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Summary 

Maintaining the balance between costs and benefits is challenging for species living in complex and 

dynamic socio-ecological environments, such as primates, but also crucial for shaping life history, 

reproductive and feeding strategies. Indeed, individuals must decide to invest time and energy to obtain 

food, services and partners, with little direct feedback on the success of their investments. Whereas 

decision-making relies heavily upon cognition in humans, the extent to which it also involves cognition in 

other species, based on their environmental constraints, has remained a challenging question. Building 

mental representations relating behaviours and their long-term outcome could be critical for other 

primates, but there is actually very little data relating cognition to real socio-ecological challenges in 

extant and extinct primates. Here, we review available data illustrating how specific cognitive processes 

enable(d) modern primates and extinct hominins to manage multiple resources (e.g. food, partners) and 

to organize their behaviour in space and time, both at the individual and at the group level. We 

particularly focused on how they overcome fluctuating and competing demands, and select courses of 

action corresponding to the best possible packages of potential costs and benefits in reproductive and 

foraging contexts. 

  



 

 

Introduction 

Understanding the balance between costs and benefits is a central research goal of economists, 

behavioural ecologists and paleoanthropologists. By analogy with economical markets, biological 

markets refer to the exchange of commodities (e.g. food resources and services such for example 

grooming) between individuals belonging (or not) to the same species [1]. In that frame, individuals 

choose among a number of potential partners or between resources of differing values based on their 

expected net benefits (e.g. feeding or reproductive benefits in terms of energy input or fitness 

advantage), given their expected costs (e.g. distance travelled and energy expenditure to reach the 

partner or the resource, and the associated risks and dangers). The exchange of commodities is 

determined by the law of supply and demand, and depends upon intrinsic (e.g. physiology) and extrinsic 

(e.g. environmental, social) factors [2-3]. But beyond the analogy with financial markets, one can 

wonder what are the behavioural strategies and the actual mechanisms involved in decisions in animals. 

For all animal species, decision-making implies identifying the best course of action given all the 

available alternatives, to optimize the costs and the benefits linked to a particular behaviour in a 

particular context. But the underlying mechanisms regulating decision-making could take a variety of 

forms, ranging from a set of simple behaviours such as reflexes to critical environmental events (stimuli) 

to high-level cognitive representations of potential actions and their consequences. All species display 

reflexes that enable them to avoid predators or potentially costly actions, and to approach potential 

sources of food or sexual partners [4]. These reflexes are thought to have evolved in order to provide 

optimal behavioural responses in relatively stable socio-environments, in which they could be sufficient 

to enable approaching an optimal trade-off between costs and benefits. But, such stereotyped 

behavioural responses would probably not be sufficient for species living in complex and rapidly 

changing socio-environments. For such species, actions are most probably also controlled by executive 

processes, which enable individuals to organize their behaviour in space and time.  By contrast with 

reflexes, these behaviours [5] are modulated by a cognitive representation of the goal, which includes 

the outcome value. 

In humans, it is generally accepted that decision-making involves computing the value of distinct options 

using cognitive processes, and the resulting choice consists in maximizing the benefits/costs ratio [6-7]. 

These processes include computing the options’ value, episodic representation and memory (i.e. the 

ability to recall specific events in the past), long-term planning (i.e. the capacity to mentally envisage its 

own needs in the future, and to act now to maximize the chance that they can be met), executive 

control (i.e. a flexible and goal-dependent control of behaviour, overriding reflexive responses), and 

transitive inferences (i.e. a form of deductive reasoning allowing to derive a relation between items that 

have not been explicitly compared before) [6-10]. But the extent to which other species use such 

cognitive processes remains unclear (e.g. [11-14]). Moreover, understanding the variability of the 

cognitive processes that are mobilized across species showing distinct socio-ecological features still 

remains a challenging issue. 

Several elements suggest that primates (both modern and extinct species) are good models for 

understanding the variability in the cognitive processes associated with decision-making over a long-



 

 

time frame. Indeed, since most primate species live in complex socio-environments, behaviours related 

to foraging, socializing and reproduction all involve complex decisions contingent on the environmental 

context [15], where potential costs and benefits include numerous parameters. Moreover, as long-lived 

animals, primates (especially gregarious species) have to deal with long-lasting social interactions that 

can incur delayed benefits and requires evaluating other individuals over a long time. Indeed, when 

competing or cooperating with one other, social animals must make rapid, adaptive decisions based not 

only on the current behaviour of their social partner or competitor, but also on the history of their past 

interactions with those individuals and those individuals' allies and kin [16]. Thus, at least at this general 

level, the socio-ecological system appears complex enough to require cognitive processes, which 

provide the behavioural flexibility that enables primates to respond optimally to rapidly changing 

constraints. Thereby, natural selection should be favoring species/individuals that possess the cognitive 

skills allowing them to flexibly adapt to changing environments and to make rapid decisions about 

when/whether to forage/mate/socialize and with whom. 

Our aim here is to provide concrete elements of behavioural ecology and paleoanthropology supporting 

the idea that several primate species could use cognitive skills to make complex decisions, needed to 

overcome specific socio-ecological challenges. In our conceptual frame, the relative development of 

these cognitive processes across species should be directly related to the nature and the extent of socio-

ecological challenges. Thus, rather than trying to examine directly the expression of cognitive processes 

across hominins and other primates, we will consider some of the socio-ecological conditions that might 

require these processes, and will use a comparative approach to discuss the extent to which different 

primate species (both modern and extinct) could rely upon cognitive processes, rather than reflexes, to 

make decisions about the ratio between costs (e.g. energy expenditure, dangers, risks) and benefits (in 

terms of food, services and sexual partners).  

We will consider the cost-benefit perspective of a range of behaviors relevant to hominins and other 

primates living in different socio-ecological contexts that could promote or constrain the occurrence of 

these economic behaviours. We will tackle this complex regulation of costs and benefits at two levels, at 

the individual level (i.e. individual decisions based on the sensory environment and individual 

characteristics) and the collective level (i.e. decisions made by a group of individuals that increases their 

beneficial outcome relative to acting alone (cooperation) or could result in unbalanced costs/benefits 

(competition)). For this, we will present the possible cognitive and physiological mechanisms (neural and 

endocrine) involved in two detailed examples of economic strategies, from actual and extinct 

populations, used to balance costs and benefits at the individual level in the context of reproduction 

(e.g. mating decisions) and at the collective level in the context of foraging (e.g. hunting). With this 

review paper, we aim at illustrating the complexity and diversity that can be found in the primate order 

when making adaptive decisions related to the optimization of benefits and costs. 

