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Abstract: Structureless communications such as Device-to-Device (D2D) relaying are undeniably of
paramount importance to improving the performance of today’s mobile networks. Such a commu-
nication paradigm requires implementing a certain level of intelligence at device level, allowing to
interact with the environment and select proper decisions. However, decentralizing decision making
sometimes may induce some paradoxical outcomes resulting, therefore, in a performance drop,
which sustains the design of self-organizing, yet efficient systems. Here, each device decides either to
directly connect to the eNodeB or get access via another device through a D2D link. Given the set of
active devices and the channel model, we derive the outage probability for both cellular link and
D2D link, and compute the system throughput. We capture the device behavior using a biform game
perspective. In the first part of this article, we analyze the pure and mixed Nash equilibria of the
induced game where each device seeks to maximize its own throughput. Our framework allows us to
analyse and predict the system’s performance. The second part of this article is devoted to implement
two Reinforcement Learning (RL) algorithms enabling devices to self-organize themselves and learn
their equilibrium pure/mixed strategies, in a fully distributed fashion. Simulation results show
that offloading the network by means of D2D-relaying improves per device throughput. Moreover,
detailed analysis on how the network parameters affect the global performance is provided.

Keywords: D2D-relaying; 5G/B5G/6G; biform game; self-organized devices; Nash equilibrium;
distributed reinforcement learning; NOMA/OMA

1. Introduction
1.1. Motivations & New Trends

The last twenty years have known a noteworthy growth in the demand for more
network capacity. This was mainly caused by the unprecedented Internet built-out and
the huge traffic generated by a massive number of devices. To cope with this neverseen
demand, substantial research effort is being conducted to enhance the performance of next
generation mobile networks. Current fifth Generation (5G) of wireless networks addresses
a wider range of applications and many innovative use-cases [1]. It is expected that a single
5G tower will serve up to 1 Million device per km2, which generates massive data traffic in
cellular networks. The sixth Generation (6G) of wireless networks is foreseen to support
novel data-hungry applications, a plethora of autonomous services and new communi-
cation scenarios around 2030. These technologies encompass holographic videos, flying
networks and vehicles, teleoperated driving, telemedicine, haptics, human bond communi-
cations, brain-computer interfaces, connected autonomous systems, high-definition video
streaming and the tactile Internet, to name a few. Thus, the volume of wireless data traffic
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and the number of connected objects are expected to increase hundred-folds in a given
cubic meter [2]. 6G will connect millions of users and billions of machines everywhere
through the emergence of the Internet of Everything (IoE) ecosystem. Thus, many strict
requirements need to be met such as low energy consumption, long battery life, high
intelligence, extremely larger bandwidth than 5G (The THz band is defined from 0.1 THz
to 10 THz), high reliability, low latency, and high data rates, etc. [3–6].

Device-to-Device (D2D) relaying has been proposed as an efficient solution to lower
energy consumption and extend the battery life of the mobile device, while expanding
the network coverage and improving local performance in a rapid and cost-effective way.
This is met by offloading the traffic to devices exhibiting better channel conditions. D2D
communication allows devices to communicate directly between each other instead of
going through the Base Station (BS) [7,8]. Unfortunately, the infrastructureless nature of
D2D communications raises challenges on how to efficiently integrate D2D communication
within the current cellular ecosystem. Yet, a D2D communication requires lower transmis-
sion power for mobile devices, and improves network performance both under inband
and outband schemes. Nonetheless, a large number of D2D users may induce higher
uncontrollable interference and might lead to capacity failure at relay level. This is why it
is crucial to strategically set the devices that need to use D2D links and those that need to
be relays within a cell.

Under legacy networks, the BS needs to have complete information about the network
and the active devices. Then, it computes the optimal parameters and the best Radio
Access Network (RAN) association. Next, it remotely configures devices through a heavy
signaling. However unfortunately, such a centralized system is known to suffer from
a heavy overhead and complex signaling mechanisms, under massive environments,
which greedily misuse the network resources. Consequently, a fully distributed system is
recommended for dense/ultra-dense networks, as it offloads the network and minimizes
the dependency on its connectivity.

Nowadays, we live in a hyper connected world where the performance of each
device is mutually affected by decisions taken by the other devices. Hence, to opt for the
best strategies under partial information, a decentralized scheme is the natural solution.
Moreover, decentralizing decision-making exhibits promising scalability features and can
efficiently avoid server break-downs due to unsupported number of requests. To ensure
a distributed system with ubiquitous intelligence, self-organized devices are by design
the master-pieces. It is an autonomous system designed to enable the devices automated
resource management, diminishes BSs tasks, reduces human intervention, and optimizes
available resources, etc. The general aim of this work is to offload the BS and avoid the
system breakout, via self-organized devices implementing some Artificial Intelligence (AI)
techniques and decentralized Machine Learning (ML) algorithms. The updating pattern
at the device level only requires local actions and observed/measured payoffs perceived.
Such an adaptive algorithm is very important in dynamic/stochastic environments where
many parameters are unavailable, unobservable or simply unknown.

Today’s 5G networks underuse artificial intelligence and machine learning, which
results in poor self-organizing capabilities. In contrast, it is foreseen that AI/ML will be the
signature for 6G for smarter and more powerful networks, as it will penetrate network,
service, content and user equipment’s. Everything will be very intelligent, giving rise to
the concept of IoE, with an enormous amount of data and information. AI-empowered 6G
is believed to be able to provide a series of all new features, e.g., network decentralization,
self-organization, context-awareness, self-configuration and self-healing properties. It will
also enable reliable device-to-device (D2D) communications in a fully intelligent way [3,5].
Unfortunately, self-organized devices could make sub-optimal decisions, lead to unwanted
and unexpected/paradoxical results. Thus, it is of paramount importance to make sure the
devices are reasoning properly and converge to efficient operation points with satisfactory
performance, the network should be carefully designed. This study could be done either
through test beds or real implementations and/or simulations which are costly and time
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consuming. In this work, we analyze the network by means of game theory. In other
words, a network designer (e.g., the network builder or the operator) will analyze the
performance of the network and predict its operation points using game theory before
rolling it out. The benefits of game theory rely on providing strong tools and theoretic
framework to analyze the agents/devices interaction. This allows us to accurately predict
the system performance. Game theory is useful in predicting the network performance
while considering self-organized devices. Henceforth, the network designer can build
efficient mechanisms granting the whole system to run properly under almost a zero-
touch paradigm.

1.2. Our Contributions

To allow User Equipment (UE) to communicate and connect to the BS, a multiple access
technology is utilized. Multiple access techniques can broadly be categorized into two
different approaches, namely, Orthogonal Multiple Access (OMA) and Non-Orthogonal
Multiple Access (NOMA). On one hand, OMA allows UEs to use orthogonal signals to
eliminate interference, such as Orthogonal Frequency-Division Multiple Access (OFDMA)
used in 4G mobile networks. On the other hand, NOMA is envisioned to be used as
a candidate radio access technology for beyond 5G and 6G cellular systems. It allows
allocating one frequency channel to multiple users at the same time within the same cell
either in the power domain or the code domain. Moreover, NOMA offers a number of
advantages, including improved spectral efficiency, enhanced resource allocation, higher
cell-edge throughput, and lower latency (no scheduling request from users to base station
is required) [9–11].

In a nutshell, we use game theory in the first part of this article to analyze and solve
the conflict of interest raised between self-organized devices. The individual average
throughput is considered as the payoff function. More precisely, we build a biform game,
for which we analyze the pure/mixed Nash equilibria. The second part of our work [12]
presents two distributed reinforcement learning algorithms to be implemented at the device
level in order to reach equilibrium strategies. Our mechanism is robust as it is based on
Nash equilibrium concept, and reduces the risk of bad decisions, allowing thereby to
benefit from appreciated self-organizing and self-configuring features.

The main contributions of this work are fivefold:

Part I’s contributions are related to performance analysis of a self-organizing D2D relay-
ing scheme:

1. We consider a hybrid two-tier scheme where cellular links use NOMA, whilst
D2D links use OMA. This scheme is suitable for both inband and outband D2D
schemes;

2. We fully characterize the Rayleigh channel model and derive closed forms for
the outage probability of both OMA and NOMA links, and then compute the
average throughput perceived by each device in the network;

3. To the best of our knowledge, this work is the first to implement a biform game
to capture the devices’ behaviors while deciding which Radio Access Network
(RAN) to connect. In order to evaluate the outcome of the game, detailed
analysis of pure and mixed Nash equilibria are provided for 3-person game and
generalized to n-person game;

Part II’s contributions are related to implementing a self-organized mode selection us-
ing RL:

4. We propose to empower devices with a self-organize capability allowing to
reach pure Nash equilibria (Linear-Reward Inaction) and mixed Nash equilibria
(Boltzmann-Gibbs dynamics), in a fully distributed manner;
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5. We perform extensive simulations to analyze the effect of different parame-
ters on the learning schemes. Insights on accuracy and convergence are also
provided.

