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Age-related macular degeneration (AMD) is the commonest cause of severe visual loss and blindness in developed countries among
individuals aged 60 and older. AMD slowly progresses from early AMD to intermediate AMD (iAMD) and ultimately late-stage
AMD. Late AMD encompasses either neovascular AMD (nAMD) or geographic atrophy (GA). nAMD is defined by choroidal
neovascularization (CNV) and hemorrhage in the subretinal space at the level of the macula. This induces a rapid visual
impairment caused by the death of photoreceptor cells. Intravitreal injection of anti-vascular endothelial growth factor (VEGF)
antibodies is the standard treatment of nAMD but adds to the burden of patient care. GA is characterized by slowly expanding
photoreceptor, and retinal pigment epithelium (RPE) degeneration patches progressively leading to blindness. There is currently
no therapy to cure GA. Late AMD continues to be an unmet medical need representing a major health problem with millions of
patients worldwide. Oxidative stress and inflammation are recognized as some of the main risk factors to developing late AMD.
The antioxidant formulation AREDS (Age-Related Eye Disease Studies), contains β-carotene, which has been replaced by lutein
and zeaxanthin in AREDS2, are given to patients with iAMD but have a limited effect on the incidence of nAMD and GA.
Thus, to avoid or slowdown the development of late stages of AMD (nAMD or GA), new therapies targeting iAMD are needed
such as crocetin obtained through hydrolysis of crocin, an important component of saffron (Crocus sativus L.), and norbixin
derived from bixin extracted from Bixa orellana seeds. We have shown that these apocarotenoids preserved more effectively
RPE cells against apoptosis following blue light exposure in the presence of A2E than lutein and zeaxanthin. In this review, we
will discuss the potential use of apocarotenoids to slowdown the progression of iAMD, to reduce the incidence of both forms of
late AMD.

1. Introduction

Age-relatedmacular degeneration (AMD) is the main cause of
blindness in the industrialized world with over 30million peo-
ple suffering from this disease [1]. In the US, the number of
patients is expected to increase from 9.1 million in 2010 to up
to 17.8million in 2050 [1, 2]. The situation is evenmore critical
in Europe, as it is estimated that by the end of 2020 almost 59
million Europeans will develop at least one form of the disease
[3]. Novel therapeutic strategies are needed to reduce disease

prevalence [1, 2, 4].AMDis a chronic disease thatmayprogress
slowly from early AMD to intermediate AMD (iAMD) and
ultimately late-stageAMD, either neovascular (nAMD)or geo-
graphic atrophy (GA). Although visual acuity under photopic
conditions remains good in the early stages of AMD, disease
impact on patients with iAMD is severe with a loss in quality
of life owing to poor visual acuity under low luminance condi-
tions that affects many aspects of normal life activities [5–8].
Moreover, the economic burden of AMD on society is very
high and will increase as the population ages [9, 10].
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Neovascular AMD is defined by choroidal neovasculari-
zation (CNV) and hemorrhage in the subretinal space at
the level of the macula. This induces the rapid death of pho-
toreceptor cells and then rapid loss of vision [11]. Currently,
three drugs targeting vascular endothelial growth factor
(anti-VEGF) are in use for nAMD. Two of them, ranibizu-
mab (Lucentis®, Genentech) and aflibercept (Eylea®, Regen-
eron), are approved for this indication. The third one,
bevacizumab (Avastin®, Genentech), is used off-label for
nAMD and is a cheaper and then a more cost-effective treat-
ment [12]. The efficacy of the three treatments administered
via monthly or as-needed intravitreous injections has been
shown in numerous studies [13]. However, undetected occult
CNV and/or incomplete compliance of patients omitting
some injections lead to suboptimal treatment efficacy [12].
Moreover, development of macular atrophy or fibrosis sec-
ondary to nAMD jeopardizes long-term visual acuity in these
patients [14, 15]. To improve treatment efficacy, quality of
life, and compliance of patients with wet AMD, long-term
antiangiogenic therapies or combination therapies are cur-
rently in development by several companies [13]. In addition,
based on the results of phase III clinical trials (HAWK and
HARRIER), brolucizumab (Novartis) has received market
authorization in the US and Europe under the name Beovu®
in the fall of 2019. Beovu® offers both greater fluid resolution
versus Eylea® and the ability to maintain eligible nAMD
patients on a three-month dosing interval immediately after
a three-month loading phase [16].

