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Abstract

The minimum atomic parameters/Moscow-Aachen-Paris (MAP) basis sets � reintroduced in the

previous paper1 � are analyzed with respect to spatial features as orbital shape, possible �ts to

alternative orbital sets (numerical or quasi-numerical orbitals, nodeless Slater orbitals), respect of

Kato's condition and radial distribution of energy components.

For comparing orbital spaces the Frobenius angle between the orbital subspaces they span is

introduced as numerical tool. It is shown that the electronic density of the MAP states is depleted

around the nucleus with respect to the other orbital sets. Despite this, the similarity between the

respective subspaces in all cases (except a unique case of the Pd atom) as measured by the cosine

of the Frobenius angle amounts above 0.96 for all atoms. Deviations from the perfect value of

Kato's condition amounts systematically to 0.3 and 0.5 for all elements considered. Integrating

one-electron energy contributions from r = ∞ to a �nite radius, MAP and Bunge orbitals show

about the same values, but for the inner region governed by the polynomial oscillations.
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I. INTRODUCTION. RECALL OF THE MAP ORBITALS

In the previous paper,1 hereafter referred to as I, we extend the analysis of atomic orbitals

constructed via a minimal-parameter procedure, specifying only one single exponent per sub-

shell. This procedure � reintroduced in Ref. 2 for the atoms of the 2nd period � actualizes

the original idea dating back to 1930ies.3

In this setting the orthogonality of the atomic functions is obtained by writing the ra-

dial function Rn`(r) as a polynomial of order (n − 1) in r times an exponential function

exp (−ξn` r) and by solving hierarchially the orthonormality conditions for so-constructed

functions within a set of common `. Orbital exponents ξn` are chosen to minimize the total

energy4�6 for a given electron con�guration, leading to a restricted open-shell Hartree-Fock

procedure.

As we have shown in paper I, such a setting misses about 3% in total energy with respect

to numerical Hartree-Fock orbitals,7,8 or expansions in the large Slater-type basis sets of

Bunge et al.,9 which in their turn give the results at µ-Hartree precision with respect to the

previous. Despite this loss in total energy with respect to purely numerical, basis-set-free

Hartree calculations, MAP orbitals have an overlap with their numerical analogues of more

than 90%.

As for physical properties, the periodicity of Mendeleev's Table is well reproduced by

the MAP orbitals in terms of atom sizes. A remarkable feature of the MAP orbitals is

that the positions of the nodes in the individual orbitals of a given atom and given angular

quantum number ` almost coincide for di�erent allowed values of the principal quantum

number n (` ≥ n− 1) with the coincidence being particularly close for the innermost nodes.

In the present manuscript we investigate further the connections between MAP orbitals

and the two other extremes, numerical orbitals on one side and nodeless Slater orbitals on

the other, by looking at orbital shapes, mutual �ts of parameters, radial integration and

Kato's condition as test. Conclusions from these and an outlook to potentially interesting

applications close this contribution.

Purely technical details are collected in an Appendix, and a compilation of the data

can be found in the accompanying Supplementary Material. The underlying MAP orbital

exponents are found in the Supplementary Material of paper I.1
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II. DISCUSSION

All data of this manuscript refer to the electronic ground states of the respective chemical

elements, as given by the Madelung-Klechkowski rule (or Aufbau principle).10,11 Known

exceptions to this rule like Cr, Cu, Pd etc will be discussed in a forthcoming paper, together

with a more detailed look at excited states in general.

A. Orbital shapes

Obtained orbitals in the minimal-parameter set may be inspected and compared to avail-

able (quasi-)numerical Hartree-Fock orbitals.7,9 We observe as general aspect that while the

long-range tail is comparable in both orbital sets, the region close to the nucleus manifests

signi�cant di�erences. Speci�cally, despite the correspondence of the positions of the radial

nodes of both the Bunge and MAP functions, the amplitudes of the oscillations of the MAP

orbitals coming from the polynomial multiplier are much less pronounced than for Bunge

orbitals, especially when comparing valence orbitals, see Figure 1.

Of course, orthonormality imposes the nodal structure of the orbitals, even if the pop-

ulation inside the outermost node, i.e. the integral of the squared orbital from zero to the

position of this node, does not exceed some percent of the total population of the orbital.

This led already Slater to simplify radial functions toward nodeless orbitals,12,13 and as well

for orbitals suited for pseudopotentials the nodal structure is entirely ignored.14�17 In the

latter case it had been shown that even if Hartree-Fock valence energies are well reproduced,

the absence of the inner nodal structure induces signi�cant errors when calculating valence

correlation energies. Since presently we concentrate on the features of the Hartree-Fock

based MAP states we postpone the discussion of this issue for the future.

