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Unprecedented evolutionary experiments have resulted from 
the spread of humans on our planet. Initially considered 
anecdotal and rare1, human-driven evolutionary change is 

now reported at increasing rates2,3. These processes leave footprints 
in the genomes of many species that are cultivated4,5, domesticated6,7 
or transported across different biogeographic regions (that is, bio-
logical introductions)8,9. In-depth examination and understanding 
of these changes is an important research area, because of their con-
siderable ecological, economic and health implications10.

Domestication is a form of co-evolution between a species (that 
is, human) and another species it controls (in terms of growth and 
reproduction) for its own benefit. This process has shaped the evo-
lution of hundreds of plants and animals11,12. As far back as 12,000 
years ago, and the transition in human behaviour from food gather-
ing to cultivation13, agricultural societies depended on the domesti-
cation and diversification of wild species, notably through selective 
breeding, hybridization or inbreeding14,15. As a result of the appli-
cation of these methods, there was selection for so-called ‘domes-
tication phenotypes’. These traits can arise through conscious 
selection (intentional choice made by humans of preferred phenotypes  
in cultivated species for use and propagation) or unintended selec-
tion (natural selection in crop species as a result of human culti-
vation practices in agro-ecological environments), challenging the 
clear discrimination of traits directly selected during domestication 
and other traits.

In a globalized environment, where borders are crossed legally 
and illegally every day by hundreds of thousands of humans and 
goods, plant and animal species are dispersed knowingly or unwit-
tingly around the world. Since the end of the twentieth century, 
nonindigenous species have become a major concern in our soci-
eties16,17. These human-driven migrations bring into contact popu-
lations or species that have evolved in isolation in their respective 

native range, exacerbating evolutionary changes, notably through 
admixture and hybridization18–20, as well as by selective pressure on 
the introduced species in its new range21. Biological introductions 
thus represent a fascinating opportunity to understand major evo-
lutionary processes, such as genotype by environment interactions22 
or speciation dynamics23.

Only a handful of case studies offer the opportunity to simulta-
neously address human-driven evolutionary change due to domes-
tication and introduction. The Pacific kelp Undaria pinnatifida 
(Harvey) Suringar (Laminariales, Phaeophyceae) provides such an 
opportunity. In its native range of Northeast Asia, this brown edible 
seaweed was exploited for centuries before being cultivated, and its 
farming represents 6.9% of worldwide seaweed production24. The 
transition from the harvesting of natural populations to the culti-
vation on ‘long lines’ happened during the 1950s25 with the devel-
opment of seaweed cultivation techniques and their application 
to U. pinnatifida in Japan, then Korea and finally China26. During 
this period, farmers selected desired phenotypes and only recently 
were breeding techniques used to develop cultivars26–28. Parallel to 
cultivation, U. pinnatifida has been intentionally and unintention-
ally transported by humans across the planet. Since its first report 
outside its native range (that is, along the Mediterranean coast of 
France in the 1970s29), U. pinnatifida has become established along 
the coastlines of 14 countries across 4 continents30–32. This kelp pres-
ents the rare characteristic of being independently cultivated in its 
native range and introduced in four continents outside its native 
range. This situation contrasts with other well-studied cases such 
as Oryza33 and Sorghum34 in which domestication preceded escape 
to the wild. Recent studies have demonstrated the importance of 
genome-wide analyses, based on whole-genome sequencing data, 
to understand human-driven evolutionary change, notably with 
respect to domestication4–7, with fewer studies examining invasive 
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species8,9, and none addressing both aspects at the same time. Here 
we report the genome sequence of a Korean cultivar of U. pinnati-
fida, sequenced independently from the genome sequence of the 
Chinese gametophyte35. On the basis of whole‐genome sequencing 
of multiple individuals sampled in native, cultivated and introduced 
populations, we compared genome architecture across these differ-
ent categories. We argue that the differences observed among them 
probably result from the combined influence of demography and 
selection.

