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1 Introduction
It is well known that symmetries arising in integer linear programs (ILP) can impair

the solution process, in particular when symmetric solutions lead to an excessively large
branch and bound (B&B) search tree. Various techniques, so called symmetry-breaking
techniques, are available to handle symmetries in ILP of the form

min
{
c(x) | x ∈ X

}
, with X ⊆ P(m,n) and c : P(m,n)→ R (1)

where P(m,n) is the set ofm×n binary matrices. A symmetry is defined as a permutation
π of the variables {1, ..., n} such that for any solution matrix x ∈ X , matrix π(x) is also
solution and has same cost, i.e., π(x) ∈ X and c(x) = c(π(x)). The symmetry group G of
ILP (1) is the set of all such permutations. Symmetry group G partitions the solution set
X into orbits, i.e., two matrices are in the same orbit if there exists a permutation in G
sending one to the other.

In order to break symmetries, a general idea is to pick one solution, defined as the repre-
sentative, in each orbit, and then restrict the solution set to the set of all representatives.
A technique is said to be full-symmetry-breaking (resp. partial-symmetry-breaking) if the
solution set is exactly (resp. partially) restricted to the representative set. Moreover, a
symmetry-breaking technique may introduce some specific branching rules that interfere
with the B&B search. This can forbid exploiting a user-defined branching rule or, even,
the default solver branching settings. A symmetry-breaking technique is said to be flexible
if at any node of the B&B tree, the branching rule can be derived from any linear inequa-
lity on the variables. Such a technique can be based on specific branching and pruning
rules during the B&B search, or on symmetry-breaking inequalities. Techniques based on
symmetry-breaking inequalities are flexible, since they do not rely on a particular B&B



search. Efficient full-symmetry-breaking techniques are usually based on the pruning of
the B&B tree (see survey [6]).

In this article, we focus on ILP featuring structured symmetries, i.e., the symmetry
group is the set of all column permutations of the solution matrix (or of a solution sub-
matrix). The most common choice of representative is based on the lexicographical order.
Column y ∈ {0, 1}m is said to be lexicographically greater than column z ∈ {0, 1}m if there
exists i ∈ {1, ....,m − 1} such that ∀i′ ≤ i, yi′ = zi′ and yi+1 > zi+1, i.e., yi+1 = 1 and
zi+1 = 0. We write y � z if y is equal to z or if y is lexicographically greater than z. A
matrix x ∈ P(m,n) is chosen to be the representative of its orbit if its columns x(1), ...,
x(n) are lexicographically non-increasing, i.e., for all j < n, x(j) � x(j + 1). The convex
hull of all m × n binary matrices with lexicographically non-increasing columns is called
a full orbitope and is denoted by P0(m,n). The solution set X of ILP (1) restricted to
representatives set is then P0(m,n)∩X . No complete linear description of the full orbitope
P0(m,n) is known in the x space, and experiments conducted in [5] indicate that its facet
defining inequalities are extremely complicated. Special cases of full orbitopes are packing
and partitioning orbitopes, which are restrictions to matrices with at most (resp. exactly)
one 1-entry in each row. If all matrices in X have at most (resp. exactly) one 1-entry in
each row, then the solution set can be restricted to a packing (resp. partitioning) orbi-
tope. A complete linear description of these polytopes is given in [3], alongside with a
polynomial time separation algorithm. From this linear description, a symmetry-breaking
algorithm, called orbitopal fixing, is derived in [3] in order to consider only the solutions
included in the packing (resp. partitioning) orbitope during the B&B search.
There are many problems whose symmetry group is the symmetric group acting on the
columns, or on a subset of the columns, but whose solution space cannot be restricted
to a partitioning or a packing orbitope. Examples range from line planning problems in
public transports [2] to scheduling problems with a discrete time horizon, like the Unit
Commitment Problem. Dedicated techniques have been introduced in the literature to
handle such structured symmetries, from symmetry-breaking inequalities [4] to modified
orbital branching (MOB) [7]. These techniques are only partial symmetry-breaking. The
full symmetry-breaking property can be obtained in MOB, by enforcement of a specific
branching rule, and therefore at the expense of losing the flexible property.
In this article, we propose a linear time orbitopal fixing algorithm for the full orbitope
(Section 2) which is a flexible full symmetry-breaking technique handling all-column-
permutation structure symmetries. Moreover, it does not introduce any additional in-
equalities, thus not increasing the size of the LP solved at each node. We then propose
to generalize the definition of symmetries and full orbitopes to account for symmetries
arising from a collection of solution subsets, thus introducing sub-symmetries and full
sub-orbitopes (Section 3). Such subsets appear in particular as underlying subproblems
of a B&B search. The main motivation to look at sub-symmetries is that they are often
undetected in the symmetry group G of the problem. We extend our orbitopal fixing al-
gorithm to break structured sub-symmetries arising from a collection of solution subsets.
Experimental results on UCP instances show the effectiveness of our approach (Section
4).



