Peter Reinhardt 
email: peter.reinhardt@sorbonne-universite.fr
  
Ilya Popov 
  
Andrei L Tchougrée 
  
Spatial distribution of atomic electronic density for elements 1 to 54 as coming from a Hartree-Fock treatment within the minimum atomic parameters (MAP) paradigm

The minimum atomic parameters/Moscow-Aachen-Paris (MAP) basis sets reintroduced in the previous paper 1 are analyzed with respect to spatial features as orbital shape, possible ts to alternative orbital sets (numerical or quasi-numerical orbitals, nodeless Slater orbitals), respect of Kato's condition and radial distribution of energy components. Contents I. Introduction. Recall of the MAP orbitals II. Discussion A. Orbital shapes B. Mutual tting of orbital sets 1. Orbital optimization with nodes xed at the positions of the nodes given by numerical orbitals 2. Fit MAP to Bunge 3. Fit of Z eff of the Slater model to MAP and Bunge orbitals C. Kato's condition D. Radial integration of one-electron quantities E. Relation to the general basis-construction problems III. Conclusions

For comparing orbital spaces the Frobenius angle between the orbital subspaces they span is introduced as numerical tool. It is shown that the electronic density of the MAP states is depleted around the nucleus with respect to the other orbital sets. Despite this, the similarity between the respective subspaces in all cases (except a unique case of the Pd atom) as measured by the cosine of the Frobenius angle amounts above 0.96 for all atoms. Deviations from the perfect value of Kato's condition amounts systematically to 0.3 and 0.5 for all elements considered. Integrating one-electron energy contributions from r = ∞ to a nite radius, MAP and Bunge orbitals show about the same values, but for the inner region governed by the polynomial oscillations.

In the previous paper, 1 hereafter referred to as I, we extend the analysis of atomic orbitals constructed via a minimal-parameter procedure, specifying only one single exponent per subshell. This procedure reintroduced in Ref. 2 for the atoms of the 2 nd period actualizes the original idea dating back to 1930ies.
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In this setting the orthogonality of the atomic functions is obtained by writing the radial function R n (r) as a polynomial of order (n -1) in r times an exponential function exp (-ξ n r) and by solving hierarchially the orthonormality conditions for so-constructed functions within a set of common . Orbital exponents ξ n are chosen to minimize the total energy 46 for a given electron conguration, leading to a restricted open-shell Hartree-Fock procedure.

As we have shown in paper I, such a setting misses about 3 % in total energy with respect to numerical Hartree-Fock orbitals, 7,8 or expansions in the large Slater-type basis sets of Bunge et al., 9 which in their turn give the results at µ-Hartree precision with respect to the previous. Despite this loss in total energy with respect to purely numerical, basis-set-free Hartree calculations, MAP orbitals have an overlap with their numerical analogues of more than 90 %.

As for physical properties, the periodicity of Mendeleev's Table is well reproduced by the MAP orbitals in terms of atom sizes. A remarkable feature of the MAP orbitals is that the positions of the nodes in the individual orbitals of a given atom and given angular quantum number almost coincide for dierent allowed values of the principal quantum number n ( ≥ n -1) with the coincidence being particularly close for the innermost nodes.

In the present manuscript we investigate further the connections between MAP orbitals and the two other extremes, numerical orbitals on one side and nodeless Slater orbitals on the other, by looking at orbital shapes, mutual ts of parameters, radial integration and Kato's condition as test. Conclusions from these and an outlook to potentially interesting applications close this contribution.

Purely technical details are collected in an Appendix, and a compilation of the data can be found in the accompanying Supplementary Material. The underlying MAP orbital exponents are found in the Supplementary Material of paper I.

II. DISCUSSION

All data of this manuscript refer to the electronic ground states of the respective chemical elements, as given by the Madelung-Klechkowski rule (or Aufbau principle).

10,11 Known exceptions to this rule like Cr, Cu, Pd etc will be discussed in a forthcoming paper, together with a more detailed look at excited states in general.

