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Abstract. To develop vaccines it is mandatory yet challenging to account for inter-individual variability during immune
responses. Even in laboratory mice, T cell responses of single individuals exhibit a high heterogeneity that may come from
genetic backgrounds, intra-specific processes (e.g. antigen-processing and presentation) and immunization protocols.
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To account for inter-individual variability in CD8 T cell responses in mice, we propose a dynamical model coupled to a
statistical, nonlinear mixed effects model. Average and individual dynamics during a CD8 T cell response are characterized
in different immunization contexts (vaccinia virus and tumor). On one hand, we identify biological processes that generate
inter-individual variability (activation rate of naive cells, the mortality rate of effector cells, and dynamics of the immunogen).
On the other hand, introducing categorical covariates to analyze two different immunization regimens, we highlight the steps
of the response impacted by immunogens (priming, differentiation of naive cells, expansion of effector cells and generation
of memory cells). The robustness of the model is assessed by confrontation to new experimental data.
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Our approach allows to investigate immune responses in various immunization contexts, when measurements are scarce
or missing, and contributes to a better understanding of inter-individual variability in CD8 T cell immune responses.
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1. Introduction30

The immune response is recognized as a robust sys-31

tem able to counteract invasion by diverse pathogens32

[1, 2]. However, as a complex biological process,33

∗Corresponding author: Chloe Audebert. E-mail: chloe.
audebert@sorbonne-universite.fr.

1These authors contributed equally to this work.

the dynamical behavior of its cellular components 34

exhibits a high degree of variability affecting their dif- 35

ferentiation, proliferation or death processes. Indeed, 36

the abundance of antigen-specific T cells and their 37

location relative to pathogen invasion will affect 38

the dynamics of the response [2–4]. Similarly, the 39

pathogen load and virulence as well as the host innate 40

response will affect the T cell response [5]. Finally, at 41

the cellular level, between-cell variations in protein 42
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Fig. 1. CD8 T cell counts after vaccinia virus (VV) immunization in mice. Naive CD44-Mki67-Bcl2+ cell counts (upper left), Early Effector
CD44+Mki67+Bcl2- cell counts (upper right), Late Effector CD44+Mki67-Bcl2- cell counts (lower left), and Memory CD44+Mki67-Bcl2+
cell counts (lower right) are measured in 59 individuals over 47 days. Measurements of three different mice are highlighted in blue, green
and red, whenever they are available. All other measurements are in grey.

content can also generate heterogeneous responses43

[6]. Genetic variability of the numerous genes con-44

trolling the immune response will also be a source of45

variability among individuals [1]. Even among genet-46

ically identical individuals, the response to the same47

infection can result in highly heterogeneous dynam-48

ics [7–9].49

Cytotoxic CD8 T cells play an essential role in the50

fight against pathogens or tumors as they are able to51

recognize and eliminate infected or transformed cells.52

Indeed, following encounter of antigen-presenting53

cells loaded with pathogen or tumor derived antigens,54

in lymphoid organs, quiescent naive CD8 T cells will55

be activated. This leads to their proliferation and dif-56

ferentiation in effector cells that have acquired the57

capacity to kill their targets, and to their ultimate dif-58

ferentiation in memory cells [10, 11]. The CD8 T59

cell immune response is yet a highly variable pro-60

cess, as illustrated by experimental measurements of61

cell counts: dynamics of the responses (timing, cell62

counts) may differ from one individual to another63

[4, 12, 13], but also depending on the immunogen64

[3, 7, 9].65

The role of genome variability in explaining inter-66

individual variations of T cell responses has been67

recently investigated [14, 15] but provided limited68

understanding of the observed heterogeneity. Li et 69

al. [15] have focused on correlations between gene 70

expression and cytokine production in humans, and 71

have identified a locus associated with the produc- 72

tion of IL-6 in different pathogenic contexts (bacteria 73

and fungi). Ferraro et al. [14] have investigated inter- 74

individual variations based on genotypic analyses of 75

human donors (in healthy and diabetic conditions) 76

and have identified genes that correlate with regula- 77

tory T cell responses. 78

To our knowledge, inter-individual variability 79

characterized by heterogeneous cell counts has been 80

mostly ignored in immunology, put aside by focusing 81

on average behaviors of populations of genetically 82

similar individuals. The use of such methodology, 83

however, assumes that variability is negligible among 84

genetically similar individuals, which is not true [7, 85

10, 16], see Figure 1. Experimental measurements of 86

in vivo immune responses are often limited, due to tis- 87

sue accessibility. For instance, mice have to be killed 88

to count CD8 T cell numbers in organs, restricting 89

the follow-up of one individual to blood sampling. 90

Also, ethics do not allow everyday bleeding of ani- 91

mals. Hence measurements in peripheral blood are 92

often performed on a restricted number of time points 93

per individual, which probably led to focus more 94
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on average dynamics rather than on heterogeneous95

individual dynamics.96

In this work, we propose to model and character-97

ize inter-individual variability based on CD8 T cell98

counts using nonlinear mixed effects models [17–19].99

In these models, instead of considering a unique set of100

parameter values as characteristic of the studied data101

set, a so-called population approach is used based102

on distributions of parameter values. All individuals103

are assumed to be part of the same population, and104

as so they share a common behavior (average behav-105

ior) while they keep individual behaviors (random106

effects). Nonlinear mixed effects models are well107

adapted to repeated longitudinal data. They aim at108

characterizing and understanding “typical behaviors”109

as well as inter-individual variations. T cell count110

measurements, obtained over the course of a response111

(few weeks), and the large variability they exhibit112

represent a case study for this approach (see Figure 1).113

Nonlinear mixed effects models have been used to114

analyze data in various fields [20], especially in phar-115

makokinetic studies, and more recently to model cell116

to cell variability [21, 22] or to study tumor growth117

[23, 24]. In immunology, Keersmaekers et al. [25]118

have recently studied the differences between two119

vaccines with nonlinear mixed effects models and120

ordinary differential equation (ODE) models for T121

and B cells. Jarne et al. [26] and Villain et al. [27] have122

used the same approach to investigate the effect of IL7123

injections on HIV+ patients to stimulate the CD4 T124

cell response. None of these works aimed at iden-125

tifying immunological heterogeneous processes or126

characterizing the between-individual variability in127

CD8 T cell responses, rather nonlinear mixed effects128

models have been used to characterize the average129

behavior of the cell populations and explain the data.130

In order to characterize inter-individual variabil-131

ity based on experimental cell counts, other methods132

could be considered. First, one could try to estimate133

individual parameter values by fitting a mathemati-134

cal model to individual experimental data. The nature135

of the data we consider here, illustrated in Fig-136

ure 1, makes this option unrealistic (not enough137

data per individual). Another approach could be to138

use individual-based models, yet such models also139

require to estimate a lot of parameters and individual140

data in our case do not provide enough information141

per se. Consequently, nonlinear mixed effects models142

appear to be the most appropriate method to handle143

sparse individual data.144

A number of models of the CD8 T cell response145

based on ODEs have been proposed over the years.146

Of particular relevance here is the work of De Boer 147

et al. [28], where the model accounts for activated 148

and memory cell dynamics but the influence of the 149

immunogen is imposed. Antia et al. [29] proposed 150

a model based on partial differential equations, that 151

includes immunogen effects and dynamics of naive, 152

effector and memory cells. These works describe dif- 153

ferent subpopulations of CD8 T cells, however most 154

of the time only total CD8 T cell counts are avail- 155

able to validate the models. In Crauste et al. [10], the 156

authors generated cell counts for four subpopulations 157

of CD8 T cells in mice that they used to identify the 158

most likely differentiation pathway of CD8 T cells 159

after immunogen presentation. This approach has led 160

to a model of the average CD8 T cell dynamics in mice 161

after immunization and its representation as a set of 162

nonlinear ODEs. The model consists in a system of 163

ODEs describing the dynamics of naive, early effec- 164

tor, late effector, and memory CD8 T cell subsets and 165

the immunogen. 166

The goal of this article is to propose, analyze and 167

validate a mathematical methodology for describing 168

individual behaviors and the inter-individual variabil- 169

ity observed in CD8 T cell responses, in different 170

immunization contexts. We will rely on a dynamical 171

description of CD8 T cell dynamics, based on a non- 172

linear model, where parameter values are drawn from 173

probability distributions (nonlinear mixed effects 174

model). Starting from the model introduced and vali- 175

dated in [10], we first select a model of the CD8 T cell 176

immune response dynamics accounting for variabil- 177

ity in cell counts by using synthetic then experimental 178

data, generated in different immunization contexts. 179

Second we characterize the main biological processes 180

contributing to heterogeneous individual CD8 T cell 181

responses. Third, we establish that the immunogen- 182

dependent heterogeneity influences the early phase 183

of the response (priming, activation of naive cells, 184

cellular expansion). Finally, we show that besides 185

its ability to reproduce CD8 T cell response dynam- 186

ics our model is able to predict individual dynamics 187

of responses to similar immunizations, hence pro- 188

viding an efficient tool for investigating CD8 T cell 189

dynamics and inter-individual variability. 190

2. Results 191

CD8 T cell counts have been previously 192

experimentally measured and characterized in 4 sub- 193

populations in Crauste et al. [10]: naive (N), early 194

effector (E), late effector (L) and memory (M) cells 195
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(see Section 4.2). Additionally, a mathematical model196