Plotting the inner population for MAP and Bunge orbitals as shown in Figure 2 reveals

that the spatial distribution of electron density is not the same within the two orbital

sets. The di�erence is relatively small for 2s orbitals, but it becomes quite pronounced for

higher n. Systematic di�erences can be seen as well for the series of transition elements

(Z = 21 − 30, 39 − 48), where the 4s and, correspondingly, the 5s inner population for

numerical orbitals � a few percent of the total orbital population � decreases with increasing

Z, but is hardly detectable for MAP orbitals for these elements.
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FIG. 1: Illustrating the previous �ndings at hand of the spatial extension of the ns valence orbitals

of C, Al, Ni and Ag. Despite signi�cant di�erences in the vicinity of the nucleus, the overlap
´∞

0 RBunge(r)RMAP(r) r
2 dr of the corresponding functions is always larger than 90%.

As we reported in paper I, total energy and atomic radius are a�ected only weakly by

these di�erences of density distributions, so that overlaps between MAP and Bunge orbitals

remain within 95%.

Comparing orbitals in two basis sets one by one does not provide an integral picture.

Fundamentally, we should compare functional subspaces spanned by the two basis sets.

This can be easily done with help of the Frobenius inner product of the projection operators
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FIG. 2: Integration of the radial density up to the outermost node, for Bunge orbitals, and for

the corresponding MAP orbitals. Upper panel shows the 2s to 5s, starting at Z=3, 11, 19, and 37,

respectively. Left lower panel displays the p series, starting, respectively, at Z=13, 31 and 49. The

4d orbitals are shown in lower right panel.

on the respective subspaces (for details see Appendix IIIA) as a numerical tool. Physically,

the cosine of the angle between the subspaces as de�ned by eq. (4) gives the probability

for a particle (electron) abiding in a state belonging to one subspace to occur in a state of

another one.

Figure 3 shows that the so-de�ned probability remains of the order of 95% throughout
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the whole range of elements of the Periodic Table covered here. We observe two exceptions:

the optimization of orbital exponents leads to a very small 4d exponent (0.636) for Yttrium

(Z = 39), and for Pd (Z = 46) we optimized exponents for a 4d85s2 high-spin state instead

of the physical 4d105s0 ground state.

0 5 10 15 20 25 30 35 40 45 50 55

Atomic number Z

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

C
o

s
in

e
 o

f 
th

e
 F

ro
b

e
n

iu
s
 a

n
g

le

total

s

p

d

FIG. 3: The cosine of the Frobenius angle eq. (4) between the subspaces given by Bunge and MAP

orbitals. The two exceptions are the 4d orbital of Yttrium (Z = 39), and the 5s orbital of Palladium

(Z = 46).

B. Mutual �tting of orbital sets

While numerical Hartree-Fock orbitals can be considered as parameter-free (making ab-

straction of the radial integration points), we may introduce several di�erent optimization

criteria for the parameters de�ning either MAP or nodeless Slater orbitals.

1. Orbital optimization with nodes �xed at the positions of the nodes given by numerical orbitals

Having observed that the orbital shapes in the core region are signi�cantly di�erent

between the MAP and Bunge/numerical orbitals, despite the relative smallness of the total-
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energy di�erences and large overlaps, we may have a closer look to the nodes of the orbitals.

As we could see for the Iodine 5s orbital as example (see Figure 5 of paper I), the nodes are

nearly coinciding, although not identical between the MAP and Bunge's orbitals.

The numerical orbital has, due to the orthogonality constraints, as many nodes as our

orbitals. We may try to �t thus the MAP expression to this orbital, going through exactly the

same nodes. Before doing so, we divide numerically the radial function of numerical orbitals

by the corresponding polynomial factor. As shown in Figure 4, the ideally linear relations

are well visible for the inner shells, and as well the shell structure is clearly reproduced.

Fitting a MAP orbital to the corresponding numerical Hartree-Fock or to Bunge orbital

comes then down to a linear regression with the slope (i.e. the MAP exponent) as only free

parameter. The intercept is �xed through the normalization condition.
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FIG. 4: For Iodine we show the numerical Hartree-Fock orbitals � as obtained by the Froese-Fischer

program7 � divided by the polynomial �xed by the orbital nodes, in a logarithmic scale. The 1s

orbital is a pure exponential function; however the deviations from the ideal relations are more and

more pronounced for increasing n.

Optimizing the overlap of the Bunge and MAP states while keeping the node positions

�xed at those of Bunge's orbitals gives for instance the Iodine 5s orbitals an exponent of
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3.18631 with overlap of 0.964, almost identical with one found via the energy optimization

in the MAP setting: 3.1897. A more detailed compilation of the results of the described

procedure applied to the whole set of Iodine orbitals is given in Table I.

TABLE I: MAP exponents for an Iodine atom. The �rst column gives the previously obtained

MAP exponents (see Suplementary Material of paper I for full-precision data), second column

gives the overlap (in per cent) of the MAP function and a corresponding nodeless Slater orbital

r(n−1)e−ξr. Third and fourth column show the data for the exponents obtained by maximizing the

overlap of the same n`, respecting norm and positions of the nodes. Total energies are (in Hartree)

−6917.981, −6893.773, −6881.287 for Bunge, variational MAP, and the present �t, respectively.