BALANCING COSTS AND BENEFITS AT THE INDIVIDUAL LEVEL 

Reproductive strategies and mating decisions 



 

 

Differential costs/benefits trade-offs should lead individuals to allocate their time, energy, and effort to 

activities in ways that increase their fitness, so that they evolved conditional strategies guided by 

environmental cues. In the case of sexual activities, mating strategies involve multiple behavioural 

tactics, i.e. specific actions in which individuals will engage when pursuing a given strategy. These 

strategies will influence how and when individuals select mates, the proportion of time and energy they 

invest in those activities (vs. others like foraging), and how much mating effort and parental effort they 

spend. In those particular cases (mating vs. foraging; parenting vs. mating effort), the two 

“commodities'' can be considered as two options, for which both availability and value fluctuate in time. 

These two options are particularly competing in species where conception peaks occur during periods of 

high fruit availability (e.g. sifakas (Propithecus spp.), orangutans (Pongo spp.) [17]) or where mating is 

strictly seasonal (e.g. Japanese macaques (Macaca fuscata) [18]; Assamese macaques (Macaca 

assamensis) [19]), which means that if an individual fails to mate during one mating season, his 

reproduction is delayed by an entire year (i.e. a greater impact on fitness than in non-seasonal species). 

By analogy with food, for which value depends (negatively) upon availability [20], we expect an 

influence of females ’availability and monopolization on male’s mating decisions and an influence of the 

operational sex ratio (i.e. the ratio of the number of fertile adult males to the number of potentially 

fertile females in a group at a given time) on the choosiness of females on the mating market. 

Moreover, rewards are devalued by the costs of waiting or physical energy necessary to obtain them 

[21], such that the amount of time and/or energy spent for the search of a(nother) partner, together 

with the increased predation risks during searches and investment in the assessment of the potential 

partners, imply a significant amount of effort that individuals must make in order to mate. 

This has two critical implications: individuals should choose mates not only based on their potential 

benefits, such as high reproductive quality and dominance status, but also based on potential costs 

(delay, effort, etc.). Individuals should thus be able to dynamically and flexibly integrate information 

about these potential benefits and costs and generate an appropriate decision rule. Given the 

complexity of social interactions in primates, a significant part of this information implies high-level 

cognitive representations because it is not directly explicit [6-7, 22]. For example, choices should be 

based on the recognition of other individuals’ relative dominance ranks and social relationships, but also 

on the nature and quality of recent interactions, the value of particular partners and perhaps even other 

individuals’ intentions [23]. Thus, it seems that mating decisions are unlikely limited to reflexes to simple 

stimuli and presumably involve cognitive processes. In laboratory settings, the exertion of cognitive 

control (to overcome reflexes and obtain a more costly but more favourable reward) implies a specific 

set of prefrontal cortical structures including the dorso-lateral prefrontal cortex and the anterior 

cingulate cortex [8-10]. Thus, it is likely that the relative development of these brain structures across 

species scales with the amount of cognitive control associated with mating. Testing this hypothesis 

would require comparing the relative size of these brain regions across species characterized by distinct 

levels of mating-associated costs. For example, these structures should be more developed in species for 

which breeding is seasonal, since seasonality implies more temporal constraints on the general 

organization of behaviour. Along the same lines, these structures should be more developed in species 

displaying costly behaviours, i.e. paying short-term costs to allow a long-term benefit for reproduction 

(e.g. mate guarding, see below). Indeed, paying immediate costs for later benefits (delay discounting, 



 

 

typically) is known to require cognitive control and prefrontal cortex activation in laboratory settings [8-

10]. But beyond these general principles that apply to both sexes, each sex must make rapid and 

adaptive mating decisions depending on the specific constraints that it faces. 

THE PERSPECTIVE OF MALES 

Primate males constantly need to make mating decisions which imply mitigating the costs associated 

with mating activities (e.g. physiological and physical costs: intra-sexual competition and associated 

aggressions, increased vigilance, altered travel and grouping patterns, chronic stress and reduced 

feeding time or efficiency, mate guarding [24-27]) and increasing the benefits (i.e. achieving a higher 

reproductive success). Male mating tactics in general, and mate guarding decisions in particular, vary in 

both costs and benefits and are influenced by individual features, such as competitive ability or 

energetic status, and by contextual factors, such as reproductive seasonality, the number and quality of 

sexually-available females, the number of competitors, and food availability [28]. Thereby, males of 

seasonal breeding species can most likely afford to engage fully in stressful intra-sexual competition and 

female guarding over a short period of time without facing the high risk of exposure to chronic stress. In 

contrast, males of species with unpredictable timing of reproduction are more likely to face long-term 

exposure to physiological stress and may thus have evolved an “incomplete female monopolization 

strategy” in order to limit this cost [29]. In cases where ecological pressures are very high (territory 

defence, predation [19]), i.e. making the male unable to guard females effectively, mate-guarding 

behaviours can even be totally absent. Moreover, a high female cycle synchrony will limit the possibility 

of mate guarding and mating all females during a short period of time, just as the male’s sensory 

abilities to discriminate the timing of ovulation within a cycle (e.g. [18, 30]) or the reproductive potential 

of a female will affect mate guarding activity and mating success. Food availability is also expected to 

influence the decisions to engage or not in costly mate guarding behaviours. In a context where males 

trade-off feeding time against vigilance time (which is energetically demanding and stressful, since 

mental effort is costly [8-10]) to monitor females, it is also expected that males would make the decision 

to favour energetic needs over mate guarding investment in period of food shortage (e.g. [31]), in order 

to prevent an exposure to chronic energetic stress. Finally, rank is also known to influence mate 

guarding behaviours, and in a context where the alpha male monopolizes females, a balanced decision-

making for subordinate males would consist of either using sneaky copulations (which presumably 

involves metacognitive processes) or giving up copulations during the ovulation window until 

opportunities of mating increase again (which are probably associated with a decrease in fertilization 

success). 

The underlying physiological mechanisms regulating male socio-sexual behaviours, and particularly mate 

guarding behaviours, seem to involve temporal fluctuations in androgen levels, with the “challenge 

hypothesis” being broadly used to conceptualise those relationships [32-33]. For instance, it has been 

shown that, in a breeding context, androgen levels increased during consortships (e.g. savanna baboons 

(Papio cynocephalus) [34]; chacma baboons (Papio ursinus) [35]), in the presence of fertile females 

(white-faced capuchins (Cebus capucinus) [36]; chimpanzees (Pan troglodytes) [37]), and correlated 

positively with the occurrence of mate guarding behaviour (e.g. savanna baboons [34]; long-tailed 



 