Results and discussion
The nuclear genome of U. pinnatifida Kr2015. We extracted 
genomic DNA from a cultivated U. pinnatifida sporophyte har-
vested in November 2015 in Wando, Korea and generated a nuclear 
genome assembly using PacBio long reads with ~100× sequence 
coverage (Supplementary Note and Supplementary Table 1). The 
assembled contigs were polished with ~32× coverage of Illumina 
paired-end reads. The resulting assembly consisted of 3,876 con-
tigs with a total size of 634 megabases (Mb) with N50 (mini-
mum contig length to cover 50 percent of the assembly) of 406 kb 
(Supplementary Figs. 1 and 2 and Supplementary Table 2). A genetic 
map36 was used to anchor and order 72.7% of the assembly (461 Mb; 
1,325 contigs) into 30 linkage groups corresponding to the number 
of chromosomes in U. pinnatifida37 (Fig. 1, Supplementary Note, 
Supplementary Fig. 1 and Supplementary Tables 3–5). The genomes 
of U. pinnatifida from China35 and Kr2015 were largely comparable 
in length, composition and organization (Supplementary Note). 
Synteny analysis revealed discrepancies between the two assem-
blies that could represent recombination events or artefacts result-
ing from how these data were assembled (Supplementary Note and 
Supplementary Fig. 3). We also compared the Kr2015 genome to 
other brown algal genomes. The Kr2015 genome was annotated 
using a combination of transcript- and homology-based methods 
(Supplementary Note, Supplementary Fig. 4 and Supplementary 
Table 1). The annotation pipeline predicted 20,716 complete 
protein-coding genes, of which 78.25% were supported by tran-
scriptome data (Supplementary Note).

The genome of U. pinnatifida Kr2015 is the largest reported 
thus far for brown algae. It is comprised of 52.1% (330.3 Mb) 
repeated elements, of which at least 19.14% are transposable ele-
ments, representing 121 Mb of the genome (Supplementary Note 
and Supplementary Table 6). Genomes of Laminariales are larger 
than those of Ectocarpales (for example, Ectocarpus siliculosus; 
see Supplementary Table 7). This genome expansion is driven by 
the differential rate of repeated element insertion (Supplementary 
Note and Supplementary Fig. 5). Insertion of repeated elements 
was homogeneous along the pseudochromosomes and resulted in a 
significantly (Wilcoxon rank sum test P value < 2.2 × 10−16) reduced 
gene density in Kr2015 when compared to E. siliculosus (Fig. 1). The 
traditional repeat-rich heterochromatin and gene-rich euchromatin 
could not be clearly differentiated in Kr2015 (refs. 38–40). Therefore, 
organization of brown algal chromosomes appears to be similar to 
that in fungi41, but different from that in plants42. This differential 
insertion of repeated elements does not appear to have disturbed 
the gene order: synteny is largely conserved between U. pinnatifida 
Kr2015 and E. siliculosus (Fig. 1). Despite the deep split of these two 
lineages 128.9–220.2 million years ago43,44, large chromosomal rear-
rangements are rare. Overall, 16 U. pinnatifida Kr2015 pseudochro-
mosomes share synteny with one chromosome from E. siliculosus 
(Fig. 1 and Supplementary Note). The chromosome number dis-
crepancy between E. siliculosus (28 chromosomes) and U. pinnati-
fida (30 chromosomes) may be explained by 4 splitting and fusion 
events involving 5 and 7 chromosomes, respectively (Fig. 1).

The gene inventory of U. pinnatifida is largely shared with other 
brown algae; however, the Laminariales common ancestor contains 
expanded gene families that encode nuclear-targeted proteins with 

transcription regulation functions (Supplementary Note). This sug-
gests that following the split with Ectocarpales, the Laminariales 
may have evolved a more sophisticated control of gene expression 
(Supplementary Note).