has been proposed for the description of these data197

and validated in [10]. Therein, System (3) has been198

shown to be able to describe average dynamics of199

CD8 T cell immune responses, when CD8 T cells go200

through the 4 above-mentioned differentiation stages.201

In order to describe individual CD8 T cell counts202

we couple System (3) to a nonlinear mixed effects203

model that accounts for both population and indi-204

vidual dynamics. This results in a model of CD8 T205

cell response dynamics that includes more param-206

eters, consequently when fitting this model to new207

data sets it is mandatory to determine whether all208

model parameters can be correctly estimated or if209

some parameters have to be removed and the ini-210

tial model modified. We first perform this analysis211

on ideal data, called “synthetic data”, to determine212

the minimal number of parameters required to fit the213

model to the data. Synthetic data are generated from214

simulations of the model, so true parameter values are215

known and the estimation procedure is performed in a216

controlled framework. Then, in a second time, we per-217

form again the analysis on real, experimental data, in218

order to adapt our procedure to realistic data. Finally,219

we characterize the biological processes depending220

on the immunization, and we identify model param-221

eters and their corresponding biological processes222

that vary the most between individuals. Details of223

the methodology are presented in Sections 4.3 to 4.7.224

2.1. Model selection on synthetic data225

In [10], System (3) introduced in Section 4.3 has226

been shown to be able to describe average dynamics227

of CD8 T cell immune responses, when CD8 T cells228

go through 4 differentiation stages: naive, early- then229

late- effector cells, and memory cells (see Section230

4.2). Here System (3) is coupled to a nonlinear mixed231

effects model, leading model parameters to be drawn232

from a probability distribution. Initially we assume233

that any parameter can carry inter-individual vari-234

ability, then the number of parameters is reduced to235

ensure correct estimations on ideal data. Ideal data are236

generated by simulating System (3), so parameter val-237

ues are known (probability distributions). These data238

sets enable to evaluate the potential of the model with-239

out data availability-related limitations: we call them240

“synthetic data”. Here, synthetic data account for 100241

individuals (mice) and measurements are available242

every day from D4 to D10, then every 2 days from243

D10 to D20, and finally on D25 and D30 pi, see Table244

1 and Section 4.6 for details.245

Table 1
Data sets (details in Sections 4.2, 4.3 and 4.6)

Short Name Description
VV data
set 1

CD8 T cell counts of 59 individual mice
inoculated intra-nasally with 2 × 105 pfu of a
vaccinia virus (VV) expressing the NP68 epitope
; naive, early and late effector, and memory cell
counts have been measured up to day 47pi (days
4, 6, 7, 8, 11, 13, 15, 18, 22, 27, 28, 32, 47pi
with maximum 15 measurements per time point)

VV data
set 2

Similar to VV data set 1 (15 individual mice) ;
CD8 T cell counts of naive, early and late
effector, and memory cells have been measured
following VV immunization, up to day 42pi
(days 4, 6, 7, 8, 11, 13, 15, 21, 28, 42pi with
maximum 4 measurements per time point)

Tumor data
set 1

CD8 T cell counts of 55 individual mice
subcutaneously inoculated with 2.5 × 106 EL4
lymphoma cells expressing the NP68 epitope ;
naive, early and late effector, and memory cell
counts have been measured up to day 47pi (days
4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 18, 22, 27, 32, 46,
47pi with maximum 15 measurements per time
point)

Tumor data
set 2

Similar to Tumor data set 1 (20 individual mice);
CD8 T cell counts of naive, early and late
effector, and memory cells have been measured
following Tumor immunization, up to day 42pi
(days 6, 7, 8, 11, 13, 15, 21, 28, 42pi with
maximum 5 measurements per time point)

Synth data
sets 1 to 4

Synthetic data sets generated with System (3)
and its subsequent simplifications (see Section
4.6), consisting in CD8 T cell counts of naive,
early and late effector, and memory cells on days
4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 25, 30pi for
all 100 individuals

We use Synth data sets 1 to 4 (Table 1) to validate 246

the parameter estimation procedure. True parameter 247

values are known and given in Section A1. Parameter 248

estimation is performed with the SAEM algorithm 249

implemented in Monolix software [30]. Using a 250

model selection procedure, based in particular on the 251

use of the relative standard error (RSE) defined in (4) 252

that informs on the confidence in the estimation, we 253

iteratively remove parameters: 254

μE
I (estimated value = 0.2 vs true value = 1.8 255

cell−1 day−1, RSE = 61%), 256

μE
L (estimated value = 0.3 vs true value = 3.6 257

cell−1 day−1, RSE = 17%), and 258

μI (estimated value = 0.013 vs true value = 259

0.055 day−1, RSE = 9%). 260

Details of the procedure are explained in Sections 4.5, 261

4.6, A2 and Table A2. 262

All removed parameters are related to death rates, 263

of late effector cells (μE
L) and of the immunogen 264

(μI, μE
I ). In each case, the model still accounts for 265
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Fig. 2. Schematic CD8 T cell differentiation diagram following
immunization. (A) Schematic representation of System (1). (B)
Schematic representation of System (2). Dashed black lines rep-
resent individual-dependent parameters, while straight black lines
(only in (B)) represent parameters fixed within the population.
Grey round-ended dotted lines represent feedback functions (see
systems of equations).

death of late effector cells and of the immunogen,266

via parameters μL
L and μL

I . Nonlinear mixed effects267

models avoid redundancy in the description of bio-268

logical processes, thus they allow reliable parameter269

estimation using synthetic data.270

This leads to a reduction of the initial 12-
parameters System (3) to the 9-parameters Sys-
tem (1),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṅ = −μNN − δNEIN,

Ė = δNEIN + ρEIE − [μEE + δEL] E,

L̇ = δELE − [μLL + δLM] L,

Ṁ = δLML,

İ = [ρII − μIL] I.

(1)

where all parameters still account for individual vari-271

ability (drawn from probability distributions). For the272

sake of simplicity the parameters are renamed in Sys-273

tem (1): μL
L = μL and μL

I = μI . Figure 2A displays274

a schematic representation of System (1).275

2.2. A model of CD8 T cell dynamics accounting 276

for in vivo inter-individual heterogeneity 277

Biological data from VV data set 1 (see Section 4.2 278

and Table 1) are confronted to System (1). Parameter 279

estimation is performed using the SAEM algorithm 280

[30] and, following the procedure described in Sec- 281

tion 4.7, leads to further reduction of the model. Using 282

in vivo data to estimate parameter values provides a 283

priori less information than synthetic data: there are 284

59 individuals instead of 100 for synthetic data, and at 285

most 15 measurements (15 individuals) at each time 286

point are available whereas almost all measurements 287

are available for the 100 individuals in synthetic data. 288

Hence, it might be necessary to simplify the model 289

to ensure correct parameter estimations, either mean 290

values or random effects, similarly to what has been 291

done in the previous section. 292

The first step in the model reduction procedure 293

leads to an estimated value of parameter μL close 294

to zero (2 × 10−8 cell−1 day−1), with a RSE > 295

100%, see Table 2, Step 1. Hence parameter μL is 296

removed, and the estimation is performed again with 297

the updated model. We observe that all mean value 298

parameters have now RSE < 30%, so we conclude 299

that their estimations are reliable (Table 2, Step 2). 300

In the second step of the procedure however, 301

several random effects have large RSE and high 302

shrinkages (Table 2, Step 2 to Step 5). The shrink- 303

age is defined in (5) as a measure of the difference 304

between the estimated variance of a parameter and 305

the empirical variance of its random effect. Parame- 306

ter δLM has the worst RSE and the largest shrinkage 307

(99%), so we remove the random effect of δLM . Esti- 308

mating parameter values with the updated reduced 309

model leads to removing successively random effects 310

of δEL (RSE = 138%, shrinkage = 95%), ρE (shrink- 311

age = 97%), and μN (shrinkage = 84%). At each 312

step, RSE of mean value parameters are low, and 313

quality of individual fits is preserved. 314

The resulting model, System (2) (see Figure 2B), 315

comprises 8 parameters, 4 of them vary within the 316

population (δNE, μE, ρI , μI ) and 4 are fixed within 317

the population (μN , ρE, δEL, δLM): 318

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṅ = −μNN − δNEIN,

Ė = δNEIN + [
ρEI − μEE − δEL

]
E,

L̇ = δELE − δLML,

Ṁ = δLML,

İ = [ρII − μIL] I.