The rest of this article is organized as follows: A comprehensive literature review
is presented in Section 2. The problem is formulated in Section 3. We provide a full
equilibrium analysis for the 3-person game in Section 4. The general case of n-player game
is discussed in Section 5. Numerical investigations are presented in Section 6. Finally,
we draw some concluding remarks and list future works in Section 7. Part II [12] of this
research, presents the proposed decentralized reinforcement learning algorithms and access
their dynamics and performance.

2. Related Work

D2D communications are widely used to relay information and improve local/overall
performance by offloading traffic to other devices in the network, extending system cover-
age, mitigating wireless fading through improving the capture effect and exploiting spatial
diversity. Also, reducing transmit power allows us to lower the impact of cross-interference,
which helps to improve the network performance, enhance the QoS (improved through-
put, reduced latency, and increased reliability) [13–15]. In latter researches, and in most
of D2D published papers, a great attention is given to the performance enhancement of
other technologies by introducing D2D communication (e.g., IoT [13] and Massive MIMO
Systems [15]). In our article, we discuss the importance of strategically selecting the best
RAN (i.e., either cellular or D2D) according to the network status, in a way to improve
the devices experienced QoS. Game theory is a set of applied mathematical tools aiming
to understand and solve decision-making problems, such as competing and independent
actors during conflicts. It has been extensively used in wireless networks [16,17], and more
specifically in solving cooperation and competition problems between devices over limited
resources [18–26].

In the last few years, a tremendous research effort has been conducted in order to adapt
and adopt self-organized networks. Self-organizing resource management approaches
have attracted attention because of their low complexity, scalability and their important
role in reducing information exchange [27]. It has been investigated for various networks
from different perspectives including learning mechanisms, heuristic and game-theoretic
approaches [28–30]. The authors in [28] propose a distributed utility-based SINR adaptation
at small-cells that diminishes the cross-tier interference. The authors in [29] carry out
a comparison among two decentralized heuristic algorithms, with no involvement of
any centralized entity, for joint power assignment and resource allocation in small-cells.
In [30], the authors present an energy-efficient self-organized cross-layer optimization
scheme where each D2D transmitter strategically selects the resource blocks and the power
levels for improving its energy efficiency while maintaining a certain QoS requirement of
other tiers. However, the autonomy and self-organization of autonomous collaborative
networks of devices make them especially vulnerable to attacks. Thus, such a network
needs a dependable mechanism to detect and identify attackers and enable appropriate
reactions. That is why the authors in [31] propose a scalable adversary detection for
autonomous networks, a scheme to efficiently identify malicious devices within large
networks of collaborating entities. It is designed to run in truly autonomous environments,
i.e., without a central trusted entity. Unlike related works on D2D mode selection appended
in Table 1, where authors focus on optimizing the network performance, we aim to model
and understand the interplay between D2D, NOMA and OMA. Then, we use biform game
theory to predict, and decentralized machine scheme to learn what options each device
should pursue to earn the “best” long-term average profit.
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Table 1. Related works on Device-to-Device (D2D) mode selection vs. our work.

Ref D2D
Mode

Multiple
Access Main Goal Tools UEs Access Mode

[32] Underlay OMA Improve Cellular
Coverage Quality

Optimization mechanism
Greedy algorithm based
on a distributed local
search

- Cellular mode
- Multi-hop D2D
relaying mode

[33] Overlay OMA
Minimize the average
energy consumption
of flow transmission

Markov Decision Process - Cellular mode
- D2D mode

[34] Underlay OMA Achieve high spectrum
efficiency Evolutionary game model

- Cellular mode
- Direct reuse mode
- D2D Relay mode

[35] Underlay OMA

Optimize the network
energy efficiency-
Maximize the number
of connected D2D users

Fuzzy C mean -
clustering algorithm

- Dedicated D2D mode
- D2D reuse mode

[36] Underlay OMA

Increase the data rate
Improve the energy
efficiency-
Satisfy stringent delay
constraints

Energy Efficiency and
Delay-Optimization
algorithm based
on the brute-force
searching method

- Direct transmission
- D2D-assisted relaying

[37] Outband
Underlay

Listen-before-
talk (LBT)/
Duty-cycle

method

Minimize the mutual
interference - Guarantee
the QoS requirements-
Maximize the overall
throughput

Heuristic algorithms

- Licensed reusing mode
- Duty-cycle based
- LBT based unlicensed
modes

[38] Underlay OMA Maximize the system
throughput

Mode Selection and
Resource Allocation
algorithm based on
Lagrangian dual
decomposition

- Cellular mode
- D2D mode

[39] Underlay
Overlay OMA

Optimize the total
throughput- Reduce
interference

Probabilistic integrated
resource allocation
strategy Quasi-convex
optimization algorithm

- Reusing Mode
- Dedicated Mode
- Cellular Mode

[40] Underlay OMA

Maximize the number
of D2D users - Increase
the system capacity
- Improve the overall
throughput

Greedy algorithm
Heuristic algorithm

- Cellular mode
- Direct D2D mode

Our
work Overlay NOMA

OMA

Pure and Mixed
Equilibrium in
terms of throughput
and reliability

Game theory
Distributed reinforcement
learning

- Cellular mode
- Relay mode
- D2D mode

3. System Model

Consider the uplink case of a single 4G/5G/6G cell, where a finite number of devices
N = {1, 2, ...., n}, are randomly distributed around the serving BS. The devices commu-
nicate using NOMA in cellular links combined with conventional OMA for D2D links as
shown in Figure 1. We use a separate band for D2D users (i.e., D2D overlay mode). We
use OMA for D2D links to (1) study a hybrid access system; and (2) eliminate interference
effect between cellular and D2D UEs. Here, we use stochastic geometry to estimate the
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performance of D2D users. Each device i ∈ N transmits its data to the BS using power Pi
from a distance di while experiencing a channel gain hi. For better readability, the main
notations and symbols used in this article are listed in Table 2.

Table 2. Main symbols and their meanings.

Symbol Meaning

n Number of devices in the cell
Pi Transmission power of device i
di Distance between device i and the BS
hi Channel gain of device i
γi SINR of device i
γi,th SINR-threshold
Pout

i (γi) Outage probability of device i
1
λ Mean of the channel gain
R Transmission rate
Pout,c

i Outage probability of device i if it communicates through cellular
Pout,cd

i Outage probability of device i if it is a relay
Pout,d

i Outage probability of device i if it communicates through D2D
Thpc

i Throughput of device i if it communicates through cellular
Thpc,d

i Throughput of device i if it is a relay
Thpd

i Throughput of device i if it communicates through D2D
Pi,d Transmission power of device i if it communicates through D2D
di,d Distance between device i and another D2D device
f Orthogonality factor
αc, αd Path-loss exponent in cellular and D2D, respectively
xi Fraction of throughput device i gives to D2D devices
Ui(ai) Utility of device i that denotes its throughput when choosing the action ai

Cellular link , NOMA

D2D link, OMA

D2D UE

Relay

D2D UED2D UE
D2D UE

Relay

BS

D2D UE

Figure 1. Cellular offloading using D2D cooperative relaying.

For the sake of simplicity and without loss of generality, device numbered 1 is the
closest device to the BS, with distance d1. It transmits with the lowest power P1 and
experiences the strongest channel h1. Whilst device n is the farthest with distance dn from
the BS, uses the highest transmission power Pn and experiences the poorest channel hn.
Namely, we have |h1|2 ≥ |h2|2 ≥ · · · ≥ |hn−1|2 ≥ |hn|2. Let w(t) be the received noise at
the BS and assume each device i transmits its individual signal si(t). Then, the aggregate
received signal at the BS writes:

S(t) =
n

∑
i=1

√
Pihisi(t) + w(t), (1)

The BS decodes the signals by applying the Successive Interference Cancellation (SIC)
technique [41,42]. The received signal power corresponding to the strongest channel user
is likely the strongest at the BS and is therefore the first to be decoded at the BS and
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experiences interference from all the remaining weaker channels’ users in the cluster. So,
the transmission of device 1 experiences interference from users with weaker channels in
the cluster, whereas the transmission of device n experiences zero interference. In contrast
to downlink NOMA, each user in uplink NOMA can independently utilize its battery power
up to the maximum since the channel gains of all the users are sufficiently distinct [43].