 

macaques (Macaca fascicularis) [38]). Moreover, a revision of the “challenge hypothesis” predicts a 

stronger androgen response to challenges associated with high fitness benefits [39], which is the case 

for mate guarding that has been shown to significantly increase male reproductive success in a number 

of primate species, especially for high-ranking individuals (rhesus macaques (Macaca mulatta) [40]; 

long-tailed macaques [41]; Japanese macaques [42]; mandrills (Mandrillus sphinx) [43]). This is 

particularly true in species where there is a high level of monopolization of females (e.g. chimpanzees, 

savanna baboons, mandrills, long-tailed macaques, white-faced capuchins [36, 41, 43]), i.e. species in 

which being a high-ranking male provides a substantial reproductive advantage and in which, as a 

consequence, males challenge other males to achieve high ranks. In this case, individual males may 

further optimize their competitive abilities by raising their androgen levels (which facilitate the 

expression of aggressive behaviours [44] and enhance muscle performance) above those of their 

conspecifics only when the reproductive benefits of doing so are high enough and outweigh the 

potential costs of elevated androgen concentrations (e.g. physiological costs such as the down-

regulation of immune function, increase in metabolic rates, energetic costs and increased predation risk 

[33]). Elevated androgen levels during mate guarding might also be beneficial as they enhance males' 

abilities to monitor females, the efficiency of vigilance [29], and help in sustaining directed attention 

[44]. Finally, an increase in androgens promotes sperm production [25], which in turn enhances the 

chance for the mate guarding male to fertilize the guarded female. Collectively, it seems that elevated 

androgen levels during mate guarding increase the fitness benefits derived from this behaviour, but 

these benefits will also depend on the quality of mating opportunities available, i.e. on female 

reproductive and social value (strength of female-male bonding) and on female’s mating preferences 

(see below).  

Males are predicted to allocate their mating effort toward the most valuable females, with males 

preferentially mating with high-ranking and/or parous females (who have a better access to food 

resources and often produce more offspring and offspring of better quality [45-46]) (e.g. long-tailed 

macaques [31], chimpanzees [47]; mandrills [48]; savanna baboons [49]; Japanese macaques [18]). In 

some species, males also exhibit mating preferences towards females with whom they have strong 

social bonds (see below, “friendships”), independent of female rank, parity or fertility status (e.g. 

savanna baboons [49]; rhesus macaques [50]; Japanese macaques [51]). Besides biasing their mate 

choice toward certain females, males of several species also seem to modulate their investment 

according to the likelihood of ovulation/conception (long-tailed macaques [52]; chacma baboons [53]; 

Japanese macaques [18]; mandrills [43]; white-faced capuchins [36]). The concentration of mating effort 

to the time when fertilization is most probable might be a way of conserving energy and limiting energy 

expenditure, especially in species where there are frequent ejaculations, which are costly to produce 

[54]. However, the question of whether males do act in a manner indicating that they have the ability to 

make mating choices based on ovulatory/conceptive probabilities still remains to be investigated. 

Similarly, whether male primates have the cognitive abilities to track the fertility status of several 

females simultaneously while mate guarding remains to be explored. This also leads to questions about 

what explicit cues males might be using to track female reproductive status, and to what extent they 

rely upon mental representations (rather than explicit cues) to infer the female reproductive value. 

Moreover, even if physiological changes (e.g. hormonal levels) are likely influencing mating decisions, 



 

 

the relative influence of these physiological processes on reflexes vs. cognitive processes also remains 

an open question.  

In conclusion, males continuously adjust their mating decisions to maximize the benefits vs. the costs. 

The more these decisions rely upon integrating a multitude of socio-ecological factors, the more they 

should rely upon cognitive functions, which enable flexible planning and overcome reflexes to simple 

stimuli. 

THE PERSPECTIVE OF FEMALES 

As discussed above, evolution should favour male mating decisions such that those decisions bring 

benefits both at proximate (reduced costs of mating activity) and ultimate (higher reproductive value) 

levels. This also, and even more, applies to females, because they are usually the sex that bear higher 

reproductive costs [55], and hence, they should be more selective in their mating decisions. Moreover, 

because female primates have slow life histories, long investment period and produce relatively few 

offspring, mate selectivity is expected to be relatively high in this order [56], but with higher sexual 

dimorphism and higher reproductive skew leading to a decreased role for female mate choice (e.g. 

greater scope for direct female choice in rhesus macaques vs. mandrills for example). Female mating 

decisions are indeed constrained by male aggression and sexual coercion ([57]: forced copulation, 

harassment (repeated attempts to copulate inducing eventual female submission), intimidation 

(physical punishment of female refusals to mate increasing the likelihood of matings in the future) and 

mate guarding), especially in male-dominant species such as baboons or chimpanzees. Sexual coercion is 

often a long-term strategy that achieves its goal by manipulating the future, rather than simply the 

immediate behaviour of the victim [58]. Such coercion imposes costs on females, in terms of energy 

spent to escape from males and in terms of increased physiological stress [59]. Trading these costs 

implies that females will compete for mate quality (and/or number) or for other benefits, such as 

protection or increased access to resources [60]. Such a scenario may be particularly relevant if sexual 

(e.g. “good quality” mates) and non-sexual (e.g. food, social benefits) resources are limited.  

Females can mate promiscuously, allowing sperm competition and/or cryptic female choice to operate 

(review in [54]). Alternatively, females may exert choice for mate directly by mating selectively. Females 

can also follow a mixed strategy of promiscuity and selective mating (i.e. mating with multiple males 

throughout their mating period but with different mating rates between males during the fertile period). 

The proportion of promiscuous and selective mating undertaken by a female within a mating period is 

most likely shaped by trade-offs between costs and benefits (see [61] for discussion). Thereby, if 

females can discriminate males based on heritable traits conferring benefits to offspring, then females 

will be expected to mate exclusively with the best males. However, if these advantageous and heritable 

traits are associated with the males’ sperm, it is unlikely that females will identify individual males’ 

quality and, in this context, females are predicted to mate promiscuously so that sperm from various 

males will compete for fertilization, with possible benefits such as a reduced risk of infertility, increased 

protection of offspring against predators, increased investment to offspring by multiple males and 

genetic diversity. 



 

 

When females exert direct (i.e. precopulatory) choice, male traits that females might select for in a mate 

are dominance rank, unfamiliarity (for avoidance of infanticide or inbreeding), and sexual ornaments 

and weapons (badges of status [25]). Female choice of high-ranking males is predicted, for example, in 

species when there is a risk of male infanticide (e.g. chimpanzees), with the high-ranking male being 

able to provide the best defence of the offspring. However, in species vulnerable to infanticide, 

unbiased promiscuity (and longer receptive period) could also act as a counterstrategy to confuse 

paternity [62] and protect the offspring. 

Besides social rank, females can also base their mating decisions on sexually dimorphic male ornaments, 

such as the red face and genital sex skin in mandrills and Japanese macaques, the cheek flanges of 

orangutans (Pongo spp.), enlarged noses of proboscis monkeys (Nasalis larvatus), etc. (see [25]). Some 

of these testosterone-dependent traits (e.g. nose size in proboscis monkeys [63], face redness in 

mandrills [64], darkness of chest stain in sifakas [65]) have been suggested to serve as advertisements to 

females in their mate selection and to influence female preferences, with females preferring for 

instance redder/darker males (rhesus macaques [66]; mandrills [67]). Using such traits could enable 

mating decisions to be achieved by reflexes, but since these decisions also involve several social 

components, cognitive processes are likely at play to enable efficient decisions. 

