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Abstract 1 

We explore the current (1958-2005 period) and near future (2006-2050 period)  teleconnections between El Niño 2 

Southern Oscillation (ENSO), Indian Ocean Basin Mode (IOBM), and Indian Ocean Dipole (IOD) as simulated in 3 

historical and Representative Concentration Pathway (RCP8.5) simulations of 32 coupled models that participated in 4 

the phase five of Coupled Model Intercomparison Project (CMIP5). A set of 16 CMIP5 models out of 32 models, 5 

which perform best to simulate tropical climate variability in recent decades, is first selected using a robust method 6 

based on the Empirical Orthogonal Function analysis, for detailed analysis.  7 

Most of these models show modest capability in reproducing the seasonal cycle of ENSO types in the current period. 8 

Further, amplitude of Indian Ocean (IO) modes is overestimated by the 16 models along with large inter-model 9 

spread. Based on these results, a subset of 9 models is formed, which simulate a realistic seasonal phase-locking of 10 

ENSO for a robust assessment of future teleconnections. 11 

No significant change in El Niño amplitude is detected in near future. However the IOBM is projected to be weaker 12 

during late spring and early summer. The IOD is  projected to be stronger  during boreal summer in the future 13 

relative to the current period. We also investigate if there are any changes from historical to RCP 8.5 simulations in 14 

the strength of the IO negative feedback on ENSO with a multiple linear regression approach. The IO negative 15 

feedback strengthens significantly in the RCP8.5 scenario due to the increasing role of IOBM in speeding the 16 

transition from El Niño to La Niña, despite its reduction of amplitude, In contrast, IOD  loses its predictive value in 17 

the future projections. 18 

  19 



1. Introduction 20 

The ability of Coupled Model Intercomparison Project (CMIP5) models (Taylor et al. 2012) to simulate the El Niño 21 

Southern Oscillation (ENSO), Indian Ocean Dipole (IOD) and Indian Ocean Basin Mode (IOBM) phenomena and 22 

inter-relationships among them has been well documented in past studies (Bellenger et al. 2014; Chu et al. 2014; Du 23 

et al. 2013; Jha et al. 2014; Weare et al. 2013; Zhang et al. 2014; Xie et al. 2016; Saji 2018; Cai et al. 2019; Wang 24 

2019). A positive IOD pattern, with warming in the western Indian Ocean (IO) and cooling in the eastern IO 25 

emerges during boreal summer and peak during the boreal fall of the El Niño developing year (Wang 2019). During 26 

the following boreal winter, which corresponds to the peak of El Niño, the cold anomalies in the eastern IO 27 

disappear and a basin-wide warming (e.g. IOBM) emerges during the next boreal spring, and persists in boreal 28 

summer (Xie et al. 2016).  29 

Several previous studies have suggested that ENSO may act as a trigger for some IOD events (e.g. Gualdi et al. 30 

2003; Shinoda et al. 2004) and is a significant IOD predictor (Zhao et al. 2019). However, many IOD events have 31 

occurred without a co-occurring El Niño (Saji2018). Further, several positive IOD events have co-occurred with La 32 

Niñas (e.g. Ashok et al. 2003; Cai et al. 2009). Jourdain et al. (2016), Wang et al. (2019) and Cai et al. (2019) have 33 

further confirmed that the lead-lag relationships between IOD and ENSO are consistent with two-way interactions 34 

between them. Sensitivity coupled experiments have also demonstrated that IOD exists without ENSO in the Pacific, 35 

and is thus an intrinsic mode of Tropical Indian Ocean (TIO) variability (Fischer et al. 2005; Behera et al. 2006; Sun 36 

et al. 2015; Cretat et al. 2017, 2018). Yang et al. (2015) conducted a 10-member coupled simulation and 37 

distinguished the development of IOD by two factors viz., ENSO forcing and internal variability. The “internal” 38 

IOD decays after October, however ENSO-forced IOD further grows into IOBM (Hong et al. 2010), adding 39 

complexity in understanding the relationships between the three climate modes. Interestingly, there is also a decadal 40 

variability in the relationship between IOD and ENSO, and there are multiple decades when the IOD-ENSO 41 

association is significantly weaker (Ashok et al. 2003; Krishnaswamy et al. 2014; Ham et al. 2017).  42 

While the IOBM may be considered as the IO response to ENSO through the atmospheric bridge (Klein et al. 1999; 43 

Alexander et al. 2002; Xie et al. 2016), it may feedback on ENSO, and hastens the transitions from El Niño to La 44 

Nina events in the Tropical Pacific (TP; Kug and Kang 2006; Ohba and Ueda 2007; Terray et al. 2016; Xie et al. 45 

2016). Interestingly, this ENSO-induced basin-wide warming in the TIO has more prominent impacts in recent 46 

decades, possibly due to global warming (Zheng et al. 2011; Boschat et al. 2012;Ashok et al. 2014, Hu et al. 2014; 47 

Tao et al. 2015). Dayan et al. (2014) suggest that the influence of IO Sea Surface Temperature Anomaly (SSTA) on 48 

ENSO is due to the IOBM rather than the IOD. However, Hong et al. (2010) have shown that the IOBM is much 49 

stronger when El Niño and IOD co-occur during the preceding year. In addition, Izumo et al. (2010, 2014) 50 

demonstrate that the negative phase of the IOD is an efficient statistical predictor of El Niño 14 months before its 51 

peak According to Jourdain et al. (2016), almost all CMIP5 models establish a significant relationship between IOD 52 

and the following year’s (i.e., 14 months later) ENSO, but the physical mechanisms responsible of this lead 53 

relationship are still elusive. 54 



The tropical mean climate will undergo a significant change under global warming (e.g., Liu et al. 2005; Vecchi et 55 

al. 2008; Collins et al. 2010), especially in the western Pacific (Weller et al. 2016), and western IO (Roxy et al. 56 

2014; Cowan et al. 2015), which are key-regions for the tropical IO and ENSO interactions. Cai et al. (2009, 2014), 57 

using CMIPmodels, have shown that, under greenhouse warming, the equatorial IO is evolving towards 58 

climatologically stronger west-minus-east temperature gradients and easterly winds, and is more susceptible to 59 

producing more frequent extreme positive IOD events (Cai et al. 2014). However, this emerging picture is largely 60 

contributed by coupled models, which already simulate excessive IOD variability in the historical period (Li et al. 61 

2016). On the other hand, several other papers (e.g. Chu et al. 2014, Zheng et al. 2013) based on CMIP5 future 62 

projections reported that interannual variance of the IOD mode remains largely unchanged under global warming, 63 

which suggest that this topic needs further analysis. Based on historical simulations and future climate projections of 64 

CMIP5 models, Tao et al. (2015) also suggest that the ENSO-IOBM relationship would enhance in the future.  65 

Previous studies have mainly focused on the relationships between IOD, IOBM and ENSO during their respective 66 

developing and peak phases. A notable exception is Jourdain et al. (2016), which showed that the delayed IOD-67 

ENSO relationship as simulated in CMIP5 models is in good agreement with observations. In contrast, how state-of-68 

the-art CGCMs simulate the lead-and-lag relationships between these three modes of variability, and how these 69 

significant lead-and-lag relationships, which play a seminal role in seasonal predictability in the tropics (Luo et al. 70 

2010, Zhao et al. 2019), will change in the future, are less known. 71 

Given the above background, the present study intends to document the current (e.g. 1958-2005 period) and near 72 

future (e.g. 2006-2050 period) statistics of teleconnections and lead-lag relationships between ENSO, IOBM and 73 

IOD as simulated by 32 CMIP5 coupled models with the help of a robust selection of CMIP5 modelsbased on 74 

Empirical Orthogonal Function (EOF) analysis.. 75 

This paper is organized as follows. Section 2 provides a description of datasetsand statistical methods we used. In 76 

the section 3, we document how the CMIP5 models simulate the annual mean SST and variance and what are their 77 

projected changes. In section 4, we concentrate on the fidelity of the CMIP5 models in representing the observed 78 