3.1. Channel Model

Within this article, the radio signal experiences attenuation due to the path-loss with
exponent α and a Rayleigh fading. We denote by γi the instantaneous Signal-to-Interference-
and-Noise-Ratio (SINR) of device i, which is given by:

γi =
Pi|hi|2d−α

i
n
∑

j=i+1
Pj|hj|2d−α

j + σ2
N

, (2)

It is worth nothing that the SINR of the weakest device n experiences no interference

according to NOMA operation, i.e., γn = Pn |hn |2d−α
n

σ2
N

. σ2
N denotes the variance of the thermal

additive white Gaussian noise. Through this article, each device aims at guaranteeing an
instantaneous SINR above a certain threshold γi,th to have successful communication. The
outage probability denotes the probability that the SINR is less or equal than a given SINR
threshold (γi,th). It is calculated as follows:

Pout
i (γi) = Pr(γi ≤ γi,th) = Pr

 Pi |hi |2d−α
i

σ2
N +

n
∑

j=i+1
Pj|hj|2d−α

j

≤ γi,th


= Pr

(
|hi |2 ≤

γi,thσ2
N

Pid−α
i

+
γi,th

Pid−α
i

n

∑
j=i+1

Pj|hj|2d−α
j

)
(3)

=
∫ +∞

0
f|hn−1 |2 (xn−1)

∫ +∞

0
f|hn−2 |2 (xn−2) · · ·

∫ +∞

0
f|h1 |2 (x1)

∫ A

0
f|hi |2 (xi)dx1dx2 · · ·dxn−1.

with A =
γi,thσ2

N
Pid
−α
i

+
γi,th

Pid
−α
i

n
∑

j=i+1
Pj|hj|2d−α

j . Assuming that all channels undergo Rayleigh fad-

ing, the channel power gain |h|2 is an exponential random variable with PDF f|h|2(x, λ) =

λe−λx, where 1
λ ≥ 0 is the mean and scale parameter of the distribution, often taken equal

to 1. Therefore, the outage probability can be expressed as:

Pout
i (γi) = 1−

n
∏

j=i+1
λj.e

−
γi,thσ2

N λi
Pid−α

i

n
∏

j=i+1

(
λj +

γi,thPjd
−α
j

Pid
−α
i

λi

) (4)

3.2. Average Throughput

In general, device i transmits data with a rate Ri in every channel use (i.e., in every
packet or frame transmission), in a condition that Ri must not exceed its channel capacity,
i.e., Ri ≤ log(1+ γi). We define the throughput of the transmission as the rate of successful
data bits that are transmitted to the destination over a communication channel. As the
channel is variable, random and unknown, the throughput of device i is a function of the
outage probability Pout

i (γi) that depends on the average of the channel gain, expressed
as follows:

Θi(γi) =
M
L

Ri(1− Pout
i (γi)) = ρi(1− Pout

i (γi)), (5)
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with ρi =
M
L Ri. M is the data length. L denotes the total number of bits in a frame with

L = M + H data bits, and H is the length of the header.

3.3. Biform Game Analysis

The main goal of game theory is to study the strategic relations between rational
players that strive to maximize their payoffs in the game and where the actions and choices
of all the players affect the outcome of each player. In this work, the devices inside the cell
decide either to communicate through the cellular link or to switch to D2D communication.
Each device aims at making a decision that allows it to maximize its throughput. However,
since each device decision influences the throughput of the other devices, we are concerned
here about finding an equilibrium point and a prediction of what options players may
take to earn the best profit. For this purpose, we use biform game theory. Biform game
is a two-stage game that combines a competitive and cooperative game in one formal
model. In the first stage, decisive players choose their strategies in a non-cooperative
way to maximize their expected payoffs. Each profile of strategic choices at the first stage
leads to the second stage, which is a cooperative game, where the actual payoff is realized.
This gives the competitive environment created by the choices of the players in the first
stage [44,45].

Let G = {N ,{Ai}i∈N ,{Ui}i∈N } be a biform game. N is the set of players of G. Ai is the
set of actions of each player i, either to be a relay ai = 0 or to communicate through D2D
ai = 1. Ui is the payoff of each device i that represents its throughput. There are two cases
of modeling the problem:

- The first case is to consider the game from the perspective of one of the players,
and define what is the action that each player needs to take to maximize its through-
put depending on the network parameters and on the other players’ probabilities
of relaying.

- The second case is to consider the problem from an equilibrium perspective. In fact,
we need to seek for the equilibrium probability vector where no player has incentive
to deviate unilaterally. In this case also, each player could attain its maximum
utility function at the equilibrium, depending on its own strategy and the strategy of
other players.

4. Equilibrium Analysis for the Three-Player Game

Consider a three devices power-domain NOMA operation in a single cell network.
Each device is communicating through uplink as shown in Figure 2.
Each device i = {1, 2, 3}, is transmitting its data to the BS with a power Pi, from a distance
di and with hi as the channel coefficient between device i and the BS.

Device 1

Device 2

Device 3

BS

Figure 2. Network model for three−device case.

4.1. Channel Model

Let us consider device 1 as the closest to the BS with the lowest transmit power P1,
the smallest distance d1 and best channel condition h1. Device 3 has the farthest distance
d3 from the BS with the highest transmit power P3, and the weakest channel gain h3.

Device 1 is considered as the strongest device experiencing the strongest channel,
while device 3 is the weakest. According to the conventional uplink NOMA operation,
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the BS successively decodes and cancels the signal of device 1 that experiences interference
from the two other devices, then device 2 which is affected only by interference of device 3
and finally decodes the signal of device 3 that experiences zero interference. Each device’s
SINR is then expressed as:

γ1 =
P1|h1|2d−α

1
P2|h2|2d−α

2 + P3|h3|2d−α
3 + σ2

N
, γ2 =

P2|h2|2d−α
2

P3|h3|2d−α
3 + σ2

N
, γ3 =

P3|h3|2d−α
3

σ2
N

(6)

The outage probability of each device i, is given by:

Pout,c
1 (γ1) = 1− λ2λ3 e

−
γ1,thσ2

N λ1
P1d−α

1

(λ2 +
γ1,thP2d−α

2
P1d−α

1
λ1)(λ3 +

γ1,thP3d−α
3

P1d−α
1

λ1)
,

Pout,c
2 (γ2) = 1− λ3 e

−
γ2,thσ2

N λ2
P2d−α

2

(λ3 +
γ2,thP3d−α

3
P2d−α

2
λ2)

, Pout,c
3 (γ3) = 1− e

−
γ3,thσ2

N λ3
P3d−α

3 .

(7)

4.2. Throughput

At each time slot, each device can choose to communicate through cellular and serves
as a relay or, communicate through D2D. D2D links use OMA as a multiplexing access
method. Also, the D2D transmitters operate in an overlaying mode, where D2D and cellular
devices are allocated distinct frequency resources which enables to suppress interference
between cellular and D2D devices. Depending on the devices choices, each device i earns a
throughput and experiences an outage probability as follows:

- If all the devices communicate through cellular mode, then the throughput of each
device is:

Thpc
i = Θc

i (γi) =
M
L

R(1− Pout,c
i (γi)) = ρ(1− Pout,c

i (γi)). (8)

We suppose that the BS allocates the same transmit rate R to all devices. For each
device i, Pout,c

i (γi) is defined in Equation (7).

- If device i decides to be a relay while devices j and k transmit through D2D, i, j, k ∈
{1, 2, 3}, then:


Thpc,d

i = xiΘ
c,d
i (γi) = xiρ(1− Pout,cd

i (γi)),

Pout,cd
i = 1− e

−
γth σ2

N λi
Pi d−α

i


Thpd

j = (1−xi)
2 ρ(1− Pout,cd

i (γi))(1− Pout,d
j (γj)),

Pout,d
j = 1− λk e

−
γth σ2

N λj
Pj,dd−α

j,d

λk+
γth fj,k Pk,dd−α

k,d

Pj,dd
−αd
j,d

λj

(9)

If there is at least one device in the D2D group, then the relay device allocates a
fraction of its throughput xi to that group. xi allows also to define the mode selection of
device i. For instance, xi = 1 means device i fully opts for cellular mode. Meanwhile
xi = 0 means device i chooses to communicate through D2D link. When xi ∈]0, 1[ the
device i plays the role of a relay. Here, we assume that the fraction given from the relay
will be equally divided between the devices in D2D mode. Pj,d and dj,d are the transmit
power and the distance of the D2D device j, respectively. The power transmission in
cellular communication is much higher than the D2D transmit power because of the short
distances between D2D devices in comparison with the distances between a device and its
serving BS.

Theoretically, if there is a perfect synchronization of time and frequency, there will
be no interference and the sub-carriers will be considered orthogonal. However, in real
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networks, although frequency synchronization can be performed with certain accuracy,
small frequency synchronization errors can still cause significant interference among
different users. f j,k is the orthogonality factor between device j and device k.