Females might also select a male based on the bonds they have created with him, also called 

“friendships” (i.e. close spatial proximity, frequent affiliative behaviour and low rates of aggression 

between males and non-fertile or lactating females [49, 68]). These strong ties have been reported in a 

number of cercopithecine primates (e.g. olive baboons (Papio anubis) [69]; Barbary macaques (Macaca 

sylvanus) [70], Assamese macaques [71]). These male-female bonds may represent a form of male 

parenting effort enhancing the survival of female’s progeny. Indeed, females will get direct benefits such 

as protection of their offspring against harassment by other females (yellow baboons [72]), offspring 

care and access to food resources. These female benefits can be of particularly high value in species in 

which feticide and/or infanticide are important sources of mortality (e.g. chacma baboons [73]; yellow 

baboons [74]), but also in species in which infanticide is rare, as males may protect both mothers and 

infants from predation or non-lethal harassment by conspecifics [68, 72]. A recent study in olive 

baboons also showed that females’ ties to the sires of their current infants often persisted after they 

resumed cycling which suggested that males may continue to provide benefits after infant’s weaning 

[75]. For the male friend, the benefits that can be obtained could consist of a) using their friends’ 

offspring as buffers against attacks from other males, b) receiving grooming which confers both health 

and social benefits and could be traded (as a commodity in biological markets [76]) in exchange for itself 

or for other services, c) increasing their attractiveness as mates and gaining additional matings 

(presently or in the future) with other females who observe his behaviour [77], d) in some cases, having 

higher chances of copulating with his friend and siring the friend’s next offspring when she will resume 

cycling (“care-then-mate” hypothesis proposing that close ties between males and females represent a 

form of male mating effort [70, 75]; but see also [71, 72]: ties to lactating females did not predict male 

consort success or the probability of siring the female’s next infant). This last case (d) assumes that 

females prefer to mate with males that behave benevolently towards them and their current offspring; 

it also assumes that females can express active mate choice, i.e. that it is limited to species in which the 



 

 

extent of male reproductive skew is low (e.g. olive baboons). This means that individuals may choose 

whom to mate with based on benefits they got in the recent past or expect to get from this behaviour. 

This also means that males can identify their own offspring with some degree of accuracy (i.e. paternal 

kin recognition). Thereby, the male’s decisions to form a friendship with a particular mother-infant dyad 

could be based on phenotype-matching or behavioural proxies that are reliably associated with 

paternity [78], such as the mating history or more generally the strength of the relationship with the 

female around the time of conception to gauge their probability of paternity ([79]: “males may benefit 

by investing preferentially in those infants that they are most likely to have fathered”). However, 

friendships also incur some opportunity costs for males, in that it may reduce the current likelihood of 

mating with other females. Moreover, favours are not immediately traded but are rather based on long-

term equitability that may, in fact, be violated in favour of one partner over short periods, but which is 

tolerated by the other partner by virtue of the long-term benefits. Therefore, males should make 

decisions about pursuing or giving up friendships, taking into account the costs associated with those 

aborted mating opportunities while representing putative long-term benefits associated with potential 

future copulations with his female friend.   

At the physiological level, the underlying mechanisms regulating female socio-sexual behaviours involve 

glucocorticoid hormones (since having a male friend could buffer lactating females from the stress 

associated with heightened infanticide) and temporal fluctuations in oestradiol and progesterone levels, 

with oestradiol enhancing sexual behaviour and progesterone having inhibitory effects [25]. In 

strepsirhines, there is a behavioral estrus period around ovulation to which mating is restricted, with a 

strict hormonal control. In haplorhines, sexual receptivity (female’s willingness to accept the male’s 

mounts and to facilitate intromission and ejaculation during copulation) is no longer under strict 

hormonal control and mating may occur throughout the cycle. The extent to which variation in sexual 

hormone levels will be associated with female proceptivity (i.e. active male solicitations), receptivity and 

attractivity (i.e. female’s value as a sexual stimulus) will vary across species and across social contexts 

[18]. In nearly all species, sexual behaviours increase in the periovulatory period relative to the non-

fertile periods of the cycle, though the magnitude of this change may be subtle or dramatic. 

Nevertheless, even if the female ability to mate is no longer under hormonal control, its desire and then 

its decision to mate can be an important regulator of sexual behaviour, with females being able to 

exhibit more flexible responses to social and environmental contexts. For instance, copulations outside 

of the fertile period (and even during pregnancy, i.e. when there is no chance of conceiving) can be 

viewed as part of female sexual strategies to confuse paternity [80]. These post-conceptive sexual 

behaviours are expected to occur more often in species vulnerable to infanticide (e.g. Hanuman langurs, 

chimpanzees) than in species with low infanticide risks and/or living in harsh environments (e.g. 

Japanese macaques). In this latter species, females could indeed benefit from stopping copulations 

during pregnancy in order to avoid wasting energy on non-reproductive mating, decrease male 

harassment, and free resources to allocate to fetal growth (and not to mating costs). For males, giving 

up copulations during pregnancy could also provide some benefits as they do not waste energy in sperm 

production or in active mate-guarding of pregnant females. 



 

 

The cognitive mechanisms underlying partner choice and socio-sexual behaviours might often be 

complex. First, even if females could use reflexes based on sexually dimorphic male ornaments, the 

critical influence of social interactions on female reproductive success strongly suggests that they would 

not be sufficient to provide a reliable estimate of the costs and benefits associated with their potential 

choices. Second, even if hormonal changes are associated with mating behaviour, female primates 

probably need to mobilize complex and context-dependent mental representation of the social and 

reproductive value of their potential partner to selectively interact and plan their mating/association 

decisions, as we saw above for males. These processes involve a myriad of brain regions, and their 

implication in complex social interactions has raised a strong interest in recent years [22, 81]. However, 

there remains gaps in our understanding of the cerebral bases underlying social/sexual partner choice 

and the question of a) the level of cognitive complexity required to track previous exchanges with 

partners and compare simultaneously the relative value of the different benefits provided by each 

potential partner, and b) whether all primates possess these enhanced cognitive skills, for instance in 

terms of memory and ability to quantify, remain to be clarified and represent a critical but challenging 

avenue for future research in natural settings (as tested in the laboratory with ad hoc cognitive tasks).  

WHAT ABOUT HUMAN AND EXTINCT HOMININ MATING MARKETS? 