For calculating a total energy from the �tted exponents, orbitals were re-orthogonalized via the

MAP construction. This shifts the node positions slightly, as Bunge nodes and orthogonality de�ne

too many constraints to be satis�ed simultaneously within the minimal parameter space.

Orb. MAP exp. MAP/Slater MAP exp. maximized overlap

var. HF overlap �tted to Bunge in %

1s 52.686 100. 52.3059 99.9993

2s 25.249 87.8 24.2894 99.9565

3s 14.883 72.1 13.8225 99.5837

4s 8.1798 71.1 7.65756 98.3884

5s 3.1897 86.4 3.18631 96.4233

2p 24.632 100. 23.7707 99.9710

3p 14.276 81.8 13.3155 99.5463

4p 7.5596 77.5 7.05405 98.1482

5p 2.7051 72.0 2.58773 95.9579

3d 12.988 100. 12.1820 99.7152

4d 6.1826 89.8 5.72662 97.5304

Taking the so-obtained, slightly non-orthongonal orbitals as starting point for our MAP

energy optimization procedure we obtain again the previously generated, energy-minimizing

exponents.
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2. Fit MAP to Bunge

As mentioned in Section IIA, the numerical measure of the coincidence between the

orbital subspaces spanned by di�erent basis sets is given by the Frobenius angle eq. (4)

between them whose cosine is the probability of �nding an electron in a subspace spanned

by one basis set under the condition that it occurs in the subspace spanned by another one.

We may thus use this quantity to �t MAP orbitals to Bunge orbitals without the exact

node-matching.

Traditionally, (see e.g. 5,22�25) the quality of a �t is controlled by the achieved total

energy as based on the variation principle. This approach is not, however, precisely what

is needed. First, it requires the calculation of the energy which may be tedious. Second,

in the strict sense, it produces the measure of the closeness of the speci�c (lowest energy)

state approximations achievable in the subspaces rather than of the subspaces themselves.

In the atomic context it means that in the energy-variation principle setting the states,

say, in the valence subshell of an atom, are treated di�erently depending on the amount of

electron population of the latter. Thus, the Frobenius angle or its cosine give a more uniform

quanti�cation of the similarity of the subspaces to be compared. An alternative set of MAP

exponents can be obtained by maximizing the cosine of the Frobenius angle between the

subspace spanned by the MAP states and the Bunge states. Resulting values of the cosine

(probability) are plotted on Fig. 5.

and exponents are collected in Supplementary Materials. It is important to note that

for the following �ve elements (Cu, Rb, Pd, Pt, Ag) values of so obtained 1s exponents

exceed atomic numbers of the elements. The possible explanation is the presence in the

respective Bunge basis sets of the STO primitives with exponents exceeding atomic number

signi�cantly contributing to the 1s orbitals.

3. Fit of Zeff of the Slater model to MAP and Bunge orbitals

The Frobenius scalar product allows to quantify the di�erence between di�erent orbital

sets. Another measure may be to �t a well-de�ned third orbital class to either set, for

instance Slater's nodeless radial functions, by maximizing the overlap between the orbital

sets.
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FIG. 5: Optimized cosine of the Frobenius angle between subspaces spanned by MAP and Bunge

sets against atomic number. Resulting probabilities (cosine of the Frobenius angle) exceed 0.98 for

all atoms except Pd, where its value nevertheless remains 0.96.

Again, we have just one single parameter per subshell, as all others are �xed. Slater

proposed in his landmark paper13 a simple estimation of screening constants σ when writing

radial funcions as

Rn∗(r) = Nn∗r(n∗−1)e−(Z∗/n∗)r with Z∗ = Z − σ

For n > 3 the e�ective n∗ is proposed to be set to values di�erent from n, i.e. 3.7 instead of

4, and 4 instead of 5 (for our ensemble of elements up to Z = 54).

The overlap of a MAP or Bunge orbital with a primitive Slater orbital may be easily

calculated as a function of Z∗ with the help of Mathematica,18 and incorporated in an

optimization procedure.

For the iodine atom as example we �nd the best Z∗ yielding the maximal overlaps as

given in Table II.

We see immediately that overlaps between MAP and Bunge states are always better than

0.95, and the obtained Z∗ are very close. However, the resulting 2s exponent is considerably

smaller than the 2p exponent, and the same holds for the 3p exponent. For these two
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TABLE II: Slater's e�ective nuclear charges Z∗ and maximized overlaps and corresponding Z∗ for

MAP/Bunge orbitals and Slater orbitals r(n∗−1) exp(Z∗/n∗ r), for the iodine atom, Z = 53. We give

in the last column also the overlap between the MAP and Bunge orbital for sake of completeness.

