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Introduction. Why a new set of Slater-like functions to describe atoms?

Quantum chemical modeling starts from nite sets of basis functions so that quality and eciency of electronic-structure calculations depend on the properties of the latter. This is emphasized in almost every handbook of quantum chemistry (see e.g. Ref. 1) and manifests itself in a wide variety of basis sets used for dierent objects and their properties. 24 Cur- rently, the dominating motivation of quantum-chemical modeling is the accurate numerical reproduction of dierent properties by using heavy computations. This approach answers questions like What numerical value has a quantity of interest? However, a purely numerical approach cannot provide any explanation. A rarely recognized deciency of this approach is that the experimental data to be numerically reproduced are not available with sucient accuracy or even denition.

5 An alternative to this numerical approach which almost disappeared from the literature aims at a conceptual explanation of experimental trends by using semi-quantitative models. Although this second way sacrices the numerical accuracy to some extent, these approaches are to be considered as complementary to the former. They, however, need as well basis sets as a starting point, although the requirements dier, as formulated for instance in Ref. 6. In fact, only the following seems to be mandatory for the qualitative or at best semi-quantitative approach: Each basis function should reect the nature of the problem, such that a good representation of the orbitals can be achieved by a limited (small) number of functions.

6 If this requirement is satised in a consistent way, such that the small number of functions and, thus, of the parameters dening them, is really physically substantiated, then one can hope to be able to fulll another desideratum, underlined in Ref. 6, namely to provide basis sets for a good fraction of the Periodic Table ,   and additionally have a regular and sensible dependence of the parameters and basis orbitals on the only true parameter the atomic number, i.e. the nuclear charge Z. [START_REF] Van Den Broek | Das α-Teilchen und das periodische System der Elemente[END_REF][START_REF] Moseley | The High-Frequency Spectra of the Elements. Part II[END_REF] This is what we would like to achieve in the present contribution.

The paper is organized as follows. In Section I we provide the theoretical scheme of constructing minimally parameterized sets of atomic orbitals with one single exponent for each n subshell while keeping the correct nodal structure. Next, in Section II, we describe the results of solving the energy-optimization problem for atoms up to Z = 54 (Xe) in a restricted-open-shell Hartree-Fock setting, and discuss the obtained results in Section III, in order to draw conclusions (Section IV. A compilation of the data can be found in the accompanying Supplementary Material, and all purely technical details are collected in the Appendix.

I. THEORY

A. The construction procedure Minimal Slater-based basis sets of the form

ϕ n m ( r) = N n P n (2ξ n r)e -ξ n r × Y m (θ, φ) (1)
are dened so that the correct nodal structure of the orbitals (orthogonality between dierent functions of same ) is maintained by the radial polynomial P n (2ξ n r) the form originally used by Fock and coworkers 9 for the Be atom and for closed 2s

2 2p
6 shell ions (like Na + )

and then independently rediscovered and employed for the entire 2 nd period 10 leaving the exponents ξ n to be the only free parameters of the basis, as many as subshells. Writing the normalized radial functions as:

R 1s (r) = N 1s e -ξ 1s r R 2s (r) = N 2s (1 + a 2s (2ξ 2s r)) e -ξ 2s r R 3s (r) = N 3s 1 + a 3s (2ξ 3s r) + b 3s (2ξ 3s r) 2 e -ξ 3s r R 4s (r) = N 4s 1 + a 4s (2ξ 4s r) + b 4s (2ξ 4s r) 2 + +c 4s (2ξ 4s r) 3 e -ξ 4s r . . . (2) 
(and similarly for higher values of the angular momentum) and evaluating the general overlap integral

ˆ∞ 0 r n e -ξ 1 r e -ξ 2 r r 2 dr = (n + 2)! (ξ 1 + ξ 2 ) n+3 (3) 
we arrive at an iterative scheme as a 2s orbital should be orthogonal to 1s, 3s orthogonal to both 2s and 1s etc, leading together with the normalization to nconditions for the ncoecients of the polynomial P n (2ξ n r). The coecients depend parametrically on the ensemble of ξ's of the functions of lower n. For instance for the 4s orbital we obtain 3 equations for the 3 coecients a 4s , b 4s and c 4s , in a systematic and generalizable manner using reduced exponents k ij = ξ i ξ i +ξ j with one of the indices i and j being s4 and the other running from 1s to 3s.

mize the total energy with respect to them. Technically, the total energy for an (open-shell) atom is written, using a non-relativistic Hamiltonian for the atomic system with one or several open shells.