2 Orbitopal fixing for the full orbitope
Let C(m,n) be the (m,n)-dimensional 0/1-cube. Given an ILP of the form (1), consider

a polytope P ⊂ C(m,n) such that the solution set of (1) is a subset of P . At a given node
a of the B&B tree, some variables are already fixed, for example by previous branching
decisions. Additional variable fixings can be performed on some of the remaining free
variables. The idea is to fix to 0 (resp. 1) variables that would yield a solution outside P
if fixed to 1 (resp. 0). Variable fixing methods, introduced in [3], are presented as follows.

A non-empty face F of C(m,n) is given by two index sets I0, I1 ⊂ {1, ....,m}×{1, ..., n} :
F = {x ∈ C(m,n) | xi,j = 0 ∀(i, j) ∈ I0 and xi,j = 1 ∀(i, j) ∈ I1}.

For a polytope P ⊂ C(m,n) and a face F of C(m,n) defined by (I0, I1), the smallest face
of C(m,n) that contains P ∩ F ∩ {0, 1}(m,n) is denoted by FixF (P ), i.e., FixF (P ) is the
intersection of all faces of C(m,n) that contain P ∩ F ∩ {0, 1}(m,n). If FixF (P ) is a non-
empty face of C(m,n), the index sets defining it will be denoted by I?0 and I?1 . In general,
the problem of computing FixF (P ) is NP-hard.

When solving ILP (1) by B&B, to each node a corresponds a face F (a) of C(m,n) defined
by index sets Ia0 and Ia1 of variables already fixed to 0 and to 1 respectively. The aim of
variable fixing is then to find, at each node a, sets I?0 and I?1 defining FixF (a)(P ), where P
is a given polytope containing the solution set. There are two cases. If FixF (a)(P ) = ∅ then
P ∩ F (a) ∩ {0, 1}(m,n) = ∅ and node a can be pruned. If FixF (a)(P ) 6= ∅, then, any free
variable in I?0 (resp. I?1 ) can be set to 0 (resp. 1). Any variable xi,j such that (i, j) 6∈ I?0 ∪I?1
cannot be fixed, as it takes both values 0 and 1 in solution subset P ∩ F (a) ∩ {0, 1}(m,n).
It proves that the fixings occur as early as possible in the B&B tree.

Orbitopal fixing is variable fixing with polytope P being an orbitope. It corresponds to
the case when the solution set X of ILP (1) is restricted to an orbitope P . The resulting
solution set X ∩ P is trivially included in P . Then variable fixing can be performed in
order to restrict the solution set at each node a to be included in orbitope P .

We propose an orbitopal fixing algorithm for the case when P is the full orbitope. It is
a linear time algorithm computing the index sets I?0 and I?1 defining FixF (P ).

Theorem 1. For any hypercube face F , sets I?0 and I?1 defining FixF (P ) can be computed
in linear time when P is the full orbitope.

