c∗i )

n
i=1 and (c̃∗i )

n
i=1 ∈ Rn such

that the time-dependent parameters

β∗n(t) =
n

∑
i=1

c∗i bi(t), ∀t ∈ [0, T + τ],

γ∗n(t) =
n

∑
i=1

c̃∗i gi(t).

achieve the minimum (5).
3. Forecast: For a given dimension n of the reduced spaces, we propagate in [0, T + τ]

the associated SIR model, as follows:

(S∗n, I∗n, R∗n) = SIR(β∗n, γ∗n, [0, T + τ])
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The values I∗n(t) and R∗n(t) for t ∈ [0, T[ are by construction close to the observed data
Iobs, Robs (up to some numerical optimization error). The values I∗n(t) and R∗n(t) for
t ∈ [T, T + τ] are then used for prediction.

4. Forecast combination/aggregation of experts (optional step): By varying the di-
mension n and using different model reduction approaches, we can easily produce
a collection of different forecasts, and thus the question of how to select the best
predictive model arises. Alternatively, we can also resort to forecast combination
techniques [17]: denoting (I1, R1), . . . , (IP, RP) as the different forecasts, the idea is to
search for an appropriate linear combination

IFC(t) =
P

∑
p=1

wp Ip(t)

and perform a similar operation for R. Note that these combinations do not need to
involve forecasts from our methodology only; other approaches such as time series
forecasts could also be included. One simple forecast combination is the average
in which all alternative forecasts are given the same weight wp = 1/P, p = 1, . . . P.
More elaborate approaches consist in estimating the weights that minimize a loss
function involving the forecast error.

Before going into detail regarding some of the steps, three points should be high-
lighted:

1. To bring out the essential mechanisms, we have idealized some elements in the above
discussion by omitting certain unavoidable discretization aspects. To start with, the
ODE solutions cannot be computed exactly but only up to a certain level of accuracy
given by a numerical integration scheme. In addition, the optimal control problems
(2) and (5) are non-convex. As a result, in practice, we can only find a local minimum.
Note, however, that modern solvers find solutions which are very satisfactory for all
practical purposes. In addition, note that solving the control problem in a reduced
space as in (5) could be interpreted as introducing a regularizing effect with respect to
the control problem (2) in the full L∞([0, T]) space. It is to be expected that the search
of global minimizers is facilitated in the reduced landscape.

2. routine-IR and routine-βγ: A variant for the fitting problem (5) as studied in our
numerical experiments is to replace the cost function J (β, γ | Iobs, Robs, [0, T]) by the
cost function

J̃ (β, γ | β∗obs, γ∗obs, [0, T]) :=
∫ T

0

(
|β− β∗obs|2 + |γ− γ∗obs)|2

)
dt. (6)

In other words, we use the variables β∗obs and γ∗obs from (3) as observed data instead
of working with the observed health series Iobs, Robs. In Section 4, we refer to the
standard fitting method as routine-IR and to this variant as routine-βγ.

3. The fitting procedure works both on the components of the reduced basis and the
initial time of the epidemics to minimize the loss function; however, for simplicity,
this last optimization is not reported here.

2.3. Details on Step 1-(b): Collapsing the Detailed Models into SIR Dynamics

Let
u(µ) = Detailed_Model(µ, [0, T + τ]) ∈ L∞([0, T + τ],Rd)

be the solution in [0, T + τ] to a detailed model for a given vector of parameters µ ∈ Rd.
Here, d is possibly large (d = 11 in the case of the SEI5CHRD model and d = 5 in the case
of SE2IUR’s model). The goal of this section is to explain how to collapse the detailed
dynamics u(µ) into SIRdynamics with time-dependent parameters. The procedure can be
understood as a projection of a detailed dynamics into the family of dynamics given by
SIR models with time-dependent parameters.
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For the SEI5CHRD model, we collapse the variables by setting

Scol = S + E

Icol = Ip + Ia + Ips + Ims + Iss + C + H

Rcol = R + D

Similarly, for the SE2IUR model, we set

Scol = S + E1i

Icol = E2i + Ii + Ui

Rcol = R

Note that Scol, Icol and Rcol depend on µ, but we have omitted this dependence to
simplify the notation.

Once the collapsed variables are obtained, we identify the time-dependent parameters
β and γ of the SIR model by solving the fitting problem

(β, γ) ∈ arg inf
(β,γ)∈L∞([0,T+τ],R)×L∞([0,T+τ],R)

J (β, γ | Icol, Rcol, [0, T + τ]) (7)

where
(S, I, R) = SIR(β, γ, [0, T + τ]).

Note that problem (7) has the same structure as problem (2), with the difference arising
from the fact that the collapsed variables Icol, Rcol in (7) play the role of the health data
Iobs, Robs in (2). Therefore, it follows from Proposition 1 that problem (7) has a very simple
solution as it suffices to apply formula (3) to solve it. Note here that the exact derivatives
of Scol, Icol, and Rcol can be obtained from the Detailed_Model.

Since the solution (β, γ) to (7) depends on the parameter µ of the detailed model,
repeating the above procedure for every detailed scenario u(µ) for any µ ∈ Ptr yields the
two families of time-dependent functions Btr = {β(µ) : µ ∈ Ptr} and Gtr = {γ(µ) : µ ∈
Ptr} defined in the interval [0, T + τ] as introduced in Section (4).

2.4. Details of Model Order Reduction

Model order reduction is a family of methods aiming at the approximation of a set of
solutions of parametrized PDEs or ODEs (or related quantities) with linear spaces, which
are called reduced models or reduced spaces. In our case, the sets to approximate are

B = {β(µ) : µ ∈ P} and G = {γ(µ) : µ ∈ P},

where each µ is the vector of parameters of the detailed model which take values over
P , and β(µ) and γ(µ) are the associated time-dependent coefficients of the collapsed SIR
evolution. In the following, we view B and G as subsets of L2([0, T]), and we denote
by ‖ · ‖ and 〈·, ·〉 its norm and inner product. Indeed, in view of Proposition 1, B and
G ⊂ L∞([0, T]) ⊂ L2([0, T]).