Orb. Slater's MAP Bunge

screened Z∗ max. Overlap Z∗ max. Overlap Z∗ SMAP/Bunge

1s 52.69 1.000000 52.6862 0.999993 52.3059 0.999973

2s 48.85 0.932635 38.8031 0.938749 37.3943 0.998507

3s 41.75 0.882507 30.8542 0.895175 28.4649 0.989460

4s 25.25 0.896528 19.6500 0.893065 17.8801 0.977660

5s 7.60 0.947849 8.13347 0.942856 7.97763 0.958939

2p 48.85 1.000000 49.2630 0.999710 47.5415 0.998949

3p 41.75 0.910455 32.2099 0.919719 29.7338 0.990418

4p 25.25 0.914354 18.9800 0.911075 17.2700 0.976573

5p 7.60 0.958761 7.13512 0.959876 6.82707 0.954011

3d 31.85 1.000000 38.9644 0.997152 36.5458 0.993981

4d 13.85 0.953058 17.2792 0.948578 15.8040 0.972777

orbitals the relatively large oscillations of the polynomial render the best-overlap nodeless

Slater functions shifted with respect to the main lobes. A larger exponent would �t the

outer region better, but gives a smaller overlap in the inner region. For the higher-n orbitals

this is less important as the polynomial oscillations are weaker, and thus the common decay

at larger distances is more signi�cant for the best overlap. Of course, this is only a rough

argument for comparing these qualitatively di�erent orbital sets.

Looking at Table 2 and Figure 2 of paper I and the Figure 8 showing the trends in the

exponents for di�erent subshells with Z, one immediately observes a striking precision with

which the slopes for the exponents of the four deepest shells (n = 1÷4) follow the Z/n trend.

However, a closer look to the supposed linear relations of the exponents with respect to Z

reveals systematical deviations, depicted in Figure 7 which cannot be imputed to numerical

instabilities.

12



0 5 10 15 20 25 30 35 40 45 50 55

Atomic Number Z

s

p

d

dashed : n*=n

0 5 10 15 20 25 30 35 40 45 50 55

Atomic Number Z

−12

−10

−8

−6

−4

−2

0
(Z

*−
Z

)/
n
*

s

p

d

dashed: n*=n

MAP Bunge

FIG. 6: E�ective diminuation of the orbital exponent due to screening of the nucleus

(
Z − Z∗

n∗
= − σ

n∗
) for Slater exponents �tted to MAP orbitals (left panel) and Bunge orbitals (right

panel). Shells can be identi�ed from the starting points of the lines. The spike in the rhs panel is

Pd (Z=46).

For the shell with n = 5 the deviation from this trend is quite pronounced which may

be considered as a hint towards the e�ective principal quantum numbers n∗ introduced by

Slater.13 The inverse of the coe�cients a for the 5s and 5p, respectively, equal to 3.717 and

3.875. On the other hand one needs to recollect the interpolation used by Slater for the

orbital exponents:

ξn` =
Z − σn`(Z)

n∗
, (1)

which contains � in counterpoise to somewhat reduced values of the e�ective principal quan-

tum number (n∗ ≤ n) � the screening constants σn`(Z) as well.

We may, of course, introduce the same constraint of common sp exponents in our op-

timization procedure. When plotting the deviations from Z/n for the �rst three principal

numbers, the coincidence of the simple Slater model and our MAP basis sets is as well strik-
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ing. As for saturated subshells the screening in the Slater model becomes a constant and

thus (Z∗/n)− (Z/n) (or using n∗ for n > 3).

For the 1s orbital this is the same for MAP orbitals, and nearly so for the 2s orbital. But

from 2sp on this is not any more the case, the 2p orbital exponent plotted in Fig. 8 follows

right from the beginning a di�erent slope, and the screening saturates only around Z = 25.

Again this is coherent with the discussions on small- and large-core e�ective core potentials

for transition elements. Forcing a common exponent for 2s and 2p (red curves in Figure 8)

indicates that the trend characteristic for s orbital prevails over that for the p orbital. And

for n = 3 we cannot speak any more of a constant screening, at least not for the �rst 54

elements. The presence of 3d electrons perturbs the strictly hierarchical order with Slater's

model, leading as well to signi�cant di�erences for the 3d orbital exponents.
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TABLE III: Data obtained from the �t parameters a and b of Table 2 of paper I. We obtain similar

parameters as proposed by Slater in 1930 for an e�ective principal number n∗ and a screening

constant corresponding roughly to the number of inner electrons for each shell.

Orbital character Z-range 1/a −n∗b �Ncore�

1s core 3�54 1.00 0.28 0

2s core 5�54 1.98 2.82 2

2p core 11�54 1.98 2.82 2

3s core 13�54 2.98 8.76 10

3p core 19�54 3.01 10.41 10

3d core 31�54 2.73 19.26 18

4s core 37�54 3.89 20.35 28

4s non-transition 31�36 3.25 27.86 30

5s non-transition 49�54 3.72 44. 46

2s valence 3�4 2.49 0.88 2

2p valence 5�10 3.01 0.9 2

3s valence 11�12 3.05 7.89 10

3p valence 13�18 3.47 7.56 10

3d valence 21�30 3.82 9.69 10

4s �valence� 19�20 3.19 18.53 18

4d valence 39�48 3.63 31.60 36

5s �valence� 37�38 3.56 37.48 36

5p valence 49�54 4.30 37,88 48

4s transition 21�30 � �

5s transition 39�48 � �

C. Kato's condition

As commonly known, the exact electron density must have a cusp at the nuclear position,

respecting Kato's condition:19

1

2

|~∇ρ(~r)|sph. av.