The corresponding algorithm, as well as a proof of validity, can be found in the extended
version of the article [1]. It relies on the construction of two binary matrices Mmin and
Mmax in P ∩ F such that for any other binary matrix x ∈ P ∩ F , the jth column of x,
denoted by x(j), is lexicographically bounded as follows Mmin(j) � x(j) �Mmax(j).

To illustrate, consider the cube face F defined by pair (I0, I1), with I0 = {(4, 1), (3, 2), (5, 2)}
and I1 = {(2, 1), (5, 1), (4, 2), (1, 3), (2, 3)}. Our fixing algorithm shows that for any binary
matrix M ∈ F ∩ P , the following inequalities hold column-wise :

Mmin =


1 1 1
1 1 1
1 0 0
0 1 0
1 0 0

 � M ∈


∗ ∗ 1
1 ∗ 1
∗ 0 ∗
0 1 ∗
1 0 ∗

 � Mmax =


1 1 1
1 1 1
1 0 0
0 1 1
1 0 0


Thus entries (1,1), (3,1), (1,2), (2,2) (resp. entry (3,3)) must be 1 (resp. 0) in M.



3 Sub-symmetries and full sub-orbitopes

3.1 Sub-symmetries

We propose to generalize symmetries and full orbitopes to a collection of solution sub-
sets. Consider a subset Q ⊆ X of solutions of ILP (1). The sub-symmetry group GQ
relative to subset Q is defined as the symmetry group of subproblem min{cx | x ∈ Q}.
Permutations in sub-symmetry group GQ are referred to as sub-symmetries.

For a given solution subset Q, the corresponding symmetry group GQ is different from G
and may contain symmetries undetected in G. However, this observation is not exploited
in practice by existing symmetry-breaking techniques, as this would imply to compute the
problem’s sub-symmetries at each node of the B&B tree, which is computationally pro-
hibitive. However, in many applications, sub-symmetries can be easily obtained from the
problem’s structure, and therefore do not need to be computed at each node. In this sec-
tion, we introduce a theoretical framework in order to simultaneously handle symmetries
and sub-symmetries arising from a set of subproblems. In particular, we consider how to
select one representative of each class of symmetrical solutions, when multiple symmetry
groups are considered.

Let {Qi ⊂ X , i ∈ {1, ..., s}} be a collection of matrix subsets. To each Qi, i ∈ {1, ..., s},
corresponds a sub-symmetry group GQi . The idea is that Qi may contain sub-symmetries
not detected in the symmetry group G. Let Oi

k, k ∈ {1, ..., oi}, be the orbits defined by
GQi on subset Qi, i ∈ {1, ..., s}.

When considering only the symmetry group G, the orbits of solutions form a partition
of the solution set X . However, the set O = {Oi

k, k ∈ {1, ..., oi}, i ∈ {1, ..., s}} of
orbits defined by sub-symmetry groups GQi , i ∈ {1, ..., s}, does not form a partition of X
anymore. Indeed, for given i, j ∈ {1, ..., s}, ifQi∩Qj 6= ∅, then any x ∈ Qi∩Qj will appear
in both the orbits of GQi and the orbits of GQj . In order to break such sub-symmetries,
removing all non-representatives of an orbit of GQi may remove the representative of an
orbit of GQj , thus leaving the latter unrepresented.

We therefore generalize the concept of orbit in order to define a new partition of X
taking sub-symmetries into account. First, for given X ∈ P(m,n), let us define G(X), the
set of all permutations π in

⋃s
i=1 GQi such that π can be applied to X : G(X) =

⋃
Qi3X GQi .

We now define a relation R over the solution set X . Matrix X ′ is said to be in relation
with X, written X ′ R X, if :
∃r ∈ N, ∃π1, ..., πr | πk ∈ G(πk−1...π1(X)),∀k ∈ {1, ..., r}, and X ′ = π1π2...πr(X).
The generalized orbit O of X with respect to {Qi, i ∈ {1, ..., s}} is thus the set of all

X ′ such that X ′ R X. Roughly speaking, orbits that intersect one another are collected
into generalized orbits. In other words, matrix X ′ is in the generalized orbit of X if X ′
can be obtained from X by composing permutations of groups GQi , ensuring that each
permutation π ∈ GQi is applied to an element of Qi. Note thatR is an equivalence relation,
thus the set of all generalized orbits with respect to {Qi, i ∈ {1, ..., s}} is a partition of X .
Moreover, for a given X ∈ X , each X ′ in the generalized orbit of X is such that X ′ ∈ X
and c(X ′) = c(X). By definition, for any generalized orbit O, there exist orbits σ1, ...,
σp ∈ O such that O = ∪pi=1σi.