Tropical Indo-Pacific(TIP)  variability during recent decades. In sections 5 and 6, we examine the monthly standard 79 

deviations (SD) of Niño3, EMI, IOBM and IOD indices for the current period, and those for the near future. In 80 

sections 7 and 8, we analyse changes in lead-lag correlations between ENSO, IOD and IOBM and in the negative 81 

feedback on ENSO. A summary is presented in the final section. 82 

2. Data and Methodology 83 

2.a Simulations, observations and climate indices 84 

Various simulations from the 32 CMIP5 models have been utilized in this study (Taylor et al. 2012):  85 

- Historical (H) simulations (1958-2005): Theforcings include both natural and anthropogenic forcings. 86 



- Future projections based on Representative Concentration Pathway (RCP8.5) scenario (2006-2050): The 87 

RCP 8.5 experiments start from the point where the corresponding H runs end (e.g. in 2005), and the radiative 88 

forcing reaches a level of about 8.5 W/m2 by the end of the twenty-first century. 89 

The list of 32 CMIP5 models and their relevant information are provided in Table 1. For each model, the first 90 

ensemble member run has been used and the following variables have been considered in our analysis: SST and 91 

850-hPa zonal wind. 92 

For observed SSTs, we used the Hadley Centre SeaIce and SST dataset (HadISST; Rayner et al. 2003) and the 93 

1958-2005 period. 94 

We focus on the interannual time scale and mainly on SST. The monthly SSTA are first calculated by removing a 95 

monthly climatology. The climatology is estimated over the period 1958-2005 for observations and the H 96 

simulations, while for RCP 8.5 simulations, the climatology is based on the period 2006-2050. We further 97 

detrendedall SST time series with the linear least square method. 98 

The canonical ENSO events are determined with the help of the Niño3 index (area-averaged SSTA over 5°N-5°S, 99 

150°W-90°W). We also considered the Modoki ENSO events and we used the El Niño Modoki Index (EMI; Ashok 100 

et al. 2007), to identify them: 101 

EMI=    [SSTA] A - 0.5*[SSTA] B - 0.5*[SSTA] C                                                                                                   (1) 102 

The square bracket in Equation (1) represents the area-averaged SSTA over each of the regions A (165°E-140°W, 103 

10°S-10°N), B (110°W-70°W, 15°S-5°N), and C (125°E-145°E, 10°S-20°N), respectively.  104 

The IOBM is defined as the SSTA averaged over the region 40°E to110°E and 20°S to 20°N of the Indian ocean 105 

(Yang et al. 2007). Finally, the IOD index is computed as the difference between averaged SSTA over western 106 

box (50°E-70°E, 10°S-10°N) and eastern box (90°E-110°E, 10°S-0) of Indian ocean (Saji et al. 1999). 107 

For convenience, we refer to the boreal summer (June-August; henceforth JJA), fall (September-November; 108 

henceforth SON), winter (December through following February; henceforth DJF) and spring (March-May; 109 

henceforth MAM) seasons simply as summer, fall, winter and spring. 110 

2.b Selection of CMIP5 models and statistical methods 111 

To assess the performance of the CMIP5 coupled models in simulating the observed tropical SST interannual 112 

variability, a method based on the EOF analysis is used (Bayr and Dommenget 2014; Wang et al. 2015). The 113 

principle of the method is as follows: to compare the spatial structure of SST variability of two different datasets, an 114 

objective way is (i) to define a set of (spatial) vectors as a common basis, (ii) to project the two datasets onto this 115 

common basis, and (iii) to compare the amount of variance described by each vector of the basis for the two 116 

datasets. 117 



Note that these computations require that the two datasets share the same spatial grid. Consequently, we have first 118 

interpolated all the CMIP5 outputs onto the HadISST grid, i.e. 1o x 1o, for further analysis. In order to define a 119 

common basis for two datasets,,we generate the leading EOF modes from one dataset. These leading EOF modes 120 

give a synthetic depiction of the main modes of variability in this dataset. In the next step, we simply project the 121 

second dataset onto these (spatial) reference EOF-modes (computed from the first dataset) and estimate the amount 122 

of variance that these reference EOF-modes explain in this projected dataset. 123 

In our analysis, we computed the EOF-modes from monthly HadISSTSSTA for the 1958-2005 periodand designate 124 

them as the reference modes. We then projected the time series of the 32 H simulations onto these reference modes. 125 

For each EOF-mode, there exists a difference between the explained variance (in the first dataset) and the projected 126 

explained variance (in the second dataset), subject to the fidelity of the H simulations. This information is then 127 

utilized to generate statistics useful to rank the CMIP5 models, based on their respective performances in replicating 128 

the observed interannual variability during 1958-2005.. The main statistic we useis the normalized Root Mean 129 

Square Error (RMSE). The normalized RMSE is defined as follows: 130 

RMSE model  = √∑n
i=1 (λi - ßi)2/ (∑n

i=1 (ßi)2                                                                                                      (2) 131 

Where 132 

n is a predefined number of SST reference EOFs (e.g. computed on HadISST dataset), assuming that the 133 

EOFs have been ranked in decreasing order of explained variance. 134 

λi is explained variance from a CMIP5 model onto the reference EOF i; 135 

ßi is explained variance from the HadISST dataset onto the reference EOF i. 136 

The above normalization allows a better comparison of the RMSE values among different models or datasets with 137 

different sampling uncertainties (Wang et al. 2015). A small RMSE value for any model suggests that the model 138 

simulates the observed variability of the climate system well. On the other hand, a RMSE value of 100% 139 

corresponds to errors that are as big as the eigenvalues of the selected EOF modes used to define the RMSE statistic. 140 

As explained by Wang et al. (2015), in most of the cases, this occurs due to a critical mismatch between the leading 141 

EOFs in the two datasets or, alternatively, when modes are mixed or inverted between the two datasets giving an 142 

improper distance between the two datasets.  143 

In our analysis, we have used the first 8 reference EOF modes to compute the normalized RMSE. A question that 144 

comes immediately to mind is why we used only 8 degrees of freedom. Following Bretherton et al. (1999) and 145 

Wang et al. (2015), we first used the concept of the effective spatial number of degrees of freedom in order to 146 

determine the number of EOFs to be used to compute the RMSE. However, from our own experience and the work 147 

of Sterl et al. (2007), the number of spatial degrees of freedom is a highly non-robust quantity, which is difficult to 148 

estimate objectively in practice. Here, we have thus simply computed the RMSE from the first 8 modes, as well as 149 

the first 5 modes, from the monthly SSTA for 1958-2005 and different domains and ascertained that the RMSE 150 



values don't change much from five to eight modes. Thus, this suggests that the first 8 reference EOFs form a stable 151 

basis for comparing the various datasets and still take into account a large part of the variances in each dataset. 152 

Therefore, for the purpose of grouping the CMIP5 models in different categories according to their performance in 153 

simulating the observed SST variability, RMSE values computed from first 8 modes are a good compromise. 154 

Finally, standard regression and correlation analyses have also been performed to document the teleconnection 155 

patterns and their possible changes in a warming climate. 156 

3. Model bias and future projections in mean SST and variance 157 

We document first how the CMIP5 models simulate the annual mean SST and mean variance of SSTA and what are 158 

their projected changes. The periods selected for calculating the mean and variance of observation, H and RCP 8.5 159 

simulations are 1958-2005, and 2006-2050, respectively. Fig. 1a represents the annual mean SST from the ensemble 160 

of CMIP5 H simulations.  On average, annual mean SST over TP in H simulations is between 26-28°C, but the 161 

equatorial western TP is warmer then eastern TP as expected (Fig. 1 a). Fig. 1b displays statistically significant 162 

mean bias values of CMIP5 ensemble relative to the HadISST for the same period. The simulated SSTs are clearly 163 

too high in the tropical southeastern Pacific and Atlantic and too low in the equatorial Pacific relative to 164 

observations, as also noted by many studies (Richter et al. 2015; Wang et al. 2014). Focusing specifically on the TP, 165 

this implies that the equatorial SST gradient is severely damped in CMIP5 models on average, with significant 166 

implications for ENSO realism in CMIP5 models (Li and Xie 2014).  These Pacific SST biases persist from several 167 

generations of CMIP models (Reichler and Kim 2008). Over the TIO, the models show warm SST biases. 168 

The difference of ensemble mean SST between RCP 8.5 and H simulations of CMIP5 indicates that the simulated 169 