Continuing the discussion if B (the same will hold for G), of we measure performance
in terms of the worst error in the set B, the best possible performance that reduced models
of dimension n can achieve is given by the Kolmogorov n-width:

dn(B)L2([0,T]) := inf
Y∈L2([0,T])
dim(Y)≤n

max
u∈B
||u− PYu‖
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where PY is the orthogonal projection onto the subspace Y. In the case of measuring errors
in an average sense, the benchmark is given by

δ2
n(B, ν)L2([0,T]) := inf

Y∈L2([0,T])
dim(Y)=n

∫

P
||u(y)− PYu(y)‖2dν(y)

where ν is some given measure on P .
In practice, building spaces that meet these benchmarks is generally not possible.

However, it is possible to build sequences of spaces for which the error decay is comparable
to that given by

(
dn(B)L2([0,T])

)
n

or
(

δn(B)L2([0,T])

)
n
. As a result, when the Kolmogorov

width decays quickly, the constructed reduced spaces will deliver a very good approxima-
tion of the set B with few modes (see [18–21]).

We next present the reduced models used in our numerical experiments. Other
methods could, of course, be considered, and we refer readers to [22–25] for general
references on model reduction. We continue the discussion in a fully discrete setting in
order to simplify the presentation and keep it as close to the practical implementation as
possible. All the claims below could be written in a fully continuous sense at the expense
of introducing additional mathematical objects such as certain Hilbert–Schmidt operators
to define the continuous version of Singular Value Decomposition (SVD).

We build the reduced models using the two discrete training sets of functions
Btr = {βi}K

i=1 and Gtr = {γi}K
i=1 from B and G, where K denotes the number of vir-

tual scenarios considered. The sets have been generated in step 1-(b) of our general pipeline
(see Section 2.2).

We consider a discretization of the time interval [0, T + τ] into a set of Q ∈ N∗ points
as follows: {t1 = 0, · · · , tP = T, · · · , tQ = T + τ} where P < Q. Thus, we can represent
each function βi as a vector of Q values

βi = (βi(t1), · · · , βi(tQ))
T ∈ RQ

+.

and thus assemble all the functions of the family {βi}K
i=1 into a matrix MB ∈ RQ×K

+ . The
same remark applies for the family {γi}K

i=1 which gives a matrix MG ∈ RQ×K
+ .

1. SVD: The eigenvalue decomposition of the correlation matrix MT
BMB ∈ RK×K gives

MT
BMB = VΛVT ,

where V = (vi,j) ∈ RK×K is an orthogonal matrix and Λ ∈ RK×K is a diagonal
matrix with non-negative entries, which we denote as λi and present in decreasing
order. The `2(RQ)-orthogonal basis functions {b1, . . . , bK} are then given by the
linear combinations

bi =
K

∑
j=1

vj,iβ j, 1 ≤ i ≤ K.

For n ≤ K, the space
Bn = span{b1, . . . bn}

is the best n-dimensional space to approximate the set {βi}K
i=1 in the average sense.

We have

δn({βi}K
i=1)`2(RQ+1) =

(
1
K

K

∑
i=1
||βi − PBn βi‖2

`2(RQ+1)

)1/2

=

(
K

∑
i>n

λi

)1/2

and the average approximation error is given by the sum of the tail of the eigenvalues.
Therefore, the SVD method is particularly efficient if there is a fast decay of the
eigenvalues, meaning that the set Btr = {βi}K

i=1 can be approximated by only few
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modes. However, note that, by construction, this method does not ensure positivity in
the sense that PBn βi(t) may become negative for some t ∈ [0, T] although the original
function βi(t) ≥ 0 for all t ∈ [0, T]. This is due to the fact that the vectors bi are
not necessarily nonnegative. As we will see later, in our study, ensuring positivity
especially for extrapolation (i.e., forecasting) is particularly important and motivates
the next methods.

2. Nonnegative Matrix Factorization (NMF, see [26,27]): NMF is a variant of SVD
involving nonnegative modes and expansion coefficients. In this approach, we build
a family of non-negative functions {bi}n

i=1 and we approximate each βi with a linear
combination

βNMF
i =

n

∑
j=1

ai,jbj, 1 ≤ i ≤ K, (8)

where for every 1 ≤ i ≤ K and 1 ≤ j ≤ n, the coefficients ai,j ≥ 0 and the basis func-
tion bj ≥ 0. In other words, we solve the following constrained optimization problem:

(W∗, B∗) ∈ arg min
(W,B)∈RK×n

+ ×Rn×Q
+

‖MB −WB‖2
F.

We refer readers to [27] for further details on the NMF and its numerical aspects.
3. The Enlarged Nonnegative Greedy (ENG) algorithm with projection on an extended

cone of positive functions: We now present our novel model reduction method, which
is of interest in itself as it allows reduced models that preserve positivity and even
other types of bounds to be built. The method stems from the observation that NMF
approximates functions in the cone of positive functions of span{bi ≥ 0}n

i=1 since it
imposes ai,j ≥ 0 in the linear combination (8). However, note that the positivity of
the linear combination is not equivalent to the positivity of the coefficients ai,j since
there are obviously linear combinations involving very small ai,j < 0 for some j which
may still deliver a nonnegative linear combination ∑n

j=1 ai,jbj. We can thus widen
the cone of linear combinations yielding positive values by carefully including these
negative coefficients ai,j. One possible strategy for this is proposed in Algorithm 1,
which describes a routine that we call Enlarge_Cone. The routine

{ψ1, . . . , ψn} = Enlarge_Cone[{b1, . . . , bn}, ε]

takes a set of nonnegative functions {b1, . . . , bn} as an input and modifies each
function bi by iteratively adding negative linear combinations of the other basis
functions bj for j 6= i (see line 11 of the routine). The coefficients are chosen in an
optimal way so as to maintain the positivity of the final linear combination while
minimizing the L∞-norm. The algorithm returns a set of functions

ψi = bi −∑
j 6=i

σi
j bj, ∀i ∈ {1, . . . , n}

with σi
j ≥ 0. Note that the algorithm requires the setting of a tolerance parameter

ε > 0 for the computation of the σi
j .

Once we have run Enlarge_Cone, the approximation of any function β is then
sought as

β(EC) = arg min
c1,...,cn≥0

‖β−
n

∑
j=1

cjψj‖2
L2([0,T+τ])

We emphasize that the routine is valid for any set of nonnegative input functions.
We can thus apply Enlarge_Cone to the functions {bi ≥ 0}n

i=1 from NMF but also to
the functions selected by a greedy algorithm such as the following:
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• For n = 1, find
b1 = arg max

β∈{βi}K
i=1

‖β‖2
L2([0,T+τ])

• At step n > 1, we have selected the set of functions {b1, . . . , bn−1}. We next find

bn = arg max
β∈{βi}K

i=1

min
c1,...,cn≥0

‖β−
n−1

∑
j=1

cjbj‖2
L2([0,T+τ])

In our numerical tests, we call the Enlarged Nonnegative Greedy (ENG) method the
routine involving the above greedy algorithm combined with our routine Enlarge_Cone.