Genome polymorphism across individuals. We resequenced 
the genomes of 41 individuals of U. pinnatifida from 9 popula-
tions in 3 categories: 2 natural kelp beds; 2 cultivated populations 
from the native range; and 5 introduced populations from France 
and New Zealand (Fig. 2a). We generated a total of 853.77 Gb of 
cleaned–trimmed paired-end sequence from the 41 individuals 
(average 20.69 Gb per individual). These reads were mapped to the 
reference genome assembly of U. pinnatifida. We obtained an aver-
age sequencing depth of 30.67× and average genome coverage of 
94.77% (Supplementary Table 8). Using GATK45 to call variants, 
we identified 6,123,124 high-quality single-nucleotide polymor-
phisms (SNPs) and 1,130,417 high-quality insertions or deletions 
(indels) shared across the 9 populations (Supplementary Note and 
Supplementary Fig. 6). A large proportion of the variants were 
found in intergenic regions (53.81%) and only 3.07% were present 
in exons (Supplementary Fig. 7).

The nuclear variant data were used to explore genetic diver-
sity among U. pinnatifida individuals. Both principal component 
analysis (PCA) and phylogenetic reconstruction revealed a clear 
segregation of individuals according to their geographic locations 
(Fig. 2b,c). The admixture analysis performed with the R package 
LEA46 revealed consistent clusters for the number of groups (K) best 
explaining the genetic variance (K = 4 and 5; Extended Data Fig. 1, 
Supplementary Note and Supplementary Fig. 8). Only the CUL_
Kr_Wando2015_4 individual was inconsistent with geographic 
clustering because it grouped with the Tongyeong individuals in the 
PCA analysis and the phylogenetic tree (Fig. 2b,c). This could be 
the outcome of either introgression between natural and cultivated 
populations, or cryptic genetic diversity within the cultivated acces-
sion (not detected here because of the limited number of individu-
als studied). As it had the highest level of admixture with a large 
number of SNPs/indels shared with Tongyeong individuals (Fig. 2d 
and Extended Data Fig. 1), admixture analysis supports the intro-
gression hypothesis. This singular individual was excluded from 
subsequent analyses.

Time (albeit of short duration) appears to have little to no influ-
ence, because populations remain stable over time. For instance, the 
individuals sampled in 1987 and 2017 in the introduced population 
of Wellington (New Zealand) were indistinguishable in the three 
analyses (Fig. 2b–d and Extended Data Fig. 1). Similar observations 
based on double-digest restriction-site-associated DNA sequencing 
have been made over about 20 generations in populations intro-
duced in France47. We examined two introduction ranges, which had 
been previously reported to have distinct introduction histories48,49. 
Our data are in agreement with these reports: the 21 introduced 
individuals formed 2 distinct clusters, corresponding to France 
and New Zealand. The clustering of the Lyall Bay and Wellington 
Harbour populations was consistent with local spreading by human 
vectors (for example, leisure boating), as observed in France47.

Overall, population structure analysis shows that the study pop-
ulations do not present a cryptic substructure, confirms the tem-
poral genetic stability of U. pinnatifida48 and marks the French and 
New Zealand introductions as two independent examples of how 
human activity has impacted the U. pinnatifida genome.