1113 As no orbital expansion coecients have to be determined by mini- mization (they come immediately from the orthonormality condition), one single evaluation of E Ψ = Ψ| Ĥ|Ψ is needed for each set of exponents. The determination of the exponents through the minimization of the total energy is then left to a simplex procedure 14 since the gradients used originally 10 become too cumbersome for the elements beyond the 2 nd period. Note that the present procedure is indeed a Hartree-Fock scheme, optimizing the total energy with respect to the parameters of a single-determinant wavefunction, however without the construction and diagonalization of a Fock matrix of the commonly employed Roothaan-Hall procedure.

II. RESULTS

A. Energy minimization and orbital exponents

For the elements Z = 1 -54 (H Xe) we optimized the exponents for atomic ground states as given by the Aufbau principle, without paying attention to exceptions like Cr, Cu, and most of the 4d transition elements. For the same elements we have from the literature the highly optimized multi-exponent Bunge basis sets, 15 which, in terms of total energy, are very close to numerical Hartree-Fock energies. 16 Our basis sets yield total energies slightly higher than the Hartree-Fock limit, about 0.30.7 %, which is an amazingly small dierence, given the number of free parameters in our calculations. Set aside the proposition of Fock et al. 9 , closest to our approach and covering a large part of the periodic table, are the single- zeta basis sets of Clementi and Raimondi, 17 with the same number of exponents as ours, but constructed as optimized linear combinations of nodeless Slater functions. The number of free parameters is thus about twice as large as ours (exponents and expansion coecients with orthonormality constraints), and the dierence to total energies obtained with Bunge's basis sets about a factor two reduced with respect to ours (see Figure 1).

Overlap integrals between core orbitals in the Bunge sets and respective MAP orbitals are found to be larger than 0.99 (> 0.999 for the 1s shell), and still larger than 0.90 for valence orbitals (for more details see below). One exception is the Pd atom for which the basis set of Bunge et al had been determined using the physical 4d 10 5s 0 ground state without the need to describe a 5s orbital.

Remarkably, in most cases the exponents of valence s-, pand d-orbitals, determined from the energy minimization procedure, follow, as functions of the atomic number, roughly linear trends as shown in Figure 2, corroborating the semi-empirical argument given in the Introduction.

A closer look reveals that despite almost perfect linear trends particularly for smaller n the deviations from the trends of Figure 2 are not statistical, but systematic. Furthermore, the dependency of orbital exponents with given (n ) on the nuclear charge is piecewise linear, clearly visible for instance for the 4s exponents in the three groups 1920 (K and Ca, 4s as valence), 2130 (ScZn, lling of the 3d inner shell) and 3154 (4s being outside of completely lled shells). In Table I we t the dierent regions identied for all orbitals to the linear expression ξ(Z) = a Z + b. The corresponding linear trends are shown in Fig. 3 for 4s and 5s-exponents.

These linear ts, obtained for small Z, may then serve as starting points for the optimization procedure for higher Z, being as reduced as Slater's screening model from 1930, 18 I.

setting. It also comes up in the studies on ab initio Gaussian atomic basis sets [START_REF] Jensen | Atomic orbital basis sets[END_REF][START_REF] Nagy | Basis sets in quantum chemistry[END_REF][START_REF] Jensen | Unifying General and Segmented Contracted Basis Sets. Segmented Polarization Consistent Basis Sets[END_REF] and may be a general property of all basis-set-expanded atomic orbitals representing, more or less realistic, the atomic one-electron states.

Additionally, we see that the positions of the nodes with the same number, as counted from the nucleus as functions of Z, follow fairly smooth curves, at least for 2s to 4s. They appear in groups, almost coinciding for the respective nodes, starting at the Z values at which further nodes for same and dierent n appear.

We observe an evident cusp for the 3rd root of the 4s polynomial between Z = 30 and Z = 31, at the end of the rst transition series. The 4s-exponent is almost constant in this range, but orthogonality has to be achieved with evolving 1s, 2s, and 3s exponents.