While characterizing the representative of a simple orbit σ ∈ O may sometimes be



easy, it may anyway be difficult to characterize the representative of a generalized orbit.
In this case, one may want to choose a representative r(σ) ∈ σ for each orbit σ ∈ O,
and then use a sub-symmetry-breaking technique to remove all elements σ\{r(σ)} from
the search, for each orbit σ ∈ O. As for given orbit σ, the set σ\{r(σ)} may contain
the representative of another orbit σ′, we need to ensure that there remains at least one
element per generalized orbit after the removal of all elements ∪σ∈O(σ\r(σ)). To this end
the choice of the representatives r(σ) must satisfy the following compatibility property.

Definition 1. Representative set {r(σ), σ ∈ O} is orbit-compatible if for any generalized
orbit O = ∪pi=1σi, σ1, ..., σp ∈ O, there exists j such that r(σj) = r(σi) for all i ∈ {1, ..., p}
such that r(σj) ∈ σi. Such a solution r(σj) is said to be a generalized representative of O.

In other words, if {r(σ), σ ∈ O} is orbit-compatible then for each generalized orbit
O = ∪pi=1σi there exists i ∈ {1, ..., p} such that either r(σi) is not contained in any other
orbit σj ∈ O, j 6= i, or r(σi) is the representative of any orbit to which it belongs.

Note that there always exists a set of orbit-compatible representatives : start by choosing
a representative r(σ) for a given σ ∈ O, and then choose r(σ) as the representative of
each orbit σ′ in which r(σ) is contained. Representatives of orbits not containing r(σ) can
be chosen arbitrarily.

There may exist several generalized representatives of a given generalized orbit.
The next lemma states that when representatives are orbit-compatible, there remains

at least one element per generalized orbit even if all elements ∪σ∈O(σ\r(σ)) have been
removed.

Lemma 1. For given orbit-compatible representatives r(σ), σ ∈ O, for any generalized
orbit O = ∪pi=1σi, σ1, ..., σp ∈ O, ∃j ∈ {1, ..., p} such that r(σj) 6∈ ∪pi=1(σi\r(σi)).

Note that even if the set of representatives is orbit-compatible, it may happen that
an entire orbit σ ∈ O is removed by a sub-symmetry-breaking technique. However, if
orbit-compatibility is satisfied, there will always remain at least one element in the cor-
responding generalized orbit, with same cost as any solution in orbit σ.

3.2 Full sub-orbitopes

Given X ∈ X and sets R ⊂ {1, ...,m} and C ⊂ {1, ..., n}, we consider sub-matrix (R,C)
of X, denoted by X(R,C), obtained by considering columns C of X on rows R only. A
symmetry group is said to be the sub-symmetric group with respect to (R,C) if it is the
set of all permutations of the columns of X(R,C). If GQ is the sub-symmetric group with
respect to (R,C) then subset Q is said to be sub-symmetric with respect to (R,C).

In this section, we generalize the notion of full orbitope in order to account for sub-
symmetries arising in sub-symmetric subsets of X . We consider solutions subsets Qi, i ∈
{1, ..., s}, such that for each i, Qi is sub-symmetric with respect to (Ri, Ci), Ri ⊆ {1, ...,m}
and Ci ⊆ {1, ..., n}.

For each orbit Oi
k, k ∈ {1, ..., oi} of GQi , let its representative X i

k ∈ Oi
k be such that

sub-matrix X i
k(Ri, Ci) is lexicographically maximal, i.e., its columns are lexicographically

non-increasing. We prove the following lemma in the extended version of the article [1] :



Lemma 2. The set of representatives {X i
k, k ∈ {1, ..., oi}, i ∈ {1, ..., s}} is orbit-

compatible.

