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Abstract

Basis sets featuring single-exponent radial functions for each of the n` subshells and orthogonality

of the radial parts for di�erent values of n within the same ` have been generated for elements 1 to 54

of the Periodic Table, by minimizing the total energy for di�erent spectroscopic states. The derived

basis sets can be fairly dubbed as MAP (minimal atomic parameter / Moscow-Aachen-Paris) basis

sets. We show that fundamental properties (total energy, radial expectation values, node positions,

etc.) of the generated MAP orbital sets are astonishingly close to those obtained with much larger

basis sets known in the literature, without numerical inconsistencies. The obtained exponents follow

simple relations with respect to the nuclear charge Z. Possible further applications, trends, and

limitations are discussed.
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Introduction. Why a new set of Slater-like functions to describe atoms?

Quantum chemical modeling starts from �nite sets of basis functions so that quality and

e�ciency of electronic-structure calculations depend on the properties of the latter. This is

emphasized in almost every handbook of quantum chemistry (see e.g. Ref. 1) and manifests

itself in a wide variety of basis sets used for di�erent objects and their properties.2�4 Cur-

rently, the dominating motivation of quantum-chemical modeling is the accurate numerical

reproduction of di�erent properties by using heavy computations. This approach answers

questions like �What numerical value has a quantity of interest?� However, a purely nu-

merical approach cannot provide any explanation. A rarely recognized de�ciency of this

approach is that the experimental data to be numerically reproduced are not available with

su�cient accuracy or even de�nition.5 An alternative to this numerical approach � which

almost disappeared from the literature � aims at a conceptual explanation of experimental

trends by using semi-quantitative models. Although this second way sacri�ces the numerical

accuracy to some extent, these approaches are to be considered as complementary to the

former. They, however, need as well basis sets as a starting point, although the requirements

di�er, as formulated for instance in Ref. 6. In fact, only the following seems to be mandatory

for the qualitative or at best semi-quantitative approach: �Each basis function should re�ect

the nature of the problem, such that a good representation of the orbitals can be achieved

by a limited (small) number of functions.�6 If this requirement is satis�ed in a consistent

way, such that the small number of functions and, thus, of the parameters de�ning them, is

really physically substantiated, then one can hope to be able to ful�ll another desideratum,

underlined in Ref. 6, namely to provide basis sets for a good fraction of the Periodic Table,

and additionally have a regular and sensible dependence of the parameters and basis orbitals

on the only true parameter � the atomic number, i.e. the nuclear charge Z.7,8 This is what

we would like to achieve in the present contribution.

The paper is organized as follows. In Section I we provide the theoretical scheme of

constructing minimally parameterized sets of atomic orbitals with one single exponent for

each n` subshell while keeping the correct nodal structure. Next, in Section II, we describe

the results of solving the energy-optimization problem for atoms up to Z = 54 (Xe) in a

restricted-open-shell Hartree-Fock setting, and discuss the obtained results in Section III,

in order to draw conclusions (Section IV. A compilation of the data can be found in the
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accompanying Supplementary Material, and all purely technical details are collected in the

Appendix.

I. THEORY

A. The construction procedure

Minimal Slater-based basis sets of the form

ϕn`m(~r) = Nn` Pn`(2ξn` r)e
−ξn` r × Y`m(θ, φ) (1)

are de�ned so that the correct nodal structure of the orbitals (orthogonality between di�erent

functions of same `) is maintained by the radial polynomial Pn`(2ξn` r) � the form originally

used by Fock and coworkers9 for the Be atom and for closed 2s22p6 shell ions (like Na+)

and then independently rediscovered and employed for the entire 2nd period10 � leaving the

exponents ξn` to be the only free parameters of the basis, as many as subshells. Writing the

normalized radial functions as:

R1s(r) = N1se
−ξ1sr

R2s(r) = N2s (1 + a2s(2ξ2sr)) e
−ξ2sr

R3s(r) = N3s

(
1 + a3s(2ξ3sr) + b3s(2ξ3sr)

2
)
e−ξ3sr

R4s(r) = N4s

(
1 + a4s(2ξ4sr) + b4s(2ξ4sr)

2+

+c4s(2ξ4sr)
3
)
e−ξ4sr . . . (2)

(and similarly for higher values of the angular momentum) and evaluating the general overlap

integral ˆ ∞
0

rne−ξ1re−ξ2rr2 dr =
(n+ 2)!

