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ARTICLE

Tan’s two-body contact across the superfluid
transition of a planar Bose gas
Y.-Q. Zou1, B. Bakkali-Hassani1, C. Maury1, É. Le Cerf1, S. Nascimbene 1, J. Dalibard 1 & J. Beugnon 1✉

Tan’s contact is a quantity that unifies many different properties of a low-temperature gas

with short-range interactions, from its momentum distribution to its spatial two-body cor-

relation function. Here, we use a Ramsey interferometric method to realize experimentally

the thermodynamic definition of the two-body contact, i.e., the change of the internal energy

in a small modification of the scattering length. Our measurements are performed on a

uniform two-dimensional Bose gas of 87Rb atoms across the Berezinskii–Kosterlitz–Thouless

superfluid transition. They connect well to the theoretical predictions in the limiting cases of a

strongly degenerate fluid and of a normal gas. They also provide the variation of this key

quantity in the critical region, where further theoretical efforts are needed to account for our

findings.
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The thermodynamic equilibrium of any homogeneous fluid
is characterized by its equation of state. This equation gives
the variations of a thermodynamic potential, e.g., the

internal energy E, with respect to a set of thermodynamics vari-
ables such as the number of particles, temperature, size, and
interaction potential. All items in this list are mere real numbers,
except for the interaction potential whose characterization may
require a large number of independent variables, making the
determination of a generic equation of state challenging.

A considerable simplification occurs for ultra-cold atomic fluids
when the average distance between particles d is much larger than
the range of the potential between two atoms. Binary interactions
can then be described by a single number, the s-wave scattering
length a. Considering a as a thermodynamic variable, one can
define its thermodynamic conjugate, the so-called Tan’s contact1–9

C � 8πma2

_2
∂E
∂a

; ð1Þ

where the derivative is taken at constant atom number, volume, and
entropy, andm is the mass of an atom. For a pseudo-spin 1/2 Fermi
gas with zero-range interactions, one can show that the conjugate
pair (a, C) is sufficient to account for all possible regimes for the gas,
including the strongly interacting case a≳ d10,11. For a Bose gas, the
situation is more complicated: formally, one needs to introduce also
a parameter related to three-body interactions, and in practice, this
three-body contact can play a significant role in the strongly
interacting regime12–15.

Since the pioneering experimental works of refs. 16,17, the two-
body contact has been used to relate numerous measurable
quantities regarding interacting Fermi gases: the tail of the
momentum distribution, short-distance behavior of the two-body
correlation function, radio-frequency spectrum in a magnetic
resonance experiment, etc. (see refs. 18,19 and references therein).
Its generalization to low-dimensional gases has also been widely
discussed13,20–28. For the Bose gas case of interest here, experi-
mental determinations of two- and three-body contacts are much
more scarce, and concentrated so far on either the quasi-pure
BEC regime29,30 or the thermal one29,31. Here, we use a two-pulse
Ramsey interferometric scheme to map out the variations of the
two-body contact from the strongly degenerate, superfluid case to
the non-degenerate, normal one.

We operate with a uniform, weakly interacting two-
dimensional (2D) Bose gas where the superfluid transition is of
Berezinskii–Kosterlitz–Thouless (BKT) type32,33. For our rela-
tively low spatial density, effects related to the three-body contact
are negligible and we focus on the two-body contact. It is well
known that for the BKT transition, all thermodynamic functions
are continuous at the critical point, except for the superfluid
density34. Our measurements confirm that the two-body contact
is indeed continuous at this point. We also show that the
(approximate) scale invariance in 2D allows us to express it as a
function of a single parameter, the phase-space density D ¼ nλ2,
where n is the 2D density, λ ¼ ð2π_2=mkBTÞ1=2 the thermal
wavelength, and T the temperature. Our measurements around
the critical point of the BKT transition provides an experimental
milestone, which shows the limits of the existing theoretical
predictions in the critical region.

