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 16 

Numerical models of ocean biogeochemistry are becoming a major tool to detect and 17 

predict the impact of climate change on marine resources and ocean health. Classically, the 18 

validation of such models relies on comparison with surface quantities from satellite (such as 19 

chlorophyll-a concentrations), climatologies, or sparse in situ data (such as cruises 20 

observations, and permanent fixed oceanic stations). However, these datasets are not fully 21 

suitable to assess how models represent many climate-relevant biogeochemical 22 

processes.  These limitations now begin to be overcome with the availability of a large 23 

number of vertical profiles of light, pH, oxygen, nitrate, chlorophyll-a concentrations and 24 

particulate backscattering acquired by the Biogeochemical-Argo (BGC-Argo) floats network.  25 

Additionally, other key biogeochemical variables such as dissolved inorganic carbon and 26 

alkalinity, not measured by floats, can be predicted by machine learning-based methods 27 

applied to float oxygen concentrations.  Here, we demonstrate the use of the global array of 28 

BGC-Argo floats for the validation of biogeochemical models at the global scale. We first 29 

present 18 key metrics of ocean health and biogeochemical functioning to quantify the 30 

success of BGC model simulations. These metrics are associated with the air-sea CO2 flux, 31 

the biological carbon pump, oceanic pH, oxygen levels and Oxygen Minimum Zones 32 
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(OMZs). The metrics are either a depth-averaged quantity or correspond to the depth of a 1 

particular feature. We also suggest four diagnostic plots for displaying such metrics.  2 

 3 

1. Introduction 4 

 5 

Since pre-industrial times, the ocean had taken up ~36 % of the CO2 emitted by the 6 

combustion of fossil fuel (Friedlingstein et al., 2019) leading to dramatic change in the 7 

ocean’s biogeochemical (BGC) cycles, such as ocean acidification (Iida et al., 2020). 8 

Moreover, deoxygenation (Breitburg et al., 2018) and change in the biological carbon pump 9 

are now manifesting on a global scale (Capuzzo et al., 2018; Osman et al., 2019; Roxy et al., 10 

2016). Together with plastic pollution (Eriksen et al., 2014) and an increase in fisheries 11 

pressure (Crowder et al., 2008), major changes are therefore occurring in marine ecosystems 12 

at the global scale. In order to monitor these ongoing changes, derive climate projections and 13 

develop better mitigation strategies, realistic numerical simulations of the oceans’ BGC state 14 

are required.    15 

 16 

Numerical models of ocean biogeochemistry represent a prime tool to address these issues 17 

because they produce three dimensional estimates of a large number of chemical and 18 

biological variables that are dynamically consistent with the ocean circulation (Fennel et al., 19 

2019). They can assess past and current states of the biogeochemical ocean, produce short-20 

term to seasonal forecasts as well as climate projections.  However, these models are far from 21 

being flawless, mostly because there are still huge knowledge gaps in the understanding of 22 

key biogeochemical processes and, as a result,  the mathematical functions that describe BGC 23 

fluxes and ecosystems dynamics are too simplistic (Schartau et al., 2017). For instance, most 24 

models do not include a radiative component for the penetration of solar radiation in the 25 

ocean. It has been nevertheless shown that coupling such a component with a BGC model 26 

improves the representation of the dynamics of phytoplankton in the lower euphotic zone 27 

(Dutkiewicz et al., 2015). Additionally, the parameterisation of the mathematical functions 28 

generally result from laboratory experiments on few a priori expected representative species 29 

and may not be suitable for extrapolation to ocean simulations that need to represent the large 30 

range of organisms present in oceanic ecosystems (Schartau et al., 2017; Ward et al., 2010). 31 

Furthermore, the assimilation of physical data in coupled physical-BGC models that improves 32 

the physical ocean state can paradoxically degrade the simulation of the BGC state of the 33 
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ocean (Fennel et al., 2019; Park et al., 2018). A rigorous validation of BGC models is thus 1 

essential to test their predictive skills, their ability to reproduce BGC processes and estimate 2 

confidence intervals on model predictions (Doney et al., 2009; Stow et al., 2009). 3 

 4 

However, the validation of BGC models is presently limited by the availability of data. It 5 

relies principally on comparison with surface quantities from satellite (such as chlorophyll-a 6 

concentrations), cruises observations, and few permanent oceanic stations (e.g., Doney et al., 7 

2009; Dutkiewicz et al., 2015; Lazzari et al., 2012, 2016; Lynch et al., 2009; Séférian et al., 8 

2013; Stow et al., 2009). All these datasets neither have a sufficient vertical or temporal 9 

resolution, nor a synoptic view nor can provide all variables necessary to evaluate how 10 

models represent climate-relevant processes such as the air-sea CO2 fluxes, the biological 11 

carbon pump, ocean acidification or deoxygenation. 12 

  13 

 In 2016, the Biogeochemical-Argo (BGC-Argo) program was launched with the goal 14 

to operate a global array of 1000 BGC-Argo floats equipped with oxygen (O2), chlorophyll a 15 

(Chla) and nitrate (NO3) concentrations, particulate backscattering (bbp), pH and downwelling 16 

irradiance sensors (Biogeochemical-Argo Planning Group, 2016; Claustre et al., 2020). 17 

Although the planned number of 1000 floats has not been reached yet, the BGC-Argo 18 

program has already provided a large number of quality-controlled vertical profiles of O2, 19 

Chla, NO3, bbp, and pH (Fig. 1). With respect to O2, Chla, NO3, and bbp; the North Atlantic 20 

and the Southern Ocean are reasonably well sampled whereas pH is so far essentially sampled 21 

in the Southern Ocean. At regional scale, the Mediterranean Sea is also fairly well sampled by  22 

BGC-Argo floats (Salon et al., 2019; Terzić et al., 2019).  However, there are still, large 23 

under-sampled areas, like the subtropical gyres or the sub-polar North Pacific. Nevertheless, 24 

the number of quality-controlled observations collected by the BGC-Argo fleet is already 25 

greater than any other data set (Claustre et al., 2020). The BGC-Argo data have also an 26 

unprecedented temporal and vertical resolution of key variables acquired simultaneously as 27 

well as a satisfactory level of accuracy and stability over time (Johnson et al., 2017; Mignot et 28 

al., 2019).  Thanks to machine learning based methods (Bittig et al., 2018; Sauzède et al., 29 

2017), floats equipped with O2 sensors can be additionally used to derive, vertical profiles of 30 

NO3, phosphate (PO4), silicate (Si), alkalinity (Alk), dissolved inorganic carbon (DIC), pH 31 

and pCO2. All these specificities overcome the limitations of previous data sets  from now and 32 

open new perspectives for the validation of BGC models (Gutknecht et al., 2019; Salon et al., 33 

2019; Terzić et al., 2019).  34 
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 1 