A. Orbital shapes

Obtained orbitals in the minimal-parameter set may be inspected and compared to available (quasi-)numerical Hartree-Fock orbitals.

7,9

We observe as general aspect that while the long-range tail is comparable in both orbital sets, the region close to the nucleus manifests signicant dierences. Specically, despite the correspondence of the positions of the radial nodes of both the Bunge and MAP functions, the amplitudes of the oscillations of the MAP orbitals coming from the polynomial multiplier are much less pronounced than for Bunge orbitals, especially when comparing valence orbitals, see Figure 1.

Of course, orthonormality imposes the nodal structure of the orbitals, even if the population inside the outermost node, i.e. the integral of the squared orbital from zero to the position of this node, does not exceed some percent of the total population of the orbital.

This led already Slater to simplify radial functions toward nodeless orbitals, 12,13 and as well for orbitals suited for pseudopotentials the nodal structure is entirely ignored.

1417 In the latter case it had been shown that even if Hartree-Fock valence energies are well reproduced, the absence of the inner nodal structure induces signicant errors when calculating valence correlation energies. Since presently we concentrate on the features of the Hartree-Fock based MAP states we postpone the discussion of this issue for the future.

Plotting the inner population for MAP and Bunge orbitals as shown in Figure 2 reveals that the spatial distribution of electron density is not the same within the two orbital sets. The dierence is relatively small for 2s orbitals, but it becomes quite pronounced for higher n. Systematic dierences can be seen as well for the series of transition elements (Z = 21 -30, 39 -48), where the 4s and, correspondingly, the 5s inner population for numerical orbitals a few percent of the total orbital population decreases with increasing Z, but is hardly detectable for MAP orbitals for these elements. ´∞ 0 R Bunge (r)R MAP (r) r 2 dr of the corresponding functions is always larger than 90 %.

As we reported in paper I, total energy and atomic radius are aected only weakly by these dierences of density distributions, so that overlaps between MAP and Bunge orbitals remain within 95 %.

Comparing orbitals in two basis sets one by one does not provide an integral picture.

Fundamentally, we should compare functional subspaces spanned by the two basis sets. on the respective subspaces (for details see Appendix III A) as a numerical tool. Physically, the cosine of the angle between the subspaces as dened by eq. ( 4) gives the probability for a particle (electron) abiding in a state belonging to one subspace to occur in a state of another one.

Figure 3 shows that the so-dened probability remains of the order of 95 % throughout the whole range of elements of the Periodic Table covered here. We observe two exceptions: the optimization of orbital exponents leads to a very small 4d exponent (0.636) for Yttrium (Z = 39), and for Pd (Z = 46) we optimized exponents for a 4d 8 5s 2 high-spin state instead of the physical 4d 10 5s 0 ground state. 

B. Mutual tting of orbital sets

While numerical Hartree-Fock orbitals can be considered as parameter-free (making abstraction of the radial integration points), we may introduce several dierent optimization criteria for the parameters dening either MAP or nodeless Slater orbitals.

1. Orbital optimization with nodes xed at the positions of the nodes given by numerical orbitals

Having observed that the orbital shapes in the core region are signicantly dierent between the MAP and Bunge/numerical orbitals, despite the relative smallness of the total-energy dierences and large overlaps, we may have a closer look to the nodes of the orbitals.

As we could see for the Iodine 5s orbital as example (see Figure 5 of paper I), the nodes are nearly coinciding, although not identical between the MAP and Bunge's orbitals.

The numerical orbital has, due to the orthogonality constraints, as many nodes as our orbitals. We may try to t thus the MAP expression to this orbital, going through exactly the same nodes. Before doing so, we divide numerically the radial function of numerical orbitals by the corresponding polynomial factor. As shown in Figure 4, the ideally linear relations are well visible for the inner shells, and as well the shell structure is clearly reproduced. orbital is a pure exponential function; however the deviations from the ideal relations are more and more pronounced for increasing n.