When it comes to humans and extinct hominins, the question of how cultural variation will affect 

“biological” and “economic” partner choice necessarily emerges. As in most non-human primates, 

mating markets in humans are influenced by environmental factors and are characterized by both sexes 

exerting preferences and having several partners to choose from simultaneously. Women make trade-

offs between male genetic quality and parental investment and men adjust their mating tactics to the 

behaviour of women [82]. Thereby, in an environment requiring biparental care where male parenting 

qualities are needed and valued, women would place more weight on the investment potential of 

prospective mates and less weight on indicators of their genetic fitness, with a larger proportion of 

women adopting long-term mating tactics almost exclusively. In response to this, males should devote 

greater effort to parental investment and variance in men’s reproductive success should be reduced. On 

the other hand, in an environment  where men’s genetic fitness is more needed and valued (e.g. 

pathogen-prevalent environment), women should be more willing to engage in short-term matings, and 

consequently, men should devote greater effort to short-term and extra-pair mating. Indeed, women 

could benefit from polyandry under certain circumstances [83] and there are some evidence showing 

that the range of variation in extra-pair paternity across human populations is substantially greater than 

previously thought [84]. In some contexts, men may be choosing to provide care for non-biological 

children as part of the duties of social fatherhood in return for greater security for their own children or 

the benefits of strong male alliances [85]. Other examples in which women adjust their mating tactics 

come from studies focusing on women’s control of resources (see review in [82]). Thereby, women’s 

ability to accumulate wealth in modern cash economies could be less important than their access to 

power in the adjustment of their mating strategies [86, 87], which can mirror the influence that social 

hierarchy can have on mating tactics in non-human primate societies. Nevertheless, as adding wealth is 

likely to have direct reproductive benefits, i.e. increased fertility and reduced mortality of mother and 

child [88], economic considerations still play an important role in human partner choice for both sexes. 



 

 

Regarding extinct hominins, it is difficult to have a comprehensive picture of their mating systems and to 

infer mating behaviours and mate choices because they do not leave direct evidence in the fossil record. 

However, anatomical (e.g. sexual dimorphism) and cultural (e.g. stone artefacts) markers of life history 

and behavioural patterns can help to infer the social structure and/or mate choice of some extinct 

hominin species. 

Sexual dimorphism, and especially canine height dimorphism, is often used to infer extinct hominin 

mating system (e.g. [89]). Among mammals, a low level of sexual dimorphism is often associated with 

monogamy, which increases the coalitionary power of females in relation to unrelated males (e.g. [90]). 

Moreover, polygyny is suggested to have emerged with the Australopithecines and may have been due 

to enhanced male mate guarding of a small number of partners within multi-male/multi-female social 

groups [91]. However, a study on Ardipithecus ramidus (4.4 Ma) [92] and statistical models of 

Australopithecus afarensis (3.8-3.1 Ma) sexual dimorphism [93] showed that these species had reduced 

sexual dimorphism and canine height. These findings suggest a strong decrease in the intensity of male-

male competition and that these species already had a monogamous mating system. This transition to 

strong pair-bonding could have opened a path to higher male parental investment [94]. For Homo 

erectus sensu lato, two models have been proposed to explain their social organization, which could be 

then used to infer their mating system. The first one [95] proposes that the emergence of multi-level 

societies with male and female bonding [90] (observed in extant hamadryas baboons for example) could 

have characterized this taxa. According to this model, multi-level societies in extinct hominins would 

have increased benefits for both sexes in terms of reproduction, feeding, and protection of the 

offspring. Indeed, bonds between females would have been highly beneficial, as they would have 

allowed some cooperative foraging and breeding which can decrease the individual costs [96, 97]. 

Regarding males, the variable spatial distribution of females Homo erectus at least seasonally, may have 

placed selective pressures on them to become the resident or the alpha male of small groups [94] and to 

keep track of a limited number of females to facilitate mating access. The benefit to males is an 

exclusive access to mates and a better chance to obtain female sexual fidelity and paternity certainty. 

Moreover, the fact that the male stays in the group carries benefits for both sexes via protection from 

infanticide. An alternative model, the large fission-fusion society [80], has been proposed for Homo 

erectus, assuming that this species was living in chimpanzee-like fission-fusion groups, with immigrant 

females and a large number of bonded males. Fissions represent an opportunity to flexibly adjust 

behaviours and to recalibrate the trade-offs that individuals experience by living in groups. For instance, 

females are suggested to spread out when resources become scarce in order to reduce feeding 

competition, but when food is abundant they can forage together and aggregate, which could incur 

some benefits in terms of food access and ultimately in reproductive advantages. Willems and van 

Schaik [98] also suggested that Homo erectus lived in very large groups with many males, which gives 

the opportunity to cooperatively defend the group against carnivore predators, and could be beneficial 

for both sexes.  

If sexual dimorphism has been often used to infer hominin mating system, it was also shown that facial 

dimorphism can be an indicator of mate choice. Indeed, according to several studies [99-101], the facial 

features and facial symmetry are major targets of selective mate choice. Thereby, females with child-like 



 

 

faces would be more attractive to males, whereas males with high cheekbones or strong jaws, which are 

testosterone-dependent features, would be preferred for copulation [100]. Like in other primates (see 

above section on female perspectives), it seems that female hominin mating decisions could have been 

linked to sexual dimorphic ornaments. As enlarged cheek-bones are linked to attractiveness in humans 

(e.g. [102]), Weston et al. [103] proposed that the evolution of a broad face (e.g. zygomatic region) and 

the loss of large canines in hominin males result from sexual selection operating mainly through mate 

choice. Besides morphological targets of selective mate choice, Kohn and Mithen [104] have proposed 

that acheulean handaxes, i.e. stone manufactured artefacts, which were found during the Pleistocene 

(first occurrence at 1.76 Ma) and often associated with Homo erectus sensu lato, could be considered as 

sexual ornaments and reliable indicators of a potential mate’s quality that females could have used to 

make their mating decisions. 

In conclusion, like in extant primates, different social and mating systems have been proposed 

depending on the hominin taxa. As for extant primates, male and female hominins presumably relied 

upon cognitive operations to make appropriate mating decisions, rather than upon reflexes. Indeed, 

these decisions probably involved complex and context-dependent mental representations of the 

reproductive and social value of their partners. This implies abilities in terms of decision-making and 

planning, which were likely highly developed in extinct hominins, presumably at an intermediate level 

between modern monkeys and humans, and sharing some similarities with modern apes. Indeed, such 

processes involve some regions of the prefrontal cortex (e.g. frontal pole, dorsal prefrontal cortex), 

which are characterized by an exceptional expansion in both human and great apes, with the origin of 

this enlargement being estimated at the root of great apes (19-15 Ma) [105]. 