(2)



U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

6 C. Audebert / Modeling and characterization of inter-individual variability in CD8 T cell responses in mice

Table 2
Steps in estimating parameter values using VV data set 1 and System (1). The procedure is detailed in Section 4.7. At Step 1, the procedure
leads to removing parameter μL. At Step 2, the random effect of δLM is removed. At Step 3, the random effect of δEL is removed. At Step 4,
the random effect of ρE is removed. At Step 5, the random effect of μN is removed. At Step 6, no other action is required. Values used to
take a decision are highlighted in bold at each step. In the first column, ‘m.v.’ stands for mean value, RSE is defined in (4), ‘r.e.’ stands for
random effect, and the shrinkage is defined in (5). Note that values (mean values and random effects) of parameters μE, μL, and μI have to

be multiplied by 10−6 (for μE and μL) and 10−5 (for μI ). Units are omitted for the sake of clarity

μN δNE ρE μE δEL μL δLM ρI μI

Step 1
m.v. 0.59 0.002 0.9 5.2 0.13 0.02 0.09 0.08 1.9
RSE 5 30 2 21 11 207 8 7 28
r.e. 0.16 0.8 0.04 0.67 0.1 1.9 0.05 0.2 1.3
RSE 66 36 44 35 567 220 103 25 18
shrinkage 82 76 97 77 98 99 100 62 45
Step 2
m.v. 0.60 0.003 0.9 4.8 0.12 - 0.10 0.09 2.3
RSE 5 29 3 21 10 - 8 6 25
r.e. 0.15 0.8 0.06 0.73 0.2 - 0.05 0.2 1.2
RSE 69 34 71 29 150 - 103 25 17
shrinkage 83 78 94 74 96 - 99 64 47
Step 3
m.v. 0.60 0.001 1.00 5.0 0.12 - 0.10 0.08 2.0
RSE 5 32 1 20 10 - 8 7 29
r.e. 0.16 0.8 0.04 0.67 0.2 - - 0.2 1.3
RSE 55 35 20 31 138 - - 25 18
shrinkage 81 75 98 77 95 - - 63 45
Step 4
m.v. 0.59 0.002 0.9 5.2 0.12 - 0.10 0.09 2.1
RSE 5 29 2 20 11 - 8 6 24
r.e. 0.12 0.9 0.04 0.74 - - - 0.2 1.2
RSE 102 32 47 29 - - - 24 16
shrinkage 89 75 97 72 - - - 63 49
Step 5
m.v. 0.59 0.004 0.8 4.5 0.12 - 0.10 0.09 2.7
RSE 5 32 4 21 11 - 8 6 21
r.e. 0.15 0.8 - 0.85 - - - 0.2 1.0
RSE 72 32 - 24 - - - 23 16
shrinkage 84 73 - 65 - - - 61 57
Step 6
m.v. 0.60 0.001 1.0 5.3 0.12 - 0.10 0.08 1.9
RSE 5 29 0 20 11 - 8 7 27
r.e. - 0.9 - 0.69 - - - 0.2 1.3
RSE - 29 - 28 - - - 23 17
shrinkage - 72 - 75 - - - 62 46

319 Bars highlight fixed parameters within the popula-320

tion. This system enables to describe VV data set 1321

and its inter-individual variability (see Figure 3). The322

inter-individual variability is entirely contained in the323

activation rate of naive cells (δNE), the mortality-324

induced regulation of effector cells (μE), and the325

dynamics of the immunogen (ρI and μI ).326

Figure 3A shows the good agreement between327

model predictions and individual measurements for328

each CD8 T cell subpopulation. Model predic-329

tions are obtained from numerical simulations of330

System (2) performed with estimated individual331

parameter values. Despite over- or under-estimation332

of some individual observations, the 90th percentile333

of the difference between observed and predicted 334

values (dashed line) shows that most experimental 335

cell counts are efficiently predicted (estimated errors 336

are relatively small for all subpopulations: aN = 337

aM = 0.3 log10(cells), aE = aL = 0.4 log10(cells)). 338

Parameter values are given in Table 3. 339

Figure 4 shows the estimated dynamics of early- 340

and late-effector and memory cells of two individuals. 341

One individual (Figure 4A) was monitored on days 342

7, 15 and 47pi leading to three measurements points 343

for late effector cells and two for early effector and 344

memory cells. Despite missing measurements (mem- 345

ory cell counts on D7pi, and early effector cell counts 346

on D47pi), estimated dynamics are in agreement with 347
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Fig. 3. Experimental and simulated individual cell counts for VV data set 1 (logarithmic scale). (A) Observed vs predicted values. For each
CD8 T cell count experimental point, the prediction is obtained by simulating System (2). Naive (blue), early effector (red), late effector
(green), and memory (purple) cell counts are depicted. Dashed lines represent the 90th percentile of the difference between observed and
predicted values, and the solid black line is the curve y = x. (B) Naive (upper left, blue), early effector (upper right, red), late effector (lower
left, green) and memory (lower right, purple) cell counts up to D47pi. Experimental measurements are represented by colored dots (same
color code), simulated individual trajectories by grey lines, and the average population dynamics by a straight colored line (same color
code).

what is expected, especially regarding the time and348

height of the peak of the response and the following349

contraction phase. The other individual (Figure 4B)350

had cell count measurements only on day 8pi, yet the351

estimated dynamics correspond to an expected behav-352

ior. This could not have been obtained by fitting this 353

individual alone. Hence we are able to simulate likely 354

dynamics even with a small amount of data points and 355

missing cell count measurements at some time points, 356

thanks to the use of nonlinear mixed effects models 357
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Table 3
Estimated parameter values for VV and Tumor data sets 1 (median of log-normal distribution for parameters with random effects, RSE (%)
in parentheses), obtained with System (2), and estimated parameter values from [10] (VV immunization). Estimations have been performed

independently

Parameters Units Estimated Values (RSE%) Values from
VV Tumor Crauste et al.

data set 1 data set 1 [10]
Parameters fixed within the population
μN day−1 0.60 (5) 0.32 (15) 0.75
ρE day−1 1.02 (0) 0.43 (4) 0.64
δEL day−1 0.12 (9) 0.10 (3) 0.59
δLM day−1 0.10 (8) 0.07 (14) 0.03
Parameters varying within the population
δNE day−1 0.001 (29) 0.063 (22) 0.009
ωδNE

day−1 0.9 (29) 0.4 (54) -
μE 10−6 cell−1 day−1 5.3 (20) 4.9 (18) 21.5
ωμE

10−6 cell−1 day−1 0.7 (28) 0.2 (78) -
ρI day−1 0.08 (6) 0.11 (3) 0.64
ωρI

day−1 0.23 (23) 0.06 (58) -
μI 10−5 cell−1 day−1 1.9 (26) 2.4 (18) 1.8
ωμI

10−5 cell−1 day−1 1.3 (17) 0.6 (22) -
Residual errors
aN cell counts (log10) 0.3 (15) 0.5 (14) -
aE cell counts (log10) 0.4 (10) 0.5 (9) -
aL cell counts (log10) 0.4 (9) 0.6 (8) -
aM cell counts (log10) 0.3 (10) 0.5 (10) -