Results
Our ultra-cold Bose gas is well described by the Hamiltonian Ĥ,
sum of the kinetic energy operator, the confining potential, and
the interaction potential Ĥint ¼ aK̂ with

K̂ ¼ 2π_2

m

Z Z
ψ̂yðrÞ ψ̂yðr0Þ δ̂ðr� r0Þ ψ̂ðr0Þ ψ̂ðrÞ d3r d3r0: ð2Þ

Here δ̂ðrÞ is the regularized Dirac function entering in the defi-
nition of the pseudo-potential35 and the field operator ψ̂ðrÞ
annihilates a particle in r. Using Hellmann–Feynman theorem,
one can rewrite the contact defined in Eq. (1) as
C ¼ 8πma2hK̂i=_2.

In our experiment, the gas is uniform in the horizontal xy
plane, and it is confined with a harmonic potential of frequency
ωz along the vertical direction. We choose ℏωz larger than both
the interaction energy and the temperature, so that the gas is
thermodynamically two-dimensional (2D). On the other hand,
the extension of the gas az ¼ ð_=mωzÞ1=2 along the direction z is
still large compared to the 3D scattering length a, so that the
collisions keep their 3D character36. Therefore, the definition (1)
of the contact and the expression (2) of the interaction potential
remain relevant, and the interaction strength is characterized by
the dimensionless parameter ~g ¼ ffiffiffiffiffi

8π
p

a=az � 0:16.
If the zero-range potential δ̂ðr� r0Þ appearing in (2) did not

need any regularization, the contact C would be equal simply to
g2ð0ÞC0 where

C0 � 4ð2πÞ3=2 a
2�nN
az

ð3Þ

sets the scale of Tan’s contact, with �n the average 2D density and
N the atom number. The in-plane two-body correlation function
is defined by g2ðrÞ ¼ h: n̂ðrÞn̂ð0Þ :i=�n2, where n̂ðrÞ is the operator
associated with the 2D density and the average value is calculated
after setting the particle creation and annihilation operators in
normal order. We recall that for an ideal Bose gas, the value of
g2(0) varies from 2 to 1 when one goes from the non-condensed
regime to the fully condensed one37.

It is well known that g2(0) is generally an ill-defined quantity
for an interacting fluid. For example, in a Bose gas with zero-
range interactions, one expects g2(r) to diverge as 1/r2 in 3D and
ðlog rÞ2 in 2D when r→ 012,13. On the other hand, when one
properly regularizes the zero-range potential δ̂ in Eq. (2), Tan’s
contact is well-behaved. In the zero-temperature limit, the mean-
field energy of the 2D gas is E ¼ ð_2=2mÞ~g�nN38, leading to C=
C0. In the large temperature, non-degenerate limit (but still
assuming the s-wave scattering regime), one can use the virial
expansion (see Supplementary Note 4 and ref. 35) to calculate the
deviation of the free energy F(N, A, T, a) of a uniform quasi-2D
gas with N atoms in an area A with respect to the ideal classi-
cal (Boltzmann) gas value. It reads F � FBoltzmann ¼ ð_2=mÞ~g�nN ,
from which the value of the contact C= 2C0 is obtained using
C= (8πma2/ℏ2)(∂F/∂a)N,A,T.

In this work, we determine the contact experimentally by
measuring the change in energy per atom hΔν= ΔE/N when the
scattering length is changed by the small amount Δa. Replacing
∂E/∂a by ΔE/Δa in the definition (1), we obtain

C
C0

� ffiffiffiffiffi
2π

p maz
_�n

Δν

Δa
: ð4Þ

To measure the energy change hΔν resulting from a small
modification of the scattering length, we take advantage of a
particular feature of the 87Rb atom: All scattering lengths aij, with
(i, j) any pair of states belonging to the ground-level manifold,
take very similar values39. For example, ref. 40 predicts a11=
100.9 a0, a22= 94.9 a0 and a12= 98.9 a0, where the indices 1 and
2 refer to the two states 1j i � F ¼ 1;mz ¼ 0j i and 2j i �
F ¼ 2;mz ¼ 0j i used in this work and a0 is the Bohr radius. For
an isolated atom, this pair of states forms the so-called clock
transition at frequency ν0≃ 6.8 GHz, which is insensitive (at first
order) to the ambiant magnetic field. Starting from a gas at
equilibrium in 1j i, we use a Ramsey interferometric scheme to
measure the microwave frequency required to transfer all atoms
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to the state 2j i. The displacement of this frequency with respect to
ν0 provides the shift Δν due to the small modification of scat-
tering length Δa= a22− a11.