BALANCING COSTS AND BENEFITS AT THE COLLECTIVE LEVEL 

Meat resources and hunting 

According to the “Optimal Foraging Theory” [106], animals should optimize their energetic balance 

while foraging, i.e. maximize benefits (energy intakes) and minimize costs (time costs and energy 

expenditure for accessing or manipulating food). It is generally accepted that virtually all primates 

engage cognitive operations to approach maximum foraging efficiency [107, 108]. Indeed, given the 

distribution of their food in space and time, they could not rely on simple rules (e.g. random search) or 

reflexes (e.g. approach food). Primate foraging strategies depend upon species (e.g. energy maximizers 

or time minimizers), individuals (based on their needs, age, reproductive state, etc. [109]), but also upon 

social factors such as intra-, inter-group or inter-species competition and predation [110, 111]. To 

optimize their energetic balance (see review in [112]) while dealing with the inherent competition with 

co-feeders, primates must flexibly and rapidly adjust their foraging strategies, which is thought to 

involve cognitive processes [112]. Following Garber et al. [111], primates would integrate both social 

and ecological information with a set of “decision rules”, i.e. information being organized hierarchically 

with the most important information for that decision being given the largest weight. For example, 

species living in large social groups should be particularly sensitive to information about quantity, 

whereas species with a specialist diet would be particularly sensitive to information about food type. 

Comparatively, spatial and temporal information might have less weight on decisions. These decisions 



 

 

rules should thus be characteristic of a given species, but will also depend on individual variables (e.g. 

social rank, sex, age) and their changes over time. The complexity of the set of rules, together with the 

level of metacognitive control with which these rules are supervised and potentially adjusted online, 

should be closely associated with the level of cognitive sophistication, and potentially with the level of 

brain development of each animal. 

In specific foraging contexts such as social predation (hunting in group), specific cognitive skills such as 

metacognition, traditionally associated with complex social interactions (e.g. theory of mind), 

presumably play a crucial role [14]. Indeed, social hunting, which is developed only in a few primate 

lineages such as chimpanzees, capuchins and hominins, requires that multiple individuals synchronize 

their moves or coordinate in space (see [113] to distinguish between various kinds of social hunting: 

synchrony, coordination and collaboration), with the prey being generally shared after successful 

capture. Hunting is mainly pursued by males, but even if the likelihood and success rate of social hunts 

generally increase with the number of male participants in most chimpanzee and capuchin populations, 

there is no clear tendency regarding the meat obtained per capita when the number of hunters increase 

[80], i.e. the individual benefits. One can therefore wonder what drives the individual decisions to 

engage in social hunting, what are the trade-offs involved in such decision-making processes, and why 

social hunting (with food transfer) evolved in so few of the meat-eating primate species. 

There has been much debate over the putative social benefits of hunting [114-116], with social hunting 

being more frequent in male-bonded species, which creates the tolerance and trust allowing social 

capture and selective transfer with allies. In this context, social hunts could be a major way to cement 

social bonds, and then to positively affect individuals’ fitness [22]. However, the social value of hunting 

could also rely upon the nutritional value of the meat [117], i.e. energy-rich diet, with meat being used 

as an exchange commodity or reward. Most research indeed suggests that meat is a concentrated 

source of vitamins, minerals and other essential micronutrients that are beneficial for an individual, 

even in small quantities [118, 119]. In chimpanzees for example, the valuable micronutrients contained 

in meat [117, 120] could complement a predominantly plant-based diet, with a small amount of meat 

representing a favourable payoff. Moreover, the proteins from vertebrates tend to be of higher quality, 

due to favourable ratios of essential amino acids relative to plant foods [121]. For all these reasons, if 

the likelihood of obtaining meat increases with the number of hunters, then social predation would be 

nutritionally profitable.  

Nevertheless, hunting is also costly and dangerous. Indeed, the chase of a fast and arboreal prey is 

arguably energetically expensive [118], and entails considerable risk, in terms of failure, falling, and 

injury [113, 122]. Moreover, consuming and processing raw meat can be time costly [123], as the gut of 

non-human primates, which is adapted to a primarily frugivorous and folivorous diet, may not be very 

efficient in this context. Thereby, feeding on meat can be considered as “high-risk, high-yield”, with 

primates facing the packaging problem, which is, as described by Altmann [124], the fact that “Costs and 

benefits – good and bad – always come packaged together…No perfect food exists”. According to the 

“Optimal Foraging Theory”, hunting primates should therefore feed on prey that offer the highest ratio 

of benefits/costs, which depends upon various intrinsic, demographic and environmental conditions. 



 

 

These conditions include: 1) seasonality: hunting may not be optimal when other valuable and less 

costly items are present, e.g. fruit availability affects overall meat distribution and more individuals 

receive a share of the meat with decreasing levels of general fruit availability [125]; 2) opportunity: a 

hunt is more likely to succeed if many adult males are present; 3) individuals’ energetic condition: 

individuals having a positive energy balance are more willing to target resources associated with high 

risk and high cost, which is typically the case for meat [122]. These several constraints, among others, 

could explain differences in hunting behaviours, frequencies, success rates and prey preferences (i.e. 

species, size), not only across primate species, but also across communities from the same species, and 

across individuals within a group. Regarding the differences between species, it seems that baboons 

[126] and bonobos (see references in [127]) hunt only occasionally, mainly because of the absence of 

strong male-male bonds in these species, even if some bonobo populations have been reported to 

consume meat at much higher rates than previously thought [127]. There are also differences across 

communities from the same species [128], with some possible socially transmitted differences in prey 

preferences [chimpanzees: 129].  

At the group level, some sex differences have been reported in hunting behaviours and in the costs and 

benefits of hunting. Indeed, females are expected to be more risk-averse than males for two reasons. 

First, they should be more sensitive to food shortage because variation in female reproductive success is 

determined more by food access than by access to mates [55]. Second, females are often carrying young 

offspring, which incurs higher movement costs [130] and may reduce their ability to catch prey. It seems 

therefore that the hunting strategy followed by female non-human primates is similar to the ones used 

by women in hunter-gatherer populations, who typically target small and sedentary prey. Even if this 

strategy implies less energetic benefits, it also entails a reduction in risk (less exposure to predators and 

potential falls) and in the probability of failure [131]. 

Besides sex differences, the overall size of the group can also explain some differences, i.e. there is more 

hunting in larger groups with the hunting costs per hunter being expected to decrease as the number of 

hunters increases because it becomes more difficult for the prey to either escape or defend themselves 

[132]. Some individual behavioural tendencies have also been proposed to explain variation in hunting 

patterns within (and between) populations (and species), but also temporal variation in hunting 

frequency within groups [120]. Thereby, the fact that more hunting occurs in larger groups in 

chimpanzees can be partly explained by the presence of “impact hunters” [133], i.e. individuals with 

high hunting rates and whom the presence in a group makes hunting more likely both by their own 

efforts and by increasing the likelihood that others hunt. As shown by Gavrilets [134], those who 

contribute the most towards production of collective goods (i.e. hunt initiators) are those (i) who are 

particularly skilled, or (ii) for whom the benefits are especially high or (iii) for whom the costs are 

relatively low. They also create low-cost opportunities for others to benefit by joining a hunt in progress 

[120]. 