and the parameter estimation procedure. By focusing358

first on the population dynamics (based on a collec-359

tion of individual dynamics), the method enables to360

recover the whole individual dynamics. This is a huge361

advantage when data sampling frequency is low.362

Similar good results are obtained for Tumor363

data set 1 (see Figure 5 and parameter values in364

Table 3). Therefore System (2) enables to describe365

inter-individual variability in different immunization366

contexts, here VV and Tumor immunizations, and367

with only few data points per individual.368

Estimated parameter values obtained with Sys-369

tem (2) for VV or Tumor data sets are in the same370

range as in the estimation previously performed on371

average cell counts on a similar experimental set (VV372

immunization [10]), see Table 3. Some differences373

are observed for estimated values of differentiation374

rates, yet for the 3 estimations (VV data set 1, Tumor375

data set 1, [10]) parameter values remain in the same376

order of magnitude, indicating consistency between377

the two studies. Estimated values of parameter δNE378

show the largest relative differences. Yet, the largest379

difference is observed between VV and Tumor data380

sets obtained with System (2), rather than between381

these values and the one obtained in [10]. This may382

highlight a potential difference in the capacity of the383

two immunogens (VV and Tumor) to activate naive384

cells. This is investigated in the next section.385

2.3. Immunization-dependent parameters 386

Parameter comparison between immunizations. VV 387

and Tumor induced immunizations differ in many 388

aspects. VV immunizations are virus-mediated, use 389

the respiratory tract to infect cells, and trigger an 390

important innate response. Tumor immunizations 391

involve eukaryotic cells bearing the same antigen, 392

use subcutaneous routes, and induce a reduced innate 393

response. 394

From the independent estimations on VV and 395

Tumor data sets (Table 3), we compute differences 396

between estimated values of fixed effects. Differences 397

are large for parameters – in decreasing order – δNE 398

(62%), ρE (60%), μN (47%), ρI (37%), and δLM 399

(30%). These large differences may result from bio- 400

logical processes involved in the CD8 T cell response 401

that differ depending on the immunogen. 402

Consequently, combining both data sets (VV and 403

Tumor) as observations may highlight which parame- 404

ters have to be significantly different to describe both 405

data sets. 406

Parameters depending on immunization. To perform 407

this analysis, we combine VV and Tumor data sets 1 408

and we include a categorical covariate into the 409

model to estimate parameter values (see Section 4.5). 410

Covariates allow to identify parameter values that are 411
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Fig. 4. The dynamics of three subpopulations (early effector -
red, late effector - green, memory - purple) are simulated with
System (2) for two individuals. Experimental measurements are
represented by dots, simulations of the model by straight lines.
(A) Individual cell counts have been measured on days 7, 15 and
47pi. (B) Individual cell counts have been measured on day 8pi
only. Although each individual is not characterized by enough
experimental measurements to allow parameter estimation on sin-
gle individuals, nonlinear mixed effects models provide individual
fits by considering a population approach.

significantly different between two CD8 activation412

conditions (tumors vs virus).413

A covariate is added to the fixed effects of the five414

parameters that showed the larger differences in the415

initial estimation: δNE, ρE, μN , ρI and δLM . This416

results in the estimation of two different parameter417

values for parameters ρE, μN and δLM (that are fixed418

within the population) and two probability distribu-419

tions with different mean values for parameters δNE420

and ρI (that vary within the population).421

One may note that adding a covariate increases the422

number of parameters to estimate. However, the num-423

ber of parameters is not doubled, since we assumed424

that parameters without covariates are shared by both425

immunization groups. In addition, the data set is426

larger, since it combines VV and Tumor measure-427

ments. Hence the number of parameters with respect 428

to the amount of data remains reasonable. 429

From this new estimation, we conclude that among 430

the five selected parameters the covariates of only 431

four of them are significantly different from zero: 432

δNE, ρE, μN , and δLM (Wald test, see Section 4.5). 433

The estimation is therefore performed a second 434

time assuming ρI distribution is the same in both 435

groups. Then the Wald test indicates that the remain- 436

ing covariates are significantly different from zero 437

(Table 4). 438

Figure 6 shows the estimated distribution for 439

parameter δNE that varies within the population 440

and for which we included a covariate. Histograms 441

display the estimated individual parameter values 442

of δNE. They show two distinct distributions of 443

δNE values, corresponding to VV (red)- and Tumor 444

(green)-associated values. The histograms and the 445

theoretical distributions are in agreement. 446

Table 4 gives the estimated values of all parame- 447

ters in both groups. Regarding parameters that do not 448

vary within the population, it is required for param- 449

eters μN , δLM and ρE to be different to describe 450

each data set, and this difference is accounted for 451

with a covariate parameter. Noticeably, using cate- 452

gorical covariates mostly improves the confidence in 453

the estimation, as highlighted by either RSE values 454

in the same range (μN , ρE) or improved (all other 455

parameters) RSE values (Tables 3 and 4). 456

In summary, we identified parameters whose 457

values are significantly different according to the 458

immunogen used to activate CD8 T cells. These 459

parameters correspond to the dynamics of naive cells 460

(μN ), their activation (δNE), the proliferation of early 461

effector cells (ρE), and differentiation to memory 462

cells (δLM). We hence conclude that different immu- 463

nizations affect the CD8 T cell activation process in 464

the first phase of the response (priming, activation 465

of naive cells, expansion of the CD8 T cell popu- 466

lation) as well as the development of the memory 467

population. Different immunizations also induce var- 468

ious degrees of variability in the responses through 469

the activation of naive cells, and our mathematical 470

approach quantitatively estimates these degrees of 471

variability. 472

2.4. Predicting dynamics following VV and 473

Tumor immunizations 474

To challenge System (2) and the estimated param- 475

eters (Table 4), we compare simulated outputs to an 476

additional data set, not used for data fitting, of both 477
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Fig. 5. Experimental and simulated individual cell counts for Tumor data set 1 (logarithmic scale). (A) Observed vs predicted values. For
each CD8 T cell count experimental point, the prediction is obtained by simulating System (2). Naive (blue), early effector (red), late effector
(green), and memory (purple) cell counts are depicted. Dashed lines represent the 90th percentile of the difference between observed and
predicted values, and the solid black line is the curve y = x. (B) Naive (upper left, blue), early effector (upper right, red), late effector (lower
left, green) and memory (lower right, purple) cell counts up to D47pi. Experimental measurements are represented by colored dots (same
color code), simulated individual trajectories by grey lines, and the average population dynamics by a straight colored line (same color
code).

VV and Tumor immunizations, VV data set 2 and478

Tumor data set 2 (Table 1 and Section 4.8).479

We already know the probability distribution of480

parameters (Table 4), so we only estimate individ-481

ual parameters in order to fit individual dynamics.482

Results are shown in Figure 7, for both VV and Tumor483

data sets 2. Individual fits are available in Section 484

A3. It is clear that estimated individual dynamics are 485

consistent with previous individual dynamics esti- 486

mations. Hence, we validate System (2) and values 487

estimated in both VV and Tumor immunization con- 488

texts by showing that estimated parameter values 489
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Table 4
Estimated parameter values using combined VV and Tumor data sets 1. Parameters that do not vary within the population are shown in the
upper part of the table, whereas individual-dependent parameters are shown in the central part (mean and standard deviation values). RSE
(%) are indicated in parentheses. Parameters whose values depend on the immunogen (VV, Tumor) are highlighted in grey, and the p-value

characterizing the covariate non-zero value is shown in the last column

Parameters Units VV (RSE%) Tumor (RSE%) p-value
Parameters fixed within the population

μN day−1 0.59 (7) 0.34 (24) 10−5

ρE day−1 0.69 (2) 0.46 (17) 10−9

δEL day−1 0.11 (4) 0.11 (4) -

δLM day−1 0.10 (10) 0.07 (10) 0.01
Parameters varying within the population

δNE day−1 0.006 (24) 0.047 (17) 10−9

ωδNE
day−1 0.6 (31) 0.6 (31) -

μE 10−6 cell−1 day−1 4.1 (17) 4.1 (17) -
ωμE

10−6 cell−1 day−1 0.7 (26) 0.7 (26) -
ρI day−1 0.1 (3) 0.1 (3) -
ωρI

day−1 0.1 (17) 0.1 (17) -
μI 10−5 cell−1 day−1 2.9 (18) 2.9 (18) -
ωμI

10−5 cell−1 day−1 0.9 (15) 0.9 (15) -
Residual errors
aN cell counts (log10) 0.5 (10) 0.5 (10) -
aE cell counts (log10) 0.5 (7) 0.5 (7) -
aL cell counts (log10) 0.5 (6) 0.5 (6) -
aM cell counts (log10) 0.4 (8) 0.4 (8) -

Fig. 6. Probability distribution of parameter δNE defined with a
covariate. Estimated distributions of VV-associated (left, red) and
Tumor-associated (right, green) values are plotted. Histograms of
estimated individual parameter values are also plotted (red for VV-
associated values, green for Tumor-associated values).

allow to characterize individual CD8 T cell counts490

obtained in similar contexts (Figure 7 and Section491

A3).492

3. Discussion493

When following an in vivo immune response,494

experimental measurements are often limited by495

either ethical issues or tissue accessibility. Conse- 496

quently, one often ends up measuring cell counts in 497

peripheral blood on a restricted number of time points 498

per individual, over the duration of a response (see 499

Figure 4). Among measurements of a single individ- 500

ual, cell counts are often missing for one or more 501

cell subpopulations. With such data, estimation of all 502

model parameters becomes unlikely. Using nonlin- 503

ear mixed effects models, we propose a dynamical 504

model of CD8 T cell dynamics that circumvents this 505

difficulty by assuming that all individuals within a 506

population share the main characteristics. Using this 507

framework, we propose an accurate description of 508

individual dynamics, even though individual mea- 509

surements are scarce. Indeed, we are able to obtain 510

both good fits and relevant dynamics for individuals 511

with only few cell count measurements, as illustrated 512

in Figure 4. These results indicate that knowledge 513

of population dynamics parameters and numerical 514

simulations complement information given by exper- 515

imental measurements. 516

Starting from the model described in Crauste et al. 517

[10] that could efficiently describe CD8 T cell dynam- 518

ics, at the level of average population cell-counts in 519

peripheral blood, we built and validated this nonlinear 520

mixed effects model in a step-wise fashion. The sys- 521

tem was first modified to ensure correct parameter 522

estimation when confronted to ideal, highly infor- 523

mative data. In a second step, the model was again 524
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Fig. 7. Observed vs estimated values of individual CD8 T cell
counts for (A) VV data set 2 and (B) Tumor data set 2. Individual
parameter values have been estimated with System (2) and pop-
ulation parameter values and distributions previously defined on
VV and Tumor data set 1. In both figures, naive (blue), early effec-
tor (red), late effector (green), and memory (purple) cell counts
are depicted. Grey points correspond to individual values from
Figure 3A and Figure 5A. The black straight line is y = x.