Algorithm 1 Enlarge_Cone[{b1, . . . , bn}, ε]→ {ψ1, . . . , ψn}.
Input: Set of nonnegative functions {b1, . . . , bn}. Tolerance ε > 0.

for i ∈ {1, . . . , n} do
Set σi

j = 0, ∀j 6= i.
for ` ∈ {1, . . . , n} do

αi,∗
` = arg max{α ≥ 0 :

[
bi −∑j 6=i σi

j bj − αb`

]
(t) > 0, ∀t ∈ [0, T + τ]}

σi
` = σi

` +
αi,∗
`
2

while αi,∗
` ≥ ε do

αi,∗
` = arg max{α ≥ 0 :

[
bi −∑j 6=i σi

j bj − αb`

]
(t) > 0, ∀t ∈ [0, T + τ]}

σi
` = σi

` +
αi,∗
`
2

end while
end for
ψi = bi −∑j 6=i σi

j bj
end for

Output: {ψ1, . . . , ψn}

We remark that, if we work with positive functions that are upper bounded by a
constant L > 0, we can ensure that the approximations, denoted as Ψ, and written as
a linear combination of basis functions, will also be between these bounds 0 and L
by defining on the one hand, and as we have just done, a cone of positive functions
generated by the above family {ψi}i, and on the other hand, considering the base of
the functions L− ϕ, ϕ to be above the set all greedy elements of the reduced basis, to
which we also apply the enlargement of these positive functions. We then require the
approximation to be written as a positive combination of the first (positive) functions
and for L−Ψ to also be written as a combination with positive components in the
second basis.
In this frame, the approximation appears under the form of a least-square approxi-
mation with 2n linear constraints on the n coefficients, expressing the fact that the
coefficients are nonnegative in the two above transformed bases.

In addition to the previous basis functions, it is possible to include more general/generic
basis functions such as polynomial, radial, or wavelet functions in order to guarantee
simple forecasting trends. For instance, one can add affine functions in order to include
the possibility of predicting with a simple linear extrapolation to the range of possible
forecasts offered by the reduced model. Given the overall exponential behavior of the
health data, we have added an exponential function of the form b0(t) = ξ exp(−ξ ′t) (or
g0(t) = ψ exp(−ψ′t)) to the reduced basis functions {b1, . . . , bn} (or {g1, . . . , gn}) where the
real-valued nonnegative parameters ξ, ξ ′, ψ, ψ′ are obtained through a standard exponential
regression from β∗obs (or γ∗obs) associated with the targeted profiles of infectious people;
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that is, the profiles defined in the time interval [0, T] that should be extrapolated to ]T, τ].
In other words, the final reduced models that we use for forecasting are

Bn+1 = span{b0, b1, . . . , bn}, Gn+1 = span{g0, g1, . . . , gn} ⊂ L∞([0, T + τ],R),

Indeed, including the exponential functions in the reduced models gives easy access
to the overall behavior of the parameters β and γ; the rest of the basis functions generated
from the training sets catch the higher-order approximations and allow then to improve
the extrapolation.

Remark 1. Reduced models on I = {I(µ) : µ ∈ P} and R = {R(µ) : µ ∈ P} Instead
of applying model reduction to the sets B and G, as we do in our approach, we could apply the
above techniques directly to the sets of solutions I andR of the SIR models with time-dependent
coefficients in B and G. In this case, the resulting approximation would however not follow
SIR dynamics.

3. Methodology for Multiple Regions Including Population Mobility Data

The forecasting method of Section 2.2 for a single region can be extended to the
treatment of multiple regions involving population mobility. The prediction scheme is
based on a multi-regional SIR with time-dependent coefficients. Compared to other more
detailed models, the main advantage of our approach is that it drastically reduces the
number of parameters to be estimated. Indeed, detailed multi-regional models such as
multi-regional extensions of the above SEI5CHRD and SE2IUR models from Section 2.3
require a number of parameters that quickly grows with the number P of regions involved.
Their calibration thus requires large amounts of data which, in addition, may be unknown,
very uncertain, or not available. In a forthcoming paper, we will apply the fully multi-
regional setting for the post-lockdown period.

The structure of this section is the same as above for the case of a single region.
In Section 3.1, we begin by introducing the multi-regional SIR model with time-dependent
coefficients and associated detailed models. As with any multi-regional model, mobility
data are required as input data, and the nature and level of detail of the available data
motivates certain choices regarding the modeling of the multi-regional SIR (as well as the
other detailed models). We then present in Section 3.2 the general pipeline, in which we
emphasize the high modularity of the approach.

3.1. Multi-Regional Compartmental Models

In the spirit of fluid flow modeling, there are essentially two ways of describing
mobility between regions:

• In a Eulerian description, we take the regions as fixed references for which we record
incoming and outgoing travels;

• In a Lagrangian description, we follow the motion of people living in a certain region
and record their travels in the territory. We can expect this modeling to be more
informative regarding the geographical spread of the disease, but it comes at the cost
of additional details regarding the home region of the population.

Note that both descriptions hold at any coarse or fine geographical level, in the sense
that what we call the regions could be taken to be full countries, departments within a
country, or very small geographical partitions of a territory. We next describe the multi-
regional SIR models with the Eulerian and Lagrangian descriptions of population fluxes,
which form- the output of our methodology.

3.1.1. Multi-Regional SIR Models with Time-Dependent Parameters

Eulerian description of population flux: Assume that we have P regions and the
number of people in region i is Ni for i = 1, . . . , P. Due to mobility, the population in each
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region varies, so Ni depends on t. However, the total population is assumed to be constant
and equal to N; that is,

N =
P

∑
i=1

Ni(t), ∀t ≥ 0.

For any t ≥ 0, let λi→j(t) ∈ [0, 1] be the probability that people from i travel to j at
time t. In other words, λi→j(t)Ni(t)δt is the number of people from region i that have
travelled to region j between time t and t + δt. Note that we have

P

∑
j=1

λi→j(t) = 1, ∀t ≥ 0.