(ξ1 + ξ2)n+3
(3)

we arrive at an iterative scheme as a 2s orbital should be orthogonal to 1s, 3s orthogonal

to both 2s and 1s etc, leading together with the normalization to n − ` conditions for the

n − ` coe�cients of the polynomial Pn`(2ξn`r). The coe�cients depend parametrically on

the ensemble of ξ's of the functions of lower n. For instance for the 4s orbital we obtain

3 equations for the 3 coe�cients a4s, b4s and c4s, in a systematic and generalizable manner

using reduced exponents kij = ξi
ξi+ξj

with one of the indices i and j being s4 and the other

running from 1s to 3s.
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We can thus determine the orbitals from the exponents ξn` without ambiguity, and opti-

mize the total energy with respect to them. Technically, the total energy for an (open-shell)

atom is written, using a non-relativistic Hamiltonian for the atomic system with one or

several open shells.11�13 As no orbital expansion coe�cients have to be determined by mini-

mization (they come immediately from the orthonormality condition), one single evaluation

of EΨ = 〈Ψ|Ĥ|Ψ〉 is needed for each set of exponents. The determination of the exponents

through the minimization of the total energy is then left to a simplex procedure14 since

the gradients used originally10 become too cumbersome for the elements beyond the 2nd

period. Note that the present procedure is indeed a Hartree-Fock scheme, optimizing the

total energy with respect to the parameters of a single-determinant wavefunction, however

without the construction and diagonalization of a Fock matrix of the commonly employed

Roothaan-Hall procedure.

II. RESULTS

A. Energy minimization and orbital exponents

For the elements Z = 1 − 54 (H � Xe) we optimized the exponents for atomic ground

states as given by the Aufbau principle, without paying attention to exceptions like Cr, Cu,

and most of the 4d transition elements. For the same elements we have from the literature

the highly optimized multi-exponent Bunge basis sets,15 which, in terms of total energy, are

very close to numerical Hartree-Fock energies.16 Our basis sets yield total energies slightly

higher than the Hartree-Fock limit, about 0.3�0.7%, which is an amazingly small di�erence,

given the number of free parameters in our calculations. Set aside the proposition of Fock et

al.9, closest to our approach and covering a large part of the periodic table, are the single-

zeta basis sets of Clementi and Raimondi,17 with the same number of exponents as ours,

but constructed as optimized linear combinations of nodeless Slater functions. The number

of free parameters is thus about twice as large as ours (exponents and expansion coe�cients

with orthonormality constraints), and the di�erence to total energies obtained with Bunge's

basis sets about a factor two reduced with respect to ours (see Figure 1).

Overlap integrals between core orbitals in the Bunge sets and respective MAP orbitals

are found to be larger than 0.99 (> 0.999 for the 1s shell), and still larger than 0.90 for
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FIG. 1: Total energies (left scale) and di�erence to Bunge's large basis sets in green and Clementi

and Raimondi's17 single-ζ basis sets in light blue (right scale).

valence orbitals (for more details see below). One exception is the Pd atom for which the

basis set of Bunge et al had been determined using the physical 4d105s0 ground state without

the need to describe a 5s orbital.

Remarkably, in most cases the exponents of valence s-, p- and d-orbitals, determined

from the energy minimization procedure, follow, as functions of the atomic number, roughly

linear trends as shown in Figure 2, corroborating the semi-empirical argument given in the

Introduction.