SST is significantly increasing over all tropical oceans with mean conditions shifting to an El Niño-like pattern in 170 

the TP and a positive IOD like pattern in the TIO(Fig. 1c; Chu et al. 2014). Interestingly, the extent of SST increase 171 

is larger over northern tropical oceans compared to southern part, suggesting that the warming pattern in the Pacific 172 

is not exactly El Niño like. Over the IO, the projected changes suggest that the western IO and South-East IO, off 173 

Australia, will undergo enhanced warming in a global warming scenario (Chu et al. 2014; Zheng et al. 2013). 174 

The fidelity of CMIP5 models in simulating the SSTA variance is also assessed (see Fig. 1d-f). Detrended SSTA is 175 

used to compute the variance. The largest SST interannual variability is seen in the eastern Pacific, which is mostly 176 

associated with ENSO variability. The bias in variance is significantly high over the equatorial western and central 177 

Pacific, implying that the ENSO-related SST anomalies are shifted westward in most CMIP5 models (Fig. 1e), 178 

consistent with the cold tongue bias affecting most of the CMIP5 models (see Fig. 1b). IO is also affected by 179 

exaggerated SST variability, consistent with previous studies (Annamalai et al. 2017). In contrast with the changes 180 

in mean SSTs (Fig. 1c), the difference of ensemble variance between H and RCP 8.5 simulations is insignificant 181 

everywhere, even in the TP (Fig. 1f). The implications for ENSO, IOBM or IOD teleconnections will be further 182 

studied in the next sections. 183 

 184 

 185 



4. SSTA interannual variability in historical CMIP5 simulations 186 

In this section, we focus mainly on the fidelity of the CMIP5 models in representing the observed TIP variability 187 

and teleconnections during recent decades (1958-2005) with the help of EOF analysis. 188 

These leading EOF modes have been estimated for three different domains, the TIO (40°E-120°E, 30°S-30°N), TP 189 

(110°E-70°W, 30°S-30°N) and TIP (40°E-70°W, 30°S-30°N). 190 

The first two leading modes of TP represent the ENSO variability and its different types (Fig. 2 a,b; see Ashok et al. 191 

2007; Marathe et al. 2015, their Fig. 1). The first leading mode of TIO corresponds to IOBM and explains about 192 

40% of variability (Fig. 2d). The second and third modes of TIO SST variability (Fig. 2e and f) are related with IOD 193 

(Saji et al. 1999; Murtugudde et al. 2000) as well as the subtropical IOD (SIOD; Behera and Yamagata 2001),simply 194 

because our domain extends up to 30⁰S and we consider all the calendar months in the EOF analysis. A positive 195 

SIOD is  characterized by  cold  SST  anomalies off Australia  and  warm  SST  anomalies in  the  southwestern IO,  196 

south  of Madagascar during boreal winter. The spatial EOF patterns of the first two EOFs over the TIP (Fig. 2 g, h) 197 

and TP (Fig. 2 a, b) are somewhat similar over the TP. This is consistent with the higher SST variability over the TP 198 

compared to the TIO (See Fig. 1d). The dependence of these EOFs to the global warming is also checked by 199 

recomputing these EOF patterns on the detrended SSTs (see Fig. 3). The spatial patterns of most of the leading 200 

EOFs for the three domains remain,in general, unchanged after detrending.This illustrates that the observed climate 201 

change SST signal is projecting on specific modes of SST variability in the TIP.  However, for TIP, the 2nd and 3rd 202 

modes of “raw” are becoming the 3rd and 2nd modes of detrended SSTs, respectively. The main factor responsible for 203 

this reversed order between the 2nd and 3rd EOF modes of observed SSTA with or without detrending seems related 204 

the large warming trend over the Indian Ocean warm pool during recent decades (e.g. compare Fig. 2b and Fig. 3c). 205 

The explained variance increases approximately by 2% only for the first leading EOF mode of TP and TIP domain 206 

when the EOFs are computed from the detrended SSTA (see Table 2). But, it decreases significantly, i.e., by 10% 207 

for the leading EOF mode of the TIO, which is reminiscent of the IOBM. This suggests that the TIO is mainly 208 

responsible of the reversed order between the 2nd and 3rd EOF modes of observed SSTA with or without detrending 209 

in the TIP domain. However, the SST trends do not alter the spatial structures of the leading EOF modes in the 210 

different oceanic basins, only the variance they described. As we are interested in the interannual variability of TIP, 211 

detrended SST data is used throughout our subsequent analysis and, especially, in the computation of the RMSE 212 

statistics, which is discussed in the next paragraph.              213 

As mentioned earlier, CMIP5 models have been ranked in the ascending order of their RMSE values for the TIP (see 214 

Table 3). The RMSE values for TIO and TP domains are also listed in Table 3 to assess the robustness of the results 215 

and the dependency to the domain definition. RMSE values for TIP and TP domains are nearly the same, but the 216 

corresponding RMSEs of TIO are different, implying that the models performing best for the TP and TIO are not 217 

necessarily the same. Table 3 shows that for the first twenty-one models, the RMSE for the TIP domain is below 218 

47% and beyond that it reaches suddenly a value of nearly 60%. Thus, these first 21 “best” models are selected for 219 



our subsequent analysis. Unfortunately, the RCP 8.5 data was unavailable for five out of these 21 models. Thus, the 220 

number of “best” models available for future projections will become finally 16 for further analysis. 221 

5. Seasonal evolution of leading modes in H simulations 222 

The ability of the CMIP5 models to reproduce seasonal cycles of canonical El Niños and that of El Niño Modoki is 223 

measured by the comparing the simulated and observed monthly Standard Deviation (SD) of the Niño3 index and El 224 

Niño Modoki Index (e.g. EMI) (Ham and Kug 2014).  225 

ENSO variability has a strong phase locking to the seasonal cycle with the maximum of SSTA in November-January 226 

and minimum in March-May in the eastern Pacific (Ham and Kug 2014; see also Fig. 4a). However, unlike the 227 

observations, many individual models show a different seasonal cycle of evolution, with the peak of the canonical El 228 

Niño occurring at any season (Jourdain et al. 2013; Taschetto et al. 2014) and only a few models have Niño3.4 SST 229 

amplitude similar to or above observations during boreal winter (Taschetto et al. 2014). This can be related to many 230 

factors, especially the spatial shift of simulated SST variability over the equatorial Pacific (Li et al. 2019). It is 231 

important to consider this deficiency if we want to assess the changes of predictability and lead-lag relationships 232 

between the ENSO, IOD and IOBM phenomena in the future projections using CMIP5 models. The observed El 233 

Niño Modoki also peaks in December and January similar to canonical El Niño, but the minimum of EMI occurs in 234 

May and June, slightly later than the minimum of canonical El Niño (see Fig. 4b). It is noticed that very few models 235 

are able to capture the seasonal cycle of the El Niño Modoki. This also has serious implications for simulation of the 236 

seasonal cycle and interannual variability of other major climate processes such as the Indian summer monsoon (e.g. 237 

Jourdain et al., 2013). Note that, in this section, the seasonal evolution of all the “best” 21 models is discussed, as 238 

the H simulations are available for all of them. From the next section onwards, only those models for which both H 239 

and RCP 8.5 simulations are available will be used (e.g. 16 models).  240 

Now, the fidelity of the statistics for IOBM and the IOD will be explored. SD of observed IOBM is maximum in 241 

February-March (black curve in Fig. 4c). Many CMIP5 models reproduce this late boreal winter peak in IOBM 242 

variability, but the IOBM amplitude is generally overestimated and the inter-model spread is very large (Fig. 4c; Du 243 

et al. 2013). The observed IOD is also tightly seasonally phase locked to the calendar months and peaks in SON 244 

(black curve in Fig. 4d). In agreement with Jourdain et al. (2016) and Cai et al. (2009), we find that 19 out of 21 245 

CMIP5 models overestimate the IOD peak amplitude, in SON (Fig. 4d). In summary, the CMIP5 models have a 246 

tendency to overestimate the amplitude of the IO modes (Figs 4c,d), especially the IOD despite of the fact that the 247 