Since, for any δt ≥ 0,

Ni(t + δt) = Ni(t)−∑
j 6=i

λi→j(t)Ni(t)δt + ∑
j 6=i

λj→i(t)Nj(t)δt

dividing by δt and taking the limit δt→ 0 yields

dNi
dt

(t) = −∑
j 6=i

λi→j(t)Ni(t) + ∑
j 6=i

λj→i(t)Nj(t).

Note that we have
P

∑
i=1

dNi
dt

(t) = 0, ∀t ≥ 0.

Thus, ∑i Ni(t) = ∑i Ni(0) = N, which is consistent with our assumption that the total
population is constant.

The time evolution of the Ni is known in this case if we are given the λi→j(t) from
Eulerian mobility data. In addition to these mobility data, we also have the data of the
evolution of infected and removed people, and our goal is to fit a multi-regional SIR model
that is in accordance with this data. Thus, we propose the following model.

Denoting Si, Ii and Ri as the number of susceptible, infectious and removed people in
region i at time t, we first have the relation

Ni(t) = Si(t) + Ii(t) + Ri(t) ⇔ 1 =
Si(t)
Ni(t)

+
Ii(t)
Ni(t)

+
Ri(t)
Ni(t)

.

Note that from the second relation, it follows that

0 =
d
dt

Si
Ni

+
d
dt

Ii
Ni

+
d
dt

Ri
Ni

. (9)

To model the evolution between compartments, one possibility is the following
SIR model:

d
dt

Si
Ni

= −
(

βiλi→i
Ii
Ni

+ ∑
j 6=i

β jλj→i
Ij

Nj

)
Si
Ni

(10)

d
dt

Ii
Ni

= − d
dt

Si
Ni
− γi

Ii
Ni

d
dt

Ri
Ni

= γi
Ii
Ni

,
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The parameters βi, γi, Ni depend on t, but we have omitted this dependence for ease
of reading. Introducing the compartmental densities

si =
Si
Ni

, ii =
Ii
Ni

, ri =
Ri
Ni

,

the system equivalently reads

d
dt

si = −
(

βiλi→iii + ∑
j 6=i

β jλj→iij

)
si (11)

d
dt

ii = −
d
dt

si − γiii

d
dt

ri = γiii,

Before going further, some points should be highlighted:

• The model is consistent in the sense that it satisfies (9), and when P = 1, we recover
the traditional SIR model;

• Under lockdown measures, λi→j ≈ δi,j and the population Ni(t) remains practically
constant. As a result, the evolution of each region is decoupled from the others, and
each region can be addressed with a mono-regional approach;

• The use of β j in Equation (11) is debatable. When people from region j arrive in region
i, it may be reasonable to assume that the contact rate is βi;

• The use of λj→i in Equation (11) is also very debatable. The probability λj→i was orig-
inally defined to account for the mobility of people from region j to region i without
specifying the compartment. However, in Equation (11), we need the probability of
mobility of infectious people from region j to region i, which we denote by µj→i in the
following. It seems reasonable to think that µj→i may be smaller than λj→i, because as
soon as people become symptomatic and suspect an illness, they will probably not
move. Two possible options would be as follows:

– We could try to estimate µj→i. If symptoms arise, for example, 2 days after
infection and if people recover in 15 days on average, then we could say that
µj→i = 2/15λj→i.

– As the above seems to be quite empirical, another option would be to use λj→i
and absorb the uncertainty in the values of the β j that can be fitted.

• We choose not to add mobility in the R compartment as this does not modify the
dynamics of the epidemic spread; only adjustments in the population sizes are needed.

Lagrangian description of population flux: We call the above description Eulerian
because we have fixed the regions as a fixed reference. Another possibility is to follow
the trajectories of inhabitants of each region, in the same spirit as when we follow the
trajectories of fluid particles.

Let Si, Ii, and Ri now be the number of susceptible, infectious and removed people
who are resident in region i, i = 1, . . . P. It is reasonable to assume that Si(t) + Ii(t) + Ri(t)
is constant in time. However, not all the residents of region i may be in that region at
time t. Let λ

(i)
j→k(t) be the probability that susceptible people resident in i travel from

region j to region k at time t. With this notation, λ
(i)
i→i(t) is the probability that susceptible

people resident at i remain in region i at time t. Similarly, let µ
(i)
j→k(t) be the probability that

infectious people resident in i travel from region j to k at time t. Thus, the total number of
susceptible and infectious people that are in region i at time t is
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Si(t) =
P

∑
k=1

P

∑
j=1

(
λ
(k)
j→i(t)− λ

(k)
i→j(t)

)
Sk(t)

Ii(t) =
P

∑
k=1

P

∑
j=1

(
µ
(k)
j→i(t)− µ

(k)
i→j(t)

)
Sk(t)

We can thus write the evolution over Si, Ii, Ri as

dSi
dt

= −
P

∑
j=1

P

∑
k=1

βk(t)λ
(i)
j→k(t)Si(t)Ik(t) (12)

dIi
dt

= −dSi
dt
− γi(t)Ii(t)

dRi
dt

= γi(t)Ii(t)

Note that Si(t) + Ii(t) + Ri(t) is constant, which is consistent with the fact that, in
our model,

d
dt

(Si + Ii + Ri) = 0.

We emphasize that, to implement this model, the Lagrangian mobility data λ
(i)
j→k are

required for all (i, j, k) ∈ {1, . . . , P}3.

Notation: In the following, we gather the compartmental variables in vectors

~S := (S)P
i=1, ~I := (I)P

i=1, ~R := (R)P
i=1

as well as the time-dependent coefficients

~β = (β)P
i=1, ~γ = (γ)P

i=1.

For any ~β and ~γ ∈ (L∞([0, T]))P, we denote by

(~S,~I,~R) = Multiregional_SIR(~S(0),~I(0),~R(0), ~β,~γ, [0, T])

the output of any of the above multi-regional SIR models. For simplicity, in what follows,
we omit the initial condition in the notation.

3.1.2. Detailed Multi-Regional Models with Constant Coefficients

In the spirit of the multi-regional SIR, one can formulate detailed multi-regional
versions of more detailed models such as those introduced in Section 2.1. We omit the
details for the sake of brevity.

3.2. Forecasting for Multiple Regions with Population Mobility

Similar to the mono-regional case, we assume that we are given health data in [0, T] in
all regions. The observed data in region i are the series of infected people, denoted as Iobs

i ,
and recovered people, denoted as Robs

i . They are usually given at a national or a regional
scale and on a daily basis.