GA is characterized by slowly expanding lesions of photo-
receptors and retinal pigment epithelium (RPE) leading to
progressive retinal degeneration and dysfunction [17–19].
Severe and irreversible loss of central vision may result from
GA when the macula is involved. The recent results of several
clinical trials testing anticomplement strategies showed a
reduction of GA growth rate. The FILLY, NCT02503332 test-
ing Pegcetacoplan® (APL-2) from Apellis Pharmaceuticals
Inc., [20] and NCT02686658 using Zimura® from Iveric Bio
reported approximately a reduction by 30% of the growth of
GA. Another clinical trial (BEACON, NCT02087085) testing
brimonidine (Brimo DDS®), a neuroprotective molecule
developed by Allergan and now owned by AbbVie [21],
reduced GA growth by approximately 12%. These results
await confirmations by phase III clinical trials, and new ther-
apeutic options will not be available to patients until the
respective drug candidates are registered by US and European
authorities. It should also be noted that the extension of areas
of GA was not completely halted, and no visual acuity (VA)
gain was reported. Thus, even if these drugs become commer-
cially available, it is expected that GA will remain a major
unmet clinical need [17, 22]. Therefore, the development of
new drugs or alternative strategies able to entirely stop GA
progression is still required. Multiple factors have been
implicated in the evolution of iAMD and the development
of both late forms of AMD. These include age [23, 24] and
environmental factors (mainly smoking) [25, 26]. Genetic
factors are also involved in the pathology, the main one
being polymorphism in the factor H of complement (CfH),
which increases by 3- to 6-fold the risk of developing
AMD [27–30]. Other genetic polymorphisms have been

associated with increased AMD risk [2], including polymor-
phisms in the ARMS2/HTRA1 loci [31, 32]. ARMS2 poly-
morphism affects the function of retinal mitochondria,
while HTRA1 regulates transforming growth factor-β
expression involved in angiogenesis and extracellular matrix
deposition. A pivotal role for inflammation in iAMD and
both forms of late AMD has also been reported [33, 34].
The initial cause of inflammation and the subsequent retinal
destruction observed during AMD remain a subject of
debate [35]. It is most probably caused by oxidative stress,
which is recognized as a major risk factor in AMD develop-
ment [36–43]. Therefore, antioxidant and immunosuppres-
sive therapies are likely to be beneficial for patients with
iAMD and may reduce the incidence of GA and nAMD.
Here, we review existing knowledge on iAMD physiopathol-
ogy and treatment modalities and propose that apocarote-
noids, thanks to their very high antioxidant activity and
anti-inflammatory properties, could benefit patients with
iAMD and potentially reduce the incidence of late AMD.

2. Material and Methods

Although not a systematic review, relevant studies published
and available on PubMed up to the 7th of July 2020 were
searched for. Using Boolean operators (e.g., AND, OR), the
applied search terms included combinations of the following
key words: “AREDS”, “AREDS2”, “lutein”, “zeaxanthin”,
“saffron”, “crocetin”, “crocin”, “bixin”, “norbixin”, “annatto”,
“ocular”, “retina”, “macula”, “macular”, “age-related macular
degeneration”, “AMD”, “intermediate AMD”, “(anti)-
inflammatory”, and “(anti)-oxidant”. To minimise the risk
of omitting relevant studies, the reference lists of all eligible
papers were also manually checked. Only publications in the
English language were included. In addition, although nonex-
haustive, we searched for formulations of supplements
containing carotenoids and available for purchase on the web.