We aim to demonstrate the use of the BGC-Argo global array for the validation of 2 

BGC models at the global scale. In regional seas or enclosed basins, where a limited number 3 

of floats have been so far deployed, point-by-point model-observation comparison is possible 4 

(Gutknecht et al., 2019; Salon et al., 2019). However, at the global scale, the BGC-Argo 5 

dataset provides a massive and ever-growing amount of data, and it can be difficult to 6 

manipulate this large data set, especially when it comes to evaluate a 3-D time-varying model 7 

simulation for about ten variables. In such cases, it is useful to define observationally-based 8 

metrics that are able to quantify the skill of a model to represent key oceanic processes 9 

(Russell et al., 2018). These metrics are quantities that summarize a particular process into a 10 

single number [e.g., the amplitude or the depth of an Oxygen Minimum Zone (OMZ)]. In this 11 

study, we present 18 metrics of ocean health and biogeochemical functioning for the 12 

assessment of a BGC model simulation. The metrics are either a depth-averaged quantity (e.g, 13 

nutrients concentration, Chla, …) or correspond to the depth of a particular feature (e.g., 14 

nitracline). These metrics are associated with the air-sea CO2 flux, the biological carbon 15 

pump, oceanic pH, oxygen levels and Oxygen Minimum Zones (OMZs). 16 

 17 

The paper is organised as follow: section 2 presents the data sets used in the study. In 18 

section 3, we define the metrics necessary to compare the model to floats’ observations. In 19 

section 4, we show examples of diagnostic plots for displaying the metrics. In section 5, we 20 

discuss metrics relative to optical properties in the water column. Finally, section 6 21 

summarizes and concludes the study. 22 

 23 

2. Data 24 

 25 

a. BGC-Argo floats observations 26 

 27 

The float data were downloaded from the Argo Coriolis Global Data Assembly Centre 28 

in France (ftp://ftp.ifremer.fr/argo). The CTD and trajectory data were quality controlled 29 

using the standard Argo protocol (Wong et al., 2015). The raw BGC signals were transformed 30 

to biogeochemical variables  and quality-controlled according to international BGC-Argo 31 

protocols (Johnson et al., 2018b, 2018a; Schmechtig et al., 2015, 2018; Thierry et al., 2018; 32 

Thierry and Bittig, 2018).  33 
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 1 

In the Argo data-system, the data are available in three data modes, “Real-Time”, 2 

”Adjusted” and ”Delayed” (Bittig et al., 2019). In the “Real-time” mode, the raw data are 3 

converted into state variable and an automatic quality-control has been applied to “flag” gross 4 

outliers. In the “Adjusted” mode, the “Real-time” data receive a calibration adjustment in an 5 

automated manner. In the “Delayed” mode, the “Adjusted” data are adjusted and validated by 6 

a scientific expert.  While the “Real-Time” and “Adjusted” data are considered acceptable for 7 

operational application (data assimilation), the “Delayed” mode” is designed for scientific 8 

exploitation and represent the highest quality of data with the ultimate goal, when time-series 9 

with sufficient duration will have been acquired, to possibly extract climate-related trend. 10 

However, for some parameters, only a limited fraction of data is accessible in “Delayed-11 

Mode”. Consequently, for each parameter, we selected the highest quality of data that did not 12 

compromise too much the number of observations available (see Table 1). We removed data 13 

with missing location or time information and flagged as “Bad data” (flag =4). Depending on 14 

the parameter and the associated data mode, we also excluded data flagged as “potentially bad 15 

data” (flag=3) (see Table 1).  16 

 17 

Particulate Organic Carbon (POC) concentrations were derived from bbp observations. 18 

First, three consecutive low-pass filters were applied on the vertical profiles of  bbp  to remove 19 

spikes (Briggs et al., 2011): a 2-points running median followed by a 5-points running 20 

minimum and 5-points running maximum. Then, the filtered bbp profiles were converted into 21 

POC using the relationship proposed by Cetinic et al. (2012), i.e,  POC=35422* bbp-14.4. 22 

Negative values resulting from this transformation were set to 0. 23 

 24 

Finally, we complemented the existing BGC-Argo dataset with pseudo-observations 25 

of NO3, PO4 , Si, and DIC concentrations as well pH and pCO2 using the CANYON-B neural 26 

network (Bittig et al., 2018). CANYON-B estimates vertical profiles of nutrients as well as 27 

the carbonate system variables from concomitant measurements of floats pressure, 28 

temperature, salinity and O2 qualified in “Delayed “mode together with the associated 29 

geolocation and date of sampling.  30 

 31 

 32 

b. CMEMS global BGC Model 33 
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 1 

The global model simulation used in this study (see Appendix A.1) originates from the 2 

Global Ocean hydrodynamic-biogeochemical model, implemented and operated by the Global 3 

Monitoring and Forecasting Center of the EU, the Copernicus Marine Environment 4 

Monitoring Service (CMEMS). It is based on the coupled NEMO–PISCES model and it is 5 

constrained by the assimilation of satellite Chla concentrations. The BGC model is forced 6 

offline by daily fields of ocean, sea ice and atmosphere. The ocean and sea ice forcing come 7 

from Mercator Ocean global high-resolution ocean model (Lellouche et al., 2018) that 8 

assimilates along-track altimeter data, satellite Sea Surface Temperature and Sea-Ice 9 

Concentration, and in situ temperature and salinity vertical profiles. The BGC model has a 10 

1/4° horizontal resolution, 50 vertical levels (with 22 levels in the upper 100 m, the vertical 11 

resolution is 1m near the surface and decreases to 450m resolution near the bottom). It 12 

produces daily outputs of Chla, NO3, PO4, Si, O2, pH, DIC and Alk, and weekly outputs of 13 

POC (resampled offline from weekly to daily frequency through linear interpolation) from 14 

2009 to 2017. The POC model used in this study corresponds to the sum two size classes of 15 

particulate organic matter modelled by PISCES (Aumont et al., 2015). Partial pressures of 16 

CO2 values are calculated offline from the modelled DIC, Alk, temperature and salinity data 17 

using the seacarb program for R (https://CRAN.R-project.org/package=seacarb). The Black 18 

Sea was not taken into account in the present analysis because the model solutions are of very 19 

poor qualities. Finally, the daily model outputs were collocated in time and the closest to the 20 

BGC-Argo floats positions, and they were interpolated to the sampling depth of the float 21 

observations. The characteristics of the model are further detailed in the appendix. 22 

 23 

3. Metrics 24 

 25 

In this section, we present 18 key metrics of ocean health and biogeochemical 26 

functioning. The metrics are associated with the air-sea CO2 flux, the biological carbon pump, 27 

oceanic pH, oxygen levels and Oxygen minimum zones (OMZs). The metrics are described 28 

below and summarized in Table 2.  29 

 30 

a. Air-sea CO2 flux 31 

 32 
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The air-sea CO2 flux is generally calculated following a bulk formulation 1 