Optimizing the overlap of the Bunge and MAP states while keeping the node positions xed at those of Bunge's orbitals gives for instance the Iodine 5s orbitals an exponent of 3.18631 with overlap of 0.964, almost identical with one found via the energy optimization in the MAP setting: 3.1897. A more detailed compilation of the results of the described procedure applied to the whole set of Iodine orbitals is given in Table I. Taking the so-obtained, slightly non-orthongonal orbitals as starting point for our MAP energy optimization procedure we obtain again the previously generated, energy-minimizing exponents.

Fit MAP to Bunge

As mentioned in Section II A, the numerical measure of the coincidence between the orbital subspaces spanned by dierent basis sets is given by the Frobenius angle eq. ( 4)

between them whose cosine is the probability of nding an electron in a subspace spanned by one basis set under the condition that it occurs in the subspace spanned by another one.

We may thus use this quantity to t MAP orbitals to Bunge orbitals without the exact node-matching.

Traditionally, (see e.g. 5,2225) the quality of a t is controlled by the achieved total energy as based on the variation principle. This approach is not, however, precisely what is needed. First, it requires the calculation of the energy which may be tedious. Second, in the strict sense, it produces the measure of the closeness of the specic (lowest energy) state approximations achievable in the subspaces rather than of the subspaces themselves.

In the atomic context it means that in the energy-variation principle setting the states, say, in the valence subshell of an atom, are treated dierently depending on the amount of electron population of the latter. Thus, the Frobenius angle or its cosine give a more uniform quantication of the similarity of the subspaces to be compared. An alternative set of MAP 

R n * (r) = N n * r (n * -1) e -(Z * /n * )r with Z * = Z -σ
For n > 3 the eective n * is proposed to be set to values dierent from n, i.e. 3.7 instead of 4, and 4 instead of 5 (for our ensemble of elements up to Z = 54).

The overlap of a MAP or Bunge orbital with a primitive Slater orbital may be easily calculated as a function of Z * with the help of Mathematica, 18 and incorporated in an optimization procedure.

For the iodine atom as example we nd the best Z * yielding the maximal overlaps as given in Table II.

We see immediately that overlaps between MAP and Bunge states are always better than 0.95, and the obtained Z * are very close. However, the resulting 2s exponent is considerably smaller than the 2p exponent, and the same holds for the 3p exponent. For these two Slater functions shifted with respect to the main lobes. A larger exponent would t the outer region better, but gives a smaller overlap in the inner region. For the higher-n orbitals this is less important as the polynomial oscillations are weaker, and thus the common decay at larger distances is more signicant for the best overlap. Of course, this is only a rough argument for comparing these qualitatively dierent orbital sets.

Looking at Table 2 and Figure 2 of paper I and the Figure 8 showing the trends in the exponents for dierent subshells with Z, one immediately observes a striking precision with which the slopes for the exponents of the four deepest shells (n = 1÷4) follow the Z/n trend.

However, a closer look to the supposed linear relations of the exponents with respect to Z reveals systematical deviations, depicted in Figure 7 which cannot be imputed to numerical instabilities. For the shell with n = 5 the deviation from this trend is quite pronounced which may be considered as a hint towards the eective principal quantum numbers n * introduced by Slater.

13 The inverse of the coecients a for the 5s and 5p, respectively, equal to 3.717 and 3.875. On the other hand one needs to recollect the interpolation used by Slater for the orbital exponents:

ξ n = Z -σ n (Z) n * , (1) 
which contains in counterpoise to somewhat reduced values of the eective principal quantum number (n * ≤ n) the screening constants σ n (Z) as well.

We may, of course, introduce the same constraint of common sp exponents in our optimization procedure. When plotting the deviations from Z/n for the rst three principal numbers, the coincidence of the simple Slater model and our MAP basis sets is as well strik- For the 1s orbital this is the same for MAP orbitals, and nearly so for the 2s orbital. But from 2sp on this is not any more the case, the 2p orbital exponent plotted in Fig. 8 follows right from the beginning a dierent slope, and the screening saturates only around Z = 25.