Beyond Z = 31 the 4s exponent varies as well, which adds a dierent component to the orthogonality constraint, without successive llings of inner shells. The same is observed for the 5s at Z = 39 (Y) and Z = 48 (Cd) for the lling of the 4d shell.

III. DISCUSSION

When developing the atomic Hartree-Fock theory in the 1930-1960's (Slater, Roothaan, Clementi) the focus was then on molecular applications, where a purely spherical atom is 23 Our minimally parametrized basis sets are not intended to replace the modern ones designed for molecular applications with numerical precision. They, however, may serve as a set of physical parameters for more qualitative or semi-quantitative studies aimed at establishing and explaining trends in the chemical behavior.

A. Linear trends for the exponents and deviations from them

We may start the analysis of the linear relations described in section II in terms of hydrogen-like orbitals (ξ = Z/n) or Slater's parameter set [START_REF] Slater | Atomic Shielding Constants[END_REF] ξ

(n ) S = Z * n * = (Z -σ n ) n * , ( 4 
)
where σ is composed of the screening by the equivalent and inner electrons, and n * is an eective principal number. As result one obtains as well piecewise linear relations of the As one can see from Table I, the slopes in the core ranges deviate very little from the 1 /n rule where n is the true principal quantum number the one determining the number of radial nodes of the function. On the other hand, in the valence ranges the slopes for nontransition elements are systematically smaller than 1 /n most signicantly for n = 2, less pronounced for n = 3; in either case, however, not precisely following the Slater prescription of 0.65/n (which almost exactly shows up for 2p valence orbitals only). At n = 4 the situation inverts and the slopes of the linear ts of the MAP exponents as functions of Z remarkably exceed 1 /n in the valence range (named non-transition in Table I). This feature is partially absorbed by the eective principal quantum numbers, n * < n, introduced by Slater. However, using n * instead of n still produces very small slopes in the valence range:

the estimate of 0.65/n * based on Slater rules is smaller than the MAP ts in Table I, for which the ratio of slopes between core and valence trends is more like 1 than 0.65.

The linear relations for valence ns exponents of transition elements show very small slopes (0.03 and 0.02, respectively for n = 3 and 4), ultimately meaning that in those series the eld felt by s-electrons does not change signicantly with the change of the nuclear charge as expected from Slater's rules ascribing to each electron in the 3d-shell the screening power of 0.85 relative to the 4s electrons. This results in the slopes of 0.15/n * (0.05 and 0.04, respectively) for the latter exponents as functions of Z. This weak increase correlates to the experimental ionization potentials of the 3d transition-metal series, spanning a narrow interval of 1.2 eV.

B. Preliminary physics and chemistry implications

As we mentioned in the Introduction, the proposed MAP setting 10 for the atomic orbital basis in its primitive form dating back to 1930-ies 9 has the advantage that its parameters orbital exponents have a direct physical signicance. Thus, one can hope to relate them more or less directly to some observable characteristics of atoms and eventually those of molecules and crystals/materials. For instance atomic radii may be extracted. Experimentally, these are generally derived by tting some data on interatomic separations observed in various contexts.

The MAP exponents provide already the size of an atom due to the asymptotically exponential decay of the electron density.

24 A simple measure for an atomic radius is the average radial position r of the most diuse orbital. This quantity can be evaluated in any basis set, and we can compare directly orbitals of the Hartree-Fock limit to the MAP orbitals characterized by one single exponent. Figure 6 gives these data for all elements up to Xenon.

The coincidence is again quite striking, atomic radii obtained with the two orbital sets For the MAP orbitals we plot as well estimates of the atomic radii as given by eq. 6 (red bullets), see text; the respective interpolating lines are eyeguides. are nearly superposable, but for the 3d and 4d transition metals.

Within the MAP philosophy we may develop another way to estimate the atomic size via the the position of the outermost density maximum of its valence shell. For either value of the highest power of the P n polynomial is n -1 so that the dominant contribution to the outermost wave is a simple Slater monomial of the same degree. We can check by tting a Slater monomial to our MAP orbitals, by maximizing the overlap integral between the two radial functions, dependent on the Slater exponent. We see (Figure 7 the outermost maximum of the radial density r 2 R 2 n (r) is given by the expression

r max (Z) = n ξ n = n 2 Z -σ n (Z) (5)
where n can be safely understood as the element's period (row) in the Periodic Table .   We add to this value a spherical layer of the thickness of ξ -1 n so that ultimately the intrinsic atomic radius reads

r at (Z) = n + 1 ξ n (6) 
where n refers to the outermost subshell, in particular 4s or 5s for the transition elements.