(Wanninkhof, 2014), FCO2=ka(pCO2atm - spCO2), where FCO2 is the air-sea CO2 flux, a is the 2 

CO2 solubility in seawater, k is a gas transfer coefficient that depends on wind speed, spCO2 3 

is the partial pressure of CO2 at the ocean’s  surface, and pCO2atm is the partial pressure of 4 

CO2 in the atmosphere. Among the uncertainties affecting the different components of the 5 

model CO2 flux, BGC-Argo data can contribute to estimate that on spCO2. Thus, the 6 

validation of pCO2 plays a critical role to assess the skill of a BGC model in representing 7 

correctly the air-sea CO2 flux. 8 

 9 

Here, spCO2 is defined as the average of pCO2 profile between the surface and the 10 

mixed layer depth (MLD). Following De Boyer et al. (2004), the MLD is computed as the 11 

depth at which the change in potential density from its value at 10 m exceeded 0.03 kg m-3. 12 

 13 

b. Oceanic pH 14 

 15 

Ocean acidification is the decrease in oceanic pH due to the absorption of 16 

anthropogenic CO2. The acidification of the ocean is expected to impact primarily the surface 17 

oceanic waters as well as the 200-400 m layer (Kwiatkowski et al., 2020). Assessing how 18 

models correctly represent oceanic pH at the surface is therefore critical if we aim to derive 19 

accurate climate projections on acidification. The surface ocean pH (spH) is defined as the 20 

average of pH profile between the surface and the base of the mixed layer and the pH in the 21 

200-400 m layer (pH200-400) as the average of pH profile in this layer. 22 

 23 

c. Biological carbon pump 24 

 25 

The biological carbon pump is the transformation of nutrients and dissolved inorganic 26 

carbon into organic carbon in the upper part of the ocean through phytoplankton 27 

photosynthesis and its subsequent transfer of this organic material into the deep ocean.  28 

A useful way to investigate the biological carbon pump is to look at the depth-29 

averaged concentrations in nutrients (NO3, PO4, and Si), DIC, Chla and POC computed from 30 

the surface down to the MLD, hereinafter denoted sNO3, sPO4, sSi, sDIC, sChl and sPOC. To 31 

assess the quantity of POC that is exported to the deep ocean, we compute the mesopelagic 32 
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POC concentration (POCmeso), which correspond to the depth-averaged POC concentrations 1 

between the base of the mixed layer down to 1000 m (Dall’Olmo and Mork, 2014). 2 

 3 

 At the base of the euphotic layer of stratified systems, a Chla maximum (hereinafter 4 

denoted Deep Chlorophyll Maximum, DCM) develops that generally escapes detection by 5 

remote sensing (Barbieux et al., 2019; Cullen, 2015; Letelier et al., 2004; Mignot et al., 2014, 6 

2011). It has been suggested that the DCM plays an important role in the synthesis of organic 7 

carbon by phytoplankton (Macías et al., 2014). The DCM is therefore an important feature to 8 

be assessed in BGC models with respect to the production of organic carbon and more 9 

generally to the biological carbon pump. The depth and magnitude of DCM (Hdcm and Chldcm) 10 

are helpful metrics for the assessment of DCM dynamics. The depth of the DCM is calculated 11 

as the depth where the maximum of Chla occurs in the profile with the criterion that Hdcm 12 

should be deeper than H. The magnitude of the DCM is computed at the value at Hdcm. 13 

Finally, the depth of nitracline (Hnit) is also evaluated as it is an important driver for Hdcm and 14 

Chldcm (Barbieux et al., 2019; Herbland and Voituriez, 1979). Following Richardson and 15 

Bendtsen (2019), Hnit was computed at the depth at which NO3 = 1 µmol kg-1.  16 

 17 

d. Oxygen levels and oxygen minimum zones 18 

 19 

Oxygens levels in the global and coastal waters have declined over the whole water 20 

column over the past decades (Schmidtko et al., 2017) and OMZs are expanding (Stramma et 21 

al., 2008). Assessing how models correctly represent ocean oxygen levels as well as the 22 

OMZs is therefore critical. We evaluate oxygen levels in 3 layers, at the surface, at 300 m and 23 

at 1000 m.  The surface O2 (sO2), important for the air-sea O2 flux, is defined as the average 24 

of O2 profile in the mixed layer.  The oxygen at 300 m (O2 300), a depth where large areas of 25 

the global ocean have very low O2 (Breitburg et al., 2018), is defined as the average of O2 26 

profile between 250 and 300 m. The deep oxygen content, (O2 1000), is defined as the average 27 

of O2 profile between 950 and 1000 m. Finally, to characterize the OMZs, we evaluate the 28 

depth (HO2min) and concentration (O2min) of O2 minimums. O2 level lower than 80 µmol kg-1 29 

are used to characterize OMZs (Schmidtko et al., 2017). 30 

 31 

4. Diagnostic plots to display the BGC-Argo based metrics 32 
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 1 

Based upon the existing literature (e.g., Aumont et al., 2015; Cossarini et al., 2019; Doney 2 

et al., 2009; Dutkiewicz et al., 2015; Gutknecht et al., 2019; Salon et al., 2019; Séférian et al., 3 

2013; Terzić et al., 2019), we propose 4 graphical representations that can be used to display 4 

the novel validation metrics and to assess the skill of a model in reproducing a particular 5 

process or variable: Taylor diagrams, scatterplots, spatial maps, and time series.  6 

 7 

a. Taylor diagram 8 

 9 

Taylor diagrams are useful to display simultaneously information on model-data skill 10 

for a suite of metrics (Taylor, 2001). These diagrams combine the Pearson correlation 11 

coefficient (r), root-mean-square difference (RMSD) and the model standard deviation (SD). 12 

In order to represent all metrics with different units into a single diagram, we use a 13 

normalized Taylor diagram (RMSD and the model SD are divided by the SD of the 14 

observations). In the diagram, the Pearson correlation coefficient between the model and the 15 

observations is related to the azimuthal angle. The normalized SDs are proportional to the 16 

radial distances from the origin. The observational reference is indicated along the x-axis and 17 

corresponds to the normalized SD and r =1. Finally, the normalized RMSD is proportional to 18 

the distance from the observational difference.  19 

  20 

b. Scatter/Density plots 21 

 22 

In validation exercises, scatter plots are useful to identify relationships between the 23 

predicted and observed values. It is common to add a least squares regression line to quantify 24 

the strength of the linear relationship between the observed and predicted values. Scatter plots 25 

are also helpful to show other patterns in data, such as non-linear relationships, clusters of 26 

points and outliers. In those cases, when a large amount of data points has to be plotted (like 27 

in our study), the points overlap to a degree where it can be difficult to distinguish the 28 

relationship between the variables. To overcome this, scatter plots are displayed as density 29 

plots, where each axis is divided in a number of bins while the colour within each bin 30 

indicates the number of points.  31 

  32 

c. Spatial maps 33 
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 1 

Spatial maps draw attention to the spatial distribution of a given metric. The maps are 2 

handy to determine if the model is skilled in reproducing global patterns, spatial gradients, 3 

and basins inter-difference. It is also helpful to display the BIAS and RMSD between 4 

predicted and observed values on a spatial map to quickly determine regions where the model 5 

uncertainty is the highest.  Depending on the context, the comparison between the model and 6 

the observation can be performed either on a climatological level, or for a specific period 7 