Genomic landscape based on place of origin. To further explore 
the genome-wide impact of human activity, we characterized the 
genomic landscape in the different populations. Natural popula-
tions were characterized by high genetic diversity (mean π = 0.0044;  
Fig. 3a,b, Extended Data Fig. 1, Supplementary Fig. 9 and Supplemen
tary Table 9) and high recombination rates (linkage disequilibrium 
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(LD) half-maximum decay at 3.95 kb in natural; Fig. 3c) but rela-
tively high homozygosity (natural mean total runs of homozygosity 
(ROH) length = 80.9 Mb and average ROH length = 1.13 Mb; Fig. 3d  
and Supplementary Table 10). Compared to natural populations, 
cultivated and introduced populations display contrasting features 
regarding their genomic landscape, for population diversity, LD and 
ROH. We might have expected that both cultivation and introduc-
tion processes would lead to a reduction in diversity through demo-
graphic bottleneck/founder events, associated with the introduction 
or the selection of few individuals; however, we did not observe such 
a pattern. Indeed, introduced populations of U. pinnatifida behaved 
as expected with low genetic diversity (France mean π = 0.0015; 
New Zealand mean π = 0.0022; Fig. 3a,b, Extended Data Fig. 1, 
Supplementary Fig. 9 and Supplementary Table 9), low recombi-
nation rates (LD half-maximum decay at 10.47 kb in New Zealand 
and at 27.33 kb in France; Fig. 3c) and high levels of homozygos-
ity (France mean total ROH length = 338.5 Mb and average ROH 
length = 1.79 Mb; New Zealand mean total ROH length = 201.2 Mb 
and average ROH length = 1.08 Mb; Fig. 3d and Supplementary  
Table 10). In contrast, cultivated populations were characterized 
by high genetic diversity (cultivated mean π = 0.0040; Fig. 3a,b, 
Extended Data Fig. 1, Supplementary Fig. 9 and Supplementary 
Table 9), high recombination rates (LD half-maximum decay at 
3.14 kb in cultivated; Fig. 3c) and low homozygosity (cultivated mean 
total ROH length = 87.9.5 Mb and average ROH length = 0.96 Mb; 
Fig. 3d and Supplementary Table 10).

Influence of introduction history on the genomic landscape. When 
compared to those of populations from its native range, the char-
acteristics of the French and New Zealand U. pinnatifida popula-
tions probably reflect founder events, whereby a small number of 
individuals were introduced to the new habitat. Such founder events 
are uncommon in marine introduced species, when compared to 
their terrestrial counterparts20. However, we have evidence of such a 
founder effect that is known to reduce genetic diversity and the rate 
of LD decay, and to increase inbreeding (here, ROH), particularly in 
selfing species such as U. pinnatifida47.

However, additional comparisons between the French and New 
Zealand introduced populations revealed different patterns between 
the two regions. The two French populations display a lower genetic 
diversity (Fig. 3a,b) and a higher LD (Fig. 3b) than the New Zealand 
populations. The populations introduced to New Zealand waters 
display properties closer to those observed in the natural popula-
tion in Korea than in the populations introduced to France. These 
features are in agreement with the supposed introduction history 
and vectors in these two regions. On the basis of field and genetic 
studies47–51, it has been hypothesized that the introduction occurred 
as a result of aquaculture in France and shipping in New Zealand. 
In France, U. pinnatifida would have been first introduced in the 
Thau Lagoon (Thau population here) with Pacific oyster imports 
from Asia, and then transported to Brittany (that is, the Roscoff 
population). Two sequential founder events thus probably occurred, 
from the same source in the native range49. Conversely, repeated  
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introductions probably occurred with shipping in New Zealand, 
leading to a moderate decrease in genetic diversity when compared 
to the native range and the French populations, as found using 
mitochondrial haplotype analysis49. This scenario was further sup-
ported by individuals sampled in Wellington in 1987 at the time of 
the first report of this alga in New Zealand52. These seaweeds had a 
genetic diversity that was slightly higher than in the French popu-
lation (Supplementary Fig. 10a and Supplementary Table 9), and 
the length of the ROH was shorter than in the French population 
(Supplementary Fig. 10b). Finally, the decrease of ROH length in 30 
years (about 60 generations) suggests that repetitive introductions 
provided the potential for admixture in New Zealand.