We propose to fit the data and provide forecasts with SIR models with time-dependent
parameters βi and γi for each region i. As in the mono-regional case, we can prove that
such a simple family possesses optimal fitting properties for our purposes. In the current
case, the cost function reads
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J (~β,~γ |~Iobs,~Robs, [0, T]) :=
P

∑
i=1

∫ T

0

(
|Ii(t)− Iobs

i (t)|2 + |Ri(t)− Robs
i (t)|2

)
dt

such that
(
~S,~I,~R

)
= Multiregional_SIR

(
~β,~γ, [0, T]

)
,

and the fitting problem is the optimal control problem of finding

J∗ = inf
~β,~γ∈(L∞([0,T]))P×(L∞([0,T]))P

J (~β,~γ |~Iobs,~Robs, [0, T]). (13)

The following proposition ensures the existence of a unique minimizer under certain
conditions. To prove this, it is useful to remark that any of the above multi-regional SIR
models (see (11) and (12)) can be written in the general form

d~S
dt

= M(Λ(t),~S(t),~I(t))~β

d~I
dt

= −d~S
dt
− diag(I(t))~γ

d~R
dt

= diag(I(t))~γ,

where, by a slight change of notation, the vectors~S,~I and~R are the densities of population in
the case of the Eulerian approach (see Equation (11)). They are classical population numbers
in the case of the Lagrangian approach (see Equation (12)). diag(I(t)) is the P× P diagonal
matrix with diagonal entries given by the vector I(t). M(Λ(t),~S(t),~I(t)) is a matrix of size
P× P that depends on the vectors of susceptible and infectious people~S(t),~I(t) and on the
mobility matrix Λ. In the case of the Eulerian description, Λ(t) = (λi,j(t))1≤i,j≤P and in

the case of the Lagrangian approach Λ(t) is the P× P× P tensor Λ(t) = (λ
(i)
j,k (t))1≤i,j,k≤P.

For example, in the case of the Eulerian model (12), the matrix M reads

M(Λ(t),~S(t),~I(t)) = −diag(~S(t))ΛT diag(~I(t)) = −(Siλi→j Ij)1≤i,j≤P (14)

Proposition 2. If M(Λ(t),~S(t),~I(t)) is invertible for all t ∈ [0, T], then there exists a unique
minimizer (~β∗,~γ∗) to problem (13).

Proof. Since we assume that M(Λ(t),~S(t),~I(t)) is invertible for every t ∈ [0, T], we can set

{
~β∗(t) := M−1(t)d~S

dt

~γ∗(t) := diag−1(I(t))d~R
dt

or equivalently



~β∗(t) := M−1(t)d~S

dt

~γ∗(t) := −diag−1(I(t))
(

d~I
dt + M(Λ(t),~S(t),~I(t))~β∗

)

so that
(~Sobs,~Iobs,~Robs) = Multiregional_SIR

(
~β∗,~γ∗, [0, T]

)

and
J (~β∗,~γ∗ |~Iobs,~Robs, [0, T]) = 0

which implies that J∗ = 0.

Before continuing, let us comment on the invertibility of M(Λ(t),~S(t),~I(t)) which is
necessary in Proposition 2. A sufficient condition to ensure this is if the matrix is diagonally
dominant row-wise or column-wise. This yields certain conditions on the mobility matrix
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Λ(t) with respect to the values of~S(t),~I(t). For example, if M is defined as in Equation (14),
the matrix is diagonally dominant in each row if for every 1 ≤ i ≤ P,

λi→i > ∑
j 6=i

λi→j
Ij

Ii
.

Similarly, if for every 1 ≤ j ≤ P,

λj→j > ∑
i 6=j

λi→j
Si
Sj

,

then the matrix is diagonally dominant for each column and guarantees invertibility.
Note that any of the above conditions is satisfied in situations with little or no mobility
where λi→i ≈ δi,j.

Now that we have exactly defined the set-up for the multi-regional case, we can
follow the same steps in Section 2.2 to derive forecasts involving model reduction for the
time-dependent variables ~β and ~γ.

4. Numerical Results

In this section, we apply our forecasting method to the ongoing COVID-19 pandemic,
which spread in the year 2020 in France and started approximately in February. Particular
emphasis is placed on the first pandemic wave, for which we consider the period from
19 March to 20 May 2020. Due to the lockdown imposed between 17 March and 11 May,
inter-regional population mobility was drastically reduced in that period. Studies using
anonymized Facebook data have estimated the reduction to be 80% (see [28]). As a result,
it is reasonable to treat each region independently from the rest, and we apply the mono-
regional setting in Section 2. Here, we focus on the case of the Paris region, and we report
different forecasting errors obtained using the methods described in Section 2. Some fore-
casts are also shown for the second wave for the Paris region between 24 September and
25 November.

The numerical results are presented as follows. Section 4.1 explains the sources of
health data. Sections 4.2.1 and 4.2.2 explore the results in detail and present a study of the
forecasting power of the methods in a two-week horizon. Section 4.2.3 displays forecasts
for the second wave. Section 4.2.4 aims to illustrate the robustness of the forecasting
over longer periods of time. A discussion of the fitting errors of the methods is given
in Appendix A. Additional results highlighting the accuracy of the forecasts are shown
in Appendix B.

4.1. Data

We use public data from Santé Publique France (https://www.data.gouv.fr/en/
datasets/donnees-hospitalieres-relatives-a-lepidemie-de-covid-19/) to get the numbers
Iobs(t) of infected and Robs(t) of removed people. As shown in Figure 3, the raw data
present some oscillations at the scale of a week, which are due to administrative delays for
the cases to be officially reported by hospitals. For our methodology, we have smoothed
the data by applying a 7 day moving average filter. In order to account for the total number
of infected people, we also multiply the data by an adjustment factor fadj = 15 as stated in
the literature (indeed, it is said in [29] that “of the 634 confirmed cases, a total of 306 and
328 were reported to be symptomatic and asymptomatic”, and in [10], it is claimed that
the probability of developing severe symptoms for a symptomatic patient is 0 for children,
0.1 for adults and 0.2 for seniors; thus, if one takes p = 0.13 as an approximate value of
these probabilities, one may estimate the adjustment factor as fadj =

634
328 × 1

p ≈ 15). Obvi-
ously, this factor is uncertain and could be improved in the light of further retrospective
studies of the outbreak. However, note that when S ' N, which is the case at the start of
the epidemic, the impact of this factor is negligible in the dynamics as can be understood

https://www.data.gouv.fr/en/datasets/donnees-hospitalieres-relatives-a-lepidemie-de-covid-19/
https://www.data.gouv.fr/en/datasets/donnees-hospitalieres-relatives-a-lepidemie-de-covid-19/
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from (3). In addition, since we use the same factor to provide a forecast of hospitalized
people, the influence on the choice is minor.
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Figure 3. Data from t0 = 19/03/2020 to T = 20/05/2020.