A closer look reveals that despite almost perfect linear trends particularly for smaller n

the deviations from the trends of Figure 2 are not statistical, but systematic. Furthermore,

the dependency of orbital exponents with given (n`) on the nuclear charge is piecewise

linear, clearly visible for instance for the 4s exponents in the three groups 19�20 (K and Ca,

4s as valence), 21�30 (Sc�Zn, �lling of the 3d inner shell) and 31�54 (4s being outside of

completely �lled shells). In Table I we �t the di�erent regions identi�ed for all orbitals to

the linear expression ξ(Z) = aZ + b. The corresponding linear trends are shown in Fig. 3

for 4s and 5s-exponents.

These linear �ts, obtained for small Z, may then serve as starting points for the opti-

mization procedure for higher Z, being as reduced as Slater's screening model from 1930,18
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FIG. 2: The optimal exponents as functions of the atomic number Z. The visually almost strait

lines coming up to surface up to 3d are in fact misleading: see the text for details.

but including the correct orthogonality of the resulting orbitals through our construction

procedure. The ensemble of optimized exponents is collected in the available Supplementary

Material. Pro�les of the radial parts and corresponding density distributions can be found

on a dedicated web site.19

B. Position of the nodes of the radial function

Further investigation of the details of the spatial distribution coming from the MAP

conjecture, eq. (1), led us to an observation depicted in Figure 4. It can be seen that for a

given atom and given value of the azimuthal quantum number ` the positions of the nodes

of the radial functions Rn`(r) � the roots of the polynomials Pn`(2ξn` r) � almost coincide
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TABLE I: Piecewise linear �ts ξ(Z) = aZ + b for s, p, and d exponents together with R2 values.

For the 4s and 5s orbitals and the �rst two elements the character is in quotes as the same orbital

is still a valence orbital in the corresponding transition-element series.

Orbital character Z-range a b R2

1s core 3�54 0.9999 −0.28 1.0000

2s valence 3�4 0.4017 −0.44 �

2s core 5�54 0.5046 −1.41 0.9999

2p valence 5�10 0.3319 −0.45 0.9984

2p core 11�54 0.5046 −1.41 0.9999

3s valence 11�12 0.3282 −2.63 �

3s core 13�54 0.3354 −2.92 0.9985

3p valence 13�18 0.2878 −2.52 0.9986

3p core 19�54 0.3326 −3.47 0.9980

4s �valence� 19�20 0.3135 −5.01 �

3d valence 21�30 0.2616 −3.23 0.9890

3d core 31�54 0.3669 −6.42 0.9999

4s transition 21�30 0.0311 +0.69 0.9959

4s non-transition 31�36 0.3074 −7.53 0.9937

4s core 37�54 0.2571 −5.50 0.9996

4p valence 31�36 0.2778 −7.09 0.9947

4p core 37�54 0.2580 −6.17 0.9996

4d valence 39�48 0.2756 −8.54 0.9900

5s �valence� 37�38 0.2812 −9.37 �

5s transition 39�48 0.0207 +0.68 0.9990

5s non-transition 49�54 0.2686 −11.05 0.9973

5p valence 49�54 0.2323 −9.47 0.9667

for smaller values of n and for all nodes k < n− `− 1, counted from the origin, r = 0. This

is illustrated by the example of the s-orbitals of the Iodine atom, see Figure 5.

This behavior had already been conjectured in the literature20 in a slightly di�erent

context, and, more recently, in a numerical study21 of the outer spinors in a relativistic
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FIG. 3: Piecewise linear trends for 4s (left) and 5s (right) orbital exponents. Yttrium (Z=39) seems

an outlier, probably not arrived at the optimum set of exponents. Parameters of all linear �ts are

assembled in Table I.

setting. It also comes up in the studies on ab initio Gaussian atomic basis sets2,6,22 and may

be a general property of all basis-set-expanded atomic orbitals representing, more or less

realistic, the atomic one-electron states.