TP modes are generally damped in the models (Figs 4a,b). 248 

6. Changes in SST variability in near future 249 

We now concentrate on those models, which can at least simulate a reasonable phase-locking of ENSO to the annual 250 

cycle, as this property is key for the realism of the ENSO teleconnections in the coupled models. To quantify the 251 

models’ fidelity in simulating the ENSO phase-locking, the correlations between the monthly SD of Niño3 SST 252 

anomaly for each model and observations are computed (Ham and Kug 2014). Thus, 9 models are selected out of the 253 

16 “best” models, which have a significant positive correlation at the 90% confidence level, (see Table 4). Note that 254 



some of the “best” models exhibit even a strong negative correlation (e.g. CSIRO-Mk3-6-0, IPSL-CM5A-LR, IPSL-255 

CM5A-MR). This demonstrates that the CMIP5 models, which performed best for reproducing the observed ENSO 256 

variability, are not necessarily the models with the best seasonal phase-locking, highlighting the difficulty of 257 

selecting the best CMIP5 models in a universal way. Based on this, we form two groups of models for evaluating the 258 

climate projections, namely, Groups A and B:  Group A consists of all 16 models. The Group B consists of the 9 259 

models out of the 16 models, which have a reasonable seasonal phase locking of ENSO.  260 

We now focus on the SD changes for theNiño3, EMI, IOBM and IOD  indices in the RCP 8.5 simulations.  For that 261 

purpose, the percentage change of SD from H to RCP 8.5, for each index is computed as follows: 262 

Percent change in SD from H to RCP 8.5 = [(SDRCP-SDH)/SDH]*100%                                                                     (3)  263 

Fig. 5 displays percentage changes in the monthly SD of Niño3 and EMI from H to RCP 8.5 simulations for groups 264 

A and B. Furthermore, the standard-error of simulated percentage change in SDs of indices across the models in 265 

each group is also calculated for each month (Fig. 5). These error bars give an estimate of the robustness of the 266 

change that has occurred across the models. We note that there is a substantial spread in the SD of all indices across 267 

the models (Fig. 5). Group A shows a marked increase in the canonical El Niño amplitude in all months (see Fig. 268 

5a). However the models with a reasonable ENSO phase locking (Group B) demonstrate that this increase is coming 269 

from models in which the ENSO peak is not observed during boreal winter in the historical period(see Fig. 5b). The 270 

Group B of models show strengthening of El Niño in all months except JJA, but the error bars are very large. We 271 

thus conclude thatcanonical El Niño variability may increase in the future, but this projected increase is insignificant 272 

if we take only into account the models that have realistic ENSO pattern and seasonal cycle in the H simulations. 273 

This result is in agreement with previous studies (Stevenson et al. 2012; Chen et al. 2015;  Rashid et al. 2016).  The 274 

EMI amplitude, on the other hand, seems to increase significantly in the future during its peak for both Group A and 275 

Group B models (see Figs. 5c and 5d). 276 

We shall now discuss the projected changes of the IOBM and IOD (Fig. 6). The percentage changes in the SD of 277 

these indices from H to RCP8.5 simulations suggest that the simulated IOBM amplitude will weaken in future 278 

despite no commensurate robust changes of ENSO (see Figures 6a, b), but the intermodal spread is again relatively 279 

large. However, this decrease in IOBM magnitude is robust during early summer for group B (Fig 6b) and is 280 

consistent with a similar reduction of Niño3.4 amplitude in this group (Fig 5b). To sum up, these results indicate 281 

that, for a high emission scenario, IOBM may not extend till the next boreal summer in future, and hence may 282 

contribute less to the Indian summer monsoon variability (Yang et al. 2007). 283 

On the other hand, the SD of IOD is seen to amplify in Group A as well as in Group B models (see Fig. 6c, d) during 284 

boreal summer as the error barsare well above zero. This suggests a strengthening, and an early onset of IOD events.  285 

 286 

7. Changes in the lead-lag correlations between ENSO, IOD and IOBM 287 

We now investigate whether the ENSO, IOD and IOBM relationships will change under anthropogenic global 288 

warming. From this section, we will discuss only the relationship between Niño3, IOD and IOBM indexes because 289 

EMI relationship with IOD and IOBM is not completely known yet in observations. 290 



The concurrent relationship among ENSO, IOD and IOBM  is assessed with the help of a correlation analysis 291 

between the different pairs of climate indices during their respective peak season in the H and RCP 8.5 simulations 292 

(Table 5).  In this context, Table 5 displays the “simultaneous” correlations among IOD (SON), Niño3 (DJF) and 293 

IOBM (MAM) for observations and Groups A and B models. Here, “simultaneous” means that IOD (during SON) 294 

precedes both Niño3 and IOBM (during the following DJF and MAM seasons), and Niño3 (during DJF) precedes 295 

the IOBM by two months. Note first that all the correlations listed in Table 5 are positive and statistically significant 296 

at the 90% confidence level for both observations and CMIP5 models.   297 

In the observations, the canonical El Niño peak in boreal winter is preceded by positive IOD peak in the previous 298 

boreal fall, and is followed by the peaking of the IOBM during boreal spring. Due to the tight relationship between 299 

IOD and Niño3 on one hand and between Niño3 and IOBM on the other hand, the correlation between IOD and 300 

IOBM is also positive and significant (Hong et al. 2010). The full multi-model mean (e.g. Group A) realistically 301 

simulates these significant “simultaneous” positive correlations among IOD, ENSO and IOBM during their 302 

respective peak phases in the H simulations, despite weaker amplitude, in agreement with Ha et al. (2016). These 303 

simultaneous correlations in the H simulations are generally further improved if we consider only models in Group 304 

B(e.g. see second row in Table 5). Furthermore, the inter-model spread also decreases from Group A to B models, 305 

which gives even more confidence in the models in Group B for assessing future changes. 306 

These simultaneous correlations between IOD, Niño3 and IOBM are, in general, seen to slightly increase in the RCP 307 

8.5 simulations, especially for Group B. There is only one exception to this general rule, the correlation between 308 

IOD and Niño3 in Group A. Notably, the association of IOBM with both Niño3 and IOD becomes stronger in the 309 

future relative to the H period. The inter-model spread is also slightly increasing from H to RCP 8.5 simulations 310 

with one important exception, which concerns again the association between Niño3 and IOBM. However, this inter-311 

model spread remains quite low, especially for Group B in the RCP 8.5 simulations, suggesting the robustness of 312 

these results. 313 

Next, we try to detect if there are any changes from H to RCP 8.5 simulations in the lead relationships between the 314 

IO indexes and the Niño3 index, which will have implications for ENSO predictability (Luo et al. 2010; Izumo et al. 315 

2010; Cai et al. 2019) in the background of increasing anthropogenic warming. A large number of studies have 316 

pointed out the role of IOBM in ENSO transitions (Kug and Kang 2006; Obha and Ueda 2007; Terray et al. 2016). 317 

IOBM is able to trigger low-level easterly wind anomalies over the western equatorial Pacific Ocean, which promote 318 

eastward propagating upwelling Kelvin waves in the equatorial Pacific Ocean during boreal spring (Kug and Kang 319 

2006; Obha and Ueda 2007; Wang 2019). These easterly wind anomalies over the western Pacific are most 320 

significant during and just after the El Niño peak phase and thus hasten the transition from El Niño to La Niña. 321 

However, importantly, the observed correlations for the H period (shown in Table 6), between the MAM(0) IOBM 322 

and D(0)JF(1) Niño3, i.e. when IOBM leads, are quite modest (i.e. -0.17) and statistically not significant for both 323 

observations and Group A. We ascertained the result by employing the Niño3.4 index in place of Niño3 index in the 324 

correlation analysis (not shown). This suggests that not all IOBM events condition the El Niño to La Niña transition 325 

in the TP or, alternatively, that the IOBM feedback on ENSO occurs in another season. This result is strange, but 326 

interesting because while Group A is able to capture this observed relationship with a high fidelity, Group B, which 327 



has a more realistic phase-locking to the annual cycle, on the other hand, tends to overestimate the link between 328 

IOBM during MAM and the ENSO state in the next boreal winter in the H simulation (Table 6). However, in the 329 

future projections, the correlation with springtime IOBM leading wintertime Niño3 index is much more negative 330 

and becomes statistically significant at 90% confidence level for both groups A and B. This suggests that the role of 331 