modified and parameter values estimated by using525

experimental measurements generated through a VV526

immunization. We next identified parameters – hence527

biological processes – that vary between individuals528

and explain the between-individual variability, and529

other parameters that can be fixed within the popula-530

tion to explain biological data (measured in VV and531

Tumor immunization contexts). Finally, by includ-532

ing a categorical covariate we additionally identified533

immunization-dependent parameters.534

In order to determine the contribution of each535

parameter to inter-individual variability, one could536

argue that performing a sensitivity analysis would 537

shed light on the more sensitive parameters. Even 538

though model’s output sensitivity to parameters and 539

contribution of each parameter to individual vari- 540

ability may be partly related, they are nonetheless 541

different concepts. Sensitivity analysis would high- 542

light the influence of a parameter on the population 543

dynamics, whereas our objective is to reproduce sev- 544

eral individual outputs (individual dynamics) which 545

exhibit more or less variability than the average pop- 546

ulation behavior. Therefore the use of classical tools 547

like Sobol indices [31] or generalized sensitivity 548

functions [32] is not adapted to handle the current 549

question. Hence, we proposed a procedure, based on 550

estimated errors and the shrinkage, to identify a min- 551

imal set of parameters (fixed and random effects) 552

required to describe the data sets. It can be noticed 553

that the shrinkage, expressed as a ratio of variances 554

(see (5)), provides an information similar to the one 555

given by Sobol indices. 556

Noteworthy, from a biological point of view, the 557

removal of one parameter during model reduction 558

(for example, the death rate of late effector cells) 559

must not be understood as if the corresponding pro- 560

cess is not biologically meaningful. Rather, based on 561

the available data, our methodology found that some 562

processes are non-necessary in comparison with the 563

ones described by the system’s equations. 564

Similarly, parameters characterizing immunogen 565

dynamics vary within the population whereas model 566

reduction led to remove the variability of equiva- 567

lent processes (proliferation for instance) in CD8 T 568

cell dynamics. It is likely that this is due to a lack 569

of experimental measures on immunogen dynamics 570

(whether virus load evolution or tumor growth), and 571

one cannot conclude that inter-individual variability 572

mostly comes from immunogen dynamics. Informa- 573

tion on immunogen dynamics, when available, could 574

significantly improve parameter estimation and help 575

refining the information on inter-individual variabil- 576

ity during CD8 T cell responses. 577

In our biological data, inter-individual variability 578

is explained only by variability in the activation rate 579

of naive cells, the mortality rate of effector cells, and 580

dynamics (proliferation and death) of the immuno- 581

gen. The former is actually in good agreement with 582

the demonstration that in diverse infection condi- 583

tions the magnitude of antigen-specific CD8 T cell 584

responses is primarily controlled by clonal expansion 585

[33]. 586

Two of the three differentiation rates (early effec- 587

tor cell differentiation in late effector cells, and late 588
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Fig. 8. Positive side-effect of using covariates. For two illustrative individuals, accounting for covariates allows to better estimate early
effector cell dynamics: red plain curve with covariate, blue dashed curve without covariate.

effector cell differentiation in memory cells) do not589

need to vary to describe our data sets. This robustness590

of the differentiation rates is in good agreement with591

the auto-pilot model that shows that once naive CD8592

T cells are activated their differentiation in memory593

cells is a steady process [34, 35].594

Eventually, using nonlinear mixed effects models595

and an appropriate parameter estimation procedure,596

we were able to quantitatively reproduce inter-597

individual variability in two different immunization598

contexts (VV and Tumor) and provide predictive pop-599

ulation dynamics when confronted to another data600

set (for both immunogens). This demonstrates the601

robustness of the model.602

The addition of a categorical covariate allowed603

us to identify parameters that are immunization-604

dependent. Interestingly they control the activation of605

the response (priming, differentiation of naive cells,606

expansion of effector cells) as well as the generation607

of memory cells. This is again in good agreement with608

the biological differences that characterize the two609

immunogens used in this study. Indeed, pathogen-610

associated molecular patterns (PAMP) associated611

with vaccinia virus will activate a strong innate612

immune response that will provide costimulatory613

signals that in turn will increase the efficiency of614

naive CD8 T cell activation [5]. In contrast, when615

primed by tumor cells CD8 T cells will have access to616

limited amounts of costimulation derived from dam-617

age associated molecular patterns [36]. The amount618

of costimulation will also control the generation619

of memory cells [37]. Focusing on average CD8620

T cell behaviors (not shown) highlights stronger621

responses following VV immunization, character-622

ized by a faster differentiation of naive cells and623

a higher peak of the response (at approximately624

3 × 105 cells compared to 105 cells for the Tumor625

induced response). Also, in average, more memory 626

cells are produced following VV immunization. 627

Hence the addition of covariates to the model param- 628

eters has allowed to identify biologically relevant, 629

immunogen-dependent parameters. 630

Using covariates has additional advantages. First, 631

they allow to consider a larger data set (in our case, 632

the combination of two data sets) without adding 633

too many parameters to estimate (4 covariates in our 634

case). This is particularly adapted to situations where 635

only some parameters are expected to differ depend- 636

ing on the data set (here, the immunogen). Second, 637

and as a consequence, model fits may be improved 638

compared to the situation where data sets generated 639

with different immunogens are independently used to 640

estimate parameters. Figure 8 illustrates this aspect: 641

dynamics of two individuals are displayed, with and 642

without covariate. In both cases using the covari- 643

ate (and thus a larger data set) improved the quality 644

of individual fits, and in the case of Individual 1 645

generated more relevant dynamics with a peak of 646

the response occurring earlier, before day 10pi. No 647

individual fit has been deteriorated by the use of a 648

covariate (not shown). 649

Finally, CD8 T cell response dynamics to both VV 650

and Tumor immunogens were well captured for data 651

sets that had not been used to perform parameter esti- 652

mation (Section 2.4). The behavior of each individual 653

was estimated with the prior knowledge acquired 654

on the population (i.e. fixed parameter values and 655

variable parameter distributions) and proved consis- 656

tent with previous estimated individual behaviors. 657

The correct prediction of individual behaviors by the 658

model, in a simple mice experiment, paves the way 659

to personalized medicine based on numerical simu- 660

lations. Indeed, once the population parameters are 661

defined, numerical simulation of individuals can be 662
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performed from a few measurements per individual663