(year, month, etc ..). In our case, the scarcity of observations imposes us to display all data 8 

(from 2009 to 2017; the period of analysis of the model simulation) in a climatological way if 9 

we want to highlight large scale patterns. To do so, the metrics from 2009 to 2017 are 10 

averaged in 4°x4° bins, bins with less than 4 points being not included. We also computed the 11 

BIAS and RMSD within each bin.  12 

 13 

d. Seasonal time-series 14 

 15 

Taylor diagrams, scatter plots and spatial maps are powerful diagnostics plots to 16 

evaluate the global skills of a model but understanding the causes of difference remains 17 

somewhat limited with these diagrams.  Rather, the comparative analysis of seasonal time-18 

series of multiple metrics and their inter-relationships is a powerful tool to highlight and to 19 

understand BGC processes. This is especially true for the biological carbon pump that has a 20 

strong seasonal variability due to the seasonal variation in sunlight, surface heating and 21 

surface wind (Williams and Follows, 2011).  As a matter of fact, the analysis of seasonal 22 

dynamics in nutrients as well as in phyto- and zoo- plankton has a rich history for the 23 

development of BGC model (Evans and Parslow, 1985; Riley, 1946).  24 

 25 

5. Results: Application to CMEMS global model 26 

 27 

Examples of the diagnostic plots described in section 4 in combination with the metrics 28 

defined in Section 3 are shown. The objective of this section is to illustrate the opportunities 29 

offered by the BGC-Argo-based metrics for evaluating global BGC model solutions, rather 30 

than to provide a full evaluation of the CMEMS global model. Consequently, for each 31 

diagnostic plot, we only present one detailed example. The density plots and spatial maps for 32 

all metrics are displayed in the Appendix section (Fig. A1-A36). 33 
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 1 

a. Taylor diagram 2 

 3 

 The CMEMS global model skill is summarized in the normalized Taylor diagram 4 

(Fig. 2). The oxygen levels metrics (sO2, O2 300, O2 1000), pH200-400, the average nutrients and 5 

DIC concentrations in the mixed layer are particularly well represented in the model. The 6 

correlation coefficients are greater than 0.95, the predicted SDs are close the observed SDs 7 

and the normalized RMSDs are lower than 0.4. The OMZs as well as the depths of DCM and 8 

nitracline are reasonably well represented in the model, with r > 0.9 (OMZs) and r > 0.8 (for 9 

Hnit and Hdcm) and normalized RMSDs <0.6. The variability in the predicted O2min is however 10 

larger than the observed ones. Finally, the POC concentrations, the Chla in the mixed layer 11 

and at the DCM as well as spCO2 and spH are the worst predicted metrics. The normalised 12 

RMSD is greater than 0.7-0.8, r is between 0.4 and 0.6, and the amplitude of model variations 13 

is lower than the BGC-Argo observations. 14 

 15 

 The representation of all metrics into a single Taylor diagram allows to rapidly 16 

evaluate the strengths and the weaknesses of a model simulation. For instance, the CMEMS 17 

global model is skilled in reproducing oxygen levels and the cycling of nutrients and DIC in 18 

the mixed layer, but the representation of Chla and POC needs to be improved.   19 

 20 

b. Scatter/Density plots 21 

 22 

The density plots for all metrics are displayed in the Appendix section (Fig. A1-A18). 23 

Here, we detail only the density plot for O2min to illustrate the potential of such representations.  24 

 25 

Figure 3 shows the comparison between the observed and predicted O2min values. The 26 

regression line, the slope, and the intercept as well the coefficient of determination (R2) are 27 

indicated. Overall, the model and the float O2min are in good agreement with a slope close to 1 28 

and R2 close to 0.8. There is however a positive offset of ~11 µmol kg-1 across all O2min values 29 

suggesting that the modelled OMZs are on average too much oxygenated by a constant value. 30 

It is worth noting that the scatter around the regression line is larger for O2min > 50 µmol kg-1, 31 

which corresponds to the Atlantic OMZ around the Cap Verde Archipelago (Fig. A35). This 32 

suggests that the uncertainty in this OMZ is particularly high, as confirmed in Fig. A35. 33 
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 1 

c. Spatial maps 2 

 3 

The spatial maps for all metrics are displayed in the Appendix section (Fig. A19-A36), 4 

while we detail hereafter the spatial distribution of sChl.  5 

 6 

Figure 4 shows the spatial distribution of sChl estimated from the BGC-Argo floats 7 

(Fig. 4a), the model (Fig. 4b), the BIAS (Fig. 4c) and the RMSD (Fig. 4d). As already noticed 8 

in Fig. 1, the density of sChl observations is satisfactory for high latitude regions (latitudes > 9 

50° N and S) whereas it is poor in subtropical gyres and the Equatorial band. Nevertheless, 10 

large scale patterns in sChl are still distinguishable in Fig. 1a, especially the juxtaposition of 11 

the high-latitudes-high- sChl regions with the low-latitudes-low- sChl regions. The model 12 

(Fig. 4b) exhibits large-scale, coherent patterns. However, the model tends to be lower than 13 

the BGC-Argo observations in the high-latitudes region and higher in the subtropical gyres 14 

(Fig. 4c). The RMS difference between the predicted and the observed values seems to be 15 

quite uniform, suggesting the uncertainty in model sChl is fairly constant in all oceanic 16 

basins. 17 

 18 

d. Seasonal time-series 19 

 20 

An example of a BGC-Argo float seasonal time-series compared to a simulation of the 21 

same time-series along the float trajectory is presented in Fig. 5 for a case study in the North 22 

Atlantic during the “spring bloom” . 23 

 24 

Figure 5 compares the seasonal time series of MLD, sChl, sNO3, sSi and sPO4   25 

derived from the BGC-Argo floats observations (blue) and from the model simulation 26 

(yellow). The seasonal cycle of MLD, sChl and nutrients is typical of the North Atlantic 27 

bloom dynamics (Dale et al., 1999; Mignot et al., 2018). In spring, phytoplankton 28 

concentration, as measured by sChl increases dramatically and it is accompanied by a 29 

consumption of inorganic nutrients in the mixed layer. The increase in sChl stops when one or 30 

several nutrients become exhausted and the nutrients-Chla system remains in an equilibrium 31 

phase. In fall, as the mixed layer starts deepening, deep nutrients and inorganic carbon are 32 

entrained in the surface layer driving an increase in surface concentrations. However, the 33 
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decrease in sea surface light and the increase in upper ocean mixing drive phytoplankton cells 1 

away from the well-lit surface inducing a decrease in phytoplankton abundance and thus sChl.  2 