- If device i and j decide to act as relays while device k transmits through D2D link,
and by considering device i the strongest (di ≤ dj), then:

Thpc,d
i = xiρ(1− Pout,cd

i (γi)),

Pout,cd
i = 1− λj e

−
γthσ2

N λi
Pid−α

i

(λj+
γth Pjd−α

j
Pid−α

i
λi)


Thpc,d

j = xjρ(1− Pout,cd
j (γj)),

Pout,cd
j = 1− e

−
γthσ2

N λj
Pjd−α

j

(10)


Thpd

k =ρ
(
(1− xi)(1− Pout,cd

i (γi)) + (1− xj)(1− Pout,cd
j (γj))

)
(1− Pout,d

k (γk)),

Pout,d
k = 1− e

− γthσ2
N λk

Pk,dd
−αd
k,d

(11)

- If all devices decide to switch to D2D communication, each device earns a regret of
being disconnected from the network and the throughput is given by:

Thpd
i = −ri (12)

4.3. Biform Game Analysis

Consider a two-stage decision problem of three devices. Each player i ’s profit (with
i = {1, 2, 3}) is its throughput as presented in Figure 3. Recall that at each transmission,
each device has the choice of staying connected to the BS or instead switch to a D2D
communication. A device has the right to switch to the D2D side and go back to the cellular
side whenever it wants, it is a random and reversible process.

𝑎3 = 0 𝑎3 = 1

𝑎1 = 0

𝑎1 = 1

𝑎2 = 0 𝑎2 = 1 𝑎2 = 0 𝑎2 = 1

Device 1

Device 2 Device 2

Device 3

𝑈1 0,0,0 ,
𝑈2 0,0,0 ,

𝑈3 (0,0,0)

𝑈1 0,1,0 ,
𝑈2 0,1,0 ,

𝑈3 (0,1,0)

𝑈1 0,0,1 ,
𝑈2 0,0,1 ,

𝑈3 (0,0,1)

𝑈1 0,1,1 ,
𝑈2 0,1,1 ,

𝑈3 (0,1,1)

𝑈1 1,0,0 ,
𝑈2 1,0,0 ,

𝑈3 (1,0,0)

𝑈1 1,1,0 ,
𝑈2 1,1,0 ,

𝑈3 (1,1,0)

𝑈1 1,0,1 ,
𝑈2 1,0,1 ,

𝑈3 (1,0,1)

𝑈1 1,1,1 ,
𝑈2 1,1,1 ,

𝑈3 (1,1,1)

Figure 3. Strategic Form of the game, representing the payoffs of each device according to
their choices.

The players decide to cooperate and choose whether to be connected to the cellular
or D2D link to improve their throughput. If a device stays connected to the cellular link
and there is at least one device in the D2D side, the cellular device must serve as a relay to
D2D devices.

There are 23 different cooperation combinations between the three devices as shown
in Figure 4. Depending on the devices combinations, they earn different throughput
as follows:
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- If all the devices decide to stay connected to cellular link, each of them earns Thpc
i

as throughput.

- If at least one player switches to D2D mode, it earns Thpd
j , while those who stay

connected to the BS earn Thpc,d
i , i 6= j.

- If all the devices decide to switch to D2D communication, each of them will have −ri
that represents regret of being disconnected from the network.

As mentioned before, biform game consists of two stages:
First Stage: This stage is considered as a non-cooperative game. The decision of

player i ∈ {1, 2, 3}, is either to communicate through the cellular link and serve as relay
or to communicate through D2D. This could be represented by a binary decision variable
ai ∈ {0, 1} with:

- ai = 0 refers to the choice of the action of being a relay.

- ai = 1 refers to the action of communicating through D2D.

Second Stage: This stage is considered as a cooperative game, where the value
created U(a) (i.e., the characteristic function) is investigated, with a = (a1, a2, a3) refers to
the decisions taken by the devices in the first stage. In other words, U(a) is the value (i.e.,
throughput profit) that the players gain as a result of cooperating in the second-stage game
given that strategies (a1, a2, a3) were played in the first stage. To analyze the game, we start
by analyzing the cooperative part and then work back to find the optimal strategy for the
devices. Each case of the second-stage cooperative games has a single point core:

- The core of the game a = (0, 0, 0) is an allocation in which each player i gets Thpc
i .

- The core of a = (1, 0, 0) is an allocation in which player 1 gets Thpd
1 while player 2 and

3 get Thpc,d
2 and Thpc,d

3 , respectively. Similarly for a = (0, 1, 0) and a = (0, 0, 1).

- The core of a = (1, 1, 0) is an allocation in which player 1 and 2 earn Thpd
1 and Thpd

2,
respectively, while player 3 earns Thpc,d

3 . Similarly for a = (0, 1, 1) and a = (1, 0, 1).

- The core of the game a = (1, 1, 1) is an allocation in which each player i earns a regret
because all the devices are disconnected totally from the BS.

Hence the second-stage in each game is deterministic as a result of first-stage devices’
decisions, as shown in Figure 4.

Player 1

Player 2

Player 3

𝒂𝟏 = 0 𝒂𝟏 = 1

𝒂𝟐 = 0 𝒂𝟐 = 1 𝒂𝟐 = 0 𝒂𝟐 = 1

𝒂𝟑 = 0 𝒂𝟑 = 1 𝒂𝟑 = 0 𝒂𝟑 = 1 𝒂𝟑 = 0 𝒂𝟑 = 1 𝒂𝟑 = 0 𝒂𝟑 = 1

Profit U(0,0,0)

Relay D2D 

U(0,0,1) U(0,1,0) U(0,1,1) U(1,0,0) U(1,0,1) U(1,1,0)U(1,1,1)

Figure 4. Game combination possibilities depending on each device choices.
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Note that these choices are made simultaneously. The profit that represents each
device’s throughput depending on their choices is expressed as follows:

U(0, 0, 0) = {Thpc
1, Thpc

2, Thpc
3}

U(0, 0, 1) = {Thpc,d
1 , Thpc,d

2 , Thpd
3}

U(0, 1, 0) = {Thpc,d
1 , Thpd

2, Thpc,d
3 }

U(0, 1, 1) = {Thpc,d
1 , Thpd

2, Thpd
3}



U(1, 0, 0) = {Thpd
1, Thpc,d

2 , Thpc,d
3 }

U(1, 0, 1) = {Thpd
1, Thpc,d

2 , Thpd
3}

U(1, 1, 0) = {Thpd
1, Thpd

2, Thpc,d
3 }

U(1, 1, 1) = {Thpd
1, Thpd

2, Thpd
3}

(13)

As explained before, there are two cases of analyzing the problem:

4.3.1. First Case

The first-stage decision of player i is represented by a binary decision variable
ai ∈ {0, 1}. In the second stage, after the first stage switching choice a has taken place,
the corresponding cooperative game is then played. Let Ui(a) denotes the second stage
profits for a player i given first stage choice a. The programming problem of player i can
be written as:

max
ai∈{0,1}

E[Ui(a)] (14)

Here the player i chooses the action ai that maximizes its second stage profit, with:

Ui(a) =


Thpc

i i f a1 = a2 = a3 = 0
Thpc,d

i i f ai = 0 and a1 + a2 + a3 ≤ 2
Thpd

i i f ai = 1 and a1 + a2 + a3 ≤ 2
−ri i f a1 = a2 = a3 = 1

(15)

Let us take for example the case of the player 1. Let a1 be the binary decision variable
of player 1, with a1 ∈ {0, 1}. Let ε2, ε3 be random variables representing player 2 and
player 3 decision values, where ε2 and ε3 ∈ {0, 1}. Let U1(a1, ε2, ε3) represents the second
stage gain achievable by player 1 given its first stage choice a1, player 2’s and player 3’s
decisions ε2, ε3, respectively.

The problem of player 1 can be written as:

max
a1∈{0,1}

Eε2,ε3 [U1(a1, ε2, ε3)] (16)

Note that Eε2,ε3 [U1(a1, ε2, ε3)] is the expected utility of player 1 depending on player 2
and player 3 decisions.