Effect of cultivation on the genomic landscape. The cultivation pro-
cess, through selective breeding, is expected to create a genetic 
bottleneck, resulting in cultivars that have low diversity and a sup-
pressed recombination rate. The cultivated populations of U. pin-
natifida in Korea, however, deviated from these predictions, with 
genetic diversity (mean π = 0.0040; Supplementary Table 9) and LD 
disequilibrium decay (LD half-maximum decay at 3.14 kb; Fig. 3c) 
comparable to those of natural populations (Fig. 3a–c). Interestingly, 
in France, cultivated populations of U. pinnatifida have a genetic 

diversity that is lower than that of natural populations (for exam-
ple, twofold to threefold lower47) in accordance with expectations 
of the cultivation process (with some exceptions53). This observed 
discrepancy might be explained by the difference in the scale of the 
cultivation in these two countries. In France, U. pinnatifida cultiva-
tion remains limited to a few farms, whereas in Korea, its culture 
averages 0.5 million wet weight tonnes annually24–26. Owing to this 
large scale, the fertilization of culture ropes is carried out in large 
indoor pools in which multiple sporangia of individuals with valued 
phenotypes are placed together (Extended Data Fig. 2). Frequently, 
individuals from different natural populations are mixed with cul-
tivated individuals from previous years. In this artificial environ-
ment, the mixing of genetically distinct zoospores is favoured, 
resulting in the observed high diversity and low LD; both of which 
are comparable to those of native natural populations. Furthermore, 
this cultivation methodology prevents the naturally high selfing rate 
of natural U. pinnatifida populations47. This selfing rate probably 
results from the low motility and short life span of the zoospores 
of this species54,55, traits that are mitigated by the large fertilization 
pool present in the water circulation system. This results in culti-
vated individuals having the highest level of heterozygosity and the 
lowest coverage of ROH in our study, even lower than in natural 
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populations and a green background highlights New Zealand populations. d, Admixture analysis showing the membership (ancestry proportion) to five 
identified clusters (K = 5) that best explained the overall genetic variance of the dataset.
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populations. Furthermore, these low values are consistent across all 
cultivated individuals (Fig. 3d and Extended Data Fig. 3), support-
ing the idea that they are a consequence of farming practices, the 
breeding method in particular.

This unexpected genomic landscape resulting from large-scale 
cultivation of U. pinnatifida could be of great interest for conser-
vation biologists. U. pinnatifida populations have been declining 

in its native range56, as have kelp forests globally57. It is therefore 
clear that conservation efforts are needed to protect these valuable 
marine species. In this regard, our analysis suggests that if kelp cul-
tivation is designed to maintain high genetic variation, then farmed 
individuals could act as reservoirs of evolutionary potential. U. pin-
natifida provides a model for such an approach. Such genetic rescue 
approaches have previously been used in allogamous mammals58,59.
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Catalogue of regions under putative selection. The distinct genetic 
structures of U. pinnatifida populations (Fig. 2) could be explained 
by positive selection on many genomic regions. However, the history 
of these populations (that is, bottlenecks and reduced population 

effective sizes (that is, neutral evolutionary processes60)) could also 
produce patterns of genetic diversity that resemble selective sweeps. 
Furthermore, the putative functions of loci implicated in putative 
selective sweeps can be overinterpreted61, and in the absence of 
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other evidence (for example, expression level and phenotype), they 
should be considered with caution. We identified putative selec-
tion signals associated with cultivated or introduced populations of  
U. pinnatifida by using a decorrelated composite of multiple signals 
(DCMS)62 method on three different statistics calculated in 50-kb 
windows along the genome (Fig. 4 and Supplementary Note).