3. Results and Discussion

3.1. Intermediate AMD. IAMD can evolve towards the fast-
developing exudative form or the atrophic form of AMD or
some combination of these two endpoints (Figure 1) [44].
IAMD is characterized by the progressive accumulations of
lipid and protein waste between the Bruch’s membrane and
the basal side of the RPE and called drusen. In many patients
with iAMD, waste materials also accumulate and form Retic-
ular Pseudo-Drusen (RPD) between the apical side of the
RPE and the photoreceptor outer segment [45–48]. Rod pho-
toreceptors mediate “night vision” (scotopic visual process),
whereas diurnal (photopic) vision is mediated by cones
[45]. The first visual signs of iAMD are poor night vision
associated with the disappearance of rod photoreceptors
[45, 46, 48]. Visual tests used to follow the declining visual
functions during iAMD include dark adaptation (DA), scoto-
pic and/or mesopic microperimetry, and low-luminance
visual acuity (LLVA) [49]. In addition, changes in multifocal
electroretinogram (mfERG) response density and latency
[50] and retinal flicker sensitivity [51] are also used to follow
loss of vision in patients with mild to moderate AMD [52].
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Rod-related visual function depends upon unimpaired trans-
portation of nutrients and in particular vitamin A (the pre-
cursor of retinal, a key component of the visual pigment
rhodopsin) from the choroidal vasculature through RPE
cells up to the rod photoreceptors. It has been proposed that
drusen impairs this transport. In addition, RPD might also
disturb the close interaction between RPE cells and rods
that is necessary for the visual cycle to occur. It is therefore
not surprising that drusen and RPD are a major risk factor
for apparition of early visual deficits [53] and for evolution
of iAMD to late stage AMD (nAMD or GA) [54–58]. Strat-
egies attempting to slowdown the evolution of iAMD
towards late stages of the disease appear to be an interesting
option. At present, most medications for patients with
intermediate stage of AMD rely on dietary supplements
based on the Age-Related Eye Disease Studies: AREDS
and AREDS2 (Table 1).

3.2. AREDS/AREDS2 Formulations. The AREDS formulation
was developed empirically [59]. The effects of the antioxidant
AREDS formulation were analyzed in a blinded, randomized,
and controlled study on several thousand patients. The orig-
inal AREDS formulation (described in Table 1) contained β-
carotene (Figure 2(a)) and vitamin C, vitamin E, and zinc
among other components. Supplementation with AREDS
reduced the risk of developing late AMD by an estimated
25% (5 years incidence of late AMD decreased from 28% to
20%) [59]. However, treatment with AREDS over 8 years
did not entirely block iAMD progression, and a loss of vision
still occurred in patients. Moreover, β-carotene was reported
to increase the risk of developing lung cancer in cigarette
smokers [60]. Since then, β-carotene has been replaced by
the macular xanthophyll lutein (Figure 2(b)) and zeaxanthin

(Figure 2(c)) in the AREDS2 formulation (Table 1) [61].
AREDS2 supplementation appeared superior to the AREDS
formulation to reduce the risk of developing late AMD
[61]. Nevertheless, subsequent meta-analysis showed that
the benefits of antioxidants and of the AREDS/AREDS2 anti-
oxidative formulations were limited [4, 60]. Thus, the devel-
opment of an improved oral and safe treatment with better
efficacy on iAMD evolution is still needed and is the focus
of intensive current research.