In Equation (16), player 1 is selecting a1, which maximizes its second-stage expected
profit. Suppose that player 1 believes that players 2 and 3 will choose to communicate
through the cellular link with a probability of belief y2 ≥ 0 and y3 ≥ 0, respectively. So we
can rewrite the above problem as:

max
a1∈{0,1}

y2y3(U1(a1, 1, 1)) + y2(1− y3)(U1(a1, 1, 0)) + (1− y2)y3(U1(a1, 0, 1)) + (1− y2)(1− y3)(U1(a1, 0, 0)). (17)

In Equation (17), device 1 chooses the action that allows it to attain its maximum
throughput depending on some probability beliefs it has on which action other devices can
choose. The second stage throughput profit of player 1 can be written as:
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U1(a1, ε2, ε3) =


Thpc

1 i f a1 = 0 and ε2 = ε3 = 0

Thpc,d
1 i f a1 = 0 and ε2 + ε3 ≥ 1

Thpd
1 i f a1 = 1 and ε2 + ε3 ≤ 1

−r1 i f a1 = 1 and ε2 = ε3 = 1

(18)

The result is that player 1 should switch to D2D if he believes that his profit in D2D is
higher than his profit in cellular and vice-versa, while he is indifferent between the two
options when the benefits are equal.

4.3.2. Second Case

In this case, we aim to find both the pure and mixed strategy Nash equilibria that
allow the devices to attain their equilibrium in terms of the highest throughput. In game
theory, if each player has chosen an action strategy, and no player can benefit by modifying
its strategy while the other players keep theirs unchanged, then the current set of strategy
choices and their corresponding payoffs form a Nash equilibrium. Likewise, there exists
a Nash equilibrium for every finite game. The Nash equilibrium could be either a pure
strategy or a mixed strategy.

Pure strategy Nash Equilibrium (PNE): A pure strategy determines the action a device will
choose with probability 1 and every other action with probability 0 to attain its best profit.

Lemma 1. - The action (0,0,0) is a PNE iff:

(1− Pout,c
1 (0, 0, 0)) ≥ (1− Pout,d

1 (1, 0, 0))((1− x2)(1− Pout,cd
2 (1, 0, 0)) + (1− x3)(1− Pout,cd

3 (1, 0, 0))),

and

(1− Pout,c
2 (0, 0, 0)) ≥ (1− Pout,d

2 (0, 1, 0))((1− x1)(1− Pout,cd
1 (0, 1, 0)) + (1− x3)(1− Pout,cd

3 (0, 1, 0))),

and

(1− Pout,c
3 (0, 0, 0)) ≥ (1− Pout,d

3 (0, 0, 1))((1− x1)(1− Pout,cd
1 (0, 0, 1)) + (1− x2)(1− Pout,cd

2 (0, 0, 1))).

- The action (0,0,1) is a PNE iff:

x1(1− Pout,cd
1 (0, 0, 1)) ≥ 1−x2

2 (1− Pout,cd
2 (1, 0, 1))(1− Pout,d

1 (1, 0, 1)),

and

x2(1− Pout,cd
2 (0, 0, 1)) ≥ 1−x1

2 (1− Pout,cd
1 (0, 1, 1))(1− Pout,d

2 (0, 1, 1)),

and

(1− Pout,d
3 (0, 0, 1))((1− x1)(1− Pout,cd

1 (0, 0, 1)) + (1− x2)(1− Pout,cd
2 (0, 0, 1))) ≥ (1− Pout,c

3 (0, 0, 0)).

- The action (0,1,0) is a PNE iff:

x1(1− Pout,cd
1 (0, 1, 0)) ≥ 1−x3

2 (1− Pout,cd
3 (1, 1, 0))(1− Pout,d

1 (1, 1, 0)),

and

(1− Pout,d
2 (0, 1, 0))((1− x1)(1− Pout,cd

1 (0, 1, 0)) + (1− x3)(1− Pout,cd
3 (0, 1, 0))) ≥ (1− Pout,c

2 (0, 0, 0)),

and

x3(1− Pout,cd
3 (0, 1, 0)) ≥ 1−x1

2 (1− Pout,cd
1 (0, 1, 1))(1− Pout,d

3 (0, 1, 1)).

- The action (0,1,1) is a PNE iff:

x1ρ(1− Pout,cd
1 (0, 1, 1)) ≥ −r1,

and
1−x1

2 (1− Pout,cd
1 (0, 1, 1))(1− Pout,d

2 (0, 1, 1)) ≥ x2(1− Pout,cd
2 (0, 0, 1)),
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and
1−x1

2 (1− Pout,cd
1 (0, 1, 1))(1− Pout,d

3 (0, 1, 1)) ≥ x3(1− Pout,cd
3 (0, 1, 0)).

- The action (1,0,0) is a PNE iff:

(1− Pout,d
1 (1, 0, 0))((1− x2)(1− Pout,cd

2 (1, 0, 0)) + (1− x3)(1− Pout,cd
3 (1, 0, 0))) ≥ (1− Pout,c

1 (0, 0, 0)),

and

x2(1− Pout,cd
2 (1, 0, 0)) ≥ 1−x3

2 (1− Pout,cd
3 (1, 1, 0))(1− Pout,d

2 (1, 0, 0)),

and

x3(1− Pout,cd
3 (1, 0, 0)) ≥ 1−x2

2 (1− Pout,cd
2 (1, 0, 1))(1− Pout,d

3 (1, 0, 1)),

- The action (1,1,0) is a PNE iff:

1−x3
2 (1− Pout,cd

3 (1, 1, 0))(1− Pout,d
1 (1, 1, 0)) ≥ x1(1− Pout,cd

1 (0, 1, 0)),

and
1−x3

2 (1− Pout,cd
3 (1, 1, 0))(1− Pout,d

2 (1, 1, 0)) ≥ x2(1− Pout,cd
2 (1, 0, 0)),

and

x3(1− Pout,cd
3 (1, 1, 0)) ≥ −r3.

- The action (1,0,1) is a PNE iff:

1−x2
2 (1− Pout,cd

2 (1, 0, 1))(1− Pout,d
2 (1, 0, 1)) ≥ x1(1− Pout,cd

1 (0, 0, 1)),

and

x2(1− Pout,cd
2 (1, 0, 1)) ≥ −r2,

and
1−x2

2 (1− Pout,cd
2 (1, 0, 1))(1− Pout,d

3 (1, 0, 1)) ≥ x3(1− Pout,cd
3 (1, 0, 0)).

- The action (1,1,1) is a PNE iff:

−r1 ≥ x1(1− Pout,cd
1 (0, 1, 1)),

and

−r2 ≥ x2(1− Pout,cd
2 (1, 0, 1)),

and

−r3 ≥ x3(1− Pout,cd
3 (1, 1, 0)).

One can clearly see that the action strategy (1,1,1) could never be a PNE. This is because the throughput
could not be a negative value.

Proof. See Appendix A.1

Different from the pure equilibria analysis, where we consider unknown, slow fading
and stationary channels, in the mixed analysis we consider random and fast fading chan-
nels. In a fast fading channel, a device can find itself unable to reach a pure equilibrium
strategy in some situations, but it can attain the equilibrium by adopting each strategy with
a certain probability.
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Mixed strategy Nash Equilibrium (MNE): A mixed strategy is an attribution of a prob-
ability to each pure strategy, i.e., a device chooses an action with a certain probability.
A pure strategy can be considered as a degenerate case of a mixed strategy. Let pi denotes
the probability of relaying of each device i, so (1− pi) is its probability of choosing to
communicate through D2D.

- If player 1 is indifferent between choosing to be a relay or to switch to D2D, then:

E[U1(0, a2, a3)] = E[U1(1, a2, a3)], with:

{
E[U1(0, a2, a3)] = U1(0, 0, 0)p2 p3 + U1(0, 1, 0)(1− p2)p3 + U1(0, 0, 1)p2(1− p3) + U1(0, 1, 1)(1− p2)(1− p3)

E[U1(1, a2, a3)] = U1(1, 0, 0)p2 p3 + U1(1, 1, 0)(1− p2)p3 + U1(1, 0, 1)p2(1− p3) + U1(1, 1, 1)(1− p2)(1− p3)
(19)

- If player 2 is indifferent between choosing to be a relay or to switch to D2D, then:

E[U2(a1, 0, a3)] = E[U2(a1, 1, a3)], with:

{
E[U2(a1, 0, a3)] = U2(0, 0, 0)p1 p3 + U2(1, 0, 0)(1− p1)p3 + U2(0, 0, 1)p1(1− p3) + U2(1, 0, 1)(1− p1)(1− p3)

E[U2(a1, 1, a3)] = U2(0, 1, 0)p1 p3 + U2(1, 1, 0)(1− p1)p3 + U2(0, 1, 1)p1(1− p3) + U2(1, 1, 1)(1− p1)(1− p3)
(20)

- If player 3 is indifferent between choosing to be a relay or to switch to D2D, then:

E[U3(a1, a2, 0)] = E[U3(a1, a2, 1)], with:{
E[U3(a1, a2, 0)] = U3(0, 0, 0)p1 p2 + U3(1, 0, 0)(1− p1)p2 + U3(0, 1, 0)p1(1− p2) + U3(1, 1, 0)(1− p1)(1− p2)

E[U3(a1, a2, 1)] = U3(0, 0, 1)p1 p2 + U3(1, 0, 1)(1− p1)p2 + U3(0, 1, 1)p1(1− p2) + U3(1, 1, 1)(1− p1)(1− p2)
(21)

Then, the equilibrium probability vector p∗ = (p∗1 , p∗2 , p∗3) could be obtained by
solving the following system of equations:

E[U1(0, a2, a3)] = E[U1(1, a2, a3)],
E[U2(a1, 0, a3)] = E[U2(a1, 1, a3)],
E[U3(a1, a2, 0)] = E[U3(a1, a2, 1)].