A comparison of natural and cultivated individuals from 
the native range revealed that the 508 genes encoded in the 224 
genomic windows identified to be under selection (DCMS score 
P value < 0.025) were enriched in several biological processes such 
as glycolipid biosynthesis and cytokinetic process (Supplementary 
Note and Supplementary Tables 11 and 12). Intentional selection for 
increased yield in U. pinnatifida culture could explain this enrich-
ment in genes related to carbohydrate biosynthesis. These genes 
have functions in the alginate, mannitol and sulfate fucan pathways 
(Supplementary Table 11). However, in total, these pathways con-
tain >150 genes, greatly exceeding the number of genes under puta-
tive selection (8 in total). Genomic analysis of Saccharina japonica 
also identified genes involved in carbohydrate metabolism (for 
example, fructose-1,6-bisphosphate aldolase) in genomic regions 
under putative selection63, but interestingly, different pathways were 
recovered in the two species. More generally, the biological pro-
cess selected during cultivation in the two species differed greatly 
(Supplementary Note). This could indicate that the traits of interest 
selected by the farmers differ between the two species or that the 
cultivation processes are at different levels of completion.

The important morphological differences between natural and 
cultivated individuals suggest that developmental processes have 
diverged in these two groups (Extended Data Fig. 4). However, 
gene families that might play a role in development, such as the 
Cupin-like, C2H2 zinc-finger or imm upregulated genes, were 
absent from the regions under putative selection despite the large 
number of copies encoded in the genome of U. pinnatifida (19, 34 
and 10, respectively). Similarly, with the exception of one copy, 
peptidase s8 and s53, which were proposed as blade length and 
width quantitative trait loci in S. japonica64, were not detected by 
the DCMS analysis (Supplementary Table 11). The high phenotypic 
plasticity observed in brown algae65,66, and in U. pinnatifida in par-
ticular67, could help explain this absence and support a polygenic 
basis for the phenotypic differences, perhaps underpinned by dif-
ferential regulation and post-transcriptional modification. In this 
context, the enrichment of a variety of genes having regulatory and 
kinase activities could be linked to selection of regulatory networks 
underlying development (Supplementary Table 11). Exploratory 
transcriptome analysis of genes within regions under positive selec-
tion revealed that they could potentially have different expression 
levels when compared to genes of similar functions encoded else-
where in the genome (Supplementary Note, Supplementary Fig. 11  
and Supplementary Table 12). However, these are preliminary 
results (Supplementary Note) and a more comprehensive transcrip-
tomic analysis is needed to better understand the effect of positive 
selection on gene expression in the cultivated U. pinnatifida.

In contrast to the cultivated versus natural population com-
parisons, the analysis across 30–60 generations (about 1–2 genera-
tions per year55) in Wellington Harbour between 1987 and 2017 
did not reveal the enrichment of a particular biological function 
(Supplementary Note and Supplementary Tables 13 and 14). The 
high variance in allelic frequency resulting from the founding effect 
during the initial introduction and the insufficient time of 30–60 
generations for selection to operate on standing genetic variation 
could indicate that the signals detected by our analysis result mostly 
from neutral effects. It is also possible that the relatively wide eco-
logical niche of U. pinnatifida and the comparable environments in 
Korea and New Zealand have suppressed divergence. For example, 
none of the genes involved in defence mechanisms against infec-
tion, such as the vanadium-dependent bromoperoxidases and  

iodoperoxidases68 or the LRR-GTPases of the ROCO family69, is 
encoded in the regions under putative selection. However, a num-
ber of the genes under selection appeared to have roles in stress, 
homeostasis and membrane functions, suggesting adaptation to the 
New Zealand environment (Supplementary Table 14).

Conclusion
The generation of a high-quality genome assembly combined with 
resequencing data from 41 individuals provides a detailed picture of 
the effect of human activity on genome evolution in U. pinnatifida. 
Our results strongly support the introduction scenario proposed 
for France and New Zealand and reveal how genome architecture 
is shaped by introduction history. For individuals in the native 
range, our analysis revealed unexpected effects of cultivation on the 
genomic landscape and provided insights into how natural selec-
tion may impact these individuals. Furthermore, our study offers a 
foundation on which future analyses of dispersal and adaptation in 
new environments can be designed.