and consequently would allow to adapt personalized664

therapies.665

4. Material, methods and models666

4.1. Ethics statement667

CECCAPP (Lyon, France) approved this research668

accredited by French Research Ministry under project669

#00565.01.670

Mice were anesthetized either briefly by placement671

in a 3% isoflurane containing respiratory chamber672

or deeply by intraperitoneal injection of a mix of673

Ketamin (70 mg/kg) and Xylazin (9 mg/kg). All ani-674

mals were culled by physical cervical disruption.675

4.2. Data676

All data used in this manuscript are available at677

https://osf.io/unkpt/?view only=ff91bd89bc32421d678

bcbb356c3509ca55.679

Experimental Models. C57BL/6 mice (C57BL6/J)680

and CD45.1+ C57BL/6 mice (B6.SJL-PtprcaPepcb/681

BoyCrl) were purchased from CRL. F5 TCR-tg682

mice recognizing the NP68 epitope were crossed to683

a CD45.1+ C57BL/6 background (B6.SJL-Ptprca
684

Pepcb/BoyCrl-Tg(CD2-TcraF5,CD2-TcrbF5)1Kio/685

Jmar) [38]. They have been crossed at least 13686

times on the C57BL6/J background. All mice were687

homozygous adult 6-8-week-old at the beginning of688

experiments. They were healthy and housed in our689

institute’s animal facility under Specific Pathogen-690

Free conditions.691

Age- and sex-matched litter mates or provider’s692

delivery groups, which were naive of any exper-693

imental manipulation, were randomly assigned to694

4 experimental groups (of 5 mice each) and co-695

housed at least for one week prior to experimentation.696

Animals were maintained in ventilated enriched697

cages at constant temperature and hygrometry with698

13hr/11hr light/dark cycles and constant access to699

21 kGy-irradiated food and acid (pH = 3 ± 0.5)700

water.701

Vaccinia Virus (VV) Immunization. 2 × 105 naive702

CD8 T cells from CD45.1+ F5 mice were transferred703

by retro-orbital injection in 59, 6-8-week-old, con-704

genic CD45.2+ C57BL/6 mice briefly anaesthetized705

with 3% isoflurane. The day after deeply Xylazin/ 706

Ketamin-anaesthetized recipient mice were inocu- 707

lated intra-nasally with 2 × 105 pfu of a vaccinia 708

virus expressing the NP68 epitope (VV-NP68) pro- 709

vided by Pr. A.J. McMichael [38]. 710

Tumor Immunization. 2 × 105 naive CD8 T cells 711

from CD45.1+ F5 mice were transferred by retro- 712

orbital injection in 55, 6-8-week-old, congenic 713

CD45.2+ C57BL/6 mice briefly anaesthetized with 714

3% isoflurane. The day after, recipients were subcu- 715

taneously inoculated with 2.5 × 106 EL4 lymphoma 716

cells expressing the NP68 epitope (EL4-NP68) pro- 717

vided by Dr. T.N.M. Schumacher [39]. 718

Phenotypic Analyses. Mice were bled at intervals of 719

at least 7 days. Blood cell suspensions were cleared 720

of erythrocytes by incubation in ACK lysis solution 721

(TFS). Cells were then incubated with efluor780- 722

coupled Fixable Viability Dye (eBioscience) to 723

label dead cells. All surface stainings were then 724

performed for 45 minutes at 4◦C in PBS (TFS) sup- 725

plemented with 1% FBS (BioWest) and 0.09% NaN3 726

(Sigma-Aldrich). Cells were fixed and permeabi- 727

lized with the Foxp3-fixation and permeabilization 728

kit (eBioscience) before intra-cellular staining for 729

one hour to overnight. The following mAbs(clones) 730

were utilized: Bcl2(BCL/10C4), CD45.1(A20) and 731

CD45(30-F11) from Biolegend, Mki67(SolA15) and 732

CD8(53.6.7) from eBioscience, and CD44 (IM7.8.1) 733

from Miltenyi. Samples were acquired on a FACS 734

LSR Fortessa (BD biosciences) and analyzed with 735

FlowJo software (TreeStar). 736

CD8 T Cell Differentiation Stages. For both immu- 737

nizations (VV and Tumor), phenotypic cell subsets 738

based on Mki67-Bcl2 characterization [10] have been 739

identified and the corresponding cell counts measured 740

in blood, from day 4 post-inoculation (pi) up to day 741

47pi (VV and Tumor data sets 1, Table 1). Naive cells 742

are defined as CD44-Mki67-Bcl2+ cells, early effec- 743

tor cells as CD44+Mki67+Bcl2- cells, late effector 744

cells as CD44+Mki67-Bcl2- cells, and memory cells 745

as CD44+Mki67-Bcl2+ cells [10]. 746

4.3. Models of CD8 T cell dynamics 747

Initial model. The following system (3) is made of 748

ODE and describes individual behaviors. This is the 749

model in [10], it describes CD8 T cell subpopula- 750

tion dynamics (see Section 4.2, Paragraph CD8 T 751

Cell Differentiation Stages) as well as the immunogen 752

https://osf.io/unkpt/?view_only=ff91bd89bc32421dbcbb356c3509ca55
https://osf.io/unkpt/?view_only=ff91bd89bc32421dbcbb356c3509ca55


U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

C. Audebert / Modeling and characterization of inter-individual variability in CD8 T cell responses in mice 15

load dynamics in primary immune responses, as fol-753

lows754

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṅ = −μNN − δNEIN,

Ė = δNEIN + ρEIE − [μEE + δEL] E,

L̇ = δELE − [
μL

LL + μE
LE + δLM

]
L,

Ṁ = δLML,

İ = [
ρII − μE

I E − μL
I L − μI

]
I.

(3)

The variables N, E, L and M denote the four755

CD8 T cell subpopulation counts, naive, early effec-756

tor, late effector, and memory cells respectively (see757

Section 4.2), and I is the immunogen load. For758

details regarding the construction and validation of759

this model we refer the readers to [10]. We hereafter760

briefly discuss this model.761

The immunogen load dynamics are normal-762

ized with respect to the initial amount [10, 40],763

so I(0) = 1. The initial amounts of CD8 T cell764

counts are N(0) = 104 cells, E(0) = 0, L(0) = 0 and765

M(0) = 0.766

Parameters δk are the differentiation rates, with767

k = NE, EL or LM for differentiation from naive768

to early effector cells, from early effector to late769

effector cells and from late effector to memory cells,770

respectively.771

Death parameters are denoted by μk, where k = N,772

E and I for the death of naive cells, early effector773

cells and the immunogen respectively. Notations μY
X774

for some mortality-related parameters refer to param-775

eters μXY in [10]: the subscript X refers to the CD8 T776

cell population or the immunogen that dies, and the777

superscript Y to the CD8 T cell population responsi-778

ble for inducing death.779

Early and late effector cells are cytotoxic, GrzB+780

cells [10], so due to competition for limited resources781

(such as cytokines) and fratricidal death [41, 42] we782

assumed fratricide killing by CD8 T cells. Conse-783

quently the model accounts for effector-cell regulated784

death rates of both effector cells and the immunogen785

[10, 40]. Natural mortality rates are considered for786

naive and memory cells (μN , μI ).787

Proliferation parameters of early effector cells788

and the immunogen are respectively denoted by ρE789

and ρI . Proliferation of both CD8 T cells and the790

immunogen are partially controlled by the immuno-791

gen, so proliferation rates are assumed to depend on792

I. Noticeably, among CD8 T cells only early effec-793

tor cells are Mki67+ cells so they are the only cells 794

assumed to proliferate and divide [10]. 795

System (3) has been introduced and validated on a 796

similar VV data set in [10]. To account for individual 797

behavior, parameters will be complexified assuming 798

they are drawn from probability distributions and in 799

the same time this system will be simplified through a 800

model selection procedure to ensure the correct esti- 801

mation of parameter values with available data sets 802

(see Sections 4.6 and 4.7). 803

Model selected on synthetic data. Model (3) has been
obtained by fitting average dynamics of a CD8 T
cell immune response [10]. When confronting this
model to heterogeneous data of individual CD8 T
cell dynamics and using mixed effects modeling, it
is mandatory to verify that assumptions of the mixed
effects model (see Section 4.4) are valid. To inves-
tigate this mathematical property, we will rely on
synthetic data that are highly informative compared
to experimental data and, additionally, for which
we know the parameter values behind data genera-
tion so we possess an explicit control on parameter
estimations. Using synthetic data and the procedure
described in Section 4.6 leads to the selection of the
System (1),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṅ = −μNN − δNEIN,

Ė = δNEIN + [ρEIE − μEE − δEL] E,

L̇ = δELE − [μLL + δLM] L,

Ṁ = δLML,

İ = [ρII − μIL] I.

This model is dynamically similar to System (3), but 804

in order to correctly fit synthetic data and to satisfy 805

the assumptions of mixed effects modeling, parame- 806

ters μE
L , μE

I and μI have been removed: it was not 807

possible to accurately estimate them to non-zero true 808

values. For the sake of simplicity the parameters are 809

renamed in System (1): μL
L = μL and μL

I = μI . Sys- 810

tem (1) is defined by 9 parameters. 811

Model selected on biological data. When using bio-
logical, in vivo experimental data instead of synthetic
data, not as many measurements per individual can
be obtained (see Table 1) so the dynamical model
may easily be over-informed (too many parameters
compared to the size of the sampling). Using Sys-
tem (1), the confrontation with VV data set 1 leads
to the modified System (2),
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṅ = −μNN − δNEIN,

Ė = δNEIN + [
ρEIE − μEE − δEL

]
E,

L̇ = δELE − δLML,

Ṁ = δLML,

İ = [ρII − μIL] I.