(22)

5. Equilibrium Analysis for n-Person Game

Consider a two-stage decision problem of a fixed number n of devices inside a single
cell. At each step of the game, each of the players chooses an action. The result of each
play is a random payoff defined as the throughput of each player i ∈ N . Depending on
the devices choices of belonging to cellular or D2D group, each device earns a throughput
as follows:

- If all the devices are in cellular, then the throughput of each device is:

Thpc
i = Θc

i (γi) = ρ(1− Pout,c
i (γi)),

Pout,c
i = 1−

(
nc
∏

j=i+1
λj

)
e
−

γi,thσ2
N λi

Pid−α
i

nc
∏

j=i+1

(
λj+

γi,th Pjd−α
j

Pid−α
i

λi

) .
(23)
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- If there are Nc = {1, 2, ..., nc} devices in cellular and Nd = {1, 2, ..., nd} devices in
D2D, then each device i in cellular has:

Thpc,d
i = xiΘ

c,d
i (γi) = xiρ(1− Pout,cd

i (γi)),

Pout,cd
i = 1−

(
nc
∏

j=i+1
λj

)
e
−

γi,thσ2
N λi

Pid−α
i

nc
∏

j=i+1

(
λj+

γi,th Pjd−α
j

Pid−α
i

λi

) (24)

On the other hand, each device k in D2D group communicates with the follow-
ing throughput:

Thpd
k =

nc
∑

i=1
(1−xi)ρ

(
1−Pout,cd

i (γi)
)

Nd

(
1− Pout,d

k (γk)
)

,

Pout,d
k = 1−

(
∏

j∈Nd\{k}
λj

)
e
−

γthσ2
N λk

Pk,dd−α
k,d

∏
j∈Nd\{k}

λk+
γth fk,j Pj,dd−α

j,d

Pk,dd
−αd
k,d

λj


(25)

We assume that the fraction of throughput given from the cellular devices is equally
divided between devices in D2D.

- If all devices decide to switch to D2D communication, each device earns a regret,
because there is no link left with the BS so all transmissions fail:

Thpd
i = −ri (26)

At each transmission, each device has the choice of staying connected to the BS and
serves as a relay or instead switch to D2D communication. A device has the right to join
either the cellular or the D2D group whenever it wants to maximize its profit. Once in
the cellular group, all the devices serve as relays to the D2D-transmitters in the other
group. There are 2n different cooperation combinations between the n devices inside the
cell. Either all of them are communicating through cellular links, or all the devices choose
to join the D2D group, or some devices communicate through cellular and serve as relays
to others in the D2D group.

In the first stage, the decision of player i ∈ N , is to choose the mode of communication.
In the second stage, we investigate the throughput U(a) that players generate as a result of
cooperating in the second-stage game given that strategies a = (a1, a2, ..., an) were played in
the first stage. Then, let us denote U(a) as a second stage cooperative game. For example,
U(0, 0, ..., 0) is the case where all devices are in the cellular group while U(1, 1, ..., 1) is the
case where all devices choose to join the D2D group.

5.1. First Case

For each device i, ai is its binary decision variable, with ai ∈ {0, 1}. Let εk ∈ {0, 1}
be the decision of device k ∈ {1, ..., n} \ {i}. Ui(ai, εk) denotes the second stage profit
achievable by device i given its first stage action and other devices decisions.

The problem of device i can be written as follows:

max
ai∈{0,1}

Eεk(k∈{1,...,n}\{i})
[Ui(ai, εk)], (27)

where Eεk(k∈{1,...,n}\{i})
[Ui(ai, εk)] is the expected value of device i when choosing action ai

depending on the other devices decisions.
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Here the player i chooses the action ai that maximizes its second stage earning, with:

Ui(ai, εk) =


Thpc

i i f ai = 0 and εk = 0
Thpc,d

i i f ai = 0 and ∑ εk ≥ 1
Thpd

i i f ai = 1 and ∑ εk ≤ n− 2
−ri i f ai = 1 and εk = 1

(28)

5.2. Second Case

In this case, we aim to find the PNE and the MNE of the n-device game. The concept
of NE is used to describe a strategy as the most rational behavior by players acting to
maximize their gains.

Definition 1. The strategy profile A∗=(a∗i , a∗−i) is a pure Nash equilibrium if and only if:

∀ i ∈ N , ∀ ai ∈ Ai Ui(A∗) ≥ Ui(ai, A∗−i). (29)

Nonetheless, a finite game might not always have a PNE, but it always has a MNE.

Definition 2. A mixed action profile p∗ ∈]0, 1[ is a mixed Nash equilibrium if for each player
i ∈ {1, 2, ..., n},

p∗i ∈pi∈∆(Ai)
Ui(pi, p∗−i), (30)

where pi is a mixed action for player i and p−i is the profile of mixed actions for all players other than
i. ∆(Ai) is the set of all probability distributions over Ai, which is the set of player i pure strategies.

From the network designer, the solutions produced by the biform game framework
require complete network information, which may not scale well with the network size,
and might cause high overload. Thus, for networks with incomplete information, the de-
vices need to be self-organized and use decentralized learning algorithms to reach their
equilibrium strategies. This only requires a minimal signaling to the users, and no recom-
mendation from the BS. Part II [12] of this work covers the distributed schemes enabling the
devices to reach Nash equilibrium, only based on their local information and observations.

6. Performance Analysis

In this section, we evaluate the performance of the biform game using Mathworks
Matlab R2020a. For illustrative purpose, we perform simulations for the three-device case.
Figures are produced using the following setup: Pc

1 = 10 mW, Pc
2 = 30 mW, Pc

3 = 50 mW,
Pd = 5 mW, R = 1 Mbit/s, L = M = 1024 bits, γth = 40 dB, αc = αd = 3 and σ2

N = −116
dBm, d1 = 100 m, d2 = 300 m, d3 = 500 m, f = 10−5, x1 = x2 = x3 = 0.5, |h1|2 = 0.6,
|h2|2 = 0.5, and |h3|2 = 0.2. Figures 5–7 report the action that a device might choose to
maximize its expected utility depending on its belief on its competitors.
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Figure 5. Throughput of device 1 as function of its beliefs on the relaying probabilities of device 2
(y2) and device 3 (y3), both when relaying (a1 = 0) and not relaying (a1 = 1).
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Figure 6. Throughput of device 2 as function of its beliefs on the relaying probabilities of device 1
(y1) and device 3 (y3), both when relaying (a2 = 0) and not relaying (a2 = 1).
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Figure 7. Throughput of device 3 as function of its beliefs on the relaying probabilities of device 1
(y1) and device 3 (y3), both when relaying (a3 = 0) and not relaying (a3 = 1).

Figure 5 shows that when the strongest device 1 believes devices 2 and 3 have a
low chance to relay data, it has incentives to act as a relay to maximize its expected
utility. Meanwhile, it is more likely to communicate over a D2D link when it believes
its competitors are likely to serve as relays. We notice that the maximum throughput for
device 1 is attained when it acts as relay while the other devices have a high chance to
communicate through D2D. Here, it prevents earning regrets by being disconnected from
the mobile service and it gets rid of all interference from the other two devices. Moreover,
device 1 chooses to communicate through D2D to maximize its utility if it believes one of
its competitors might be a relay. This way, it gets rid of cellular interference and transmits
at lower power.

Figure 6 depicts the average throughput of device 2 while changing its beliefs on
the other devices willingness to relay. We notice that the relaying probability of device
2 increases when the relaying probability of the weakest device 3 decreases. This can be
explained as follows: device 3 may harm the second strongest device while transmitting
over cellular link, while it is indifferent about device 1 strategy. It switches to D2D when
the relaying probability of device 1 increases and that of device 3 decreases. Following this
behavior, device 2 is able to get rid of high interference in cellular, transmit at lower power,
use better RAN and experience satisfactory QoS brought by the strongest device.