We define the full sub-orbitope Psub with respect to subsets Qi, i ∈ {1, ..., s} as the
convex hull of binary matrices X such that for each i ∈ {1, ..., s}, if X ∈ Qi then the
columns of X(Ri, Ci) are lexicographically non-increasing. In particular, Psub contains
the generalized representatives of each generalized orbit O, but no other element of O.
Note that the full sub-orbitope generalizes the full orbitope, as for s = 1, Q1 = X ,
GQ1 = Sn and (R1, C1) = ({1, ...,m}, {1, ..., n}), the associated full sub-orbitope is the
full orbitope P0(m,n).

Orbitopal fixing can be sequentially applied in order to restrict the feasible set X to
the full sub-orbitope. It works as follows : at each node a, for each i ∈ {1, ..., s} such that
all solutions X at node a are in Qi, orbitopal fixing for the full orbitope is applied to
sub-matrix X(Ri, Ci).

4 Application to the Unit Commitment Problem

Given a discrete time horizon T = {1, ..., T}, a demand for electric power Dt is to be
met at each time period t ∈ T . Power is provided by a set N of n production units. At
each time period, unit j ∈ N is either down or up, and in the latter case, its production
is within [P j

min, P j
max]. Each unit must satisfy min-up (resp. min-down) time constraints,

i.e., it must remain up (resp. down) during at least Lj (resp. `j) periods after start up
(resp. shut down). Each unit j also features three different costs : a fixed cost cjf , incurred
each time period the unit is up ; a start-up cost cj0, incurred each time the unit starts up ;
and a cost cjp proportional to its production. The Min-up/min-down Unit Commitment
Problem (MUCP) is to find a production plan minimizing the total cost while satisfying
the demand and the min-up and down time constraints.

The classical formulation of the MUCP [8] features two sets of binary variables : va-
riables xt,j , indicating whether unit j is up at time t, and variables ut,j , indicating whether
unit j starts up at time t. The associated feasible set is denoted by XUCP .

In practical instances, there are H sets of nh identical units, i.e., units with identical
characteristics, which induce symmetries. Indeed, assuming a solution is expressed as
a matrix where column j corresponds to the up/down trajectory of unit j over the time
horizon, then any permutation of columns corresponding to identical units leads to another
solution with same cost.

Moreover, in some subproblems, there exist symmetries not contained in the symmetry
group of the original problem, arising from the possibility of permuting some sub-columns
of solution matrices. In particular, consider two identical units. Suppose at some time t,
these two units are down (resp. up) and ready to start up (resp. shut down). Then their
plans after t can be permuted, even if they do not have the same plan before t.

To capture such symmetries and sub-symmetries, for each time period t ∈ {1, ..., T }
and subset N of identical units, we consider the following subsets of XMUCP :

Q
t
N =

{
x ∈ XMUCP | xt′,j = 0, ∀t′ ∈ {t− `j , ..., t− 1}, ∀j ∈ N

}
Qt
N

=
{
x ∈ XMUCP | xt′,j = 1, ∀t′ ∈ {t− Lj , ..., t− 1}, ∀j ∈ N

}



These subsets are sub-symmetric with respect to the sub-matrix defined by rows and
columns ({t, ..., T}, N). We apply orbitopal fixing (referred to as DOF-S) to the corres-
ponding full sub-orbitope in a dynamic fashion, in the sense that the lexicographic order
follows the branching decisions occurring along the B&B tree. Preliminary experiments
have shown that dynamic versions of orbitopal fixing clearly outperform static versions,
where the lexicographic order is based on the natural row-order (1, ..., T ).

We compare DOF-S to modified orbital branching (MOB) [7], which is a state-of-the-art
pruning-based symmetry-breaking technique, specifically designed to handle all-column-
permutation symmetries. We also compare to Default Cplex (version 12.6.1) and Callback
Cplex (i.e., Cplex with empty Branch and LazyConstraint Callbacks). We run our expe-
riments on the instances described in [1] until optimality or until the time limit of 3600
seconds is reached.