ρ(~r)

∣∣∣∣∣∣
r=0

= Z. (2)
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Taking numerical Hartree-Fock orbitals or Bunge's basis sets we see that this condition is

ful�lled already at the Hartree-Fock level,8 and even individually for each atomic s orbital20

� the only ones with a non-vanishing electron density at the origin.

Despite the sizable absolute deviation of the gradient-to-density ratio from the ideal value

of Z it does not show any signi�cant or characteristic variation with Z, ranging from 0.3

for a helium atom to around 0.5 for the heavier elements. The relative deviation (that

divided by Z) fades out with increase of Z. Electron correlation as missing ingredient in the

Hartree-Fock approach can be ruled out being responsible for this deviation as the electron

density and orbitals within Bunge's basis sets reproduce correctly the nuclear cusp.

We �nd that the 1s exponent alone dictates the value of the gradient at the origin. The

other s orbitals change this quantity only very little, as they add in a similar way to the

numerator and the denominator of the expression. For instance for the Sulfur atom (Z = 16)

we �nd as individual |~∇ρ(~r)| / ρ(~r)
∣∣∣
r=0

values of 15.6886, 14.1127 and 11.1905 for 1s, 2s, and

3s, respectively, leading as a sum to 15.6052. Using Bunge's basis sets the corresponding

data are 15.9999, 15.9919 and 15.9976 with a sum of 15.9993, very close to the expected

result.

The overall results, as cumulative sums in numerator and denominator of the reduced

density gradient, are depicted in Figure 9; the smooth curves allow an estimation of the

numerical noise of our multi-parameter optimization procedure.

We see as well that the 4s and the 5s orbitals do not add any change to the cumulative

sums. This is due to the very low electron density a the origin, for instance for the I atom

in the MAP setting we have densities of 7499, 757.5, 99.83, 3.100, and 0.001045 (in atomic

units) for 1s to 5s, respectively. For orbitals expanded in the Bunge basis set, the �gures

read 7391, 779.5, 154.7, 31.45 and 3.639, re�ecting the same �ndings as for the populations

inside the polynomial region.

D. Radial integration of one-electron quantities

Kato's condition �measures� the orbitals in the vicinity of the nucleus. For looking at

the opposite side, we may integrate energy contributions8 from outside toward the nucleus,

like kinetic energy or the electron-nucleus attraction. In this way we see, in which region

the di�erence in total energy between the MAP and the Bunge orbital sets are located.
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FIG. 9: Deviation from Kato's condition (1/2) |∇ρ|/ρ− Z = 0 at the nucleus, evaluated directly

from the radial functions of the s orbitals.

Figure 10 shows these contribtions for the orbitals already displayed in Figure 1. If for the

carbon 2s orbital the di�erence is hardly visible, we see for the Ni 4s and Ag 5s orbital the

kinetic-energy contributions to the total energy are not systematically underestimated by

the MAP orbitals,

Radii for the shown elements (C, Al, Ni, Ag) are 1.94025, 3.34261, 3.20627 and 3.63247

Bohr, respectively, and nodes of Bunge orbitals are situated at 0.376 a.u. (C, 2s), 0.797 and

0.162 (Al, 3s), at 0.0742 (Ni 2s), 0.304 and 0.0718 (Ni, 3s), 0.936, 0.296 and 0.0716 (Ni, 4s),

and, �nally, at 1.149, 0.439, 0.162, and 0.0417 a.u. (Ag, 5s). We marked these in the plot.

In the region outside the atomic radius the two orbital sets are close, and signi�cant

deviations for the radial integration occur only within the nodal region, too close to the

nucleus with respect to the chemically important valence region. We can thus expect that

atoms described with MAP orbitals will produce chemically relevant data, without the need

for long basis set expansions. The density missing in the core region is distributed in a wide

range in the outer orbital lobes, rendering them only insigni�cantly di�erent to numerical
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FIG. 10: The integral from R to∞ of the kinetic energy (positive) and e-n one-electron contribution

to the potential energy (negative), for the six orbitals of Figure 1. We mark as vertical lines the

positions of the orbital nodes, and for the valence orbitals with a broken vertical line the atomic

radius.

or high-precision orbitals, be it in Gaussian or Slater expansions. The former are not well

suited close to the nucleus or far away, however, in the intermediate region to which we are

focussed, they are as well suited.
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E. Relation to the general basis-construction problems

Depending on the application, a typical ab initio Gaussian basis set employs 10�200

GTO functions per atom, optimized with some criterion but without whatever individual

meaning.20 Yet at pretty early stage there were attempts to reduce the number of inde-

pendent parameters in so-constructed sets by subjecting the exponents of the Gaussians to

some parametric form. After the STO-nG series,21 this gave rise to well-tempered and even-

tempered basis sets,22�25 well known in the literature. Remarkably, the functions of these

sets have been obtained by minimizing the total energy in the Hartree-Fock approximation

by which basis sets eventually spanning the same subspace as the Bunge basis sets, the lat-

ter very close to numerical Hartree-Fock orbitals obtained on radial grids.7 The parameters

used for the construction of even- or well-tempered exponent sequences, universal22,24 or

atom-speci�c,25 do not have any meaning by themselves � they are merely numbers.