Additionally, we see that the positions of the nodes with the same number, as counted

from the nucleus as functions of Z, follow fairly smooth curves, at least for 2s to 4s. They

appear in groups, almost coinciding for the respective nodes, starting at the Z values at

which further nodes for same ` and di�erent n appear.

We observe an evident cusp for the 3rd root of the 4s polynomial between Z = 30 and

Z = 31, at the end of the �rst transition series. The 4s-exponent is almost constant in

this range, but orthogonality has to be achieved with evolving 1s, 2s, and 3s exponents.

Beyond Z = 31 the 4s exponent varies as well, which adds a di�erent component to the

orthogonality constraint, without successive �llings of inner shells. The same is observed for

the 5s at Z = 39 (Y) and Z = 48 (Cd) for the �lling of the 4d shell.

III. DISCUSSION

When developing the atomic Hartree-Fock theory in the 1930-1960's (Slater, Roothaan,

Clementi) the focus was then on molecular applications, where a purely spherical atom is
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FIG. 4: Position of the nodes of the radial functions 2s to 5p. Multiple lines of the same color refer

to the subsequent nodes counted from the origin, r = 0, of the same orbital.

an approximation.23 Our minimally parametrized basis sets are not intended to replace the

modern ones designed for molecular applications with numerical precision. They, however,

may serve as a set of physical parameters for more qualitative or semi-quantitative studies

aimed at establishing and explaining trends in the chemical behavior.

A. Linear trends for the exponents and deviations from them

We may start the analysis of the linear relations described in section II in terms of

hydrogen-like orbitals (ξ = Z/n) or Slater's parameter set18

ξ
(n`)
S =

Z∗

n∗
=

(Z − σn`)
n∗

, (4)

where σ is composed of the screening by the equivalent and inner electrons, and n∗ is an

e�ective principal number. As result one obtains as well piecewise linear relations of the
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see the close coincidence of the �rst and the second orbital node. Black stars correspond to the

estimates described by eq. (11), see Section III C.

e�ective exponent ξ and the atomic number Z, according to the well-known Slater18 (or less

known Clementi17) rules. If an incomplete shell is an outer shell, each step in Z yields an

increase of 0.65 in Z∗ until the �lled shell reaches a maximum screening. Furtheron, each

increase in Z adds outer electrons with no in�uence on the inner shells, thus Z∗ increases

as Z.

As one can see from Table I, the slopes in the �core� ranges deviate very little from the

1/n rule where n is the true principal quantum number � the one determining the number

of radial nodes of the function. On the other hand, in the �valence� ranges the slopes for

nontransition elements are systematically smaller than 1/n � most signi�cantly for n = 2, less

pronounced for n = 3; in either case, however, not precisely following the Slater prescription
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of 0.65/n (which almost exactly shows up for 2p valence orbitals only). At n = 4 the

situation inverts and the slopes of the linear �ts of the MAP exponents as functions of Z

remarkably exceed 1/n in the valence range (named non-transition in Table I). This feature

is partially absorbed by the e�ective principal quantum numbers, n∗ < n, introduced by

Slater. However, using n∗ instead of n still produces very small slopes in the valence range:

the estimate of 0.65/n∗ based on Slater rules is smaller than the MAP �ts in Table I, for

which the ratio of slopes between �core� and �valence� trends is more like 1 than 0.65.

The linear relations for valence ns exponents of transition elements show very small slopes

(0.03 and 0.02, respectively for n = 3 and 4), ultimately meaning that in those series the

�eld felt by s-electrons does not change signi�cantly with the change of the nuclear charge �

as expected from Slater's rules ascribing to each electron in the 3d-shell the screening power

of 0.85 relative to the 4s electrons. This results in the slopes of 0.15/n∗ (0.05 and 0.04,

respectively) for the latter exponents as functions of Z. This weak increase correlates to

the experimental ionization potentials of the 3d transition-metal series, spanning a narrow

interval of 1.2 eV.