System (2) has 8 parameters (μL has been removed812

from System (1)): 4 parameters are fixed within the813

population (μN , ρE, δEL, δLM) and 4 parameters have814

a random effect (δNE, μE, ρI , μL
I ).815

4.4. Nonlinear mixed effects models816

Nonlinear mixed effects models allow a descrip-817

tion of inter-individual heterogeneity within a818

population of individuals (here, mice). The main819

idea of the method is to consider that since all indi-820

viduals belong to the same population they share821

common characteristics. These common character-822

istics are called “fixed effects” and characterize an823

average behavior of the population. However, each824

individual is unique and thus differs from the aver-825

age behavior by a specific value called “random826

effect”.827

This section briefly describes our main hypotheses.828

Details on the method can be found in [17–19, 43].829

Each data set {yi,j, i = 1, ..., Nind, j = 1, ..., ni}830

is assumed to satisfy831

yi,j = f (xi,j, ψi) + aεi,j,

where yi,j is the jth observation of individual i, Nind832

is the number of individuals within the population and833

ni is the number of observations for the ith individual.834

The function f accounts for individual dynamics835

generated by a mathematical model. In this work f836

is associated with the solution of a system of ODE,837

see Section 4.3. The function f depends on known838

variables, denoted by xi,j , and parameters of the ith839

individual, denoted by ψi.840

Individual parameters ψi are assumed to be841

split into fixed effects (population-dependent effects,842

average behavior) and random effects (individual-843

dependent effects). If ψk
i denotes the k-th parameter844

characterizing individual i, then it is assumed that845

log(ψk
i ) = log(pk

pop) + ηk
i ,

where the vector of parameters ppop = (pk
pop)k mod-846

els the average behavior of the population, and ηi =847

(ηk
i )k represents how the individual i differs from this848

average behavior. Variables ηk
i ∼N(0, ω2

k), and they 849

are assumed independent and identically distributed. 850

The variance ω2
k quantifies the variability of the k- 851

th parameter within the population. From now on 852

we will denote by ω2 the vector of variances (ω2
k)k. 853

Parameters ψi are assumed to follow a log-normal 854

distribution to ensure their positivity. 855

The residual errors, combining model approxima- 856

tions and measurement noise, are denoted by aεi,j . 857

They quantify how the model prediction is close to 858

the observation. Residual errors are assumed inde- 859

pendent, identically and normally distributed, i.e 860

εi,j ∼ N(0, 1). Moreover, the random effects ηi and 861

the residual errors aεi,j are mutually independent. In 862

this work, we assume a constant error model, with a 863

constant a, for all cell populations, since they are all 864

observed in log10 scale. The error parameter is esti- 865

mated for each subpopulation (naive cells - aN ; early 866

effector cells - aE ; late effector cells - aL ; memory 867

cells - aM). When data on the immunogen dynam- 868

ics are available (only when using synthetic data), 869

we assume a proportional error for the immunogen 870

which is observed, so that aI = bIf . 871

We will write that a parameter is fixed within the 872

population if all individuals have the same value for 873

this parameter. On the contrary, if the variance ω2
k 874

of a parameter is non-zero, then this parameter will 875

account for inter-individual variability within the 876

population. 877

4.5. Parameter estimation 878

Parameter values are estimated with the Stochastic 879

Approximation Expectation-Maximization (SAEM) 880

algorithm. This algorithm is adapted to nonlinear 881

mixed effects models [18] and has been shown 882

to quickly converge under general conditions [17]. 883

Moreover, an implementation of the SAEM algorithm 884

is available in Monolix [30], a freely available soft- 885

ware that provides different indicators to quantify the 886

quality of estimations and fit. We used the SAEM 887

algorithm and Monolix in this work. 888

Population and individual parameters. Under the 889

previous assumptions (Section 4.4), cell population 890

dynamics (average behavior and inter-individual vari- 891

ability) are described by parameters: ppop, ω2 and a. 892

These parameters are estimated by maximizing the 893

likelihood with the SAEM algorithm. 894

Once these parameters have been estimated, each 895

individual vector of parameters ψi is estimated 896
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by maximizing the conditional probabilities897

P(ψi|yi,j; p̂pop, ω̂2, â), where x̂ denotes the898

estimated value of x.899

Both estimations are performed with Monolix900

software [30]. Files to run the algorithm (includ-901

ing all algorithm parameters) are available at902

https://plmlab.math.cnrs.fr/audebert/cd8-responses.903

Covariates. In order to study whether differences904

observed in parameter values between VV and Tumor905

data sets (Table 1) are only related to random sam-906

pling or if they can be explained by the immunogen,907

we use categorical covariates (Section 2.3).908

To tackle this question, we first pool together VV909

and Tumor data sets 1. Second, using this full data910

set, we estimate parameter values by assuming that911

fixed effects of some Tumor-associated parameters912

are different from those of the corresponding VV-913

associated parameters.914

To introduce categorical covariates in our mixed915

effects model, we assume that if an individual is either916

in Tumor or VV data set then the probability dis-917

tribution of its individual parameter vector ψi has a918

different mean. We write919

log(ψk
i ) = log(pk

pop) + βkci + ηk
i ,

where ci equals 0 if individual i is in VV data set920

1 and 1 if it is in Tumor data set 1, and β = (βk)k921

is a vector of covariate parameters. We test whether922

the estimated covariate parameter β̂ is significantly923

different from zero with a Wald test, using Monolix924

software [30], and we use a p-value threshold at 0.05.925

Parameters (ppop, ω2, a, β) are then characteriz-926

ing cell population dynamics for both VV and Tumor927

immunogens. If the estimated vector β̂ is significantly928

different from zero, then part of the experimen-929

tally observed variability could be explained by the930

immunogen.931

4.6. Model selection on synthetic data932

Model selection relies on criteria that allow to933

evaluate to which end a model appropriately satis-934

fies a priori assumptions. For instance, one usually935

requires a model to correctly fit the data, and uses936

so-called quality of fit criteria, and/or requires that937

initial modeling assumptions are satisfied.938

Here, we do not use quality of fit criteria to select939

a model because all models correctly fit data due to940

a priori over-informed models that have too many941

parameters compared to available data (see Paragraph942

Model selection below). Instead, we focus on the 943

capacity of the parameter estimation procedure to 944

correctly estimate model parameters and to the a pos- 945

teriori validation of statistical assumptions. To do so, 946

we first use synthetic data (see Paragraph Generation 947

of 551 synthetic data below). We take advantage of 948

the fact that we know the exact parameter values used 949

to generate synthetic data, so in order to evaluate the 950

correctness of estimated parameter values we rely on: 951

- the relative difference between the estimated 952

parameter value and the true value, 953

- the relative standard error (RSE), defined as
the ratio between the standard error (square
root of the diagonal elements of the variance-
covariance matrix) and the estimated value of
the parameter [19],

RSE = s.e.(θ̂)

θ̂
, θ a parameter,

θ̂ its estimated value. (4)

A large RSE indicates a poor estimation of the 954

parameter. 955

- the η-shrinkage value (denoted throughout this
manuscript as the shrinkage value), defined as

η-shrinkage = 1 − var(ηi)

ω2 , (5)

where var(ηi) is the empirical variance of the 956

random effect ηi and ω2 the estimated variance 957

of the parameter; Large values of the shrink- 958

age characterize individual estimates shrunk 959

towards the conditional mode of the parameter 960

distribution. 961

We decided not to consider the mathematical notion 962

of identifiability here. Indeed, studying identifiability 963

in nonlinear mixed effect models is a complicated, 964

open question that has been discussed for instance 965

in [44]. Approaches based on the Fisher Information 966

Matrix (RSE) have been proposed and are often used 967

for evaluating identifiability of population param- 968

eters, while analysis of the shrinkage allows to 969

investigate individual parameters identifiability, and 970

we used such methods in this work. 971

Generation of synthetic data. Using a dynamical 972

model (here System (3)), we generate a set of data 973

associated to solutions of the model, where all the 974

parameters are drawn from known log-normal dis- 975

tributions. Parameters pk varying in the population 976

satisfy log(pk)∼N(log(mk), 0.12). The standard 977

https://plmlab.math.cnrs.fr/audebert/cd8-responses


U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

18 C. Audebert / Modeling and characterization of inter-individual variability in CD8 T cell responses in mice

deviation is fixed to the value 0.1 to generate978

heterogeneity, and values of medians mk are given979

in Table A.1. A multiplicative white noise modifies980

model’s outputs in order to mimic real measurements981

(we consider a white noise with standard deviation982

0.2).983

These data consist of time points and measure-984

ments for the 4 subpopulations of CD8 T cell counts985

(in log10 scale) and the immunogen load. These986

are called synthetic data, and these sets of data are987

referred to as Synth data set X, with X= 1, . . . , 4988

(Table 1).989

We generate synthetic data for 100 individuals, cell990

counts are sampled at days 4, 5, 6, 7, 8, 9, 10, 12, 14,991

16, 18, 20, 25, 30pi (cf. Figures A1 to A4). In agree-992

ment with real biological data, we assume that all cell993

counts below 100 cells are not measured, and remove994

the data. For the immunogen load, values lower than995

0.1 are also not considered.996

Model selection. Model selection on synthetic data997

is performed in 4 steps:998

Step 1 Select an initial model999

Step 2 Estimate parameter values using SAEM [30]1000

Step 3 Remove (priority list):1001

- parameters whose estimated value is1002

different from their true value, and the1003

RSE is larger than 5%1004

- random effects of parameters with1005

shrinkage larger than 30%.1006

Step 4 Select a model with all parameters correctly1007

estimated1008

In Step 1, model (3) is used, with all parameters1009

varying within the population. This makes 29 param-1010

eters to estimate: 12 mean values, 12 random effects,1011

5 error parameters.1012

In Step 3, based on the estimations performed in
Step 2, we iteratively remove parameters that are not
correctly estimated. To do so, we first focus on param-
eters that are not estimated to their true value (which
is known) and whose RSE is larger than 5% (this
threshold corresponds to a 5% error on the estimated
value, see (4)). We consider that the estimated value
is different from the true value if Err > 10%, with

Err = |true value − estimated value|
true value

.