The present MAP paradigm provides a completely di�erent approach to the selection

of the characteristics of the spatial decay of the atomic states: for each (sub)shell a single

parameter provides a de�nite physical sense � a great intellectual and technical advan-

tage of the proposed approach. So far implemented for the orbitals occupied in the ground

state as treated in the Hartree-Fock setting, the MAP approach may be extended to excited

(unoccupied in the ground state) atomic orbitals to formation of hierarchical basis sets as

prescribed in Ref. 26. Indeed, adding further and further subshells entering with corre-

sponding exponents with assured orthogonality eventually produces the required hierarchy

of approximations.

This still needs to be controlled for convergence properties as well as tested for reasonable

sources of the additional exponents for the subshells missing in the ground state. We will

address this issue in a future work.

Although, maybe not well suitable for describing subtle physical e�ects depending on the

details of the function behavior in the vicinity of the nucleus like magnetic properties and/or

electric (hyper)polarizabilities, the very reasonable exponential decay at larger distances

from the nuclei, important for bond formations and chemical reactivity, makes the MAP

states a good alternative for studying chemistry. The paradigm may be extended as well

to ionic states, and thus charge-transfer and ionic compounds. Instead of density plots

expanded in a large number of Gaussian basis functions, a few orbital exponents may be
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su�cient to characterize di�erent chemical situations.

III. CONCLUSIONS

By the present work, we continue our studies on minimally parameterized atomic states

extending them either in terms of rows covered of the Mendeleev Periodic Table. We con-

centrate particularly on the spatial behavior of the MAP states as compared to that of

the traditional Slater orbitals, re�ned Bunge and typical ab initio Gaussian atomic states.

It turns out that the MAP states, although, showing much weaker oscillation amplitudes

at the shorter electron-nucleus separations, manifest very large (typically more than 0.95)

overlaps with the Bunge states on account of the almost coinciding positions of the radial

nodes of the either series of orbitals. At the same time the similarity of the MAP states with

the Slater orbitals allows to qualify the former as minimally orthogonalized Slater orbitals.

In this quality the MAP states are perspective for developing new semi-empirical methods

which habitually use the Slater basis sets which due to lack of the radial nodes cannot assure

correct relative positioning of the states of the same n but di�erent ` on the energy scale.

These and other issues and perspectives will be addressed in future work.

Additionally, we propose a numerical tool for comparing the relative quality of the ba-

sis sets through the Frobenius inner product of the operator (matrices) projecting to the

subspaces spanned by the basis sets to be compared.

Acknowledgments

Calculations have been performed mainly in Paris, with the support of the research

federation IP2CT to which P.R. wishes to express his gratitude.

1 P. Reinhardt, I.V. Popov, A.L. Tchougrée�, �Minimum Atomic Parameter basis sets for elements

1 to 54 in a Hartree-Fock setting�, Int.J.Quant.Chem. (Submitted/Previous paper in this issue)

2 I.V. Popov, A.L. Tchougrée�, �Atomic orbitals revisited: generalized Hydrogen-like basis sets

for 2nd row elements�, Theor.Chem.Acc. 138 (2019) 9.

21



3 V.A. Fock, M.J. Petrashen, �On the Numerical Solution of Generalized Equations of the Self-

consistent Field�, J.Exp.Theor.Phys. 4 (1934) 295 � 325 (engl. version: Phys.Zs.Sowj. 6(1934)

368)

4 J.C. Slater, �Quantum Theory of Atomic Structure�, Vol 1, McGraw Hill, 1960

5 C.C.J. Roothaan, P.S. Bagus, ��, Methods in Comp.Phys. 2 (1963) 47

6 G. Malli, Technical Report University of Chicago, Dpt Physics, Lab. of Mol. Struc. and

Spectra, 1962/62 Part 2, pages 258-289 available at: https://digital.library.unt.edu/

ark:/67531/metadc228325/m1/

7 C. Froese-Fischer, �The Hartree-Fock Method for Atoms: A Numerical Approach�, Wiley Inter-

sciences, New York (1977)

8 M. Cinal, �Highly accurate numerical solution of Hartree?Fock equation with pseudospectral

method for closed-shell atoms�, J.Math.Chem. 58 (2020) 1571�1600

9 C.F. Bunge, J.A. Barrientos, A.V. Bunge, ��, At.Data Nucl. Data Tables 53 (1993) 113 � 162

10 E. Madelung, �Die Mathematischen Hilfsmittel des Physikers�, 6. revidierte Au�age. Springer-

Verlag, Berlin, Goettingen, Heidelberg (1957)