IOBM in speeding the transition from El Niño to La Niña is more significant in the RCP 8.5 projections despite of 332 

the decrease of IOBM amplitude during late boreal spring and early summer highlighted in the preceding section. 333 

We now focus on the fidelity of CMIP5 models in simulating the observed tendency of ENSO events to follow the 334 

IOD events in the previous year and the projected changes for this behavior in the RCP 8.5 simulations (see Table 6; 335 

Izumo et al. 2010; Jourdain et al. 2016). The relevant correlations between SON(-1) IOD and D(0)JF(1) Niño3 336 

indexes (e.g. when IOD leads by more than one year the Niño3 index) are shown in Table 6. The lead correlations of 337 

the IOD index with Niño3 index 14 months later are, respectively, -0.39, -0.35 and -0.41 for observations, Group A 338 

and B in the H period. These values are in good agreement with previous results based on observations and H 339 

simulations (Izumo et al. 2014; Jourdain et al. 2016). These correlations are significant at the 90% confidence level 340 

and have stronger amplitude than the corresponding IOBM-Niño3 correlations discussed above, despite of the 341 

longer time lead. However, in the RCP8.5 simulations, these lead correlations of the IOD with Niño3 14 months 342 

later are all decreasing, especially for Group B, despite the “simultaneous” correlations between IOD and Niño3 343 

indexes are almost stable between the H and RCP 8.5 simulations (see Table 5; Chu et al. 2014).             344 

The above conclusions are made based on the lead-lag correlation between IOD, IOBM and Niño3 SST time series 345 

in their respective peak seasons. In order to illustrate the associated evolution of SSTA in the TIP domain and how 346 

these SST patterns change from H to RCP8.5 simulations, we selected two typical individual models from Group B, 347 

which perform best according to our two selections rules (based on least normalized RMSE and a realistic seasonal 348 

phase-locking), namely, the GISS-E2-H-CC and ACCESS1-0 models (see Tables 3 and 4).  Importantly, the GISS-349 

E2-H-CC shows the largest absolute amplitude increase (e.g. by 0.32) in IOBM-Niño3 lead correlations and 350 

ACCESS1-0 shows the largest absolute amplitude decrease (e.g. of 0.43) in IOD-Niño3 lead correlation from H to 351 

RCP 8.5 simulations in Group B, making them interesting candidates for illustration of possible physical 352 

mechanisms behind the changes of the lead-lag correlations between the climate indexes in the future projections. 353 

First, Figures 7ab confirm that the role of IOBM in the negative feedback of the IO on ENSO has considerably 354 

strengthened in the GISS-E2-H-CC simulations, as both the magnitude and extent of the negative correlations over 355 

TP have increased considerably several months after the occurrence of IOBM events from H to RCP 8.5 simulations 356 

for this model. The results from a complementary regression analysis also show that the amplitude of the associated 357 

SSTA increases considerably from the H to RCP 8.5 simulations (Fig. S1a and b). On the other hand, the IOD-358 

Niño3 lead correlation and regression SSTA patterns simulated by ACCESS1-0 drastically drop and become 359 

insignificant in future projections (Figs. 7cd and S1cd), also in full agreement with the results from the analysis of 360 

the correlations between the indices (Table 6). 361 

We investigated furtherthese different evolutions by computing Hovmöllercomposite of SST and 850-hPa zonal 362 

wind anomalies for positive and negative IOBM (IOD) events in the GISS-E2-H-CC (ACCESS1-0) simulations 363 

(Figs. 8 and 9). 364 



In case of GISS-E2-H-CC, first we calculated standardized index of boreal spring (MAM) IOBM. We selected 11 365 

strong positive IOBM events when the standardized IOBM index is above the 0.7 threshold and 10 negative IOBM 366 

events when it is below -0.7 in the H simulations. Following a similar procedure for future projections, we got 12 367 

positive IOBM events and 11 negative IOBM events in the RCP 8.5 simulations. Comparing the SST and 850-hPa 368 

wind anomalies evolution following the positive IOBM events in the two periods (i.e., Fig. 8a and 8b) for GISS-E2-369 

H-CC, we find that though a basin-wide IO warming is observed during MAM of year 0 in present period, it’s 370 

magnitude is moderate and hence it is not able to trigger significant easterly wind anomalies over the western 371 

Pacific, which may fasten the turnabout of ENSO during year 0, and finally a very weak La Niña event is simulated 372 

in TP at the end of year 0. In contrast, in the future warming scenario, a stronger positive IOBM is seen during 373 

MAM of year 0 accompanied by more significant and stronger easterlies over the western TP at the beginning of 374 

year 0, which trigger a well-defined La Niña event at the end of year 0 (Fig. 8b). Interestingly, the changes from the 375 

H to RCP 8.5 simulations for the GISS-E2-H-CC model concern mainly these positive IOBM events. Negative 376 

IOBM events during MAM of year 0 seem to give rise to moderate El Niño conditions at the end of year 0 in both H 377 

and RCP 8.5 simulations (Fig. 8c and d) despite of the fact that westerlies over the western TP during boreal spring 378 

of year 0 are much better defined in the RCP 8.5 simulation. This suggests that global warming induces a stronger 379 

nonlinearity in the relationship between IOBM and ENSO (Ohba and Watanabe 2012). 380 

 Following a similar procedure, we selected 11 positive IOD events when standardized IOD index during SON is 381 

above 0.7 and 11 negative IOD events when it is below -0.7 in the H simulation of the ACCESS1-0 model. For 382 

future projection, we got 13 positive IOD events and 13 negative IOD events. The Hovmöllercomposites of SST and 383 

850-hPa zonal wind anomalies in the TIP domain during the H period highlight a very systematic statistical 384 

relationship between both positive and negative IOD events and the evolution of TP SST anomalies in the following 385 

year consistent with previous studies (Fig. 9; Izumo et al. 2010, 2014; Jourdain et al. 2016). However, as noted by 386 

Jourdain et al. (2016), the physical mechanisms responsible for this relationship remain elusive because associated 387 

850-hPa zonal wind anomalies over the western TP at the beginning of year +1 remain weak and are not significant 388 

for both positive and negative IOD events simulated by the ACCESS1-0 model (Fig. 9a and c).Moreover, the main 389 

result is that the role of IOD events in ENSO turnabout is becoming almost negligible in the RCP 8.5 simulation 390 

performed with the ACCESS1-0 model (Fig. 9b and d). Interestingly, this weaker role of IOD in ENSO evolution is 391 

accompanied by a change of the spatial structure of the IOD events during SON, which seem exclusively under the 392 

control of the eastern IOD pole SST anomaly in the future projection by contrast with what is observed in the H 393 

period (Fig. 9b and d).. 394 

 395 

In summary, the above analysessuggest an increasing role of positive IOBM events in ENSO turnabout and a 396 

stronger asymmetry in the relationship between IOBM and ENSO while the ENSO-IOD link may become weaker in 397 

the future under global warming. Implications for future changes in the “global” negative feedback of the IO on 398 

ENSO and the long lead predictability of Niño3 SST index from IO SST modes are discussed in next section. 399 

 400 

 401 



8. Changes in IO negative feedback and predictability of ENSO indices from IO SST 402 

In this section, we examine the collective and respective influences of IOD, IOBM and also Niño3 persistence on 403 

the “potential” predictability of Niño3 SST anomalies in the following year (e.g. end of year 0 and beginning of year 404 

+1) in the H simulations realm, and corresponding future projections, using a multiple linear regression approach. 405 

Table 7 lists the values of coefficient of determination, i.e. R2, for the (multiple) linear prediction of Niño3 at the 406 

start of year +1 (e.g. D of year 0 and JF of year +1) using different predictors such as Niño3 in DJF of year 0, IOD 407 

in SON of year -1 or IOBM in MAM of year 0,and their different combinations using the CMIP5 models. An R2 408 

between 0 and 1 indicates the extent (e.g. percentage) to which the variance of the dependent variable is explained 409 

by the predictors. As an illustration, an R2 of 0.10 means that 10% of the variance of the dependent variable is 410 

predictable/described from the selected predictors. Here, we also compare how the predictability of Niño3 in DJF 411 

would change from H to RCP 8.5 for each set of predictors. 412 

In the H period, the IOD in SON of year -1 is a better predictor than IOBM for observations, as well as groups A 413 

and B. Niño3 autocorrelation does not seem to play any significant role in the H period (Table 7 first row). 414 