Again this is coherent with the discussions on small-and large-core eective core potentials for transition elements. Forcing a common exponent for 2s and 2p (red curves in Figure 8) indicates that the trend characteristic for s orbital prevails over that for the p orbital. And for n = 3 we cannot speak any more of a constant screening, at least not for the rst 54 elements. The presence of 3d electrons perturbs the strictly hierarchical order with Slater's model, leading as well to signicant dierences for the 3d orbital exponents. (2)

Taking numerical Hartree-Fock orbitals or Bunge's basis sets we see that this condition is fullled already at the Hartree-Fock level, 8 and even individually for each atomic s orbital 20

the only ones with a non-vanishing electron density at the origin.

Despite the sizable absolute deviation of the gradient-to-density ratio from the ideal value of Z it does not show any signicant or characteristic variation with Z, ranging from 0.3 for a helium atom to around 0.5 for the heavier elements. The relative deviation (that divided by Z) fades out with increase of Z. Electron correlation as missing ingredient in the Hartree-Fock approach can be ruled out being responsible for this deviation as the electron density and orbitals within Bunge's basis sets reproduce correctly the nuclear cusp.

We nd that the 1s exponent alone dictates the value of the gradient at the origin. The other s orbitals change this quantity only very little, as they add in a similar way to the numerator and the denominator of the expression. For instance for the Sulfur atom (Z = 16) The overall results, as cumulative sums in numerator and denominator of the reduced density gradient, are depicted in Figure 9; the smooth curves allow an estimation of the numerical noise of our multi-parameter optimization procedure.

We see as well that the 4s and the 5s orbitals do not add any change to the cumulative sums. This is due to the very low electron density a the origin, for instance for the I atom in the MAP setting we have densities of 7499, 757.5, 99.83, 3.100, and 0.001045 (in atomic units) for 1s to 5s, respectively. For orbitals expanded in the Bunge basis set, the gures read 7391, 779.5, 154.7, 31.45 and 3.639, reecting the same ndings as for the populations inside the polynomial region.

D. Radial integration of one-electron quantities

Kato's condition measures the orbitals in the vicinity of the nucleus. For looking at the opposite side, we may integrate energy contributions 8 from outside toward the nucleus, like kinetic energy or the electron-nucleus attraction. In this way we see, in which region the dierence in total energy between the MAP and the Bunge orbital sets are located. 94025, 3.34261, 3.20627 and 3.63247 Bohr, respectively, and nodes of Bunge orbitals are situated at 0.376 a.u. (C, 2s ), 0.797 and 0.162 (Al, 3s ), at 0.0742 (Ni 2s ), 0.304 and 0.0718 (Ni, 3s ), 0.936, 0.296 and 0.0716 (Ni, 4s ), and, nally, at 1.149, 0.439, 0.162, and 0.0417 a.u. (Ag, 5s ). We marked these in the plot.

In the region outside the atomic radius the two orbital sets are close, and signicant deviations for the radial integration occur only within the nodal region, too close to the nucleus with respect to the chemically important valence region. We can thus expect that atoms described with MAP orbitals will produce chemically relevant data, without the need for long basis set expansions. The density missing in the core region is distributed in a wide range in the outer orbital lobes, rendering them only insignicantly dierent to numerical The present MAP paradigm provides a completely dierent approach to the selection of the characteristics of the spatial decay of the atomic states: for each (sub)shell a single parameter provides a denite physical sense a great intellectual and technical advantage of the proposed approach. So far implemented for the orbitals occupied in the ground state as treated in the Hartree-Fock setting, the MAP approach may be extended to excited (unoccupied in the ground state) atomic orbitals to formation of hierarchical basis sets as prescribed in Ref. [START_REF] Blum | Ab initio molecular simulations with numeric atom-centered orbitals[END_REF]. Indeed, adding further and further subshells entering with corresponding exponents with assured orthogonality eventually produces the required hierarchy of approximations.

This still needs to be controlled for convergence properties as well as tested for reasonable sources of the additional exponents for the subshells missing in the ground state. We will address this issue in a future work.