Targeting oxidative stress is the rationale behind the
AREDS/AREDS2 protocols. β-carotene, lutein, and zeaxan-
thin (L/Z) are known for their antioxidant properties. In
the organism of mammals, carotenoids originate exclusively
from the diet [62, 63]. β-Carotene is rapidly cleaved into reti-
nol/vitamin A in the liver. Thus, ingested β-carotene is not
found in the eye [62, 63]. However, β-carotene exerts some
protective effects in AREDS supplemented patients, suggest-
ing that these effects are systemic. By contrast to β-carotene,
oxidized carotenoids including xanthophylls are not cleaved
in the liver. The xanthophylls (L/Z), which can be extracted
from marigold flowers (Tagetes erecta L.), are naturally pres-
ent in the mammalian retina and most particularly at the
level of the macula and fovea [62, 63]. As a result, L/Z are
macular pigments. The protective effects of L/Z appear to
be both systemic and local. The local action of L/Z, partly
depending on their ability to filter phototoxic blue light radi-
ation due to their maximum absorption around 460nm and
via their antioxidant activity, has been demonstrated [64].
Supplementation with L/Z augments their intraocular con-
centrations in animals [65]. Epidemiological evidence has
shown that patients with lower concentrations of macular
pigment optical density (MPOD) measurements are at a
higher risk of developing AMD. It was suggested that the
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Figure 1: Summary of AMD clinical evolution adapted from the Beckmann classification system [42] and treatment modalities. AMD: age-
related macular degeneration; CNV: choroidal neovascularization; GA: geographic atrophy; IVT: intravitreal injections; VEGF: vascular
endothelial growth factor.
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Table 1: Carotenoid content of various preparations as announced in the commercial advertisement (but not verified).