However, in the global warming scenario, results are different: the IOBM (R2 = 0.22 for Group B) plays a more 415 

important role than IOD (R2 = 0.15 for Group B) in the Niño3 prediction, consistent with the results in the last 416 

section. The Niño3 SST “potential” predictability is improved and enhanced in the future if we consider IOBM and 417 

IOD together as predictors (R2 = 0.25 for Group B) as compared to IOBM or IOD alone (see Table 7). Interestingly, 418 

Niño3 and IOBM perform even better (R2 = 0.26 for Group B) than the pair IOBM and IOD in the RCP 8.5 419 

simulation. This confirms the leading role of IOBM in the RCP 8.5 simulation.We also get improved prediction for 420 

Niño3 from H to RCP 8.5 simulations for both groups A and B if we take Niño3 SST, IOD and IOBM all together 421 

or, alternatively, the pairs IOBM and IOD or IOBM and Niño3. This demonstrates that the “global” negative 422 

feedback of IO on ENSO turnabout increases in the RCP 8.5 simulations, despite IOD is losing its predictive value. 423 

However, the inter-model variability is always increasing in the RCP 8.5 simulations for all the regressions 424 

performed in Table 7. 425 

One well-known drawback of R2 is that it can be driven to any desired value simply by adding predictors. To 426 

overcome this effect, we also used adjusted R2 statistics (Table 8), which indicate the proportional reduction in the 427 

mean square rather than in the sum of squares (Draper and Smith 1998). The purpose of using adjusted R2 is to 428 

check whether the predictive value is actually improved when a combination of the Niño3, IOBM and IOD is 429 

considered, and not just because of increasing number of predictors. From Table 8, it is clear again that for Niño3 430 

prediction in the future, considering IOBM and IOD together as predictors would be beneficial (R2 =0.21 for Group 431 

B), instead of just taking IOBM (adjusted R2 = 0.2 for Group B) or IOD (adjusted R2 = 0.13 for Group B) alone. 432 

However, in the future, the pair IOBM and Niño3 (adjusted R2 = 0.23 for Group B) performs again better that the 433 

pair IOBM and IOD using adjusted R2. We also get again marginally “best” results if we consider all together 434 

Niño3, IOBM with IOD  (adjusted R2 = 0.24 for Group B). 435 



Of course, we should also be mindful from the above discussion on the R2 and adjusted R2 values, that all these SST 436 

predictors can explain only 20-29% of Niño3 variability at most and, thus, have strong limitations compared to more 437 

traditional ENSO predictors such as the equatorial Pacific WWV or low-level zonal wind anomalies over the 438 

western Pacific (Clarke 2008). But the above discussion gives us a qualitative but useful interpretation of the 439 

changing strength of the negative feedback of the IO on ENSO. 440 

9. Summary and discussion 441 

A large set of CMIP5 coupled models are analyzed to assess the present (e.g. 1958-2005) and near future (e.g. 2006-442 

2050) of ENSO and TIO modes of variability and their teleconnections. 443 

First, a method based on EOF analysis is employed for selecting 16 CMIP5 models out of 32, which perform best to 444 

simulate TIP SST variability during recent decades, for further analysis. Despite these 16 CMIP5 models perform 445 

best in simulating the spatial patterns of observed SST variability, many of them have difficulties in simulating the 446 

seasonal phase locking of canonical El Niño events during the H period.Thus, we further selected a subset of 9 447 

models with a realistic ENSO seasonal phase-locking during recent decades(out of the 16) for evaluation of the 448 

robustness of future changes. 449 

 We then discussed how the leading modes of TP and TIO would change in terms of amplitude and seasonal phase-450 

locking under global warming. The results infer that canonical El Niñomay not change much in the near future. On 451 

the other hand, EMI amplitude seems to increase significantly during its peak season in the near future. In case of 452 

TIO modes, it is found that the IOBM is projected to be weaker during early summer in the RCP8.5 scenario. For 453 

the IOD, while its amplitude may not change significantly during boreal fall, it is projected to strengthen during 454 

boreal summer, pointing to an early onset of IOD events in a future scenario. Interestingly, our results are broadly in 455 

agreement with Chu et al. (2014), despite that these authors used the RCP4.5 scenario at the end of the 21st century; 456 

but we focused on a high RCP8.5 emission scenario and a near future period with a different model selection 457 

method. 458 

Next, we focus on the changes from H to RCP 8.5 simulations in the lead relationships between the IO and Niño3 459 

indexes. Lead correlation between IOBM MAM(0) and Niño3 D(0)JF(1) is very weak for the present period, which 460 

suggests that not all IOBM events condition the El Niño to La Niña transitions in the TP. However, the role of 461 

IOBM in hastening the El Niño to La Niña transition is much more significant in the RCP 8.5 projections. 462 

Interestingly, the lead correlations of IOD with ENSO follow a reversed evolution and IOD is losing its ENSO 463 

predictive value in the near future. These results are again consistent with the results of Chu et al. (2014). These 464 

changes have been further illustrated by a detailed composite analysis of the evolution of 850-hPa zonal wind and 465 

SST anomalies in two typical models viz., GISS-E2-H-CC and ACCESS1-0. Overall, these composite analyses 466 

suggest an increasing role of positive IOBM events in ENSO turnabout (thus a stronger asymmetry in the 467 

relationship between IOBM and ENSO) and points towards weaker ENSO-IOD correlation under global warming, 468 

especially the lead relationship between IOD events and the SST evolution in the TP during the following 469 

year.Interestingly, this weaker role of IOD in ENSO evolution in the RCP 8.5 simulation of the ACCESS1-0 470 



modelis accompanied by a change in the spatial structure of IOD, which shows a predominant contribution of the 471 

eastern IOD pole in the future. 472 

Finally, we also examined the collective and respective influences of IOD and IOBM on the “potential” 473 

predictability of Niño3 in the following year in the H simulations realm, and corresponding future projections, using 474 

a multiple linear regression approach. Our results show that the “global” negative feedback of IO on ENSO 475 

turnabout increases significantly in the RCP 8.5 simulations, despite IOD is losing its predictive value in the future 476 

projections. 477 

In a nutshell, this study brings out the increasing role of IOBM and negative IO feedback in ENSO transitions in 478 

near future. We admit that inter-model spread in CMIP5 ensemble is a big hurdle, which surely limits the degree of 479 

robustness of our analysis despite our careful selection of the most “realistic” models. In future, we hope to seek for 480 

improved models, which will have a better representation of ENSO, IOD and IOBM. We expect that the new 481 

CMIP6 simulations would serve this purpose better. In parallel, it is particularly important to build more efficient 482 

metrics for model selection in both the CMIP5 and CMIP6 ensembles for a robust assessment of future climates 483 

changes.   484 
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(a) (d)  

(b)  (e)  

(c)  (f )  

Fig. 1 a) Ensemble annual mean SST (°C) from the CMIP5 H simulations, b) annual mean bias (°C) of the CMIP5 H 
ensemble relative to HadISST dataset, c) di�erence (°C) in annual mean SST between H and RCP 8.5 simulations of 
CMIP5 models, d) Ensemble mean variance (°C2) from the detrended CMIP5 H simulations, e) mean variance bias 
(°C2) of the detrended CMIP5 H ensemble relative to detrended HadISST dataset, f ) di�erence (°C2) in mean variance 
between detrended H and RCP 8.5 simulations of CMIP5 models. The RCP 8.5 simulations, changes are given for the 
period 2006-2050 relative to the period 1958-2005 in the H simulations of the CMIP5 models. The shaded regions in 
Fig. 1b, c, e, and f are statistically signi�cant at the 90% con�dence level according to a Student t or F tests 
(von Storch and Zwiers 1999)
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Fig. 2 :  The �rst three leading EOF modes for the TP (a) – (c), TIO (d) – (f ) and TIP (g) – (i) estimated from the “raw” 
monthly SSTA, i.e. before detrending. The percentage of variance explained by the corresponding EOF is listed 
in Table 2.
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Fig. 3 :  As in Fig. 2,  but for the �rst  three  spatial  EOFs  of TP (a) – (c), TIO (d) – (f ) and TIP (g) – (i) 
domains after detrending the SSTA. The percentage of variance explained by the corresponding 
EOF is listed in Table 2.
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Fig. 4 :  Monthly Standard Deviation (SD) of a) Niño3, b) EMI, c) IOBM and d) IOD indices in 
 CMIP5 H simulations. The black curve in each panel denotes the SD from HadISST dataset. 
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Fig. 5: Percent change in monthly SD of multi-model mean from  H  to  RCP 8.5  of  a)  Nino3  for 
Group A, b) Nino3 for Group B, c) EMI for Group A, d) EMI for Group B. The error bars denote the 
SD of inter-model variability.
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Fig. 6: Percent change in monthly SD of multi-model mean from H to RCP 8.5 of a) IOBM for 
Group A, b) IOBM  for Group B, c) IOD for Group A, d) IOD for Group B. The error bars denote 
the SD of inter-model variability.