Although, maybe not well suitable for describing subtle physical eects depending on the details of the function behavior in the vicinity of the nucleus like magnetic properties and/or electric (hyper)polarizabilities, the very reasonable exponential decay at larger distances from the nuclei, important for bond formations and chemical reactivity, makes the MAP states a good alternative for studying chemistry. The paradigm may be extended as well to ionic states, and thus charge-transfer and ionic compounds. Instead of density plots expanded in a large number of Gaussian basis functions, a few orbital exponents may be sucient to characterize dierent chemical situations.

III. CONCLUSIONS

By the present work, we continue our studies on minimally parameterized atomic states extending them either in terms of rows covered of the Mendeleev Periodic In this quality the MAP states are perspective for developing new semi-empirical methods which habitually use the Slater basis sets which due to lack of the radial nodes cannot assure correct relative positioning of the states of the same n but dierent on the energy scale.

These and other issues and perspectives will be addressed in future work.

Additionally, we propose a numerical tool for comparing the relative quality of the basis sets through the Frobenius inner product of the operator (matrices) projecting to the subspaces spanned by the basis sets to be compared.

tr(M

† B) = κλ µ β κ| µ µ |λ λ| β β |κ = µ β β κ |κ κ| = 1 µ µ λ |λ λ| = 1 β (3) = µ β | β|µ | 2 ,
where |λ and |κ run over a complete orthonormal basis in L 2 . That matrix elements are squared in the above expression does not destroy the bilinearity of the scalar product, as the underlying space is not the orbital space, but the space of the matrices acting in the Hilbert space.

A norm is derived as usual as the square root of the Frobenius inner product of a matrix with itself: |C| = tr(C † C) and is known as the Frobenius matrix norm. The angle between two orbital subspaces is dened via its cosine as:

cos ϕ F = tr(M † B) |M | |B| = m µ=1 b β=1 | β|µ | 2 √ m √ b . (4) 
As the involved orbital sets (MAP and Bunge in the present case) are orthonormal, the inner product of either projector with itself is just the dimensionality of the subspaces m or b (number of elements in the respective orbital set, taking into account the multiplicity of 2 + 1 for a subshell with the azimuthal quantum number ) and the Frobenius norm is the square root of it. The expression eq. ( 4) is always non-negative, and falls between 0 and 1.

It can be connected to the notion of a probability.

B. Integration of energy contributions

For integrating one-electron contributions to the total energy it is sucient to look at the radial functions. For the kinetic energy the radial part of the Laplace operator reads which yields for a pair of primitive, unnormalized Slater functions for a given r (m-1) e -βr ∆ r r (n-1) e -αr = r (m-1) e -βr d 2 dr 2 + 2 r d dr -( + 1) r 2 r (n-1) e -αr = e -(α+β)r r (m+n-2) n(n -1) -( + 1) r 2 + α 2 -2 r nα

(5)

For obtaining the kinetic energy density we have to multiply this with -1/2. We may notice that for instance for = n -1 the density of the kinetic energy becomes negative for r > (2n)/α.

Integrating a product of unnormalized Slater functions from 0 to R gives ˆR 0 r (m-1) e -βr r (n-1) e -αr r 2 dr = ˆR 0 r (m+n) e -(α+β)r dr = = 1 α + β Γ(a, z) = ´∞ z t (a-1) e -t dt is the incomplete Γ function for which routines exist to calculate its value to high precision.

We may recall that the normalized Slater function S α n (r) is S α n (r) = (2α) 3/2 Γ(2n + 1)

(2 α r) n-1 e -αr (8)

For the radial integration of the kinetic energy the expressions become slightly more complicated:

-1 2 ˆR 0 S β m (r) 

FIG. 1 :

 1 FIG. 1: Illustrating the previous ndings at hand of the spatial extension of the ns valence orbitals of C, Al, Ni and Ag. Despite signicant dierences in the vicinity of the nucleus, the overlap

  4d orbitals are shown in lower right panel.