Product Supplier Carotenoid amount per day

AREDS1 original formula — B15

AREDS2 original formula — L 10, Z 2

AREDS2 Preser vision Bausch & Lomb L 10, Z 2

AREDS2 plus Zn free Eyepromise L 10, Z 10

AREDS2 with resveratrol Fortifeye vitamins L 10, Z 2, A 2

Advanced AREDS2 formula Vitalux L 10, Z 2

AREDS2 VitOptics L 10, Z 2

Macula-Z Horus Pharma L 10, Z 2

Nutrof Thea Pharma L 10, Z 2

Vitalux plus Alcon/Novartis L 6, Z

Lutein+zeaxanthin Piping rock L 20, Z 1

Senior vision care complex Piping rock L 5, Z 8μg

Ocuvite Bausch & Lomb L 5, Z 1

Suveal duo caps Densmore Laboratoire L 10, Z 2

Premium MariLut® Time Sheet L 10, M 10, Z 2

MacuGuard Life Extension L 10, M/Z 4, C

True vision Nature City L 10, M/Z 2, C 0.6

Eye protector Pure Synergy L 10, M/Z 5, A 2, C 3

Luteine crocine 20mg Essence pure L 20, Z 2, C 0.6

AffronEye® Pharmactive C 0.6

A: astaxanthin; B: beta-carotene; C: crocin; L: lutein; M: meso-zeaxanthin; Z: zeaxanthin. Unless otherwise indicated, amounts are in mg.
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Figure 2: The chemical structures of antioxidant molecules that are used or could be used for the treatment of the intermediate form of AMD.
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MPOD concentrations depend on the amount of these prod-
ucts in the diet and that ocular concentrations of L/Z would
be increased in a small cohort of patients from an AREDS2
ancillary study receiving L/Z supplementation [66]. How-
ever, MPOD was not modified after 6 months of lutein and
zeaxanthin dietary supplementation [67]. By contrast and
similarly to β-carotene, L/Z protective effects are also linked
to their systemic antioxidant properties. Indeed, daily supple-
mentation of L/Z in rats for 42 days significantly increased
the serum levels of catalase, an antioxidant enzyme, com-
pared to serum concentrations in the nonsupplemented rats.
Simultaneously, the total antioxidant capacity was increased
significantly by L/Z supplementation over placebo, indicating
that L/Z supplementation has a profound action on the sys-
temic antioxidant defense system [64]. Accordingly, the
serum concentration of L/Z was doubled in patients receiving
the AREDS2 formulation for several years compared to the
normal population without supplementation [61]. Addi-
tional components such as zinc, a cofactor of superoxide dis-
mutase (SOD; a key antioxidant enzyme), most probably
amplify the systemic antioxidant effects of the AREDS2 for-
mulation (Table 1). At the systemic and local levels, L/Z act
on several types of cells important for AMD physiopathol-
ogy. In vitro, lutein alone reduces the VEGF expression in
RPE cells [68] and also reduced expression of interleukin-
(IL-) 6, VEGF, and matrix metalloproteinase- (MMP-) 9 in
macrophages, which have been implicated in AMD [68,
69]. Similarly, production of the chemokine (C-C motif)
ligand 2 (CCL2) by microvascular endothelial cells and RPE
was downregulated by lutein in vitro [68]. Lutein also acti-
vates nuclear factor erythroid 2-related factor 2 (Nrf2), the
master gene of antioxidant response, in ARPE-19 cells, a
RPE cell line, in vitro [70]. Moreover, antiangiogenic and
anti-inflammatory effects were also observed in vivo in the
model of choroidal angiogenesis following laser-induced
CNV in mice treated with lutein showing reduced infiltration
by macrophages, reduced production of inflammatory cyto-
kines (IL-1-β, IL-12, and TNF-α) and chemokines (including
CCL2, CCL3, and CCL5), and limited neovascularization at
the site of laser impact [68, 71]. These effects are linked to
reduced NF-κB activation, due to inhibition of IκB-α degra-
dation [68]. Because oxidative stress and inflammation have
been implicated in AMD pathophysiology, these observa-
tions probably explain the reduced risk of AREDS2-treated
patients to develop late AMD and particularly nAMD [61].
In addition, in vivo supplementation of L/Z is also protective
in two animal models of retinal degeneration, which develop
a phenotype similar to the atrophy observed in patients’ eyes
with GA. In aged CCL2/CX3CR1-deficient mice on a Crb1rd8

genetic background, L/Z supplementation reduced ocular
accumulation of N-retinylidene-N-retinylethanolamine
(A2E, a major toxic component of drusen) [72]. L/Z also
inhibited retinal IL-1β, TNF-α, Cox2, iNOS, and VEGF
expression in vivo and preserved the retinal architecture
[72]. In the light-challenged albino Balb/c mice model of ret-
inopathy, supplementation with L/Z reduced the expression
of several endoplasmic reticulum and oxidative stress
markers and a lower number of apoptotic photoreceptors
[73]. These effects correlated with preserved retinal struc-

tures and functions measured by electroretinography (ERG)
[73]. Finally, in an in vivomodel of oxidative stress following
consumption of a high fat diet, oxidative damage, and
inflammation cascade was partially reversed by supplemen-
tation with L/Z, and this effect involved Nrf2 regulation
[74]. However, as said above, despite these convincing proofs
of efficacy in vitro and in vivo, interest in AREDS supplemen-
tation for humans appears limited. Indeed, despite a reduc-
tion of the incidence of formation of large drusen
(>125mm) and pigmentary abnormalities has been reported,
no effects were observed on overall incidence of iAMD
following intakes of pro-vitamin A carotenoids and dietary
vitamin E [75] or L/Z intake [76]. In another study, an effect
on early AMD incidence was only observed in women youn-
ger than 75 years old only [77], but nonsignificant effects on
incidence of late AMD were reported [76, 77]. Thus, the use
of other compounds with more potent antioxidative proper-
ties could improve the management of iAMD.