 3 

The seasonal cycle of sChl and nutrients is well approximated by the model with the 4 

timings of minima, maxima and the onset of the bloom being correctly represented. The 5 

winter- sChl -minimum and winter-nutrients-maxima are also properly estimated by the 6 

model. However, the summer- sChl -maximum is underestimated and the summer- sNO3  -7 

minimum and summer- sPO4 -minimum are overestimated while the summer- sSi -minimum 8 

is correctly represented.  This explain the negative BIASs observed in the spatial map of sChl 9 

in the North Atlantic (Fig. 4) and the positive BIAS in the spatial map of sNO3 and sPO4  in 10 

the North Atlantic (Figs. A23 and A24).  11 

 12 

The conjoint analysis of the seasonal times-series of Chla and nutrients strongly 13 

suggest that modelled rates of primary production are too weak in summer so that sNO3  and 14 

sPO4  are not consumed fast enough by phytoplankton.  The summer sSi being correctly 15 

estimated, we can also hypothesized that the main phytoplankton class in the model 16 

consuming Si, i.e; the diatoms (Aumont et al., 2015), are well represented whereas the other 17 

phytoplankton class in the model , i.e.,  nanophytoplankton, are misrepresented during 18 

summer. The reasons for this could be that nanophytoplankton growth rates are too weak or 19 

that grazing on nanophytoplankton is too strong. 20 

 21 

The underestimation in the rates of primary production has a direct impact on the 22 

oceanic carbon cycle in the North Atlantic (Fig. 6). The summer sDIC are higher in the model 23 

compared to the BGC-Argo estimates. Similarly, the summer sPOC concentrations are too 24 

low, suggesting that the uptake of atmospheric CO2 and the transformation of dissolved 25 

inorganic carbon into organic carbon are too weak in the model during summer. However, 26 

this seems to have a limited effect on the export of POC to the deep ocean as the modelled 27 

POC concentrations in the mesopelagic layer are consistent with the BGC-Argo observations 28 

during summer.  29 

 30 

6. Perspectives: metrics relative to ocean optical properties 31 

 32 
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BGC-Argo floats equipped with sensors measuring the downward planar irradiance are 1 

essential observations to evaluate the performance of recently-developed BGC models that 2 

resolve the spectral and directional properties of the underwater light field. For several years, 3 

the number of BGC models coupled with a multispectral light module has been steadily 4 

increasing (Baird et al., 2016; Dutkiewicz et al., 2015; Gregg and Rousseaux, 2016; Lazzari et 5 

al., 2020; Skákala et al., 2020). Such models require dedicated observations and metrics to 6 

evaluate their skill in representing the ocean’s optical properties of the ocean. Diffuse 7 

attenuation coefficient for downwelling irradiance (Kd) is one of the most common properties 8 

to characterise the optical state of the ocean (Sosik, 2008). Values of Kd can be derived at 9 

three different wavelengths (380, 412, 490 nm) from the BGC-Ago floats observations.  This 10 

metric also provides information about the constituents of seawater (Organelli 2017) 11 

(phytoplankton for Kd at 490 nm and coloured dissolved organic carbon for Kd at 380 nm and 12 

412 nm) and is complementary to Chla measurements for the assessment of the modelled 13 

phytoplankton dynamics.  14 

 15 

As an example of the potentiality of such comparison, spatial distribution of Kd at 490 16 

nm in the first optical depth estimated from the BGC-Argo floats and from a model of the 17 

Mediterranean Sea equipped with a multispectral light module (Lazzari et al., 2020) 18 

(Appendix A.2) are shown in Fig. 7.  The BGC-Argo estimated Kd at 490 nm exhibits a basin-19 

scale pattern, with high values in the North-Western Mediterranean Sea and lower values in 20 

the Eastern Mediterranean Sea, consistent with the spatial distribution of surface Chla in the 21 

Mediterranean Sea (Bosc et al., 2004).  The model is able to reproduce the large-scale pattern 22 

of Kd at 490 nm, but it tends to underestimate Kd at 490 nm in the North-Western 23 

Mediterranean Sea; area where the RMSD is also the highest. The annual cycle of 24 

phytoplankton being largely influenced by a spring bloom in this region (Bosc et al., 2004; 25 

D’Ortenzio et al., 2014), we can speculate that the underestimation of Kd at 490 nm highlights 26 

a possible misrepresentation of the spring bloom in the model that yields to lower 27 

phytoplankton and Chla concentrations. 28 

 29 

7. Conclusion 30 

 31 

Biogeochemical ocean models are powerful tools to monitor changes in marine 32 

ecosystems and ecosystem health due to human activities, make climate projections and help 33 
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developing better strategies for mitigation. However, these models are subject to flaws and 1 

require rigorous validation processes to test their predictive skills. The model’s evaluations 2 

have long been damped by the lack of in situ observations, which has certainly slowed the 3 

development and the improvement of BGC models. The amount of observations collected by 4 

the BGC-Argo program is now greater than any other in situ data set (Claustre et al., 2020) 5 

and thus offers new opportunities for the validation of BGC models. 6 

 7 

In this study, we use the global data set of BGC-Argo observations to validate a state-of-8 

the-art BGC model simulation. Our aim was to demonstrate the invaluable opportunities 9 

offered by the BGC-Argo observations for evaluating global BGC model solutions. To ease 10 

the comparison between model and observations at global scale, we proposed 18 key metrics 11 

of ocean health and biogeochemical functioning. These metrics are either a depth-averaged 12 

quantity or correspond to the depth of a particular feature. We did not propose BGC-Argo-13 

based phenology metrics (Gittings et al., 2019), because the numbers of observation per 14 

month and per bin is still presently too low, to derive such robust metrics. We suggested 4 15 

diagnostic plots, which we believe are particularly suitable for displaying the metrics in 16 

support of identification of model-data difference and subsequent analysis of model 17 

representativity. We also discuss the promising avenue of BGC-Argo-based metrics relative 18 

to optical properties in the ocean for the validation of the new generation of BGC model 19 

equipped with a multispectral light module.  20 

 21 

We assumed that the differences between the observed and predicted BGC values were 22 

only attributable to the BGC model, PISCES. However, BGC models are coupled to ocean 23 

general circulation systems and the quality of the BGC predictions strongly depends on the 24 

accuracy of the physical properties that control the BGC state variables. In our case, the 25 

dynamical component has been extensively validated (Lellouche et al., 2018, 2013), and 26 

correctly represented variables that are constrained by observations (e. g., temperature and 27 

salinity). However, unconstrained variables in the physical system (e.g., vertical velocities) 28 

can generate unrealistic biases in various biogeochemical variables, especially in the 29 