FIG. 3 :

 3 FIG. 3:The cosine of the Frobenius angle eq. (4) between the subspaces given by Bunge and MAP orbitals. The two exceptions are the 4d orbital of Yttrium (Z = 39), and the 5s orbital of Palladium (Z = 46).

Fitting

  FIG. 4: For Iodine we show the numerical Hartree-Fock orbitals as obtained by the Froese-Fischer program 7 divided by the polynomial xed by the orbital nodes, in a logarithmic scale. The 1s

  FIG. 5: Optimized cosine of the Frobenius angle between subspaces spanned by MAP and Bunge sets against atomic number. Resulting probabilities (cosine of the Frobenius angle) exceed 0.98 for all atoms except Pd, where its value nevertheless remains 0.96.

  FIG. 6: Eective diminuation of the orbital exponent due to screening of the nucleus ( Z -Z * n * = -σ n * ) for Slater exponents tted to MAP orbitals (left panel) and Bunge orbitals (right panel). Shells can be identied from the starting points of the lines. The spike in the rhs panel is Pd (Z=46).

FIG. 7 :

 7 FIG.7: Deviation from the linear relation ξ = Z/n + c, for our basis sets (black symbols) and for the single-ζ basis sets of Clementi and Raimondi (red symbols). We take only n = 1 (rounds) and 2s (diamonds), 2p (crosses) as non-valence shells.

FIG. 8 :

 8 FIG. 8: Comparison of MAP basis sets, optimization with common sp exponents and the simple Slater model of 1930. The screening constants in the latter do not evolve once the considered shell becomes an inner one.

  , the exact electron density must have a cusp at the nuclear position, respecting Kato's condition: 19 1 2 | ∇ρ( r)| sph. av. ρ( r) r=0 = Z.

FIG. 9 :

 9 FIG. 9: Deviation from Kato's condition (1/2) |∇ρ|/ρ -Z = 0 at the nucleus, evaluated directly from the radial functions of the s orbitals.

Figure 10

 10 Figure 10 shows these contribtions for the orbitals already displayed in Figure 1. If for the carbon 2s orbital the dierence is hardly visible, we see for the Ni 4s and Ag 5s orbital the kinetic-energy contributions to the total energy are not systematically underestimated by the MAP orbitals, Radii for the shown elements (C, Al, Ni, Ag) are 1.94025, 3.34261, 3.20627 and 3.63247 

FIG. 10 :

 10 FIG.10:The integral from R to ∞ of the kinetic energy (positive) and e-n one-electron contribution to the potential energy (negative), for the six orbitals of Figure1. We mark as vertical lines the positions of the orbital nodes, and for the valence orbitals with a broken vertical line the atomic radius.

  + n)! -Γ(m + n + 1, R(α + β)) we nd thus ˆR 0 r (m+n-1) e -(α+β)r dr = 1 α + β m+n   (m + n -1)! -Γ(m + n, R(α + β))

  n(n -1)α n+3/2 (m + n --R(α+β) α n+1/2 R m+n-1 (n(n -1)(α + β) -(m + n -1)Rα 2 ) (m + n -1) (α + β) + 2 n α n+1/2 (m + n -1) (α + β) m+n+1 × (m -m 2 )α 2 + 2mnβ + n(n -1)(α 2 + αβ -β 2 ) (m + n -1)! + m(m -1)α 2 -2mnαβ + n(n -1)β 2 Γ(m + n, R(α + β))

TABLE I :

 I MAP exponents for an Iodine atom. The rst column gives the previously obtained MAP exponents (see Suplementary Material of paper I for full-precision data), second column gives the overlap (in per cent) of the MAP function and a corresponding nodeless Slater orbital r (n-1) e -ξr . Third and fourth column show the data for the exponents obtained by maximizing the overlap of the same n , respecting norm and positions of the nodes. Total energies are (in Hartree) -6917.981, -6893.773, -6881.287 for Bunge, variational MAP, and the present t, respectively.For calculating a total energy from the tted exponents, orbitals were re-orthogonalized via the MAP construction. This shifts the node positions slightly, as Bunge nodes and orthogonality dene too many constraints to be satised simultaneously within the minimal parameter space.