The Ramsey scheme consists of two identical microwave pul-
ses, separated by a duration τ1= 10 ms. Their duration τ2 ~ 100
μs is adjusted to have π/2 pulses, i.e., each pulse brings an atom
initially in 1j i or 2j i into a coherent superposition of these two
states with equal weights. Just after the second Ramsey pulse, we
measure the 2D spatial density �n in state 2j i in a disk-shaped
region of radius 9 μm, using the absorption of a probe beam
nearly resonant with the optical transition connecting 2j i to the
excited state 5P3=2; F0 ¼ 3. We infer from this measurement the
fraction of atoms transferred into 2j i by the Ramsey sequence,
and we look for the microwave frequency νm that maximizes this
fraction.

An example of a spectroscopic signal is shown in Fig. 1. In
order to determine the bare transition frequency ν0, we also
perform a similar measurement on a cloud in ballistic expansion,
for which the 3D spatial density has been divided by more than
100 and interactions play a negligible role. The uncertainty on the
measured interaction-induced shift Δν= νm− ν0 is on the order
of 1 Hz. In principle, the precision of our measurements could be
increased further by using a larger τ1. In practice, however, we
have to restrict τ1 to a value such that the spatial dynamics of the
cloud, originating from the non-miscibility of the 1− 2 mixture
(a212 > a11a22), plays a negligible role (Supplementary Note 2). We
also checked that no detectable spin-changing collisions appear
on this time scale: more than 99 % of the atoms stay in the clock
state basis. Another limitation to τ1 comes from atom losses,
mostly due to 2-body inelastic processes involving atoms in 2j i.

For τ1= 10 ms, these losses affect <5% of the total population and
can be safely neglected.

We see in the inset of Fig. 1 that there indeed exists a frequency
νm for which nearly all atoms are transferred from 1j i to 2j i, so
that E(N, a22)− E(N, a11)=N h(νm− ν0) (see the Supplementary
Note 1 for details). We note that for an interacting system, the
existence of such a frequency is by no means to be taken for
granted. Here, it is made possible by the fact that the inter-species
scattering length a12 is close to a11 and a22. We are thus close to
the SU(2) symmetry point where all three scattering lengths
coincide. The modeling of the Ramsey process detailed in Sup-
plementary Note 1 shows that this quasi-coincidence allows one
to perform a Taylor expansion of the energy E(N1,N2) (with N1

+N2=N) of the mixed system between the two Ramsey pulses,
and to expect a quasi-complete rephasing of the contributions of
all possible couples (N1,N2) for the second Ramsey pulse. The
present situation is thus quite different from the one exploited in
ref. 31, for example, where a11 and a12 were vanishingly small. It
also differs from the generic situation prevailing in the spectro-
scopic measurements of Tan’s contact in two-component Fermi
gases, where a microwave pulse transfers the atoms to a third,
non-interacting16 or weakly-interacting state19.

We show in Fig. 2 our measurements of the shift Δν for den-
sities ranging from 10 to 40 atoms/μm2, and temperatures from
10 to 170 nK. Since ℏωz/kB= 210 nK, all data shown here are in
the thermodynamic 2D regime kBT < ℏωz. More precisely, the
population of the ground state of the motion along z, estimated
from the ideal Bose gas model41, is always≳90 %. All shifts are
negative as a consequence of a22 < a11: the interaction energy of
the gas in state 2j i is slightly lower than in state 1j i. For a given
density, the measured shift increases in absolute value with
temperature. This is in line with the naive prediction of
C / g2ð0Þ since density fluctuations are expected to be an

