Supporting Information

Hydronium Ions Stabilized in a Titanate Layered Structure with High Ionic Conductivity: Application to Aqueous Proton Batteries

Seongkoo Kang,^{a,b} Arvinder Singh,^{b,c} Kyle G. Reeves,^{a,b} Jean-Claude Badot,^{b,d} Serge Durand-Vidal,^{a,b} Christophe Legein,^e Monique Body,^e Olivier Dubrunfaut,^f Olaf J. Borkiewicz,^g Benoît Tremblay,^h Christel Laberty-Robert,^{b,c} and Damien Dambournet^{a,b*}

^a Sorbonne Université, CNRS, Physicochimie des électrolytes et nanosystèmes interfaciaux, PHENIX, F-75005 Paris, France

^b Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, 80039 Amiens Cedex, France

^c Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, 4 place Jussieu, F-75005 Paris, France

^d Chimie ParisTech, PSL Reserarch University, CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France

^e Institut de Molécules de Matériaux du Mans (IMMM) – UMR 6283 CNRS, Le Mans Université, avenue Olivier Messiaen, 72805 Le Mans Cedex 9, France

^f GeePs Group of Electrical Engineering – Paris, UMR CNRS 8507, CentraleSupélec, Sorbonne Universités, Univ Paris-Sud, Université Paris-Saclay, 11 rue Joliot-Curie, 91192 Gif-sur-Yvette, France

^g X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Illinois 60439, United States

^h Sorbonne Université, CNRS, UMR 8233, MONARIS, Case Courrier 49, 4 place Jussieu, F-75005 Paris, France

Figure S1. Scanning electron microscopy images of H-titanate.

Figure S2. X-ray PDF of H-titanate.

Figure S3. Conductometric titration of H-titanate dispersed in distilled water with 1 M NaOH (Green arrow = addition of 0.1 mL of 1 M NaOH).

H-titanate was first dispersed in distilled water and we titrated the amount of exchangeable H_3O^+ with 1 M NaOH. After the first addition of 0.1 mL of 1 M NaOH, we observed a fast increase of the resistivity related to the neutralization of protons already released in the water. The successive additions show a drop in the resistivity due to the added NaOH and a progressive increase of the resistivity related to the Na⁺ - H⁺ exchange. The increase step is attributed to i) the disappearance of the Na⁺ via ion exchange and ii) the reaction between released H⁺ and OH⁻. Graphically, four additions of 0.1 mL of 1 M NaOH, corresponding to 4·10⁻⁴ mols of Na⁺ were exchanged with H⁺.

Figure S4. XRD patterns of H-titanates calcined at different temperatures.

Figure S5. a) X-ray diffraction patterns of H-titanate synthesized with Ti(IV) isopropoxide precursor (= H-titanate) and anatase precursor. b) Nyquist plot of the imaginary part vs. the real part of the complex resistivity.

Figure S6. Real part of the complex permittivity recorded from 50 to 10^{10} Hz.

Figure S7. Arrhenius plot of the bulk conductivity. The activation energy deduced from the plot is 0.26 eV.

Conductivity (S/cm)	Measurement conditions	Synthesis	Acid treatment	Refs
5.5·10 ⁻⁶	25 °C	7.9859 g of rutile TiO $_2$ + 20 mL of NaOH (10 M) at 150 °C for 72h	HCI (0.1 M)	1
5.0·10 ⁻⁴	160 °C 100% RH/6 atm	1 g of TiO2 + 200 mL of NaOH (10 M) at 100 °C for 72-120h	Dilute HCl	2
1.4·10 ⁻⁶	50 °C	0.5 g of anatase TiO $_{\rm 2}$ + 100 mL of NaOH (10 M) at 140 °C for 24-72h	200 mL of HNO ₃ (0.2 M)	3
2.3·10 ⁻⁶	RT	1 g of TiO2 + 80 mL of NaOH (10 M) at 130 °C for 24h	HNO ₃ (0.1 M)	4

Table S1. Summary of the conductivities reported in the literature for layered proton titanates synthesized and measured at different conditions.

 Table S2. Dielectric relaxation parameters at room temperature of H-titanate.

Dielectric relaxation	Sample	Grain	H^{\star}	H ₂ O
parameters at RT	polarization (P2)	polarization (P3)	hopping (P4)	rotation (P5)
Frequency ν (Hz)	9.3x10 ⁵	1.1×10^{6}	1.6x10 ⁸	2.2x10 ⁹
Activation energy (eV)	0.36	0.28	0.24	undefined
prefactor (Hz)	10 ¹²	6x10 ¹¹	2x10 ¹²	undefined
Dielectric strength $\Delta\epsilon$	90	29	8.24	4.6
Cole-Cole parameter $\boldsymbol{\alpha}$	0.18	0.15	0.10	0

References

1. Thorne, A.; Kruth, A.; Tunstall, D.; Irvine, J. T. S.; Zhou, W. Formation, Structure, and Stability of Titanate Nanotubes and Their Proton Conductivity. *J. Phys. Chem. B* **2005**, *109* (12), 5439–5444. https://doi.org/10.1021/jp047113f.

2. Yamada, M.; Wei, M.; Honma, I.; Zhou, H. One-Dimensional Proton Conductor under High Vapor Pressure Condition Employing Titanate Nanotube. *Electrochem. Commun.* **2006**, *8* (9), 1549–1552. https://doi.org/10.1016/j.elecom.2006.07.020.

3. Gao. T.; Fjeld, H.; Fjellvåg, H.; Norby, T.; Norby, P. In situ studies of structural stability and proton conductivity of titanate nanotubes. *Energy Environ. Sci.*, **2009**, 2, 517-523. https://doi.org/10.1039/B821532B

4. Hu, W.; Li, L.; Li, G.; Meng, J.; Tong, W. Synthesis of Titanate-Based Nanotubes for One-Dimensionally Confined Electrical Properties. J. Phys. Chem. C 2009, 113 (39), 16996–17001. https://doi.org/10.1021/jp907001n.