	Orb. MAP exp. MAP/Slater	MAP exp.	maximized overlap
		var. HF	overlap	tted to Bunge	in %
	1s	52.686	100.	52.3059	99.9993
	2s	25.249	87.8	24.2894	99.9565
	3s	14.883	72.1	13.8225	99.5837
	4s	8.1798	71.1	7.65756	98.3884
	5s	3.1897	86.4	3.18631	96.4233
	2p	24.632	100.	23.7707	99.9710
	3p	14.276	81.8	13.3155	99.5463
	4p	7.5596	77.5	7.05405	98.1482
	5p	2.7051	72.0	2.58773	95.9579
	3d	12.988	100.	12.1820	99.7152
	4d	6.1826	89.8	5.72662	97.5304

TABLE II :

 II Slater's eective nuclear charges Z * and maximized overlaps and corresponding Z * for MAP/Bunge orbitals and Slater orbitals r (n * -1) exp(Z * /n * r), for the iodine atom, Z = 53. We give in the last column also the overlap between the MAP and Bunge orbital for sake of completeness.

	Orb.	Slater's	MAP		Bunge	
		screened Z * max. Overlap Z * max. Overlap Z * S MAP/Bunge
	1s	52.69	1.000000	52.6862	0.999993	52.3059 0.999973
	2s	48.85	0.932635	38.8031	0.938749	37.3943 0.998507
	3s	41.75	0.882507	30.8542	0.895175	28.4649 0.989460
	4s	25.25	0.896528	19.6500	0.893065	17.8801 0.977660
	5s	7.60	0.947849	8.13347	0.942856	7.97763 0.958939
	2p	48.85	1.000000	49.2630	0.999710	47.5415 0.998949
	3p	41.75	0.910455	32.2099	0.919719	29.7338 0.990418
	4p	25.25	0.914354	18.9800	0.911075	17.2700 0.976573
	5p	7.60	0.958761	7.13512	0.959876	6.82707 0.954011
	3d	31.85	1.000000	38.9644	0.997152	36.5458 0.993981
	4d	13.85	0.953058	17.2792	0.948578	15.8040 0.972777
	orbitals the relatively large oscillations of the polynomial render the best-overlap nodeless

TABLE III :

 III Data obtained from the t parameters a and b of Table2of paper I. We obtain similar parameters as proposed by Slater in 1930 for an eective principal number n * and a screening constant corresponding roughly to the number of inner electrons for each shell.

	Orbital	character	Z-range	1/a	-n * b	N core
	1s	core	354	1.00	0.28	0
	2s	core	554	1.98	2.82	2
	2p	core	1154	1.98	2.82	2
	3s	core	1354	2.98	8.76	
	3p	core	1954	3.01	10.41	
	3d	core	3154	2.73	19.26	
	4s	core	3754	3.89	20.35	
	4s non-transition 3136	3.25	27.86	
	5s non-transition 4954	3.72	44.	
	2s	valence	34	2.49	0.88	2
	2p	valence	510	3.01	0.9	2
	3s	valence	1112	3.05	7.89	
	3p	valence	1318	3.47	7.56	
	3d	valence	2130	3.82	9.69	
	4s	valence	1920	3.19	18.53	
	4d	valence	3948	3.63	31.60	
	5s	valence	3738	3.56	37.48	
	5p	valence	4954	4.30	37,88	

  Table. We concentrate particularly on the spatial behavior of the MAP states as compared to that of the traditional Slater orbitals, rened Bunge and typical ab initio Gaussian atomic states. It turns out that the MAP states, although, showing much weaker oscillation amplitudes at the shorter electron-nucleus separations, manifest very large (typically more than 0.95) overlaps with the Bunge states on account of the almost coinciding positions of the radial nodes of the either series of orbitals. At the same time the similarity of the MAP states with the Slater orbitals allows to qualify the former as minimally orthogonalized Slater orbitals.
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For R → ∞ we are left with

Mathematica gives for the latter the same two terms.