11 V.M. Klechkovsky, ��, Zh. Experim. i Teor. Fiz. 41 (1962) 465

12 C. Zener, �Analytic Atomic Wave Functions�, Phys.Rev. 36 (1930) 51

13 J.C. Slater, �Atomic Shielding Constants�, Phys.Rev. 36 (1930) 57

14 B. Pittel, W.H.E. Schwarz, �Correlation energies from pseudo-potential calculations�,

Chem.Phys.Lett. 46 (1977) 121 https://doi.org/10.1016/0009-2614(77)85176-2

15 C. Teichteil, J.P. Malrieu, J.C. Barthelat, �Non-empirical pseudopotentials for molecular calcu-

lations II. Basis set extension and correlation e�ects on the X2 molecules (X=F, Cl, Br, I)�,

Mol.Phys. 33 (1977) 181 https://doi.org/10.1080/00268977700103151

16 M. Dolg, �Valence correlation energies in pseudopotential calculations�, Chem.Phys.Lett. 250

(1996) 75; M. Dolg, �On the accuracy of valence correlation energies in pseudopotential calcula-

tions�, J.Chem.Phys. 104 (1996) 4061

17 P. Schwerdtfeger, B. Assadollahzadeh, U. Rohrmann, R. Schäfer, J.R. Cheeseman, �Breakdown

of the pseudopotential approximation for magnetizabilities and electric multipole moments: Test

calculations for Au, AuF, and Snn cluster (n ≤ 20)�, J.Chem.Phys. 134 (2011) 204102

18 Wolfram Research, Inc., �Mathematica�, Champaign, IL, U.S.A. Version 12.1, (2020)

19 T. Kato, �On the eigenfunctions of many-particle systems in quantum mechanics�, Comm.Pure

22



Appl.Math. 10 (1957) 151�177

20 B. Nagy, F. Jensen, �Basis sets in quantum chemistry�, in Reviews in Computational Chemistry,

A.L. Parrill, K.B. Lipkowitz Eds 30 (2017) 93 �149

21 W.J. Hehre, R.F. Stewart, J.A. Pople, �Self-Consistent Molecular-Orbital Methods. I. Use of

Gaussian Expansions of Slater-Type Atomic Orbitals�, J.Chem.Phys. 51 (1969) 2657

22 R.D. Bardo, K. Ruedenberg, �Even-Tempered Atomic Orbitals. 6. Optimal Orbital Expo-

nents and Optimal Contractions of Gaussian Primitives for Hydrogen, Carbon, and Oxygen

in Molecules�, J.Chem.Phys. 60 (1974) 918

23 M.W. Schmidt, K. Ruedenberg, �E�ective Convergence to Complete Orbital Bases and

to the Atomic Hartree-Fock Limit through Systematic Sequences of Gaussian Primitives�,

J.Chem.Phys. 71 (1979) 3951

24 E. Clementi, G. Corongiu, �Geometrical basis set for molecular computations�, Chem.Phys.Lett.

90 (1982) 359-363 https://doi.org/10.1016/0009-2614(82)83069-8

25 S. Huzinaga, M. Klobukowski, H. Tatewaki, �The well-tempered GTF basis sets and their ap-

plications in the SCF calculations on N� CO, Na2, and P2�, Can.J.Chem. 63 (1985) 1812

26 V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter, M. Sche�er, �Ab initio

molecular simulations with numeric atom-centered orbitals�, Comp.Phys.Comm. 180 (2009)

2175� 2196

Appendix

A. The Frobenius inner product

Given a basis of the Hilbert space of L2 integrable functions we may de�ne the pro-

jectors on the subspaces given by two (�nite) orthonormal sets of atomic orbitals, as

M̂ =
∑m
µ=1 |µ〉〈µ| and B̂ =

∑b
β=1 |β〉〈β|, respectively. The trace of the product of the

two matrices tr(C†D) de�nes a scalar product (inner Frobenius product) in the space of ma-

trices for which the usual matrix multiplication is possible, making the latter an Euclidean

vector space. It has all properties of a scalar product � bilinearity and positive de�niteness

for C = D, but for C being the zero matrix. Applying it to the square (projector) matrices

(M)λκ = 〈λ|M̂ |κ) and B yields:
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tr(M †B) =
∑
κλ

∑
µ

∑
β

〈κ|µ〉〈µ |λ〉 〈λ| β〉〈β |κ〉

=
∑
µ

∑
β

〈β
∑
κ

|κ〉 〈κ|︸ ︷︷ ︸
=1̂

µ〉〈µ
∑
λ

|λ〉 〈λ|︸ ︷︷ ︸
=1̂

β〉 (3)

=
∑
µ

∑
β

|〈β|µ〉| 2 ,

where |λ〉 and |κ〉 run over a complete orthonormal basis in L2. That matrix elements are

squared in the above expression does not destroy the bilinearity of the scalar product, as

the underlying space is not the orbital space, but the space of the matrices acting in the

Hilbert space.