4.2. Results

Using the observations Iobs(t) and Robs(t), we apply a finite difference scheme in
Formula (3) to derive β∗obs(t) and γ∗obs(t) for t ∈ [0, T]. Figure 4 shows the values of
these parameters as well as the basic reproduction number R∗0,obs = β∗obs/γ∗obs for the first
pandemic wave in Paris.
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Figure 4. β∗obs, γ∗obs, R∗0,obs = β∗obs/γ∗obs deduced from the data from t0 = 19/03/2020 to T = 20/05/2020.

We next follow the steps presented in Section 2.2 to obtain the forecasts. In the learning
phase (step 1), we use two parametric detailed models of SE2IUR and SEI5CHRD types to
generate training sets Btr and Gtr composed of K = 2618 training functions β(µ) and γ(µ)
where µ are uniformly sampled in the set of parameters Ptr in the vicinity of the parameter
values suggested in the literature [9,10]. Based on these training sets, we finish step 1 by
building three types of reduced models: SVD, NMF and ENG (see Section 2.4).

Given the reduced bases Bn and Gn, we next search for the optimal β∗n ∈ Bn and
γ∗n ∈ Gn that best fit the observations (step 2 of our procedure). For this fitting step,
we consider two loss functions:

1. routine-IR: loss function J (β, γ | Iobs, Robs, [0, T]) from (1),
2. routine-βγ: loss function J̃ (β, γ | β∗obs, γ∗obs, [0, T]) from (6)

We study the performance of each of the three reduced models and the impact of the
dimension n of the reduced model in terms of the fitting error. The presentation of these
results is presented in Appendix A in order not to overload the main discussion. The main
conclusion is that the fitting strategy using SVD-reduced bases provides smaller errors than
NMF and ENG, especially when we increase the number of modes n. This is illustrated
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in Figure 5 where we show the fittings obtained with routine-βγ and n = 10 for the first
wave (from t0 = 19/03/2020 to T = 20/05/2020). We observe that SVD is the best at
fitting β∗obs and γ∗obs, while ENG produces a smoother fitting of the data. Although the
smoother fitting with ENG yields larger fitting errors than SVD, we see in the next section
that it yields better forecasts.
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Figure 5. Fitting from t0 = 19/03/2020 to T = 20/05/2020.

4.2.1. Forecasting for the First Pandemic Wave with a 14 Day Horizon

In this section, we illustrate the short-term forecasting behavior of our method. We
consider a forecasting window of τ = 14 days and we examine several different starting
days in the course of the first pandemic wave. The results are shown in Figures 6–14.
Recall that that the forecasting uses the coefficients of the reduced bases obtained by the
fitting procedure but also the optimal initial condition of the forecast that minimizes the
error on the three days prior to the start of the forecast. For each given fitting strategy
(routine-IR, routine-βγ) and each given type of reduced model (SVD, NMF, ENG),
we have chosen to plot an average forecast computed with predictions using reduced
dimensions n ∈ {5, 6, 7, 8, 9, 10}. This choice is a simple type of forecast combination, but
of course other more elaborate aggregation options could be considered. The labels of the
plots correspond to the following:

• ISVD, INMF, IENG, RSVD, RNMF, RENG are the average forecasts obtained using
routine-βγ.

• I∗SVD, I∗NMF, I∗ENG, R∗SVD, R∗NMF, R∗ENG are the average forecasts obtained using
routine-IR.

The main observation from Figures 6–14 is that the ENG-reduced model is the most
robust and accurate forecasting method. Fitting ENG with routine-IR or routine-βγ does
not seem to lead to large differences in the quality of the forecasts, but routine-βγ seems
to provide slightly better results. This claim is further confirmed by the study of the
numerical forecasting errors of the different methods shown in Appendix B.

Figures 6–14 also show that the SVD-reduced model is very unstable and provides
forecasts that blow up. This behavior illustrates the dangers of overfitting, namely that a
method with high fitting power may present poor forecasting power due to instabilities.
In the case of SVD, the instabilities stem from the fact that approximations are allowed to
take negative values. This is the reason why NMF, which incorporates the nonnegative
constraint, performs better than SVD. One of the reasons why ENG outperforms NMF is
the enlargement of the cone of nonnegative functions (see Section 2.4). It is important to
note that, with ENG, the reduced bases are directly related to well-chosen virtual scenarios,
whereas SVD and NMF rely on matrix factorization techniques that provide purely artificial
bases. This makes forecasts from ENG more realistic and therefore more reliable.
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Figure 6. Fourteen-day forecasts starting from T = 01/04.
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Figure 7. Fourteen-day forecasts starting from T = 03/04.
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Figure 8. Fourteen-day forecasts starting from T = 05/04.
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Figure 9. Fourteen-day forecasts starting from T = 07/04.
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Figure 10. Fourteen-day forecasts starting from T = 09/04.
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Figure 11. Fourteen-day forecasts starting from T = 11/04.
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Figure 12. Fourteen-day forecasts starting from T = 15/04.
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Figure 13. Fourteen-day forecasts starting from T = 21/04.
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Figure 14. Fourteen-day forecasts starting from T = 05/05.