Similarly, Figure 7 depicts the average throughput of the weakest device. When this
latter decides to serve as a relay, it will experience low QoS due to the long distance and
the bad channel gain leading to the BS. It also has to transmit with high power and share
its throughput with other devices via D2D. However, switching to D2D allows it to benefit
from a better channel quality, to transmit at lower power and to experience improved QoS
offered from the stronger relays. We notice that device 3 might experience high throughput
when the strongest device serves as a relay and device 2 uses D2D. In this case, device 1
gets rid of interference and perceives high throughput, meanwhile device 3 gets a fraction
of that throughput, resulting in a win-win scenario.
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7. Conclusions and Perspectives

In this article, we considered the uplink case of n devices, where each device chooses
whether to communicate through cellular (e.g., 5G/6G) or via D2D link to maximize its
throughput. Cellular devices use NOMA, whilst they may serve neighboring devices
using an orthogonal multiple access method (e.g., OFDMA/SC-FDMA). We formulated
the problem as a biform game: Step 1) the devices competed over two available radio
access technologies (cellular and D2D); Step 2) Devices connected to cellular cooperate
with other devices in order to provide access to available services. Next, we analyzed
the game pure/mixed equilibria. Simulation results show that D2D-relaying improves
the devices’ average throughput. The second part of this article [12] deals with imple-
menting distributed reinforcement learning to self-explore optimal strategies in a fully
distributed manner.
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Appendix A

Appendix A.1. Proof of Lemma 1

The proof is straightforward by applying the definition of pure Nash equilibrium.

- The action (0,0,0) is a PNE iff:

U1(0, 0, 0) ≥ U1(1, 0, 0) and U2(0, 0, 0) ≥ U2(0, 1, 0) and U3(0, 0, 0) ≥ U3(0, 0, 1)

- The action (0,1,0) is a PNE iff:

U1(0, 1, 0) ≥ U1(1, 1, 0) and U2(0, 1, 0) ≥ U2(0, 0, 0) and U3(0, 1, 0) ≥ U3(0, 1, 1)

- The action (0,0,1) is a PNE iff:

U1(0, 0, 1) ≥ U1(1, 0, 1) and U2(0, 0, 1) ≥ U2(0, 1, 1) and U3(0, 0, 1) ≥ U3(0, 0, 0)

- The action (0,1,1) is a PNE iff:

U1(0, 1, 1) ≥ U1(1, 1, 1) and U2(0, 1, 1) ≥ U2(0, 0, 1) and U3(0, 1, 1) ≥ U3(0, 1, 0)

- The action (1,0,0) is a PNE iff:

U1(1, 0, 0) ≥ U1(0, 0, 0) and U2(1, 0, 0) ≥ U2(1, 1, 0) and U3(1, 0, 0) ≥ U3(1, 0, 1)

- The action (1,1,0) is a PNE iff:

U1(1, 1, 0) ≥ U1(0, 1, 0) and U2(1, 1, 0) ≥ U2(1, 0, 0) and U3(1, 1, 0) ≥ U3(1, 1, 1)

- The action (1,0,1) is a PNE iff:

U1(1, 0, 1) ≥ U1(0, 0, 1) and U2(1, 0, 1) ≥ U2(1, 1, 1) and U3(1, 0, 1) ≥ U3(1, 0, 0)
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- The action (1,1,1) is a PNE iff:

U1(1, 1, 1) ≥ U1(0, 1, 1) and U2(1, 1, 1) ≥ U2(1, 0, 1) and U3(1, 1, 1) ≥ U3(1, 1, 0)

References
1. Sachs, J.; Wikstrom, G.; Dudda, T.; Baldemair, R.; Kittichokechai, K. 5G Radio Network Design for Ultra-Reliable Low-Latency

Communication. IEEE Netw. 2018, 32, 24–31. [CrossRef]
2. Aazhang, B.; Ahokangas, P.; Alves, H.; Alouini, M.S.; Beek, J.; Benn, H.; Bennis, M.; Belfiore, J.; Strinati, E.; Chen, F.; et al. Key

Drivers and Research Challenges for 6G Ubiquitous Wireless Intelligence (White Paper); 6G Flagship, University of Oulu: Oulu, Finland.
2019.

3. Alsharif, M.H.; Kelechi, A.H.; Albreem, M.A.; Chaudhry, S.A.; Zia, M.S.; Kim, S. Sixth Generation (6G) Wireless Networks: Vision,
Research Activities, Challenges and Potential Solutions. Symmetry 2020, 12, 676. [CrossRef]

4. Saad, W.; Bennis, M.; Chen, M. A Vision of 6G Wireless Systems: Applications, Trends, Technologies, and Open Research
Problems. IEEE Netw. 2020, 34, 134–142. [CrossRef]

5. Dang, S.; Amin, O.; Shihada, B.; Alouini, M.S. What should 6G be? Nat. Electron. 2019, 3, 20–29. [CrossRef]
6. Tariq, F.; Khandaker, M.R.A.; Wong, K.K.; Imran, M.A.; Bennis, M.; Debbah, M. A Speculative Study on 6G. IEEE Wirel. Commun.

2020, 27, 118–125. [CrossRef]
7. Driouech, S.; Sabir, E. Turning Competition Onto Cooperation in D2D Communications: A Quitting Game Perspective. In

Proceedings of the 2018 25th International Conference on Telecommunications (ICT), Saint Malo, France, 26–28 June 2018;
pp. 505–510.

8. Adnan, M.H.; Ahmad Zukarnain, Z. Device-To-Device Communication in 5G Environment: Issues, Solutions, and Challenges.
Symmetry 2020, 12, 1762. [CrossRef]

9. Attaoui, W.; Sabir, E. Combined Beam Alignment and Power Allocation for NOMA-Empowered mmWave Communications; Ubiquitous
Networking; Habachi, O., Meghdadi, V., Sabir, E., Cances, J.P., Eds.; Springer International Publishing: Cham, Switzerland, 2020;
pp. 82–95.

10. Do, D.T.; Nguyen, M.S.V.; Lee, B.M. Outage Performance Improvement by Selected User in D2D Transmission and Implementation
of Cognitive Radio-Assisted NOMA. Sensors 2019, 19, 4840. [CrossRef]

11. Singh, K.; Wang, K.; Biswas, S.; Ding, Z.; Khan, F.A.; Ratnarajah, T. Resource Optimization in Full Duplex Non-Orthogonal
Multiple Access Systems. IEEE Trans. Wirel. Commun. 2019, 18, 4312–4325. [CrossRef]

12. Driouech, S.; Sabir, E.; Ghogho, M.; Amhoud, E.M. D2D Mobile Relaying Meets NOMA –Part II: A Reinforcement Learning
Perspective. Sensors 2021, in press.

13. Pradhan, A.; Basu, S.; Sarkar, S.; Mitra, S.; Roy, S.D. Implementation of relay hopper model for reliable communication of IoT
devices in LTE environment through D2D link. In Proceedings of the 2018 10th International Conference on Communication
Systems & Networks (COMSNETS), Bangalore, India, 3–7 January 2018; pp. 569–572.

14. Yang, H.H.; Lee, J.; Quek, T.Q. Heterogeneous cellular network with energy harvesting-based D2D communication. IEEE Trans.
Wirel. Commun. 2015, 15, 1406–1419. [CrossRef]

15. Afzal, A.; Feki, A.; Debbah, M.; Zaidi, S.A.; Ghogho, M.; McLernon, D. Leveraging D2D communication to maximize the spectral
efficiency of massive MIMO systems. In Proceedings of the 2017 15th International Symposium on Modeling and Optimization
in Mobile, Ad Hoc, and Wireless Networks (WiOpt), Paris, France, 15–19 May 2017; pp. 1–6.

16. Altman, E.; Boulogne, T.; El-Azouzi, R.; Jiménez, T.; Wynter, L. A survey on networking games in telecommunications. Comput.
Oper. Res. 2006, 33, 286–311. [CrossRef]

17. Gu, W.; Zhu, Q. Stackelberg Game Based Social-Aware Resource Allocation for NOMA Enhanced D2D Communications.
Electronics 2019, 8, 1360. [CrossRef]

18. Driouech, S.; Sabir, E.; Bennis, M.; Elbiaze, H. A Quitting Game Framework for Self-Organized D2D Mobile Relaying in 5G.
In Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, UAE, 9–13 December 2018;
pp. 1–7.