3.3. Crocins and Crocetin. Powder of saffron (Crocus sativus
L., Iridaceae) has been used in traditional medicine since
antiquity. Between 100,000 and 200,000 saffron flowers are
required to produce 1 kg of dry powder. Saffron contains
safranal and a mix of several antioxidant molecules derived
from β-carotene including crocin and crocetin. This review
focuses on the last two compounds. Crocin and crocetin are
also found in larger amounts in the fruits of gardenia (Garde-
nia jasminoides Ellis). Crocetin is a dicarboxylic 9,9′-diapo-
carotenoid (C20H24O4) (Figure 2(d)) derived from the
naturally occurring crocin, its digentiobioside (Figure 2(e))
[78]. Crocetin and the various isoforms of crocin (crocins)
are bioavailable following oral ingestion and are present in
the blood plasma in the form of native crocetin and mono-
and di-glucuronide crocetin conjugates [79], all having anti-
oxidative properties. Crocetin and crocins also have the
capacity to significantly absorb light at 256, 315, 423, and
449 nm and at 235, 324, 432, and 457nm, respectively [80].
Based on these properties, saffron components, crocins, and
crocetin could be beneficial for iAMD patients. Several
in vitro and in vivo studies testing the efficacy of saffron, cro-
cins, or crocetin in models reproducing pathophysiological
process of iAMD have been performed and are summarized
hereafter. In vitro, saffron extracts and its major components
display neuroprotective actions through several mechanisms.
For instance, crocin protects bovine and nonhuman primate
photoreceptors against cell death induced through strong
intensity illumination with blue or white light [81]. Preven-
tive protection by crocin is dose-dependent (EC50 = 30 μM)
and is associated with inhibition of caspase activity [82]. Sim-
ilarly, it has been shown that saffron partially preserves the
viability of mouse primary retinal cells and a photoreceptor
cell line (661W cells) exposed to toxic doses of ATP. In this
model, neuroprotection by saffron was associated with a
reduction of intracellular calcium increase induced by ATP
and was mediated through saffron action on the purinergic
P2X7 receptor [83]. In parallel, it has been shown in vitro
as well that crocetin reduces the effects of oxidative stress
induced by tert-butyl-hydroperoxide in the ARPE-19 cell line
[84]. Pretreatment of RPE cells with crocetin prevented
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apoptosis evidenced by lactate dehydrogenase release, intra-
cellular ATP depletion, and nuclear condensation [84]. Cro-
cetin preserved junctional and cytoskeleton integrity that are
essential for RPE functionality [84]. The neuroprotective
effect of saffron components could also be related to their
known anti-inflammatory properties. Retinal microglial cells
play critical roles in maintaining retinal homeostasis and
ocular immune and inflammatory responses. During AMD,
chronic microglial activation has been implicated in neuronal
degeneration through the release of proinflammatory cyto-
kines and neurotoxic factors. The in vitro effects of crocin
and crocetin on proinflammatory gene expression in acti-
vated BV-2 microglia cell line and primary microglia were
examined [85]. Both crocin and crocetin were shown to
inhibit lipo-polysaccharides- (LPS-) induced NF-κB activa-
tion, tumor necrosis factor-α (TNF-α), IL-1β, nitric oxide
(NO), and reactive oxygen species (ROS) production by rat
microglial cells [85]. Interestingly, amyloid-β accumulates
in drusen in the eyes of patients with AMD, and crocin has
been shown to reduce NO release from microglia stimulated
with interferon-γ and amyloid-β [85]. In a similar study, cro-
cins stimulated microglial phagocytosis, which is important
for retinal homeostasis, and significantly reduced gene
expression of IL-6 and CCL2 [86]. These authors also
reported that crocin inhibited iNOS gene expression and
NO production in LPS-challenged BV-2 microglia [86].
These results suggest that crocins and crocetin may provide
neuroprotection by reducing the production of various
neurotoxic molecules by activated microglia. Accordingly,
in vivo microglial activation in retinas of albino rats exposed
to light damage was reduced by saffron treatment [87]. In the
same experiments, Di Marco and coworkers reported that
saffron inhibited the MMP3 expression and activity, which
was associated with improved retinal structure [87]. These
animal studies, as well as others, confirm the neuroprotective
effects observed following saffron treatment. Indeed, oral
supplementation for 20 weeks with saffron in the model of
apoE−/− mice fed with a high-fat diet resulted in preservation
of retinal thickness when compared with non-supplemented
mice [88]. The outcomes of the study suggest the potential
neuroprotective role of saffron against retinal damage
induced by oxidative stress. Moreover, supplementation for
6 weeks with 1mg/kg/day of β-carotene or saffron preserved
retinal histology of 2-month-old albino rats exposed during
24 h to intense light (1000 lux) [89]. Interestingly, saffron
was more effective than β-carotene to preserve photoreceptor
functionality tested through electroretinography (ERG). This
suggested that saffron administration could preserve visual
function in iAMD patients and perhaps more efficiently than
the β-carotene-containing AREDS formulation. The effects
of saffron supplementation in humans with various ocular
disorders, including iAMD, have been reviewed recently
[90, 91]. In 2010, Falsini and coworkers reported a significant
improvement of visual function determined through mea-
sure of multifocal ERG (mfERG) in patients with iAMD
taking orally 20mg daily of saffron (representing 0.6mg of
crocetin) per day for three months [92]. A subsequent study
of the effects of long-term oral administration of saffron over
a period of 12 months by the same authors [93] reported sus-