Equatorial Belt area (Fennel et al., 2019; Park et al., 2018).  30 

 31 

 In addition, BGC-Argo floats are not flawless (Roesler et al., 2017), and in some cases, 32 

the discrepancies observed between the floats and model data do not result from the model 33 

estimations alone. This is particularly true for the BGC-Argo estimates of Chla in the mixed 34 
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layer that can be significantly biased due to non-photochemical chlorophyll fluorescence 1 

quenching (Xing et al., 2012) or regional variations in fluorescence of Chla vs Chla  2 

relationship (Roesler et al., 2017).  3 

 4 

We have restricted the number of diagnostic plots as well the statistical indices to the ones 5 

that are most commonly used in the modelling community. More complex statistical 6 

indicators (Stow et al., 2009) can be computed with the proposed metrics, depending on the 7 

context and the skill level necessary. Likewise, similar or more elaborate diagrams can also be 8 

used, such as Target diagram (Salon et al., 2019), zonal mean diagrams (Doney et al., 2009), 9 

or interannual time series (Doney et al., 2009).  10 

 11 

 The comparison between BGC-Argo data and model simulations is not only beneficial 12 

for the modelling community but also for the BGC-Argo community. Observation System 13 

Simulation Experiments (OSSEs) are generally used to inform, a priori, observing network 14 

design (Ford, 2020). Here, we showed that model-observations comparison is, also 15 

informative, a posteriori, with respect to the network design, as it highlights sensitive areas 16 

where BGC-Argo observations are critical and where sustained BGC-Argo observations are 17 

required to better constrain the model. It corresponds to the regions where the model 18 

uncertainty (see RMSD spatial maps in Figs. A19-A36) is the highest, i.e., the Equatorial 19 

band with respect to the carbonate system variables, the Southern Ocean with respect to the 20 

nutrients and the DCM variables and the western boundary currents and OMZs with respect to 21 

oxygen.  22 

  23 
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Tables 1 

 2 

Table 1. Data mode and QC flags of the BGC-Argo observations used in this study. 3 

 4 

Parameter Data mode  Date mode of 

associated pressure, 

temperature and 

salinity profiles 

QC flags 

Chla Adjusted and Delayed Real time, Adjusted 

and Delayed 

• Real time: All flags except 

4  

• Adjusted or Delayed: All 

flags except 3 and 4 

 

O2 Delayed Delayed • All flags except 3 and 4 

 

NO3 Adjusted and Delayed Real time, Adjusted 

and Delayed 

• Real time: All flags except 

4  

• Adjusted or Delayed: All 

flags except 3 and 4 

 

pH Adjusted and Delayed Real time, Adjusted 

and Delayed 

• Real time: All flags except 

4  

• Adjusted or Delayed: All 

flags except 3 and 4 

 

bbp Real time and Delayed  Real time, Adjusted 

and Delayed 

• Real time: All flags except 

4  

• Adjusted or Delayed 

(P,T,S): All flags except 3 

and 4 

• Adjusted or Delayed (bbp): 

All flags 4 

  5 
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 1 

Table 2. BGC-Argo metrics used to assess the model simulation 2 

 3 

Process Metric Definition units 

Air-sea CO2 flux spCO2  Depth-averaged pCO2 in 

the mixed layer 

µatm 

Oceanic pH spH Depth-averaged pH in 

the mixed layer 

total 

 pH200-400 Depth-averaged pH in 

the 200-400 m layer 

total 

Biological carbon 

pump 

sChl Depth-averaged Chla in 

the mixed layer 

mg m-3 

 sNO3  Depth-averaged NO3 in 

the mixed layer 

µmol kg-1 

 sPO4  Depth-averaged PO4 in 

the mixed layer 

µmol kg-1 

 sSi Depth-averaged Si in the 

mixed layer 

µmol kg-1 

 sDIC Depth-averaged DIC in 

the mixed layer 

µmol kg-1 

 sPOC Depth-averaged POC in 

the mixed layer 

mg m-3 

 POCmeso Depth-averaged POC in 

the mesopelagic layer 

mg m-3 

 ChlDCM Magnitude of DCM  mg m-3 

 HDCM Depth of DCM m 

 Hnit Depth of nitracline m 

Oxygen levels and 

OMZs 

sO2 Depth-averaged O2 in 

the lixed layer 

µmol kg-1 

 O2 300 O2 at 300 m µmol kg-1 

 O2 1000 O2 at 1000 m µmol kg-1 

 O2min value of O2 minimum µmol kg-1 

 HO2min Depth of O2 minimum m 

 4 

  5 

https://doi.org/10.5194/bg-2021-2
Preprint. Discussion started: 20 January 2021
c© Author(s) 2021. CC BY 4.0 License.



 19 

 1 

Figures 2 

 3 

 4 

 5 

Figure 1. Spatial and temporal coverage of quality-controlled BGC-Argo pH, NO3
-, Chla, O2, 6 

and bbp profiles. (a) Number of quality-controlled profiles for the entire period per 4°x4° bin. 7 

(b) Number of quality-controlled profiles per year.  8 
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 1 
 2 

Figure 2.  Comparison of BGC-Argo floats’ observations and model values for all metrics 3 

using Taylor diagram. The symbols correspond to the metrics and the colours represent the 4 

BGC processes with which they are associated. Note that the metrics calculated from the float 5 

pH and NO3 used both the direct observations of the floats and as well as the estimations from 6 

CANYON-B. The metrics related to Chla and POC, namely sChl, ChlDCM, sPOC, POCmeso 7 

were log10-transformed because they cover several orders of magnitude and they are 8 

lognormally distributed. Observed DCMs and nitracline deeper than 250 m are not included. 9 

 10 

 11 

https://doi.org/10.5194/bg-2021-2
Preprint. Discussion started: 20 January 2021
c© Author(s) 2021. CC BY 4.0 License.