19. Huang, J.; Yin, Y.; Zhao, Y.; Duan, Q.; Wang, W.; Yu, S. A game-theoretic resource allocation approach for intercell device-to-device
communications in cellular networks. IEEE Trans. Emerg. Top. Comput. 2014, 4, 475–486. [CrossRef]

20. Yang, C.; Li, J.; Semasinghe, P.; Hossain, E.; Perlaza, S.M.; Han, Z. Distributed interference and energy-aware power control for
ultra-dense D2D networks: A mean field game. IEEE Trans. Wirel. Commun. 2016, 16, 1205–1217. [CrossRef]

21. Lyu, J.; Chew, Y.H.; Wong, W.C. A stackelberg game model for overlay D2D transmission with heterogeneous rate requirements.
IEEE Trans. Veh. Technol. 2015, 65, 8461–8475. [CrossRef]

22. Li, Y.; Jin, D.; Yuan, J.; Han, Z. Coalitional games for resource allocation in the device-to-device uplink underlaying cellular
networks. IEEE Trans. Wirel. Commun. 2014, 13, 3965–3977. [CrossRef]

23. Zhang, Y.; Li, F.; Ma, X.; Wang, K.; Liu, X. Cooperative energy-efficient content dissemination using coalition formation game
over device-to-device communications. Can. J. Electr. Comput. Eng. 2016, 39, 2–10. [CrossRef]

24. Su, S.T.; Huang, B.Y.; Wang, C.Y.; Yeh, C.W.; Wei, H.Y. Protocol design and game theoretic solutions for device-to-device radio
resource allocation. IEEE Trans. Veh. Technol. 2016, 66, 4271–4286. [CrossRef]

http://doi.org/10.1109/MNET.2018.1700232
http://dx.doi.org/10.3390/sym12040676
http://dx.doi.org/10.1109/MNET.001.1900287
http://dx.doi.org/10.1038/s41928-019-0355-6
http://dx.doi.org/10.1109/MWC.001.1900488
http://dx.doi.org/10.3390/sym12111762
http://dx.doi.org/10.3390/s19224840
http://dx.doi.org/10.1109/TWC.2019.2923172
http://dx.doi.org/10.1109/TWC.2015.2489651
http://dx.doi.org/10.1016/j.cor.2004.06.005
http://dx.doi.org/10.3390/electronics8111360
http://dx.doi.org/10.1109/TETC.2014.2384372
http://dx.doi.org/10.1109/TWC.2016.2641959
http://dx.doi.org/10.1109/TVT.2015.2511924
http://dx.doi.org/10.1109/TWC.2014.2325552
http://dx.doi.org/10.1109/CJECE.2015.2469724
http://dx.doi.org/10.1109/TVT.2016.2602658


Sensors 2021, 21, 702 21 of 21

25. Baniasadi, M.; Maham, B.; Kebriaei, H. Power control for D2D underlay cellular communication: Game theory approach.
In Proceedings of the 2016 8th International Symposium on Telecommunications (IST), Tehran, Iran, 27–28 September 2016;
pp. 314–319.

26. Driouech, S.; Sabir, E.; Tembine, H. Self-organized device-to-device communications as a non-cooperative quitting game.
In Proceedings of the 2017 International Conference on Wireless Networks and Mobile Communications (WINCOM), Rabat,
Morocco, 1–4 November 2017; pp. 1–8.

27. Aliu, O.G.; Imran, A.; Imran, M.A.; Evans, B. A survey of self organisation in future cellular networks. IEEE Commun. Surv. Tutor.
2012, 15, 336–361. [CrossRef]

28. Chandrasekhar, V.; Andrews, J.G.; Muharemovic, T.; Shen, Z.; Gatherer, A. Power control in two-tier femtocell networks. IEEE
Trans. Wirel. Commun. 2009, 8, 4316–4328. [CrossRef]

29. Shahid, A.; Aslam, S.; Lee, K.G. A decentralized heuristic approach towards resource allocation in femtocell networks. Entropy
2013, 15, 2524–2547. [CrossRef]

30. Shahid, A.; Kim, K.S.; De Poorter, E.; Moerman, I. Self-organized energy-efficient cross-layer optimization for device to device
communication in heterogeneous cellular networks. IEEE Access 2017, 5, 1117–1128. [CrossRef]

31. Abera, T.; Brasser, F.; Gunn, L.J.; Koisser, D.; Sadeghi, A.R. SADAN: Scalable Adversary Detection in Autonomous Networks.
arXiv 2019, arXiv:1910.05190.

32. Gui, J.; Deng, J. Multi-hop relay-aided underlay D2D communications for improving cellular coverage quality. IEEE Access 2018,
6, 14318–14338. [CrossRef]

33. Lei, L.; Hao, Q.; Zhong, Z. Mode selection and resource allocation in device-to-device communications with user arrivals and
departures. IEEE Access 2016, 4, 5209–5222. [CrossRef]

34. Li, Y.; Song, W.; Su, Z.; Huang, L.; Gao, Z. A distributed mode selection approach based on evolutionary game for device-to-device
communications. IEEE Access 2018, 6, 60045–60058. [CrossRef]

35. Algedir, A.A.; Refai, H.H. Energy Efficiency Optimization and Dynamic Mode Selection Algorithms for D2D Communication
Under HetNet in Downlink Reuse. IEEE Access 2020, 8, 95251–95265. [CrossRef]

36. Asuhaimi, F.A.; Bu, S.; Nadas, J.P.B.; Imran, M.A. Delay-Aware Energy-Efficient Joint Power Control and Mode Selection in
Device-to-Device Communications for FREEDM Systems in Smart Grids. IEEE Access 2019, 7, 87369–87381. [CrossRef]

37. Liu, R.; Yu, G.; Qu, F.; Zhang, Z. Device-to-device communications in unlicensed spectrum: Mode selection and resource
allocation. IEEE Access 2016, 4, 4720–4729.

38. Yan, J.; Kuang, Z.; Yang, F.; Deng, X. Mode selection and resource allocation algorithm in energy-harvesting D2D heterogeneous
network. IEEE Access 2019, 7, 179929–179941. [CrossRef]

39. Li, J.; Lei, G.; Manogaran, G.; Mastorakis, G.; Mavromoustakis, C.X. D2D communication mode selection and resource
optimization algorithm with optimal throughput in 5G network. IEEE Access 2019, 7, 25263–25273. [CrossRef]

40. Li, J.; Feng, R.; Sun, W.; Chen, L.; Xu, X.; Li, Q. Joint mode selection and resource allocation for scalable video multicast in hybrid
cellular and D2D network. IEEE Access 2018, 6, 64350–64358. [CrossRef]

41. Islam, S.R.; Avazov, N.; Dobre, O.A.; Kwak, K.S. Power-domain non-orthogonal multiple access (NOMA) in 5G systems:
Potentials and challenges. IEEE Commun. Surv. Tutor. 2016, 19, 721–742. [CrossRef]

42. Ding, Z.; Lei, X.; Karagiannidis, G.K.; Schober, R.; Yuan, J.; Bhargava, V.K. A survey on non-orthogonal multiple access for 5G
networks: Research challenges and future trends. IEEE J. Sel. Areas Commun. 2017, 35, 2181–2195. [CrossRef]

43. Tabassum, H.; Ali, M.S.; Hossain, E.; Hossain, M.; Kim, D.I. Non-orthogonal multiple access (NOMA) in cellular uplink and
downlink: Challenges and enabling techniques. arXiv 2016, arXiv:1608.05783.

44. Brandenburger, A.; Stuart, H. Biform games. Manag. Sci. 2007, 53, 537–549. [CrossRef]
45. Summerfield, N.S.; Dror, M. Biform game: Reflection as a stochastic programming problem. Int. J. Prod. Econ. 2013, 142, 124–129.

[CrossRef]

http://dx.doi.org/10.1109/SURV.2012.021312.00116
http://dx.doi.org/10.1109/TWC.2009.081386
http://dx.doi.org/10.3390/e15072524
http://dx.doi.org/10.1109/ACCESS.2017.2651578
http://dx.doi.org/10.1109/ACCESS.2018.2796247
http://dx.doi.org/10.1109/ACCESS.2016.2577020
http://dx.doi.org/10.1109/ACCESS.2018.2874815
http://dx.doi.org/10.1109/ACCESS.2020.2995833
http://dx.doi.org/10.1109/ACCESS.2019.2924488
http://dx.doi.org/10.1109/ACCESS.2019.2956111
http://dx.doi.org/10.1109/ACCESS.2019.2900422
http://dx.doi.org/10.1109/ACCESS.2018.2871223
http://dx.doi.org/10.1109/COMST.2016.2621116
http://dx.doi.org/10.1109/JSAC.2017.2725519
http://dx.doi.org/10.1287/mnsc.1060.0591
http://dx.doi.org/10.1016/j.ijpe.2012.10.021

	Introduction
	Motivations & New Trends
	Our Contributions

	Related Work
	System Model
	Channel Model
	Average Throughput
	Biform Game Analysis

	Equilibrium Analysis for the Three-Player Game
	Channel Model
	Throughput
	Biform Game Analysis
	First Case
	Second Case


	Equilibrium Analysis for n-Person Game
	First Case
	Second Case

	Performance Analysis
	Conclusions and Perspectives
	
	Proof of Lemma 1

	References