A norm is derived as usual as the square root of the Frobenius inner product of a matrix

with itself: |C| =
√

tr(C†C) and is known as the Frobenius matrix norm. The angle between

two orbital subspaces is de�ned via its cosine as:

cosϕF =
tr(M †B)

|M | |B|
=

∑m
µ=1

∑b
β=1 |〈β|µ〉|

2

√
m
√
b

. (4)

As the involved orbital sets (MAP and Bunge in the present case) are orthonormal, the

inner product of either projector with itself is just the dimensionality of the subspaces m or

b (number of elements in the respective orbital set, taking into account the multiplicity of

2`+ 1 for a subshell with the azimuthal quantum number `) and the Frobenius norm is the

square root of it. The expression eq. (4) is always non-negative, and falls between 0 and 1.

It can be connected to the notion of a probability.

B. Integration of energy contributions

For integrating one-electron contributions to the total energy it is su�cient to look at

the radial functions. For the kinetic energy the radial part of the Laplace operator reads

d2

dr2
+

2

r

d

dr
− `(`+ 1)

r2

which yields for a pair of primitive, unnormalized Slater functions for a given `

r(m−1)e−βr ∆rr
(n−1)e−αr = r(m−1)e−βr

(
d2

dr2
+

2

r

d

dr
− `(`+ 1)

r2

)
r(n−1)e−αr

= e−(α+β)rr(m+n−2)

(
n(n− 1)− `(`+ 1)

r2
+ α2 − 2

r
nα

)
(5)
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For obtaining the kinetic energy density we have to multiply this with −1/2. We may

notice that for instance for ` = n− 1 the density of the kinetic energy becomes negative for

r > (2n)/α.

Integrating a product of unnormalized Slater functions from 0 to R gives

ˆ R

0

r(m−1)e−βrr(n−1)e−αrr2dr =

ˆ R

0

r(m+n)e−(α+β)r dr =

=

(
1

α + β

)m+n+1
(m+ n)!− Γ(m+ n+ 1, R(α + β))︸ ︷︷ ︸

→0 for R→∞

 (6)

For the potential we �nd thus

ˆ R

0

r(m+n−1)e−(α+β)r dr =

(
1

α + β

)m+n
(m+ n− 1)!− Γ(m+ n,R(α + β))︸ ︷︷ ︸

→0 for R→∞

 (7)

Γ(a, z) =
´∞
z

t(a−1)e−t dt is the incomplete Γ function for which routines exist to calculate

its value to high precision.

We may recall that the normalized Slater function Sαn (r) is

Sαn (r) =
(2α)3/2√
Γ(2n+ 1)

(2α r)n−1 e−αr (8)

For the radial integration of the kinetic energy the expressions become slightly more

complicated:

−1

2

ˆ R

0

Sβm(r)

(
d2

dr2
+

2

r

d

dr
− `(`+ 1)

r2

)
Sαn (r)r2dr

=
2m−1βm+1/2√
mnΓ(2m)Γ(2n)

×
(
−2nn(n− 1)αn+3/2(m+ n− 2)!

(α + β)m+n
+

`(`+ 1)

βm

√
nΓ(2n)

Γ(m)− Γ(m,Rβ)︸ ︷︷ ︸
→0 for R→∞

 −
2ne−R(α+β)αn+1/2Rm+n−1(n(n− 1)(α + β)− (m+ n− 1)Rα2)

(m+ n− 1) (α + β)
+

2nαn+1/2

(m+ n− 1) (α + β)m+n+1
×{(

(m−m2)α2 + 2mnβ + n(n− 1)(α2 + αβ − β2)
)

(m+ n− 1)! +

(
m(m− 1)α2 − 2mnαβ + n(n− 1)β2

)
Γ(m+ n,R(α + β))︸ ︷︷ ︸

→0 for R→∞


 (9)
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For R→∞ we are left with

−1

2

ˆ ∞
0

r(m−1)e−βr
(
d2

dr2
+

2

r

d

dr
− `(`+ 1)

r2

)
r(n−1)e−αrr2dr

=
2m−1βm+1/2√
mnΓ(2m)Γ(2n)

×
(
−2nn(n− 1)αn+3/2(m+ n− 2)!

(α + β)m+n
+

`(`+ 1)

βm

√
nΓ(2n)Γ(m) +

2nαn+1/2

(α + β)m+n+1
×(

(m−m2)α2 + 2mnβ + n(n− 1)(α2 + αβ − β2)
)

(m+ n− 2)!
)

(10)

=
2m−1

√
β (m− 1)!√

m (2m− 1)!
`(`+ 1)− 2m+n−1αn+1/2βm+1/2√

mnΓ(2m)Γ(2n)(α + β)m+n+1
(m+ n− 2)!×

(
(m−m2)α2 + 2mnβ + n(n− 1)(α2 + αβ − β2)− n(n− 1)α(α + β)

)
(11)

=
2m−1

√
β (m− 1)!√

m (2m− 1)!
`(`+ 1)−

2m+n−1αn+1/2βm+1/2 (m(m− 1)α2 − 2mnβ + n(n− 1)β2)√
mnΓ(2m)Γ(2n)(α + β)m+n+1

(m+ n− 2)! (12)

Mathematica gives for the latter the same two terms.
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