The mechanisms underlying these joint acts might be relatively complex. Gaze-following (i.e. orienting 

attention in the same direction as another individual) and joint attention could be critical for 

coordinating actions among hunters, and as discussed above, cognitive processes including 



 

 

metacognition and theory of mind are probably involved to support complex and dynamic interactions 

among individuals [81, 14, 135]. Besides coordination, group hunting presumably also implies planning, 

which is thought to be critical not only for hunting per se but also for hunt patrols, i.e. pre-hunt searches 

for prey (highly coordinated activities, during which individuals travel cohesively, with frequent pauses 

and rarely forage or vocalize [125]). Indeed, these patrols, that usually indicate an upcoming hunt, are 

initiated hours prior to hunt attempts, which implies not only planning but also coordination among 

future hunters [113, 136]. 

At the neurophysiological level, hunting behaviours could imply the oxytocinergic system. Indeed, joint 

actions activate areas of the brain associated with the processing of reward, and these behaviours are 

facilitated by oxytocin [22]. Several studies also showed that oxytocin could enhance cooperation and 

coordination in joint group activities, such as hunting parties [125, 137, 138]. However, it remains 

unclear whether oxytocin acts directly on coordination (i.e. relatively high-level processes) or indirectly, 

on lower level processes such as tolerance or vigilance, which are also critical for participation in joint 

group activities. The neural circuits mediating the behavioural and cognitive actions of oxytocin also 

remain unclear. At the cortical level, hunting presumably involves a myriad of structures since it implies 

numerous levels of behavioural and cognitive control. As discussed above, these cognitive processes 

include: 1) planning and working memory (known to rely upon the dorso-lateral prefrontal cortex and 

the parietal cortex [9]); 2) context-dependent representation of the goal value (known to rely upon the 

ventromedial prefrontal cortex [6-7]); 3) cognitive control and the computation of the costs/benefits 

trade-off (known to involve the anterior part of the cingulate cortex [10, 139]); 4) a form of 

metacognition to allow coordination and planning at the group level [135, 140]. Further work is 

necessary to accurately identify the neuro-cognitive processes underlying group hunting in primates. 

Besides classical laboratory approaches with captive animals performing specific cooperative tasks 

mimicking social hunting that would allow to dissect these processes very precisely, neuroanatomical 

comparisons across species in which the behavioural and ecological components of hunting have been 

well identified (as in [141] for foraging behaviours in general) could also shed light upon the 

neurocognitive bases of group hunting. 

Hunting in extinct hominins and humans 

Understanding the relative benefits and costs of acquiring and consuming different forms of animal 

matter by extant primates is also critical for identifying the selective pressures responsible for increased 

meat consumption in the hominin lineage.  

Meat has been exploited by hominins for at least 2 million years using at the beginning confrontational 

scavenging by driving large carnivores from their prey. Hominins, especially after 2 Ma (e.g. Homo 

erectus sensu lato), had a small gut which is required to efficiently process food of low digestibility, such 

as meat [142]. The energetic content of meat is suggested to have critically influenced the evolution and 

the maintenance of birth rate, body size, and brain size (e.g. [142-144]) and costly activities such as 

endurance running. 



 

 

One step further may have involved the use of processing methods, such as pounding (e.g. [145]), which 

occurred since the lower Pleistocene (around 2 Ma) and even earlier at 3.3 Ma. This could have provided 

an important increase in energy gain over unprocessed raw diets. Lithic tool-kits may have been highly 

beneficial in allowing extinct hominins to have access to fleshed carcasses, with cutting edges for 

processing soft tissue, which was not possible with their masticatory apparatus (reduced prognathism 

and relatively small incisors and canines), as well as percussion tools to extract the marrow. If the first 

archaeological evidence of stone tool-making [146] and stone tool-using [147] is dated to 3.4-3.3 Ma, 

the tool-kits have been growing in terms of complexity after 2.3 Ma. Plio-Pleistocene hominins used 

stone cutting tools for pre-oral food processing, which requires to collect raw material and extract flakes 

bearing sharp cutting edges from raw material, and then probable remarkable cognitive and motor 

abilities. Through time, there was an increase in raw material transportations distance in order to find 

the most efficient one and an intensification of processing of animal tissues including meat and marrow 

extraction. These processes probably involved an increase in the level of decision-making and planning. 

But eating scavenged meat could also be highly dangerous, as the carrion could have been 

contaminated by bacteria. However, this cost could have been reduced by selecting only the marrow 

(where fewer bacteria grow), by eating the freshly-killed carcass or by cooking it [148]. 

Cooking, initially very occasional using for example hot springs, could have occurred with Homo erectus 

in Africa (ca. 1.9 million years ago) [149]. However, the oldest evidence of intensive and habitual 

cooking, based on archaeological evidence and comforted by genetic analyses, is from the middle 

Pleistocene (300-400,000 years ago), suggesting that this behaviour is relatively recent (e.g. [150]), i.e. 

human adaptation to a cooked diet had begun before the split between modern humans, Neanderthals 

and Denisovian (at least 275,000 years ago) [151]. Cooking facilitates the mastication, kills food 

pathogens, induces a rise in the energetic gain of the meat, including an increased energy extraction per 

unit mass compared with raw food and increased digestibility value of proteins, a reduction in the costs 

of digestion, and a modification in the speed of meat protein digestion (e.g. [152-154]). It also raises 

glutamate and sugar availability, appreciated by primates (e.g. humans, chimpanzees and gorillas), who 

seem to prefer cooked food to raw food in captivity [155, 156]. Cooking also induces amino acid residue 

level modifications which contribute to advantageous traits in a food product (e.g. formation of peptide 

which are resistant to further break down into free amino acids by digestive enzymes; [157]). However, 

the adoption of cooking also comes with some costs in terms of loss of vitamins (as vitamin C) and of 

delay before the consumption of the food, which is brought to the processing area or stored.  

The control of fire for cooking, but also for boiling and smoking the foods to preserve them, was firstly 

evidenced 790,000 years ago in the Near East and 450,000 years in Europe [158]. This control is 

beneficial as it provides light, heat, protection against the predator and comes with technical progress 

(e.g. preparation of resins or improvement of knapping capacities of certain raw material or hardening 

of wooden spear). But, the control of fire is also cognitively demanding because it requires a 

considerable amount of knowledge about the environment, ranging from the collection of fuel (choice 

of wood, bones, plants, minerals, stones, etc.), the implantation of the fireplace (stone structure, dug 

pit, location, orientation, etc.) to its lighting and maintenance.  