B. Preliminary physics and chemistry implications

As we mentioned in the Introduction, the proposed MAP setting10 for the atomic orbital

basis in its primitive form dating back to 1930-ies9 has the advantage that its parameters �

orbital exponents � have a direct physical signi�cance. Thus, one can hope to relate them

more or less directly to some observable characteristics of atoms and eventually those of

molecules and crystals/materials. For instance atomic radii may be extracted. Experimen-

tally, these are generally derived by �tting some data on interatomic separations observed

in various contexts.

The MAP exponents provide already the size of an atom due to the asymptotically

exponential decay of the electron density.24 A simple measure for an atomic radius is the

average radial position 〈r〉 of the most di�use orbital. This quantity can be evaluated in

any basis set, and we can compare directly orbitals of the Hartree-Fock limit to the MAP

orbitals characterized by one single exponent. Figure 6 gives these data for all elements up

to Xenon.

The coincidence is again quite striking, atomic radii obtained with the two orbital sets
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are nearly superposable, but for the 3d and 4d transition metals.

Within the MAP philosophy we may develop another way to estimate the atomic size

via the the position of the outermost density maximum of its valence shell. For either value

of ` the highest power of the Pn` polynomial is n − 1 so that the dominant contribution

to the outermost wave is a simple Slater monomial of the same degree. We can check by

�tting a Slater monomial to our MAP orbitals, by maximizing the overlap integral between

the two radial functions, dependent on the Slater exponent. We see (Figure 7, upper panel)

that the resulting exponents become quite di�erent (about 20%) from the original MAP

exponent for the 2s orbital of heavier elements, despite r expectation values (〈φSlater|r|φSlater〉,

〈φMAP|r|φMAP〉) being di�erent by only a few pm (Figure 7, lower panel).

Keeping in mind this behavior, we may go back to Figure 5 where we see the quite small

oscillations for the 5s orbital � the valence MAP states are almost Slater orbitals. For these,
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the outermost maximum of the radial density r2R2
n` (r) is given by the expression

rmax (Z) =
n

ξn`
=

n2

Z − σn` (Z)
(5)

where n can be safely understood as the element's period (row) in the Periodic Table.

We add to this value a spherical layer of the thickness of ξ−1
n` so that ultimately the

intrinsic atomic radius reads

rat (Z) =
n+ 1

ξn`
(6)

where n` refers to the outermost subshell, in particular 4s or 5s for the transition elements.

The resultant data are added to Figure 6. As one can see, this simple estimation generally

follows the same trend as the estimates based on 〈r〉.

C. Nodes of the radial MAP functions

Let us come back to the result of section II B, by looking more in detail at the polynomials

Pn`(2ξn` r) which maintain the orthogonality between di�erent functions of the same `.

From the hydrogen atom we have the orthogonality relations involving Laguerre polyno-

mials as

Nn`Nn′`

ˆ ∞
0

r2`+2e−2Zr( 1
n

+ 1
n′ ) ×

× L2`+1
n−`−1

(
2Zr

n

)
L2`+1
n′−`−1

(
2Zr

n′

)
dr = δn,n′ (7)

as the hydrogenic orbital is written as

Rn`(r) = Nn`r
`L2`+1

n−`−1

(
2Zr

n

)
e−

Zr/n . (8)

Setting ξn,` = Z/n (or a screened nuclear charge Z∗` ) we arrive at a generalized orthogonality

constraint within the MAP series, provided that the exponents for a given angular quantum

number ` derive from one single Z (or Z∗` ):

Nn`Nn′`

ˆ ∞
0

r2`+2e−(ξn,`+ξn′,`) r ×

× Pn,`(2ξn`r)Pn′,`(2ξn′`r) dr = δn,n′ (9)

This is only approximately the case for the Hartree-Fock derived MAP radial parts � we

�nd ξn,`(Z) ≈ Z/n + bn with a bn nearly independent of Z, see Table I. The higher Z, the
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smaller the e�ect of bn, which we can formulate as

Z →∞ : Pn`(2ξn`r) ∝ L2`+1
n−`−1

(
2
Z

n
r
)

.