The resultant data are added to Figure 6. As one can see, this simple estimation generally follows the same trend as the estimates based on r .

C. Nodes of the radial MAP functions

Let us come back to the result of section II B, by looking more in detail at the polynomials P n (2ξ n r) which maintain the orthogonality between dierent functions of the same .

From the hydrogen atom we have the orthogonality relations involving Laguerre polynomials as

N n N n ˆ∞ 0 r 2 +2 e -2Zr( 1 n + 1 n ) × × L 2 +1 n--1 2Zr n L 2 +1 n --1 2Zr n dr = δ n,n (7) 
as the hydrogenic orbital is written as

R n (r) = N n r L 2 +1 n--1 2Zr n e -Zr /n . ( 8 
)
Setting ξ n, = Z/n (or a screened nuclear charge Z * ) we arrive at a generalized orthogonality constraint within the MAP series, provided that the exponents for a given angular quantum number derive from one single Z (or Z * ):

N n N n ˆ∞ 0 r 2 +2 e -(ξ n, +ξ n , ) r × × P n, (2ξ n r)P n , (2ξ n r) dr = δ n,n (9) 
This is only approximately the case for the Hartree-Fock derived MAP radial parts we nd ξ n, (Z) ≈ Z /n + b n with a b n nearly independent of Z, see Table I. The higher Z, the smaller the eect of b n , which we can formulate as

Z → ∞ : P n (2ξ n r) ∝ L 2 +1 n--1 2 Z n r .
However, ignoring the screening (i.e. b n ) comes back to studying a bare, hydrogenoid, atom only, ignoring the poly-electronic situation to describe. Better seems to introduce an average screening for all shells through an eective Z * , averaged over all n, leading to the average setting

P n (2ξ n r) -→ L 2 +1 n--1 2 Z * n r .
As a consequence, the nodes of the MAP polynomials coincide on average with the corresponding nodes of the associated Laguerre polynomials. The Laguerre polynomials in their turn can be approximated through Bessel functions of the rst kind:

25,26

P n (2ξ n r) ∝ L 2 +1 n--1 2Z * r n ∝ J 2 +1 2 2Z * r 2Z * r 2 +1
.

From this we can immediately read the position of the roots of the MAP polynomials:

r n (k) ≈ j 2 2 +1,k 8 Z * , (11) 
where j 2 +1,k is root number k of the Bessel function J 2 +1 of the rst kind, independent of n and inversely proportional to the nuclear charge, corroborating the graphs of Figure 4.

The Bohr from the origin, respectively. We nd 0.0431757, 0.168321 0.429621, 0.989825 Bohr as nodes of the 5s orbital which is close for the rst node, but more and more o for the subsequent ones. The expected positions are reported in Figure 5.

Of course, the reason for this result is that for the inner shells the screening is fairly correct, and as well the approximation of the Laguerre polynomial via a Bessel function.

For the outer nodes, screening via the chosen Z * becomes quite wrong and the approximation through the Bessel function less reliable.

IV. CONCLUSIONS

Minimally parameterized exponential basis sets of the form eq. ( 1) originating yet from 1930-ies 9 are dened so that the correct nodal structure (the orthonormality) of the orbitals is maintained through a polynomial depending only on the exponential parameters. Within this setting each (sub)shell can be described by only one single parameter -its orbital exponent. Assuming this we recently explored 10 atoms of the 2 nd row of the Periodic Table ,   and extended the approach up to (Z = 54), i.e. including the 5-th period.

The (sub)shell-specic orbital exponents ξ

(n ) MAP are derived through optimizing the total energy written in the Hartree-Fock approximation. Overlaps of the obtained orbitals with the corresponding ones from purely numerical approaches or much longer expansions 15 are quite large (> 90 %) and may serve as basis for atomic projection and subsequent analysis of the results of PAW/DFT calculations.

28 The details of the spatial structure of atomic states, like position of the nodes close to the nucleus or the asymptotic behavior for large r are fairly well reproduced.