Figure 6



        (a)    (b)

        (c)    (d)

 Fig. 7 : Lead  correlation patterns between (a) (b) IOBM  during  MAM  of  year  0  using  GISS-E2-H-CC 
model and (c) (d) IOD during SON of year -1 using ACCESS1-0 model and SSTA in D(year 0)JF(year+1).
 The shaded regions are statistically signi�cant at the 90%  con�dence  level  according  to  a  2-tailed 
Student’s t-test.  Panels(a) and (c) are plotted using H  simulations  (1958-2005),  and  (b)  and  (d)  are 
plotted using RCP 8.5 simulations (2006-2050). 

Figure 7
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Fig. 8:  5°S–5°N  averaged  Hovmöller  composite  of  SST (shading,  °C)   and   850-hPa   zonal   wind 
(contour, ms−1) anomalies  in  the  TIP domain starting from June of year -1(bottom) to February of 
year +1(top) as simulated by the GISS-E2-H-CC model.  Positive IOBM events in year 0  for  (a) H  and 
(b) RCP8.5 simulations. Negative IOBM events in year 0 for  (c)  H  and  (d)  RCP8.5 simulations.  Black 
bold contours represent zero 850-hPa zonal wind anomalies and dashed contours indicate negative 
values (e.g. easterly850-hPa winds). Only signi�cant SSTA above the 90% con�dence level are shown
 (shading).  Signi�cant  wind  anomalies  above  the  90%  con�dence   level   are   shown   by   purple 
contours. See text for more details.
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Fig. 9:  5°S–5°N  averaged  Hovmöller  composite  of  SST  ( shading,  °C)  and  850-hPa  zonal  wind 
(contour, ms−1) anomalies in the TIP domain starting from June of year -1(bottom) to February of 
year +1(top) as simulated by the ACCESS1-0 model.  Positive IOD events in year -1 for (a) H and (b) 
RCP8.5 simulations. Negative IOD events in year -1for (c) H and (d) RCP8.5simulations.  Black  bold 
contours represent zero850 hPa zonal  wind  anomalies  and  dashed  contours  indicate  negative 
values (e.g. easterly 850-hPa winds). Only s igni�cant  SSTA  above  the  90%  con�dence  level  are 
shown (shading). Signi�cant wind anomalies above the 90% con�dence level are shown by purple 
contours. See text for more details.
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Table 1:List of CMIP5 models along with their modeling groups and resolution. 

 

Model Institution 

 

Resolution 

(latitude× 

longitude) 

 

ACCESS1.0              Commonwealth Scientific and Industrial 

Research Organization  (CSIRO) and Bureau of 

Meteorology, (BOM), Australia 

300 × 360 

ACCESS1.3              Commonwealth Scientific and Industrial 

Research Organization  (CSIRO) and Bureau of 

Meteorology,(BOM), Australia 

300 × 360 

BCC-CSM1-1         Beijing Climate Center, China Meteorological 

Administration, China  

232 × 360 

CCSM4     National Center for Atmospheric Research, 

USA                             

384 × 320 

CanESM2 Canadian Centre for Climate Modeling and 

Analysis, Canada       

192 × 256 

CESM1-BGC            NSF-DOE-NCAR                                                                             384 × 320 

CESM1-CAM5         NSF-DOE-NCAR                                                                              384 × 320     

CESM1-

WACCM    

NSF-DOE-NCAR                                                                              384 × 320     

CNRM-CM5             Centre National de RecherchesMeteoro-

logiques and Centre Europeen de Recherche et 

Formation Avancees en CalculScientifique 

292 × 362 

CNRM-CM5-2         Centre National de RecherchesMeteoro-

logiques and Centre Europeen de Recherche et 

Formation Avancees en CalculScientifique 

292 × 362 

CSIRO-Mk3.6.0 Commonwealth Scientific and Industrial 

Research Organization in collaboration with the 

Queensland Climate Change Centre of  

Excellence, Australia 

189 × 192 

EC-EARTH  292 × 362 

GFDL-ESM2M        Geophysical Fluid Dynamics Laboratory, USA                                200 × 360 

GISS-E2-H NASA Goddard Institute for Space Studies, NY                                 90 × 144 

GISS-E2-H-CC        NASA Goddard Institute for Space Studies, NY                                 90 × 144 

GISS-E2-R NASA Goddard Institute for Space Studies, NY                                 90 × 144 

GISS-E2-R-CC        NASA Goddard Institute for Space Studies, NY                                 90 × 144 

HadCM3 Met Office Hadley Centre, UK                                                          144 × 288 
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HadGEM2-AO         National Institute of Meteorological 

Research/Korea                       Meteorological 

Administration, South Korea  

216 × 360 

HadGEM2-CC          Met Office Hadley Centre, UK                                                         216 × 360 

HadGEM2-ES           Met Office Hadley Centre, UK                                                         216 × 360 

INM-CM4                 Institute for Numerical Mathematics, Russia                                    340 × 360 

IPSL-CM5A-LR       Institute Pierre-Simon Laplace, France                                             149 × 182 

IPSL-CM5A-MR      Institute Pierre-Simon Laplace, France                                             149 × 182 

MIROC5 Atmosphere and Ocean Research Institute (The 

University of Tokyo), National Institute for 

Environmental Studies, and Japan Agency for 

Marine-Earth Science and Technology, Japan  

224 × 256 

MPI-ESM-LR          Max Planck Institute for Meteorology (MPI-M), 

Germany               

220 × 256 

MPI-ESM-MR         Max Planck Institute for Meteorology (MPI-M), 

Germany               

404 × 802 

MPI-ESM-P             Max Planck Institute for Meteorology (MPI-M), 

Germany               

220 × 256 

MRI-CGCM3           Meteorological Research Institute, Japan                                          368 × 360 

MRI-ESM1              Meteorological Research Institute, Japan                                           368 × 360 

NorESM1-M           Norwegian Climate Centre, Norway                                                   384 × 320 

NorESM1-ME         Norwegian Climate Centre, Norway                                              384 × 320 

 



Table 2: Explained variances of the first three leading EOF modes using “raw” and detrended 

SSTA over three domains viz., TP, TIO and TIP for the 1958-2005 period. 

 Explained variance (%) Explained variance (%) 

 Raw data Detrended data 

 EOF1 EOF2 EOF3 EOF1 EOF2 EOF3 

TP 41.8 10.3 8.0 43.5 10.8 4.7 

TIO 39.9 13.2 8.6 29.2 15.9 10.1 

TIP 37.9 9.7 8.8 39.4 9.6 2 
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Table 3: List of CMIP5 models, ranked according to normalized RMSE values computed 

from the first 8 reference EOF modes estimated from detrended TIP SSTA in the HadISST 

dataset for the 1958-2005period. The normalized RMSE statistics for TP and TIO domains 

are also shown to assess the robustness of the ranking of the CMIP5 models with respect to 

the domain definition.  