 21 

 1 
Figure 3. Density plots of BGC-Argo floats’ observations and model O2min . Each axis is 2 

divided in 100 bins and the colour represents the number of points in each bin.  The dashed 3 

line represents the 1:1 line. The plain line represents the linear regression line between the 4 

two data sets. The coefficients of the linear regression line (gain and offset) as well the 5 

coefficient of determination (R2) are indicated on the top of the plot.  6 
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 1 
Figure 4. Spatial distribution maps of BGC-Argo floats’ observations of sChl (a), model sChl 2 

(b), the BIAS (c) and the RMSD (d). The data are averaged in 4°x4° bins. Bins containing 3 

less than 4 points are excluded. The BIAS and RMSD are computed on the log10-transformed 4 

data to account that sChl covers several orders of magnitude and  is lognormally distributed 5 

(Campbell, 1995). 6 

 7 

 8 
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 1 
Figure 5. (a) Float trajectory of the BGC-Argo float (WMO number: 5904479).  2014-2015 2 

time series of (b), mixed layer depth, (c), sChl, (d), sNO3, (c), sSi , (f), sPO4 ,  derived from 3 

the BGC-Argo floats observations (blue) and from the model simulation (yellow). The float 4 

sChl and sNO3 are calculated from the direct observations of the floats, whereas the float sSi  5 

and sPO4 result from CANYON-B predictions. 6 

  7 
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Figure 6. Same as Fig. 5 but for (a), sDIC, (b), sPOC, (c), POCmeso. The float sPOC and 1 

POCmeso are calculated from the direct observations of the floats, whereas the float sDIC 2 

result from CANYON-B predictions. 3 

  4 
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 1 

 2 

Figure. 7 . Spatial distribution maps of BGC-Argo floats’ observations Kd at 490 nm (a), 3 

modelled Kd at 490 nm from the Mediterranean BGC model (b), the BIAS (c) and the RMSD 4 

(d). The data are averaged in 2°x2° bins. Bins containing less than 4 points are excluded.  5 

 6 

 7 

  8 
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Appendix 1 

 2 

A.1  The CMEMS global hydrodynamic-biogeochemical model  3 

 4 

The model used in this study features the offline coupled NEMO–PISCES model, with 5 

a 1/4° horizontal resolution 50 vertical levels (with 22 levels in the upper 100 m, the vertical 6 

resolution is 1m near the surface and decreases to 450m resolution near the bottom) and daily 7 

temporal resolution, covering the period from 2009 to 2017. 8 

 9 

The biogeochemical model PISCES v2 (Aumont et al., 2015) is a model of 10 

intermediate complexity designed for global ocean applications, and is part of NEMO 11 

modelling platform.  It features 24 prognostic variables and includes five nutrients that limit 12 

phytoplankton growth (nitrate, ammonium, phosphate, silicate and iron) and four living 13 

compartments: two phytoplankton size classes (nanophytoplankton and diatoms, resp. small 14 

and large) and two zooplankton size classes (microzooplankton and mesozooplankton, resp. 15 

small and large); the bacterial pool is not explicitly modelled. PISCES distinguishes three 16 

non-living detrital pools for organic carbon, particles of calcium carbonate and biogenic 17 

silicate. Additionally, the model simulates the carbonate system and dissolved oxygen. 18 

PISCES has been successfully used in a variety of biogeochemical studies, both at regional 19 

and global scale (Bopp et al., 2005; Gehlen et al., 2006, 2007; Gutknecht et al., 2019; Lefèvre 20 

et al., 2019; Schneider et al., 2008; Séférian et al., 2013; Steinacher et al., 2010; Tagliabue et 21 

al., 2010).  22 

 23 

The dynamical component is the latest Mercator Ocean global 1/12° high-resolution 24 

ocean model system, extensively described and validated in Lellouche et al. (2018, 2013). 25 

This system provides daily and 1/4°-coarsened fields of horizontal and vertical current 26 

velocities, vertical eddy diffusivity, mixed layer depth, sea ice fraction, potential temperature, 27 

salinity, sea surface height, surface wind speed, freshwater fluxes and net surface solar 28 

shortwave irradiance that drive the transport of biogeochemical tracers. This system also 29 

features a reduced-order Kalman filter based on the Singular Evolutive Extended Kalman 30 

filter (SEEK) formulation introduced by Pham et al. (1998), that assimilates, on a 7-day 31 

assimilation cycle, along-track altimeter data, satellite Sea Surface Temperature and Sea-Ice 32 
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Concentration from OSTIA, and in situ temperature and salinity vertical profiles from the 1 

CORA 4.2 in situ database. 2 

 3 

In addition, the biogeochemical component of the coupled system also embeds a 4 

reduced order Kalman filter (similar to the above mentioned) that operationally assimilates 5 

daily L4 remotely sensed surface chlorophyll 6 

(https://resources.marine.copernicus.eu/documents/QUID/CMEMS-GLO-QUID-001-7 

028.pdf). In parallel, a climatological-damping is applied to nitrate, phosphate, oxygen, 8 

silicate - with World Ocean Atlas 2013 - to dissolved inorganic carbon and alkalinity – with 9 

GLODAPv2 climatology (Key et al., 2015) - and to dissolved organic carbon and iron - with a 10 

4000-year PISCES climatological run. This relaxation is set to mitigate the impact of the 11 

physical data assimilation in the offline coupled hydrodynamic-biogeochemical system, 12 

leading significant rises of nutrients in the Equatorial Belt area, and resulting in an unrealistic 13 

drift of various biogeochemical variables e.g. chlorophyll, nitrate, phosphate (Fennel et al., 14 

2019; Park et al., 2018). The time-scale associated with this climatological damping is set to 1 15 

year and allows a smooth constraint that has been shown to be efficient to reduce the model 16 

drift.  17 

 18 

A.2  The Mediterranean Sea biogeochemical model MedBFM 19 

 20 

The Mediterranean Sea biogeochemical model MedBFM, is based on the system 21 

described in Teruzzi et al. (2014) and Salon et al. (2019).  22 

 23 

The physical forcing fields needed to compute the transport include the 3-d horizontal 24 

and vertical current velocities, vertical eddy diffusivity, potential temperature, and salinity and 25 

2-d data surface data for wind stress. These forcing datasets are simulated by the Mediterranean 26 

Sea Monitoring and Forecasting Centre (MED–MFC) in the Copernicus Marine Environmental 27 

Monitoring Service (CMEMS, http://marine.copernicus.eu). The biogeochemical model is then 28 

offline forced adopting the output computed by the CMEMS MED-MFC. In the present 29 

application, we switched off the biogeochemical assimilation scheme that is currently used in 30 

the operational MED-MFC system. 31 

 32 
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The light propagation is resolved coupling an atmospheric multispectral radiative 1 

transfer model (Lazzari et al., 2020) with an in-water radiative model (Dutkiewicz et al., 2015) 2 

featuring bands at 25 nm resolution in the UV and visible wavelengths. 3 

 4 

The horizontal resolution is approximately 6 km and there are 72 vertical levels with 3 5 

m resolution at surface coarsening at 300 m for the deeper layers. The biogeochemical model 6 

here adopted (Biogeochemical Flux Model -- BFM -- ; (Vichi et al., 2015)) has been already 7 

applied to simulate primary producers biogeochemistry (Lazzari et al., 2012), alkalinity spatial 8 

and temporal variability (Cossarini et al., 2015), and CO2 fluxes (Canu et al., 2015) for the 9 