In the future, targeted sampling and an explicit experimental 
design are needed to better connect genetic and phenotypic infor-
mation. In particular, quantitative trait locus mapping in crosses 
between cultivars from breeding lines and natural individuals could 
help elucidate the domestication process in U. pinnatifida. In the 
introduced populations, phenotypic comparisons and environ-
mental measurements in native and introduced sites could allow 
a genome-wide association study to identify the genetic variants 
underlying regional phenotypic differences. In particular, the con-
nectivity between the cultivated and natural populations should 
be assessed to test the role of escaped cultivars in the generation of 
genetic novelty in nature.

Methods
Algal material, genome sequencing and annotation. The U. pinnatifida 
individual used for reference genome sequencing was collected from a longline 
rope in a culture farm in Wando, Korea on 23 January 2015. High-quality DNA 
was extracted using a modified cetyl trimethylammonium bromide method 
(Supplementary Note). According to the instructions of the manufacturers, 
Illumina paired-end sequencing (PE: 101 bp) and long PacBio reads were 
sequenced and processed for error correction and quality filtration (Supplementary 
Note). The sequencing reads were assembled and polished, and finally 
superscaffolding was performed using data from Shan et al.36. The final assembly 
of the genome (Kr2015) was assessed by alignment of the proteins encoded in the 
genomes of E. siliculosus and S. japonica and core eukaryotic genes (Supplementary 
Table 5 and Supplementary Note).

Transposable elements and repeats were masked in the Kr2015 assembly 
using a combination of RepeatModeler and RepeatMasker, and their insertion 
time was estimated (Supplementary Note). For the gene prediction, a collection of 
proteins from seven species was mapped on the masked Kr2015 assembly and eight 
complementary DNA libraries were generated and sequenced (Supplementary 
Note). Genes were predicted using a homology-based and transcriptome-based 
in-house pipeline and the predicted genes were functionally annotated 
(Supplementary Note).

Comparative analysis. Orthologous analysis was conducted on the genome  
data from a selection of 19 taxa representing the diversity of the stramenopiles.  
The sequences of orthologous single genes found in all species were aligned and 
used to reconstruct a maximum-likelihood phylogenetic tree that was used as  
the backbone of a Dollo parsimony analysis (Supplementary Note). Syntenic 
analyses were conducted with the Kr2015 gene model against the gene model 
of the Chinese assembly of U. pinnatifida and the gene model of E. siliculosus 
(Supplementary Note)