Resolution methods are compared pairwise using a speed-up indicator. For given me-
thodsm1 andm2, the speed-up achieved bym1 with respect tom2 on a given instance is the
ratio CPU(m2)

CPU(m1) . Table 1 presents, for each group of 20 instances of same size (n, T ) and same
symmetry factor F (higher F means less symmetries, as described in [1]), for each method
m1 (among MOB and DOF-S) and each method m2 (among Default and Callback Cplex),
#opt : Number of instances solved to optimality by m1,
opt∆ : Difference in the number of instances solved to optimality by m1 and m2,
SCPU : Geometric average of the speed-up of method m1 w.r.t. m2.

Instance m2 = Default Cplex m2 = Callback Cplex
(n, T ) Sym m1 #opt opt∆ SCP U opt∆ SCP U

(30,96) F = 4 MOB 14 -6 0.0902 2 1.57
DOF-S 20 0 0.725 8 12.6

F = 3 MOB 12 -4 0.371 4 3.78
DOF-S 16 0 1.05 8 10.7

F = 2 MOB 12 -5 0.197 1 2.1
DOF-S 17 0 0.716 6 7.62

(60,48) F = 4 MOB 17 0 0.978 9 13.5
DOF-S 17 0 1.92 9 26.5

F = 3 MOB 13 0 0.94 6 8.6
DOF-S 15 2 2.25 8 20.6

F = 2 MOB 18 1 1.84 8 11.7
DOF-S 19 2 2.6 9 16.5

TAB. 1 – Average speed-up for various instances compared to Default and Callback Cplex

In terms of CPU time, MOB and DOF-S greatly outperform Callback Cplex, but the
improvement is even more significant with DOF-S. For example on instances (n, T ) =
(60, 48), F = 4 (resp. F = 3, F = 2), MOB outperforms Callback Cplex by a factor 13.5
(resp. 8.6, 11.7) while DOF-S increases this factor to 26.5 (resp. 20.6, 16.5).

As observed in [7], there is a huge performance gap between Callback Cplex and Default
Cplex. Thus, even if MOB and DOF-S substantially outperform Callback Cplex in each
instance group, it is sometimes not enough to close the performance gap between Default
and Callback Cplex, especially for instances such that n is small compared to T ((n, T ) =
(30, 96)). On the opposite, for (n, T ) = (60, 48) instances, in which symmetries are a major
source of difficulty, DOF-S clearly outperforms Default Cplex.



When T is large compared to n ((n, T ) = (30, 96)), it seems that non symmetry-related
difficulties arise, and none of the compared methods catch up with Default Cplex. In this
context, the cost of applying symmetry-breaking techniques (including the performance
loss induced by the use of a Callback) seems too important compared to the impact of
symmetries. The performance loss is less important with DOF-S than with MOB.

On the opposite, when n is large compared to T ((n, T ) = (60, 48)), symmetry seems
to be a major factor of computational difficulty. Indeed, DOF-S performs very well in this
context and solves to optimality some instances Default Cplex cannot. For example, on
instances (n, T ) = (60, 48), F = 2 (resp. F = 3), DOF-S solves two more instances to
optimality than Default Cplex. MOB does not perform as well as DOF-S in this respect.
Moreover, DOF-S outruns Default Cplex by a factor 2, while MOB is closer to a factor 1.

Perspectives
There is a wide range of problems featuring all column permutation symmetries and

sub-symmetries, in particular many variants of the UCP, on which it would be desirable
to analyze the effectiveness of our approach. Examples of such problems can be found
among covering problems.

Another perspective would be to extend orbitopal fixing to full orbitopes under other
group actions, for example the cyclic group. Another approach to handle symmetries
related to the symmetric or the cyclic group would be to find a new set of representatives
whose convex hull would be easier to describe than the full orbitope.
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