Mediterranean Sea, and has been corroborated using in situ data for the operational purposes 10 

within CMEMS (Salon et al., 2019). The BFM model has been expanded in the present 11 

configuration adding the dynamics of coloured dissolved organic carbon (CDOM) by assuming 12 

a constant CDOM:DOC production ratio (i.e. 2%, as in (Dutkiewicz et al., 2015)).  The 13 

absorption of CDOM, is described using reference absorption at 450 nm of 0.015 m2/mgC 14 

(Dutkiewicz et al., 2015) and an exponential slope of 0.017 nm-1 (Babin et al., 2003; Organelli 15 

et al., 2014). 16 

 17 

A.3 BGC-Argo Kd estimates  18 

 19 

The data used to compute the Kd metrics are quality checked according to Organelli et 20 

al. (2017). Moreover, for the Kd logarithmic interpolation, the following selection rules were 21 

applied: the profile must have at least 5 BGC Argo float sampling in the first optical depth, the 22 

gap between the two shallower acquisitions must be less than 10 meters, and there must be at 23 

least one measurement deeper than 15 meters.  24 

 25 

A.4 Figures 26 
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 1 

Figure A1. Same as Figure 3 but for spCO2.  2 

 3 

 4 

Figure A2. Same as Figure 3 but for spH. Note that spH is calculated from both the direct 5 

observations of the floats and as well as the estimations from CANYON-B. 6 

 7 
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 1 

 2 

Figure A3. Same as Figure 3 but for pH200-400. Note that pH200-400 is calculated from both the 3 

direct observations of the floats and as well as the estimations from CANYON-B. 4 

 5 

 6 

 7 
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Figure A4. Same as Figure 3 but for sChl. Note that the least squares regression is computed 1 

on the log10-transformed data to account that sChl covers several orders of magnitude and it is 2 

lognormally distributed (Campbell, 1995). Data lower than 0.01 mg m-3 are not included. 3 

 4 

 5 

Figure A5. Same as Figure 3 but for sNO3. Note that sNO3 is calculated from both the direct 6 

observations of the floats and as well as the estimations from CANYON-B. 7 

 8 

 9 
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 1 

Figure A6. Same as Figure 3 but for sPO4.  2 

 3 

 4 

Figure A7. Same as Figure 3 but for sSi.  5 

 6 
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 1 

Figure A8. Same as Figure 3 but for sDIC.  2 

 3 

 4 

 5 

Figure A9. Same as Figure 3 but for sPOC.  Note that the least squares regression is 6 

computed on the log10-transformed data to account that sPOC covers several orders of 7 
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magnitude and it is lognormally distributed (Campbell, 1995). Data lower than 0.01 mg m-3 1 

are not included. 2 

 3 

 4 

Figure A10. Same as Figure 3 but for POCmeso. Note that the least squares regression is 5 

computed on the log10-transformed data to account that POCmeso covers several orders of 6 

magnitude and it is lognormally distributed (Campbell, 1995). Data lower than 0.01 mg m-3 7 

are not included. 8 

 9 

 10 

 11 
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 1 

Figure A11. Same as Figure 3 but for ChlDCM. Note that the least squares regression is 2 

computed on the log10-transformed data to account that ChlDCM covers several orders of 3 

magnitude and it is lognormally distributed (Campbell, 1995). Data lower than 0.01 mg m-3 4 

are not included. Observed DCMs deeper than 250 m are not included. 5 

 6 

 7 

 8 
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 1 

Figure A12. Same as Figure 3 but for HDCM. Observed DCMs deeper than 250 m are not 2 

included. 3 

 4 

Figure A13. Same as Figure 3 but for Hnit. Observed nitracline deeper than 250 m are not 5 

included. 6 

 7 
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 1 

 2 

Figure A14. Same as Figure 3 but for sO2.  3 

 4 

 5 

Figure A15. Same as Figure 3 but for O2 300.  6 

 7 
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 1 

Figure A16. Same as Figure 3 but for O2 1000.  2 

 3 

 4 

Figure A17. Same as Figure 3..  5 

 6 
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 1 

Figure A18. Same as Figure 3 but for HO2min. 2 
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 2 
Figure A19. Same as Figure 4 but for spCO2.  3 
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 1 

Figure A20. Same as Figure 4 but for spH. Note that spH is calculated from both the direct 2 

observations of the floats and as well as the estimations from CANYON-B. 3 

 4 

 5 

https://doi.org/10.5194/bg-2021-2
Preprint. Discussion started: 20 January 2021
c© Author(s) 2021. CC BY 4.0 License.



 43 

Figure A21. Same as Figure 4 but for pH200-400. Note that pH200-400 is calculated from both the 1 

direct observations of the floats and as well as the estimations from CANYON-B. 2 

 3 

 4 

 5 

Figure A22. Same as Figure 4.  6 

 7 

 8 
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 1 
Figure A23. Same as Figure 4 but for sNO3. Note that sNO3 is calculated from both the direct 2 

observations of the floats and as well as the estimations from CANYON-B. 3 
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 1 
Figure A24. Same as Figure 4 but for sPO4.  2 
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 1 
Figure A25. Same as Figure 4 but for sSi.  2 
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 1 
Figure A26. Same as Figure 4 but for sDIC.  2 
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 1 
Figure A27. Same as Figure 4 but for sPOC. The BIAS and RMSD are computed on the 2 

log10-transformed data to account that sPOC covers several orders of magnitude and it is 3 

lognormally distributed (Campbell, 1995) 4 
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 1 
Figure A28. Same as Figure 4 but for POCmeso. The BIAS and RMSD are computed on the 2 

log10-transformed data to account that POCmeso covers several orders of magnitude and it is 3 

lognormally distributed (Campbell, 1995) 4 
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 1 
Figure A29. Same as Figure 4 but for ChlDCM. Note that the BIAS and RMSD are computed 2 

on the log10-transformed data to account that ChlDCM covers several orders of magnitude and 3 

it is lognormally distributed (Campbell, 1995).  4 
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 1 

Figure A30. Same as Figure 4 but for HDCM. Observed DCMs deeper than 250 m are not 2 

included. 3 
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Figure A31. Same as Figure 4 but for Hnit. Observed nitracline deeper than 250 m are not 2 

included. 3 
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 1 

Figure A32. Same as Figure 4 but for sO2.  2 
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Figure A33. Same as Figure 4 but for O2 300.  2 
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 1 
Figure A34. Same as Figure 4 but for O2 1000.  2 
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 1 
Figure A35. Same as Figure 4 but for O2min.  2 

 3 

 4 

Figure A36. Same as Figure 4 but for HO2min. 5 
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Data availability. The BGC model data can be downloaded from the Copernicus Marine 1 

Environmental Monitoring Service 2 

(https://resources.marine.copernicus.eu/?option=com_csw&view=details&product_id=GLOB3 

AL_ANALYSIS_FORECAST_BIO_001_028). The BGC-Argo data were downloaded from 4 

the Argo Global Data Assembly Centre in France (ftp://ftp.ifremer.fr/argo/).   5 
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