4.2.2. Focus on the Forecasting with ENG

For our best forecasting method (routine-βγ using ENG), we plot in Figures 15–23
the forecasts for each dimension n = 5 to 10. The plots give the forecasts on a 14 day-ahead
window for β, γ, and the resulting evolution of the infected I and removed R. We see that
the method performs reasonably well for all values of n, proving that the results of the
previous section with the averaged forecast are not compensating for spurious effects which
could occur for certain values of n. We have chosen to display the inaccurate forecasts from
3 April, 7 April, and 11 April as they are among the worst predictions obtained using this
method; however, it is important to mention that, despite the lack of accuracy in these cases,
plausible epidemic behaviors remain, with different but realistic evolutions for β and γ
compared to the actual evolution. Note that the method was able to predict the peak of the
epidemic several days in advance (see Figure 15). We also observe that the prediction on γ
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is difficult at all times due to the fact that γ∗obs presents an oscillatory behavior. Despite this
difficulty, the resulting forecasts for I and R are very satisfactory in general.
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Figure 15. Enlarged Nonnegative Greedy (ENG) forecast from T = 01/04.
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Figure 16. ENG forecast from T = 03/04.
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Figure 17. ENG forecast from T = 05/04.
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Figure 18. ENG forecast from T = 07/04.
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Figure 19. ENG forecast from T = 09/04.
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Figure 20. ENG forecast from T = 11/04.
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Figure 21. ENG forecast from T = 15/04.
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Figure 22. ENG forecast from T = 21/04.
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Figure 23. ENG forecast from T = 05/05.

4.2.3. Forecasting of the Second Wave with ENG

The review took place during the month of November 2020 as the second COVID-19
pandemic wave hit France. We took advantage of this to enlarge the body of numerical
results, and we provide some example forecasts with ENG for this wave in Figures 24–26.
As the figures illustrate, the method provides very satisfactory forecasts in a 14 day-ahead
window. We again observe a satisfactory prediction of the second peak (Figures 24–26) and
the same difficulty in forecasting γ due to the oscillations in γobs, but this has not greatly
impacted the quality of the forecasts for I and R.
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Figure 24. ENG forecast from T = 28/10.
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Figure 25. ENG forecast from T = 03/11.
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Figure 26. ENG forecast from T = 09/11.

4.2.4. Forecasts with ENG with a 28 Day-Ahead Window

To conclude this section, we extend the forecasting window to 28 days instead of
14 and study whether the introduced ENG method still provides satisfactory forecasts.
As shown in Figures 27–32, the results of the methods are quite stable for large windows.
This shows that, in contrast to standard extrapolation methods using classical linear or
affine regressions, the reduced basis catches the dynamics of β and γ not only locally but
also at extended time intervals.
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Figure 27. ENG forecast from T = 01/04.
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Figure 28. ENG forecast from T = 05/04.
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Figure 29. ENG forecast from T = 05/04.
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Figure 30. ENG forecast from T = 15/04.
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Figure 31. ENG forecast from T = 21/04.
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Figure 32. ENG forecast from T = 28/10.
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5. Conclusions

We have developed an epidemiological forecasting method based on reduced model-
ing techniques. Of the different strategies that have been explored, the one that outperforms
the rest in terms of robustness and forecasting power involves reduced models that are
built with an Enlarged Nonnegative Greedy (ENG) strategy. This method is novel and of
interest in itself as it allows reduced models that preserve positivity and even other types
of bounds to be built. Despite the fact that ENG does not have optimal fitting properties
(i.e., interpolation properties), it is well suited for forecasting since, due to the preservation
of the natural constraints of the coefficients, it generates realistic dynamics with few modes.
The results have been presented for a mono-regional test case, and we plan to extend the
present methodology to a multi-regional setting using mobility data.

Last but not least, we would like to emphasize that the developed strategy is very
general and could be applied to the forecasting of other types of dynamics. The specificity of
each problem may, however, require adjustments in the reduced models. This is exemplified
in the present problem through the construction of reduced models that preserve positivity.
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Appendix A. Analysis of Model Error and Observation Noise

In this section, we study the impact of observation noise and model error on the
quality and behavior of the fitting step. The elements that impact the accuracy of our
procedure are the following:

1. Observation noise: The observed health data Iobs and Robs present several sources of
noise. There may be some inaccuracies in the reporting of cases, and the data are then
post-processed. This eventually yields the noisy time series Iobs and Robs for which
it is difficult to estimate the uncertainty. These noisy data are then used to produce
(through finite differences) β∗obs and γ∗obs, which are in turn also noisy.

2. Model errors: Two types of model errors are identified:

(a) Intrinsic model error on B and G: The families of detailed models that we use
are rich, but they may not cover all possible evolutions of Iobs and Robs. In other
words, our manifolds B and G may not perfectly cover the real epidemiological
evolution. Thsi error motivated the introduction of the exponential functions
b0 and g0 described in Section 2.4.

(b) Sampling error of B and G: The size of the training sets Btr and Gtr and the
dimension n of the reduced models Bn and Gn also limit the approximation
capabilities of the continuous target sets B and G.

In this section, we aim to disentangle these effects in order to give a better insight of
the fitting error behavior for the real data.
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Appendix A.1. Study of the Impact of the Sampling Error: Fitting a Virtual Scenario

Our set of virtual epidemiological dynamics is U . After the collapsing step, the
manifolds for β and γ are B and G. These sets are potentially infinite, and we have used
finite training subsets Btr ⊆ B and Gtr ⊆ G to build the reduced models Bn and Gn.

First, we consider the eigenvalues for β and γ when performing an SVD decomposition
for the virtual scenarios. Figure A1 shows a rapid decay of the eigenvalues obtained by
SVD decomposition and shows that we can obtain a very good approximation of elements
of Btr ⊆ B and Gtr ⊆ G with only a few modes.

0 10 20 30 40 50

10−7

10−5

10−3

10−1

(a) Normalized eigenvalues for β vs. n.

0 10 20 30 40 50

10−7

10−5

10−3

10−1

(b) Normalized eigenvalues for γ vs. n.
Figure A1. Training step: Decay of SVD eigenvalues.

Among the sources of noise and model error given at the beginning of Appendix A,
we can study the impact of the sampling error (point 2-b) as follows. For this, we start
by examining the fitting error on an interval of 45 days for two functions β and γ which
belong to the manifold B and G and are in the training sets Btr and Gtr. This error will
serve as a benchmark, which we use to compare the fitting errors of functions that are not
in the training sets.

Figure A2 shows relative fitting errors ‖β∗n − β∗obs‖L2([t0,T])/‖β̄∗obs‖L2([t0,T]) and
‖γ∗n − γ∗obs‖L2([t0,T])/‖γ̄∗obs‖L2([t0,T]) using SVD, NMF and ENG-reduced bases with
n = 2, . . . , 20, where the notation x̄ denotes the mean of the quantity x over [0, T]. We ob-
serve that, for SVD, the fitting errors behave similarly to the error decay of the training step
(Figure A1).
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(a) L2 relative error of β vs. n.
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Figure A2. Study of sampling errors: Fitting errors of functions β and γ from B and G that belong to the training sets Btr

and Gtr.