However, ignoring the screening (i.e. bn) comes back to studying a bare, hydrogenoid, atom

only, ignoring the poly-electronic situation to describe. Better seems to introduce an average

screening for all shells through an e�ective Z∗` , averaged over all n, leading to the average

setting

Pn`(2ξn`r) −→ L2`+1
n−`−1

(
2
Z∗`
n
r
)

.

As a consequence, the nodes of the MAP polynomials coincide on average with the corre-

sponding nodes of the associated Laguerre polynomials. The Laguerre polynomials in their

turn can be approximated through Bessel functions of the �rst kind:25,26

Pn`(2ξn`r) ∝ L2`+1
n−`−1

(
2Z∗` r

n

)
∝
J2`+1

(
2
√

2Z∗` r
)

√
2Z∗` r

2`+1 . (10)

From this we can immediately read the position of the roots of the MAP polynomials:

rn`(k) ≈
j2

2`+1,k

8Z∗`
, (11)

where j2`+1,k is root number k of the Bessel function J2`+1 of the �rst kind, independent of

n and inversely proportional to the nuclear charge, corroborating the graphs of Figure 4.

The above estimate basically repeats the old observation based on the WKB treatment of

the hydrogen atom (see Ref. 27). For an Iodine atom (Z = 53) we have the s exponents ξ1s to

ξ5s as 52.6862, 25.2486, 14.8828, 8.1798, and 3.1897, respectively, instead of the hydrogenic

Z/n series 53, 26.5, 17.666, 13.25, 10.6. Minimizing the quadratic deviation from the MAP

exponents for a common Z∗` leads to a value of Z∗` = 49.845, or an average screening of a

little more than 3 electrons.

Via the roots of the Bessel functions j2
1,k/8 amounts to 1.8352, 6.1523, 12.9375, 22.1901

and thus expected positions of the nodes are 0.036818, 0.123428, 0.259552, and 0.445178

Bohr from the origin, respectively. We �nd 0.0431757, 0.168321 0.429621, 0.989825 Bohr

as nodes of the 5s orbital which is close for the �rst node, but more and more o� for the

subsequent ones. The expected positions are reported in Figure 5.

Of course, the reason for this result is that for the inner shells the screening is fairly

correct, and as well the approximation of the Laguerre polynomial via a Bessel function.
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For the outer nodes, screening via the chosen Z∗` becomes quite wrong and the approximation

through the Bessel function less reliable.

IV. CONCLUSIONS

Minimally parameterized exponential basis sets of the form eq. (1) originating yet from

1930-ies9 are de�ned so that the correct nodal structure (the orthonormality) of the orbitals

is maintained through a polynomial depending only on the exponential parameters. Within

this setting each (sub)shell can be described by only one single parameter - its orbital

exponent. Assuming this we recently explored10 atoms of the 2nd row of the Periodic Table,

and extended the approach up to (Z = 54), i.e. including the 5-th period.

The (sub)shell-speci�c orbital exponents ξ
(n`)
MAP are derived through optimizing the total

energy written in the Hartree-Fock approximation. Overlaps of the obtained orbitals with

the corresponding ones from purely numerical approaches or much longer expansions15 are

quite large (> 90%) and may serve as basis for atomic projection and subsequent analysis

of the results of PAW/DFT calculations.28 The details of the spatial structure of atomic

states, like position of the nodes close to the nucleus or the asymptotic behavior for large r

are fairly well reproduced.

Despite the restricted number of free parameters the proposed basis sets result in good

total energies, and exponents follow simple piecewise linear relations as functions of the

nuclear charge Z. The switches between di�erent linear trends occur either at the end of

rows of the Periodic System or when within a row a new (sub)shell starts being �lled.
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