Despite the restricted number of free parameters the proposed basis sets result in good total energies, and exponents follow simple piecewise linear relations as functions of the nuclear charge Z. The switches between dierent linear trends occur either at the end of rows of the Periodic System or when within a row a new (sub)shell starts being lled.

FIG. 1 :

 1 FIG. 1: Total energies (left scale) and dierence to Bunge's large basis sets in green and Clementi and Raimondi's 17 single-ζ basis sets in light blue (right scale).

FIG. 2 :

 2 FIG.2:The optimal exponents as functions of the atomic number Z. The visually almost strait lines coming up to surface up to 3d are in fact misleading: see the text for details.

FIG. 3 :

 3 FIG.3: Piecewise linear trends for 4s (left) and 5s (right) orbital exponents. Yttrium (Z=39) seems an outlier, probably not arrived at the optimum set of exponents. Parameters of all linear ts are assembled in TableI.

FIG. 4 :

 4 FIG.4: Position of the nodes of the radial functions 2s to 5p. Multiple lines of the same color refer to the subsequent nodes counted from the origin, r = 0, of the same orbital.

11 FIG. 5 :

 115 FIG.5: Plot of the dierent radial functions of s symmetry for a Iodine atom (Z = 53). We clearly see the close coincidence of the rst and the second orbital node. Black stars correspond to the estimates described by eq. (11), see Section III C.

FIG. 6 :

 6 FIG.6: Atomic radii obtained from Bunge's (violet upright crosses) and the MAP orbitals (green skew crosses), dened as the expectation value r of the outermost (partially) lled orbital or subshell. For the MAP orbitals we plot as well estimates of the atomic radii as given by eq. 6 (red

FIG. 7 :

 7 FIG. 7: Dierence between MAP exponents and Slater exponents (upper panel), and radial expectation values (lower panel), as function of Z.

TABLE I :

 I Piecewise linear ts ξ(Z) = a Z + b for s, p, and d exponents together with R 2 values.For the 4s and 5s orbitals and the rst two elements the character is in quotes as the same orbital is still a valence orbital in the corresponding transition-element series.

	Orbital	character	Z-range a	b	R 2
	1s	core	354	0.9999 -0.28 1.0000
	2s	valence	34	0.4017 -0.44
	2s	core	554	0.5046 -1.41 0.9999
	2p	valence	510	0.3319 -0.45 0.9984
	2p	core	1154 0.5046 -1.41 0.9999
	3s	valence	1112 0.3282 -2.63
	3s	core	1354 0.3354 -2.92 0.9985
	3p	valence	1318 0.2878 -2.52 0.9986
	3p	core	1954 0.3326 -3.47 0.9980
	4s	valence	1920 0.3135 -5.01
	3d	valence	2130 0.2616 -3.23 0.9890
	3d	core	3154 0.3669 -6.42 0.9999
	4s	transition	2130 0.0311 +0.69 0.9959
	4s non-transition 3136 0.3074 -7.53 0.9937
	4s	core	3754 0.2571 -5.50 0.9996
	4p	valence	3136 0.2778 -7.09 0.9947
	4p	core	3754 0.2580 -6.17 0.9996
	4d	valence	3948 0.2756 -8.54 0.9900
	5s	valence	3738 0.2812 -9.37
	5s	transition	3948 0.0207 +0.68 0.9990
	5s non-transition 4954 0.2686 -11.05 0.9973

  above estimate basically repeats the old observation based on the WKB treatment of the hydrogen atom (see Ref. 27). For an Iodine atom (Z = 53) we have the s exponents ξ 1s to ξ 5s as 52.6862, 25.2486, 14.8828, 8.1798, and 3.1897, respectively, instead of the hydrogenic Z/n series 53, 26.5, 17.666, 13.25, 10.6. Minimizing the quadratic deviation from the MAP exponents for a common Z * leads to a value of Z * = 49.845, or an average screening of a

	little more than 3 electrons.
	Via the roots of the Bessel functions j 2 1,k /8 amounts to 1.8352, 6.1523, 12.9375, 22.1901
	and thus expected positions of the nodes are 0.036818, 0.123428, 0.259552, and 0.445178
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Implementation

From a given set of exponents, the linear equations to obtain the coecients of the polynomials are solved, and a corresponding input for Clementi's atomic Hartree-Fock program 29 is produced. The procedure is easily embedded into a simplex algorithm, as described in standard textbooks of numerical optimization problems.