Additional U. pinnatifida genomes and variant calling. Genomic DNA for a 
total of 41 U. pinnatifida individuals sampled in Korea (natural and cultivated 
populations), France (introduced populations) and New Zealand (introduced 
populations) was extracted, and for each individual, ~30× coverage of short-read 
data were generated (Supplementary Table 8, Supplementary Note). For each 
individual, after trimming of sequencing adapters and low-quality bases, the reads 
were mapped in the Kr2015 genome. These mapping data were used to call variants 
for each individual before all variants were combined to form the primary variant 
dataset containing 25,414,685 variants (21,619,805 SNPs and 3,794,880 indels). The 
variants were filtered for quality thresholds, allele frequency and genotyping rate to 
produce a final dataset of 7,253,541 (6,123,124 SNPs and 1,130,417 indels) variants.
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Population genomics. The population structure was investigated with PCA, 
phylogenetic tree reconstruction and admixture analyses (Supplementary 
Note). For each type of population, the expected heterozygosity (He), π, fixation 
index (FIS), LD (estimated from r2) and ROH (that is, chromosome fragments 
within a single individual that have shared parental ancestry) were estimated 
(Supplementary Note). Detection of regions affected by selection was conducted 
using a combination of statistics calculated in non-overlapping 50-kb windows: 
reduction of diversity, delta Tajima’s D and population differentiation (FST). For 
each window and each statistic, a P value was determined and these were used to 
calculate the DCMS value of each window (Supplementary Note).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The raw sequencing reads were deposited in the National Center for Biotechnology 
Information database under the BioProject accession code PRJNA646283. The 
assemblies, gene model and functional annotation were deposited in the Marine 
Genome Information Center (http://www.magic.re.kr/) database under the 
accession code MA00358.
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Extended Data Fig. 1 | Admixture analysis. Ancestry proportion obtained with snmf for number of clusters K ranging from 2 to 11. The phylogenetic tree of 
Fig. 2c is reproduced on top.
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Extended Data Fig. 2 | Large scale cultivation facility of Undaria pinnatifida in Korea. Indoors pools where multiple sporangia of Undaria pinnatifida are 
placed to enable recruitment on culture ropes (left).
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Extended Data Fig. 3 | Heterozygosity and run of homozygosity. (a) Average genome-wide level of heterozygosity in the individuals as a function of the 
coverage of run of Homozygosity (ROH) in the genomes of the 41 individuals. (b) Principal Component Analysis (PCA) calculated on the number of ROH, 
total length of ROH and average length of ROH of each of the 41 individuals.
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Extended Data Fig. 4 | Morphotypes of Undaria pinnatifida in Korea. Observed phenotypes of Undaria pinnatifida individuals collected in (a) a farm in 
Wando (Korea) and in (b) a natural population in Tongyeong (Korea).
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genotypes were combined with the GenotypeGVCFs function of GATK.3.8-0. Variants were filtered to excluded variant loci with Fisher strand 
bias > 60, mapping quality < 40.0,  coverage lower than 50 higher than 1500, a minimum allele frequency of 0.0365 and no missing 
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SnpEff v4.3.
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- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The raw sequencing reads were deposited in the National Center for Biotechnology Information (NCBI) in the BioProject accession PRJNA646283. The assemblies, 
gene model and functional annotation were deposited in the Marine Genome Information Center (http://www.magic.re.kr/) under the accession MA00358.
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Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description We present a genome-wide analysis of natural, cultivated and introduced populations of the kelp Undaria pinnatifda to elucidate 
human-driven evolutionary change.

Research sample The research sample constituted of 41 individuals of Undaria pinnatifida collected from eight populations located in Korea, France 
and New Zealand.

Sampling strategy No statistical methods were used to predetermine sample size. The sample size was determined based on available samples and 
budgetary constraints for genotyping.

Data collection In each populations, 10 mature sporophytes of Undaria pinnatifida were collected. Attention was given to collect sporophytes 
separated from each other by at least 2m.

Timing and spatial scale Each populations were visited one time. 

Data exclusions No individuals were excluded from the dataset. 

Reproducibility No experiments were conducted, so replication of experimental results is not relevant.

Randomization This is not relevant as our study does not consider variable assignments or categories.

Blinding Blinding was not relevant to this study, which is standard in the population genetics field.

Did the study involve field work? Yes No

Field work, collection and transport
Field conditions The study involves populations located in Korea, France and New Zealand. The general environment 

Location In Korea, Tongyeong (34°50'07.9"N 128°24'01.5"E), Goseong (38°17'45.2"N 128°33'01.4"E), Wando (approx. 34°19'30.2"N 126°
39'05.5"E). 
In France, Thau lagoon (43°25'49.8"N 3°40'20.2"E), Roscoff (48°42'58.9"N 3°57'57.7"W). 
In New Zealand, (41°17'23.2"S 174°47'23.4"E), Lyall Bay (41°20'05.0"S 174°47'33.3"E).

Access & import/export Visited habitats were located in public areas and did not required any permits to be accessed. Dried seaweeds are not subjected to 
particular regulations and they were shipped with specific permits.

Disturbance A limited number of individuals were sampled from each populations, leaving them virtually undisturbed. 

Reporting for specific materials, systems and methods
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system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals The study did not involved laboratory animals.

Wild animals The study did not involved wild animals.

Field-collected samples The study did not involved experimental procedure using live samples collected from the field.

Ethics oversight No ethical approval was required to collect and extract DNA from algal material.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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