 

 

Cooperative (i.e. social) hunting using exhaustion pursuit occurred quite early in hominin evolution 

(lower Pleistocene, around 1.8 Ma). According to Van Schaik [80], the model of fusion-fission proposed 

for Homo erectus sensu lato could explain the origin of cooperative hunting followed by the sexual 

division of labour. Moreover, the morphological features associated to endurance running in early Homo 

have been suggested to enable them to practice persistence (long-distance pursuit) hunting, i.e. chasing 

an animal until it reaches exhaustion potentially during the hottest time of the day, thus driving prey 

into hyperthermia [159-161]. However, chasing prey for extended periods of time in hot temperatures is 

also obviously energetically demanding, and could have represented a substantial energetic cost in early 

Homo, even for chasing medium sized prey [162]. Therefore, the persistence hunting is obviously critical 

for the cost/benefit balance and cooperative strategies associated with persistence hunting might have 

greatly reduced the costs encountered at an individual level. 

The costs and benefits of cooperative hunting could have differed depending on the size of the game. 

Hunting small and fast game (birds, leporids) had low risk of injury and could have provided some fur 

(which can be used for clothing by hominins in high latitudes during cold seasons) and some raw 

material for ornaments (e.g. eagle bones). However, it provided a small amount of meat per prey. 

Hunting big game could have been energetically more expensive with high risk of injury and risk of 

failure, but the amount of meat to share could have been considerable. Cooperative big game hunting 

may necessitate an organization of work force to plan goal to acquire large animals and bring them back 

to the camp, with this cooperation reducing the risk of failure. Complex forms of cooperative hunting 

using weapons (e.g. wooden spear, throwing stick), which require advanced planning in terms of 

manufacture and use, emerged around 300 ka [163]. When weapons systems allowed to hunt prey from 

a long distance, the risk of injury was reduced and the role of women as hunters increased [164]. 

According to Kuhn and Stiner [164], Neanderthal females and juveniles participated in the hunting of 

large terrestrial game. Neanderthals were faced with the dilemma of improving the extractive benefits 

(with the participation of women or old juveniles in hunting) and minimizing the survival risk to their 

offspring due to the danger.  

In modern hunter-gatherers populations, hunting is also conducted in groups, which implies a regulation 

of costs and benefits at the population level. In most cases, the meat of large animals is widely shared 

with a meat-to-meat repayment. The cost of sharing is quite low, since the amount of meat is greater 

than what each hunter and his family can eat at one time. Sharing also reduces the cost of storing such a 

large amount of meat, which could quickly get spoiled. At the population level, the benefits of 

repayment are quite high as it reduces the probability of meat shortfalls for individuals. However, this 

type of meat-to-meat transfer is not found in all hunter-gatherer populations, with hunters in Hadza 

populations (organized in bands with no governing hierarchy [165]) being rather repaid in another 

currency than foods (e.g. other goods or services). In these populations, the carcass is more like a public 

good and the hunters do not control its distribution. Therefore, the hunter has no family provisioning 

insurance and this does not reduce his daily risk of failing to supply food to his household. Nevertheless, 

it has been shown that even if hunters do not get more meat repayment for their own families, they 

acquire a better hunting reputation, enhance their status as desirable neighbours [165], and have some 

reproductive benefits, i.e. higher fertility and reproductive success (e.g. [166]). 



 

 

Meat consumption and hunting are therefore major evolutionary changes in the hominin diet and 

subsistence behaviour. They serve a social as well as a nutritional purpose, with hunting being an 

indicator of leadership qualities for early human groups but also for extant primates. There is a great 

diversity in hunting behaviours across primate and extinct hominin species, but also across communities 

of the same non-human primate species, or across hunter-gatherers populations (e.g. division of labour 

in some of them but not in all). If extant primates and extinct hominins present some similarities for 

meat acquisition, there are still some differences, notably in terms of the size of the prey and of the 

processes used to acquire meat. Through time, meat has been exploited by hominins first by 

confrontational scavenging, followed by cooperative hunting using exhaustion pursuit, and ultimately by 

a more complex form of cooperative hunting using weapons, with a division of labour in the most recent 

populations. Regarding extant primates, confrontational scavenging has been rarely reported [167] and 

social hunting seems to be less frequent than in the hominin lineage. The complex form of cooperative 

hunting with weapons and the division of labour, as well as processing techniques (e.g. pounding and 

cooking), appear to be unique to hominins, and could have allowed them to maximize the ratio 

benefits/costs of this foraging strategy. 

As we saw above for extant primates, social/cooperative hunting most probably implies well-developed 

metacognitive skills, and early hominins, like modern humans and chimpanzees, were very likely to 

possess such skills. Like social hunting, stone-tool making and cooking (only in hominins) imply a very 

high level of planning and metacognition because it requires complex causal inferences and very distant 

and indirect benefits. Indeed, cooking implies multiple steps that need to be coordinated and such 

complex goals are thought to involve high-level recursive planning. Likewise, manufacturing stone-tools 

(unique to hominins) implies building a representation of the tool (the direct goal) as well as a higher 

representation of how the tool would be used, i.e. in a very distinct context and time frame compared to 

its manufacture.  

Conclusion 

In conclusion, extant primates (including humans) and extinct hominins are suggested to show some 

behavioural plasticity that enables them to respond optimally to rapidly changing environments. Natural 

selection has favoured individuals that are equipped with the cognitive canvas to make efficient 

decisions about the management of multiple resources (e.g. food, services, partners), both at the 

individual and at the group level, in order to regulate the balance between the costs and benefits for 

accessing the goal (e.g. mating with a chosen partner, hunting a prey). In most situations, costs and 

benefits come together as ‘packages’ such that, rather than trying to maximize the cost/benefit ratio in 

the absolute sense, most primates presumably use cognitive skills to identify the best of the potential 

packages, given the context. Nevertheless, these packages do not come as discrete independent 

options. Rather, in their natural environment, primates must coordinate multiple needs and potential 

plans of actions, and manage a constant flux of information from the environment. Moreover, as other 

long-lived species, they need to navigate a social world in which they must base their decisions not only 

on the current behaviours of the other group-members, but also on the history of the previous 

interactions with those individuals. This implies to recognize not only other individuals’ relative rank and 



 

 

social relationships, but also the nature and quality of recent interactions and the value of particular 

partners. Thereby, they have probably developed a set of cognitive skills (e.g. episodic memory, value-

based decision making, planning) to make adaptive decisions, such as choosing partners based on the 

expected benefits (based on past and ongoing interactions) they could provide, and selecting options 

that fulfil not only individual needs but also collective needs (e.g. hunting and meat transfer) that should 

allow supplying future individual needs. Evidence from the archaeological and fossil record suggest that, 

early in the evolutionary history of primates, selection should have favoured the development of 

cognitive mechanisms that shaped these economic behaviours. These evolutionary developments were 

further refined across hominins and enabled them to handle packages of increasing costs and benefits. 

Distinct extinct hominins and extant primate species developed specific sets of solutions based on their 

needs and environmental constraints as well as opportunities, and more studies are still needed to shed 

light on the complexity and diversity that can be found in primates making adaptive decisions related to 

the optimization of benefits and costs. 
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