Fig. 1 Ramsey signal. Example of an interferometric Ramsey signal showing
the optical density of the fraction of the gas in state 2j i after the second
Ramsey pulse, as a function of the microwave frequency ν. These data were
recorded for �n � 40 atoms/μm2 and T ~ 22 nK, τ1= 10 ms. Here, τ2 has
been increased to 1 ms to limit the number of fringes for better visibility.
Inset. Filled black disks (resp. open red circles): central fringe for atoms in
2j i (resp. 1j i) in our standard configuration τ2= 0.1 ms. The density in 1j i is
obtained by applying a microwave π-pulse just before the absorption
imaging phase. When atoms are maximally transferred in state 2j i, we
observe no significant population in state 1j i, compatible with a full transfer
induced by the Ramsey pulses. Blue squares: single-atom response
measured during the ballistic expansion of the cloud by imaging atoms in
2j i. The lines in the inset are sinusoidal fits to the data. The vertical error
bars of the inset correspond to the standard deviation of the three
repetitions made for this measurement.

Fig. 2 Frequency shift of the resonance. Variations of the shift Δν with
temperature for various 2D spatial densities. The horizontal error bars
represent the statistical uncertainty on the temperature calibration, except
for the points at very low temperature (10–22 nK). These ultra-cold points
are deeply in the Thomas–Fermi regime, where thermometry based on the
known equation of state of the gas is not sensitive enough. The
temperature is thus inferred from an extrapolation with an evaporation
barrier height of the higher temperature points. The error on the frequency
measurement is below 1 Hz and is not shown in this graph. Inset: Variations
of the shift Δν with density at low temperature T ~ 22 nK, i.e., a strongly
degenerate gas. The straight line is the mean-field prediction corresponding
to Δa=−5.7 a0.
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increasing function of T. Conversely for a given temperature, the
shift is (in absolute value) an increasing function of density.

For the lowest temperatures investigated here, we reach the
fully condensed regime in spite of the 2D character of the sample,
as a result of finite size effects. In this case, the mean-field pre-
diction for the shift reads Δν ¼ �n _ Δa=ð ffiffiffiffiffi

2π
p

mazÞ [i.e., C= C0
in Eq. (4)]. Our measurements confirm the linear variation of Δν
with �n, as shown in the inset of Fig. 2 summarizing the data for
T= 22 nK. A linear fit to these data gives Δa/a0=−5.7 (1.0)
where the error mostly originates from the uncertainty on the
density calibration. In the following, we use this value of Δa for
inferring the value of C/C0 from the measured shift at any tem-
perature, using Eq. (4). We note that this estimate for Δa is in
good agreement with the prediction Δa/a0=−6 quoted in ref. 40.
The first corrections to the linear mean-field prediction were
derived (in the 3D case) by Lee, Huang, and Yang in ref. 42. For
our densities, they have a relative contribution on the order of 5 %
of the main signal (Δν≲ 1 Hz) (Supplementary Note 3), and their
detection is borderline for our current precision.

We summarize all our data in Fig. 3, where we show the
normalized contact C/C0 defined in Eq. (4) as a function of the
phase-space density D. All data points collapse on a single curve
within the experimental error, which is a manifestation of the
approximate scale invariance of the Bose gas, valid for a relatively
weak interaction strength ~g ≲ 143,44.

Discussion
We now compare our results in Fig. 3 to three theoretical pre-
dictions. The first one is derived from the Bogoliubov approx-
imation applied to a 2D quasi-condensate45. This prediction is
expected to be valid only for D notably larger than the phase-
space density at the critical point Dc (see “Methods” section) and
it accounts well for our data in the superfluid region. Within this
approximation, one can also calculate the two-body correlation
function and write it as g2ðrÞ ¼ gT¼0

2 ðrÞ þ gthermal
2 ðrÞ. One can

then show the result (Supplementary Note 3)

C
C0

¼ 1þ gthermal
2 ð0Þ; ð5Þ

which provides a quantitative relation between the contact and
the pair correlation function, in spite of the already mentioned
singularity of gT¼0

2 ðrÞ in r= 0.
For low phase-space densities, one can perform a systematic

expansion of various thermodynamic functions in powers of the
(properly renormalized) interaction strength46, and obtain a
prediction for C (dashed blue line in the inset of Fig. 3). By
comparing the 0th, 1st, and 2nd orders of this virial-type
expansion, one can estimate that it is valid for D≲ 3 for our
parameters. When D ! 0, the result of ref. 46 gives C/C0→ 2,
which is the expected result for an ideal, non-degenerate Bose gas.
The prediction of ref. 46 for D � 3 compares favorably with our
results in the weakly degenerate case.