Figure A3 shows the L1 and L∞ errors obtained after the propagation of the fittings of
β and γ. In both metrics, the error for I and R obtained using SVD decreases below 10−12.
When NMF and ENG are used, the error decreases and stagnates at 10−2 for both I and R.
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Figure A3. Study of sampling errors: Errors on I and R obtained by the susceptible–infected–removed (SIR) model using
the fitted β and γ.

Now, we consider the fitting error for two functions β and γ which belong to the
manifold B and G but which are not in the training sets Btr and Gtr. Figure A4 shows the
fitting error on the virtual scenario considered using SVD, NMF and ENG-reduced bases
for n = 2, . . . , 20. We note that the quality of the fittings in each method is very similar to
that of Figure A3 where the functions were taken in the training sets. This illustrates that
the sampling error does not play a major role in our experiments.
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Figure A4. Study of sampling errors: Fitting errors of functions β and γ from B and G but which do not belong to the
training sets Btr and Gtr.

Figure A5 shows the L1 and L∞ errors obtained after the propagation of the fittings
of β and γ. In both metrics, the error for I and R obtained using SVD decreases to 10−14.
When NMF and ENG are used, the error decreases and stagnates at 10−3 and 10−4 for both
I and R, respectively.

2 4 6 8 10 12 14 16 18 20

10−12

10−9

10−6

10−3

‖ISVD−I‖L1
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(a) L1 relative error of I vs. n.
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Figure A5. Study of sampling errors: Errors on I and R obtained by the SIR model using the fitted β and γ.
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Appendix A.2. Study of the Impact of Noisy Data and Intrinsic Model Error

To investigate the impact of noise in the observed data, we now add noise to the two
previously chosen functions β ∈ B and γ ∈ G, and we study the fitting error for this noisy
data. The level of the noise has been chosen to be the same level as that estimated for
the real dynamics. In order to estimate the noise, we performed a fitting of the real data
using SVD-reduced bases; the level of noise is defined as the difference between this fitting
and the real data. This level of noise is then added to the virtual scenario considered here.
Figure A6 shows the fitting error on β and γ using SVD, NMF and ENG-reduced bases for
n = 2, . . . , 20.
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Figure A6. Fitting errors of β and γ in a noisy virtual scenario.

We observe that the noise strongly deteriorates the fitting error obtained using NMF,
and the error becomes oscillatory and very unstable. For ENG, the error remains low and
consistently around 10−2 for β. We observe the same behavior for γ with instabilities
arising for n > 10. For SVD, the error is lower than in the ENG case and slowly decreases
as n increases. Figure A7 shows the L1 and L∞ errors obtained after the propagation of
the fittings of β and γ. In line with the observations from Figure A6, the error obtained
using NMF is very unstable. Using ENG, we observe a decay from n = 2 to n = 7 and
oscillations that remain around 10−2 for I and 10−3 for R. The decay observed for SVD is
slow and steady; the error nearly reaches 10−4 for I and 10−5 for R when n = 20.
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Figure A7. Fitting errors of I and R on noisy data.

Finally, it is necessary to add the intrinsic model error on top of the previous sampling
error and observation noise. In so doing, the main change is that the previous fitting error
plots from Figure A6 have essentially the same behavior but the error values are increased
depending on the degree of model inaccuracy. We have therefore disentangled all the
effects of model error and noisy data, and all the observations from this section thus give a
better insight regarding the fitting on the real data.
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Figure A8 summarizes the fitting results for an example fitting period taken from
t0 = 19/03 to T = 03/05. Figure A8a,b shows the fitting error on β and γ using SVD,
NMF and ENG-reduced bases for n = 2, . . . , 20. Figure A8c,d shows the L1 and L∞ relative
errors on In and Rn after the propagation of the fittings of β∗n and γ∗n.
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‖Ī‖L1

‖INMF−I‖L1
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Figure A8. Fitting errors from t0 = 19/03/2020 to T = 03/05/2020.

From Figure A8a,b, we observe that the fitting error with SVD decreases at a moderate
rate as the dimension n of the reduced basis is increased. The error with NMF and ENG
does not decrease and oscillates around a certain constant error value of the order 10−1.
Note that this value is small and yields small errors in the approximation of I and R, as
Figure A8c,d illustrates.

Appendix B. Study of Forecasting Errors

In this section, we present a detailed study of the forecasting errors for each different
fitting strategy (routine-IR, routine-βγ), reduced model (SVD, NMF, ENG) and starting
date T. We anticipate the main conclusion announced in Section 4.2.1: ENG fitted with
routine-βγ outperforms the other reduced models and is the most robust and accurate
reduced model to use in a forecasting strategy. Figure A9 shows the relative errors of a 14
day forecast from T = 01/04 for each forecasting method and each reduced basis. Similarly
Figures A10–A17 show the forecasts’ relative errors from different times, respectively.
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‖Īobs‖L1

‖IENG−Iobs‖L1
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Figure A9. Forecasting errors of I and R (from T = 01/04).
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Figure A10. Forecasting errors of I and R (from T = 03/04).
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Figure A11. Forecasting errors of I and R (from T = 05/04).
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Figure A12. Forecasting errors of I and R (from T = 07/04).
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Figure A13. Forecasting errors of I and R (from T = 09/04).
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Figure A14. Forecasting errors of I and R (from T = 11/04).

5 6 7 8 9 10
10−2

10−1

100

101
‖ISVD−Iobs‖L1
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Figure A15. Forecasting errors of I and R (from T = 15/04).
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‖Īobs‖L1

‖INMF−Iobs‖L1
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Figure A16. Forecasting errors of I and R (from T = 21/04).
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‖Īobs‖L1

‖I∗NMF−Iobs‖L1
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Figure A17. Forecasting errors of I and R (from T = 05/05).

We observe that the quality of the forecast depends on the reduced basis but also
strongly on the starting day T from which the forecast is produced. The forecasts us-
ing routine-βγ with SVD and NMF are not accurate and most often blow up. When
routine-IR is used with SVD and NMF, the forecasts are more robust as there is no ob-
served explosion of error. Reduced bases from ENG consistently lead to the the best
forecast being obtained using either routine-βγ and routine-IR; by inspecting the error
on Figures A9–A17 and the averaged forecasts obtained in Section 4.2.1, we conclude that
routine-βγ with ENG-reduced bases provides slightly better forecasts.
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