tained improvement of mean fERG sensitivity and mean
visual acuity in patients with early AMD. More recently,
the efficacy and safety of three-month oral saffron supple-
mentation was assessed in a randomized, double-blinded,
and placebo-controlled crossover trial on 100 adults with
mild/moderate AMD. Unfortunately, saffron supplementa-
tion only moderately improved mean visual acuity and
mfERG, including in participants with AMD using AREDS
supplements concomitantly [50]. Nevertheless, a comparison
of long-term (29 months) supplementation with saffron
versus L/Z has shown that visual function (measured by
mfERG) remained stable in the saffron-treated group while
it had deteriorated in the L/Z-treated group [87] supporting
the benefit of saffron compared to the AREDS2 formulation.
This also suggests that other compounds with a higher anti-
oxidative potential than crocin and crocetin could potentially
be even more beneficial to visual function in the early stages
of AMD. In recent years, some dietary supplements contain-
ing crocins/crocetin in addition to L/Z have appeared on the
market (Table 1), but their use is limited by the lack of con-
vincing clinical trials data and the preponderant use of ARE-
DS/AREDS2 formulations.

3.4. Norbixin. 9′-cis-Norbixin is a 6,6′-di-apo-carotenoid
extracted from annatto (Bixa orellana) seeds. Norbixin
(Figure 2(f)) structure is close to that of crocetin. Norbixin
is used as a food colouring agent (E160b) [94]. Tolerability
of norbixin is well known, based on both animal and human
studies, and the safety data support the use of norbixin as a
food additive (with an acceptable daily intake of 0.3mg nor-
bixin/kg of body weight per day). It has been demonstrated in
cellular and animal models that norbixin limits the appear-
ance of symptoms similar to those observed during iAMD
in humans [95]. In vitro, norbixin preserved the survival of
primary cultures of porcine RPE cells challenged with A2E
in the presence of blue light illumination [95]. Interestingly,
it was shown that the effectiveness of norbixin in this
in vitro test was superior to the photo-protective effects of
L/Z and crocetin [95]. However, norbixin and crocetin effec-
tiveness in vitro and in vivo against endoplasmic reticulum
stress is similar [96]. In vivo, acute norbixin treatments of
albino Wistar rats and ABCA4-/-/Rdh8-/- double-knockout
mice exposed to intense light (Blue Light Damage (BLD)
model) protect retinal tissues and photoreceptor cells [95].
Similar results were observed in albino Balb/c mice exposed
to BLD [96]. In addition, supplementation of ABCA4-
/-/Rdh8-/- mice with a diet containing norbixin also pre-
vented the reduction of rod and cone photoreceptor electrical
activity measured by scotopic and photopic ERG amplitude,
respectively [95, 92]. This indicates that norbixin could
potentially preserve “night” and “day” visual acuity in
humans. Interestingly, norbixin reduced the uptake of A2E
by porcine RPE cells in vitro [95]. A2E accumulation is
observed during the early stages of AMD. Accordingly,
long-term in vivo administration of norbixin reduces the
ocular accumulation of A2E in ABCA4-/- and Rdh8-/- mice
[97], suggesting that norbixin could slowdown the subretinal
accumulation of A2E that is observed during iAMD. It was
further demonstrated in vitro that norbixin significantly
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reduced the production of VEGF and of several inflamma-
tory cytokines, such as IL-6 and IL-8, in porcine RPE cells
cultivated in the presence of A2E (V. Fontaine, M. Fournié,