     

Rank TIP TP TIO Model 

1. 0.06 0.07 0.62 MPI-ESM-P 

2. 0.12 0.11 0.21 HadGEM2-ES 

3. 0.12 0.13 0.2 NorESM1-M 

4. 0.16 0.17 0.68 CSIRO-Mk3-6-0 

5. 0.16 0.16 0.24 HadGEM2-AO 

6. 0.17 0.18 0.46 CNRM-CM5-2 

7. 0.18 0.18 0.41 CanESM2 

8. 0.18 0.18 0.92 HadCM3 

9. 0.19 0.19 0.33 IPSL-CM5A-MR 

10. 0.20 0.16 0.64 MPI-ESM-LR 

11. 0.22 0.24 0.32 CESM1-BGC 

12. 0.25 0.26 0.32 IPSL-CM5A-LR 

13. 0.25 0.27 0.49 MPI-ESM-MR 

14. 0.25 0.26 0.39 CNRM-CM5 

15. 0.26 0.25 0.2 ACCESS1-0 

16. 0.29 0.29 0.19 HadGEM2-CC 

17. 0.30 0.31 0.39 NorESM1-ME 

18. 0.32 0.31 0.34 ACCESS1-3 

19. 0.40 0.4 0.93 CESM1-CAM5 

20. 0.46 0.45 0.36 GISS-E2-H-CC 

21. 0.47 0.45 0.21 BCC-CSM1-1 

22. 0.59 0.58 0.3 GISS-E2-H 

23. 0.59 0.59 0.72 CESM1-WACCM 

24. 0.60 0.64 0.5 CCSM4 

25. 0.60 0.61 0.24 EC-EARTH 

26. 0.63 0.63 0.27 GISS-E2-R 

27. 0.66 0.66 0.39 MRI-CGCM3 

28.  0.66 0.67 0.33 MRI-ESM-1 

29. 0.69 0.71 0.2 GISS-E2-R-CC 

30. 0.71 0.69 0.63 INMCM4 

31. 1.448 1.43 1.61 GFDL-ESM-2M 

32. 1.579 1.51 1.7 MIROC5 
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Table 4:Classification of the CMIP5 models according to their ability to simulate the 

phase-locking of canonical ENSO events to the seasonal cycle, see text for details. 

Group A consists of all sixteen models, which have both H and RCP 8.5 simulations. 

The correlation coefficients between the monthly SD of Niño3 SST for each model 

and observations are computed and shown in the last column.The models with a 

positive correlation coefficient significant at 90% confidence level are shown in bold 

and are classified as Group B.  

    

     

     

Sr. No. Group A Correlation between  

Niño3 index of models and 

observation 

1. NorESM1-M 0.51 

2. CSIRO-Mk3-6-0 -0.78 

3. CanESM2 0.62 

4. IPSL-CM5A-MR -0.8 

5. MPI-ESM-LR 0.36 

6. CESM1-BGC 0.64 

7. IPSL-CM5A-LR -0.61 

8. MPI-ESM-MR 0.18 

9. CNRM-CM5 0.73 

10. ACCESS1-0 0.89 

11. HadGEM2-CC -0.3 

12. NorESM1-ME 0.55 

13. ACCESS1-3 0.2 

14. CESM1-CAM5 0.9 

15. GISS-E2-H-CC 0.71 

16. BCC-CSM1-1 0.57 
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Table 5: Multi model “simultaneous” correlations between IOBM, IOD and Nino3 for H and 

RCP 8.5 simulations for all models in Groups A and B. The values in parenthesis denote the 

SD of inter-model correlation for the different pairs of climate indexes. Values in bold are 

statistically significant at the 90% confidence level according to a 2-tailed Student’s t-test. 

Each index is computed during its peak season and for each couple of indexes, the first index 

is leading the second one. See text for more details. 

 

 IOD &  IOBM IOD & Nino3 Nino3 & IOBM 

 H RCP 8.5 H RCP 8.5 H RCP 8.5 

Observation 0.47  0.67  0.81  

Group A 0.41 

(0.18) 

0.43(0.21) 0.42 

(0.2) 

0.38 

(0.25) 

0.63 

(0.13) 

0.67 

(0.12) 

Group B 0.46 

(0.16) 

0.52 

(0.18) 

0.53 

(0.16) 

0.54 

(0.19) 

0.63 

(0.14) 

0.69 

(0.12) 

 

Table 5



Table 6: Multi-model mean of lead correlations between IOD (year 0) and IOBM (year +1) 

during their peak season and Niño3 index in the following year (e.g. year +1) in H and RCP 

8.5 simulations for both Groups A and B models. The values in parenthesis denote the SD of 

inter-model correlation for the different pairs of climate indexes. Values in bold are 

statistically significant at the 90% confidence level according to a 2-tailed Student’s t-test. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Historical RCP 8.5 Historical RCP 8.5 

Fix 

Moving 

IOD 

Niño3 

IOD 

Niño3 

IOBM 

Niño3 

IOBM 

Niño3 

 IOD leads IOD leads IOBM leads IOBM leads 

Observation -0.39  -0.17  

Group A -0.35 

(0.16) 

-0.32 

(0.2) 
-0.17 

(0.22) 

-0.32 

(0.22) 

Group B -0.41 

(0.1) 

-0.35 

(0.17) 

-0.32 

(0.09) 

-0.43 

(0.19) 

 

Table 6



Table 7: Multi-model mean of coefficient of determination for multiple linear prediction of 

Niño3 SST in DJF of year+1 (e.g. D of year 0 and JF of year +1) using different predictors 

from observations, H and RCP 8.5 simulations for both groups A and B. The values in 

parenthesis denote the SD of inter-model coefficient of determination.    

Nino3(1) Group A Group B Observation 

Historical RCP 8.5 Historical RCP 8.5  

Nino3 (0) 0.06  

(0.09) 

0.05 

(0.1) 

0.09 

(0.1) 

0.09 

(0.12) 

0.02 

IOBM(0) 0.07  

(0.07) 

0.15 

(0.16) 

0.1 

(0.06) 

0.22 

(0.18) 

0.03 

IOD(-1) 0.14 

(0.08) 

0.14  

(0.12) 

0.17 

(0.08) 

0.15 

(0.12) 

0.14 

Nino3(0), 

IOBM(0) 

0.11  

(0.09) 

0.18  

(0.17) 

0.16 

(0.08) 

0.26 

(0.18) 

0.03 

Nino3(0), IOD(-1) 0.18  

(0.08) 

0.18  

(0.13) 

0.22 

(0.07) 

0.19 

(0.14) 

0.15 

IOBM(0), IOD(-1) 0.18 

(0.08) 

0.20 

(0.16) 

0.2 

(0.07) 

0.25 

(0.18) 

0.14 

Nino3(0), IOD(-1), 

IOBM(0) 

0.22  

(0.08) 

0.25  

(0.17) 

0.26 

(0.06) 

0.29 

(0.18) 

0.17 
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Table 8: Multi-model mean of adjusted coefficient of determination (adjusted R2) for 

multiple linear prediction of Niño3 SST in DJF of year +1 (e.g. D of year 0 and JF of year 

+1)using different predictors from observations, H and RCP 8.5 simulations for both groups 

A and B. The values in parenthesis denote the SD of inter-model adjusted coefficient of 

determination.    

 

Nino3(1) Group A 
 

Group B Observation 

Historical 
 

RCP 8.5 Historical 
 

RCP 8.5  

Nino3 (0) 0.04 

(0.09) 

0.04 

(0.1) 

0.07 

(0.1) 

0.07 

(0.12) 

0.003 

 

IOBM(0) 0.05 

(0.07) 

0.13 

(0.17) 

0.08 

(0.07) 

0.2 

(0.18) 

0.01 

IOD(-1) 0.12 

(0.09) 

0.12 

(0.12) 

0.15 

(0.08) 

0.13 

(0.12) 

0.12 

 

Nino3(0), IOBM(0) 0.07 

(0.09) 

0.14 

(0.17) 

0.12 

(0.09) 

0.23 

(0.18) 

-0.01 

Nino3(0), IOD(-1) 0.14 

(0.09) 

0.14 

(0.14) 

0.19 

(0.07) 

0.15 

(0.15) 

0.11 

IOBM(0), IOD(-1) 0.14 

(0.08) 

0.17 

(0.17) 

0.17 

(0.08) 

0.21 

(0.19) 

0.1 

Nino3(0), IOD(-1), 

IOBM(0) 

0.16 

(0.08) 

0.19 

(0.18) 

0.21 

(0.06) 

0.24 

(0.2) 

0.11 
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