Finally, we also show in Fig. 3 the results of the classical field
simulation of ref. 47 (red dotted line), which are in principle valid
both below and above the critical point. Contrary to the quantum
case, this classical analysis does not lead to any singularity for 〈n2

(0)〉, so that we can directly plot this quantity as it is provided in
ref. 47 in terms of the quasi-condensate density. For our inter-
action strength, we obtain a non-monotonic variation of C. This
unexpected behavior, which does not match the experimental
observations, probably signals that the present interaction
strength ~g ¼ 0:16 (see “Methods” section and the Supplementary
Note 5) is too large for using these classical field predictions, as
already suggested in ref. 47.

Using the Ramsey interferometric scheme on a many-body
system, we have measured the two-body contact of a 2D Bose gas
over a wide range of phase-space densities. We could implement
this scheme on our fluid thanks to the similarities of the three
scattering lengths in play, a11, a22, a12, corresponding to an
approximate SU(2) symmetry for interactions. Our method can
be generalized to the strongly interacting case aij≳ az, as long as a
Fano-Feshbach resonance allows one to stay close to the SU(2)
point. One could then address the LHY-type corrections at zero
temperature48,49, the contributions of the weakly-bound dimer
state and of three-body contact13,14, or the breaking of scale
invariance expected at non-zero temperature.

Finally, we note that even for our moderate interaction
strength, classical field simulations seem to fail to reproduce our
results, although they could properly account for the measure-
ment of the equation of state itself43,44. The semi-classical treat-
ment of ref. 50 and the quantum Monte Carlo approach of ref. 51

(see also ref. 52) should provide a reliable path to the modeling of
this system. This would be particularly interesting in the vicinity
of the BKT transition point where the usual approach based on
the XY model53, which neglects any density fluctuation, does not
provide relevant information on Tan’s contact. It would allow one
to address the fundamental question raised for example in ref. 26,
regarding the behavior of the contact CðDÞ or its derivatives in
the vicinity of the phase transition, and the possibility to signal
the position of the critical point either by a singularity or at least a
fast variation of Tan’s contact around this point.

Methods
The preparation and the characterization of our sample have been detailed in54,55

and we briefly outline the main properties of the clouds explored in this work. In
the xy plane, the atoms are confined in a disk of radius 12 μm by a box-like
potential, created by a laser beam properly shaped with a digital micromirror
device. We use the intensity of this beam, which determines the height of the
potential barrier around the disk, as a control parameter for the temperature. The
confinement along the z direction is provided by a large-period optical lattice, with
a single node occupied and ωz/(2π)= 4.41 (1) kHz. We set a magnetic field B=
0.701 (1) G along the vertical direction z, which defines the quantization axis. We
use the expression Dc ¼ ln ð380=~gÞ for the phase-space density at the critical point
of the superfluid transition56. Here, ~g ¼ ffiffiffiffiffi

8π
p

a11=az ¼ 0:16 is the dimensionless
interaction strength in 2D, leading to Dc ¼ 7:7. We study Bose gases from the
normal regime (D ¼ 0:3Dc) to the strongly degenerate, superfluid regime
(D> 3Dc).

Fig. 3 Contact measurement. Variations of the normalized Tan ’s contact
C/C0 with the phase-space density D. The encoding of the experimental
points is the same as in Fig. 2. The colored zone indicates the non-
superfluid region, corresponding to D<Dc � 7:7. The continuous black line
shows the prediction derived within the Bogoliubov approximation. Inset:
Zoom on the critical region. The dashed blue line is the prediction from
ref. 46, resulting from a virial expansion for the 2D Bose gas. The dotted red
line shows the results of the classical field simulation of ref. 47.
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Data availability
The data sets generated and analyzed during the current study are available from the
corresponding author on request.
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