E. Monteiro, T. Boumedine, C. Balducci, L. Guibout, M. Latil,
PJ. Dilda, J.-A. Sahel, S. Veillet, R. Lafont, S. Camelo, manu-
script posted on bioRxiv) [98]. These in vitro data confirm
the anti-inflammatory effects of norbixin observed in human
studies in vivo [99, 100]. In vivo, consumption of a high-fat
meal induces the production of the proinflammatory cyto-
kines IL-1, TNF-α, and IL-6 in human plasma, which can
be reduced by norbixin treatment [94]. Interestingly, nor-
bixin also reduces ROS production by ARPE-19 following
exposure to antimycin A-induced oxidative stress [101].
Conversely, in human plasma, norbixin elevated the levels
of the antioxidant glutathione and of glutathione peroxidase
in vivo [100]. In addition, oral norbixin administration to
humans following a high-fat meal reduced the plasma con-
centration of malondialdehyde (MDA) [100]. These observa-
tions are promising, since MDA level increases have been
observed during early stages of AMD [102]. Altogether, this
suggests that norbixin, through its antioxidative and anti-
inflammatory activity, may be beneficial to treat patients with
iAMD. Moreover, norbixin through inhibition of A2E accu-
mulation could slow or even stop the progression from
iAMD to late dry AMD and could preserve normal rod-
mediated “night vision” in iAMD patients. The safety and
efficacy of norbixin or related molecules should be evaluated
in future clinical trials in patients with iAMD. However, drug
development using norbixin and apocarotenoids in general,
as active principles, requires a better understanding of their
exact mode of action. We recently started to explore the
molecular clues explaining the antioxidant and anti-
inflammatory properties of norbixin and found out that it
modulates very precisely the activity of certain nuclear recep-
tors [98, 101]. Due to the pleiotropic effects of nuclear recep-
tors that have been implicated in AMD [103], this
observation supports the broad beneficial effects of norbixin.

4. Conclusion

There is no effective therapeutic strategy for the late form of
dry AMD, and intraocular treatments of nAMD are costly
and do not prevent long-term loss of vision. As both GA
and nAMD originate from iAMD, treating patients at this
early stage of the disease could potentially prevent the devel-
opment of late AMD. Since oxidative stress and inflamma-
tion appear to play an essential role in iAMD, the use of
therapeutic strategies is aimed at reducing oxidative stress,
and inflammation is potentially attractive. At present, pre-
scribing the antioxidant AREDS/AREDS formulations to
iAMD patients is the only available therapeutic strategy to
reduce late AMD incidence, but its effectiveness appears lim-
ited. Here, we described the potential use of apocarotenoids
such as crocin, crocetin, and norbixin, for long-term therapy
to slowdown the progression of iAMD towards late stages of
the disease. Developing such new and more effective treat-
ments for patientswith iAMDcould drastically reduce the inci-
dence of late forms of AMD in the general population and
then could reduce the burden for society as a whole. Indeed,

limiting the development of GA and nAMD will not only
benefit patients by improving their quality of life but also
provide “peace of mind” to the healthy and caregivers. It is
also expected that development of such oral drugs will reduce
costs to healthcare providers if it becomes the preferred treat-
ment of patients with the intermediate form of AMD.
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