Once all parameters are correctly estimated accord-1013

ing to the two first criteria, we remove random effects1014

of parameters with shrinkage larger than 30% (Savic1015

and Karlsson [45] have shown that shrinkage can 1016

generate false correlations between random effects, 1017

or mask the existing correlations, starting from 30% 1018

shrinkage). 1019

One must note that every time a parameter is 1020

removed from the model (mean value or random 1021

effect) then new synthetic data are generated using 1022

the same protocol as described above, and Step 2 is 1023

performed again. 1024

Errors are known when using synthetic data: since 1025

a normal noise, proportional to the observation, mod- 1026

ifies each observation then there is a constant error 1027

on observations of cell counts in log10 scale, and a 1028

proportional error on the immunogen load. As men- 1029

tioned in Section 4.4, we assume a constant error for 1030

all cell populations and a proportional error for the 1031

immunogen load. Diagnostic tools in [30] show that 1032

error models are correct (not shown here). 1033

Quality of fit criteria do not provide relevant 1034

information in our case: the Bayesian Information 1035

Criterion (BIC) reaches very low values, even for the 1036

initial model (3), whereas observations vs prediction 1037

graphs show that the number of outliers is not mod- 1038

ified by simplifications of the model. Hence, we do 1039

not use quality of fit criteria to select a model. In Step 1040

4, we select a model based on the chosen criteria that 1041

insures the correct estimation of all its parameters 1042

and its reduced shrinkage when confronted to a set of 1043

synthetic data. 1044

4.7. Model selection on biological data 1045

Biological data are the ones introduced in Section 1046

4.2. Compared to synthetic data, we do not know the 1047

parameter values that would characterize them and 1048

they provide less observations, hence it may not be 1049

possible to correctly estimate as many parameters as 1050

in the synthetic data case. 1051

Model selection on biological data is also per- 1052

formed in 4 steps: 1053

Step 1 Select an initial model 1054

Step 2 Estimate parameter values using SAEM [30] 1055

Step 3 Remove (priority list): 1056

- parameters whose RSE is larger than 1057

100% 1058

- random effects of parameters with 1059

shrinkage larger than 75% 1060

Step 4 Select a model with RSE and shrinkages low 1061

In Step 1, model (1) is used, with all parame- 1062

ters varying within the population. This makes 23 1063
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parameters to estimate: 9 mean values, 9 random1064

effects, 5 error parameters. This model is the one1065

selected on synthetic data (see Section 2.1).1066

In Step 3, we iteratively remove parameters that are1067

not correctly estimated. We first focus on parameters1068

that are not estimated with a high confidence, that1069

is RSE > 100%. Once all parameters are correctly1070

estimated, we remove random effects of parameters1071

with shrinkage larger than 75%. Noticeably, we can-1072

not use the same threshold values for the RSE and1073

the shrinkage when using either synthetic or real1074

data, because measurement errors are different: con-1075

trolled and known for synthetic data, uncontrolled1076

and a priori unknown for real data, with measurement1077

uncertainties.1078

The error model is not known, so we use the same1079

error model as for synthetic data: a constant error for1080

all cell populations (note that no data on immunogen1081

is available, so the error parameter for the immunogen1082

is not estimated). Diagnostic tools in [30] show that1083

assuming constant error models is acceptable (not1084

shown here).1085

4.8. A posteriori model validation on biological1086

data1087

In Section 2.4, the model selected on biological1088

data is compared to data that were not used for param-1089

eter estimation. These data are presented hereafter.1090

In order to assess the model ability to characterize1091

and predict immune response dynamics we compare1092

our results to additional experiments, VV data set 21093

and Tumor data set 2 (see Table 1 and Section 4.2),1094

similar to the ones used to estimate parameters (VV1095

and Tumor data sets 1). CD8 T cell counts of naive,1096

early and late effector, and memory cells have been1097

measured following VV and Tumor immunizations,1098

on days 4, 6, 7, 8, 11, 13, 15, 21, 28, 42pi.1099

The probability distribution of parameters (mean1100

values, random effects) are known since we have1101

estimated them on VV and Tumor data sets 1 (Sec-1102

tion 4.7). These parameters are not estimated on the1103

validation data. We use them to estimate the individ-1104

ual parameter values that fit individual behaviors of1105

these new data sets (see Section 4.5).1106
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A. Appendices1316

A1 Parameter values used to generate synthetic data sets1317

Table A1 lists parameter values used to generate Synth data sets 1 to 4 (see Table 1). Figures A1 to A4 illustrate1318

Synth data sets 1 to 4 kinetics.1319

Table A1
Parameter values of fixed effects (median values) used to generate Synth data sets 1 to 4 from System (3) and its subsequent reductions:
removal of μE

I (column 4), of μE
L (column 5), and of μI (column 6). Notations μY

X for some mortality-related parameters refer to parameters
μXY in [10]: the subscript X refers to the CD8 T cell population or the immunogen that dies, and the superscript Y to the CD8 T cell

population responsible for inducing death

Parameter Unit Synth data set
1 2 3 4

μN day−1 0.75 0.75 0.75 0.75
δNE day−1 0.009 0.009 0.009 0.009
ρE day−1 0.64 0.64 0.64 0.64
μE

E 10−6 cell−1 day−1 21.5 21.5 21.5 21.5
δEL day−1 0.59 0.59 0.59 0.59
μL

L 10−6 cell−1 day−1 7.5 7.5 7.5 7.5
μE

L 10−8 cell−1 day−1 3.6 3.6 - -
δLM day−1 0.025 0.025 0.025 0.025
ρI day−1 0.1 0.1 0.1 0.1
μE

I 10−7 cell−1 day−1 1.8 - - -
μL

I 10−5 cell−1 day−1 1.8 1.8 1.8 1.8
μI day−1 0.055 0.055 0.055 -



U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

C. Audebert / Modeling and characterization of inter-individual variability in CD8 T cell responses in mice 23

Fig. A1. Synth data set 1. These data have been obtained by simulating System (3) with parameter values in Table A1 and using a
multiplicative white noise, as detailed in Section 4.6. 100 individuals are simulated and first observations are on day 4 pi for cell populations
and the immunogen. Then measurements are on days 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 25, and 30 pi. All cell counts below 100 cells are
not measured. For the immunogen load, values lower than 0.1 are also not considered.



U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

24 C. Audebert / Modeling and characterization of inter-individual variability in CD8 T cell responses in mice

Fig. A2. Synth data set 2. These data have been obtained by simulating a reduced System (3), with parameter values in Table A1, and using
a multiplicative white noise, as detailed in Section 4.6. See Figure A1 for details.
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Fig. A3. Synth data set 3. These data have been obtained by simulating a reduced System (3), with parameter values in Table A1, and using
a multiplicative white noise, as detailed in Section 4.6. See Figure A1 for details.
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Fig. A4. Synth data set 4. These data have been obtained by simulating a reduced System (3), with parameter values in Table A1, and using
a multiplicative white noise, as detailed in Section 4.6. See Figure A1 for details.
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A2 Parameter value estimation using Synth data sets 1 to 41320

Table A2 presents the different steps in estimating parameter values using Synth data sets 1 to 4 and System1321

(3). The procedure is detailed in Section 4.6.1322

Table A2
Steps in estimating parameter values using Synth data sets 1 to 4 and System (3). The procedure is detailed in Section 4.6. True values of
parameters (fixed effects) are given on the second line, true values of random effects all equal 0.1. At Step 1, the procedure leads to removing
parameter μE

I . At Step 2, the procedure leads to removing parameter μE
L . At Step 3, the procedure leads to removing parameter μI . At

Step 4, no other action is required. Values used to take a decision are highlighted in bold at each step. In the first column, ‘m.v.’ stands for
mean value, RSE is defined in (4), ‘r.e.’ stands for random effect, and the shrinkage is defined in (5). Note that values (mean values and
random effects) of parameters μE

E, μL
L, μE

L , μE
I and μL

I have to be multiplied by 10−5 (for μL
I ), 10−6 (for μE

E and μL
L), 10−7 (for μE

I ), and
10−8 (for μE

L). Units are omitted for the sake of clarity

Parameters μN δNE ρE μE
E δEL μL

L μE
L δLM ρI μE

I μL
I μI

True values 0.75 0.009 0.64 21.5 0.59 7.5 3.6 0.025 0.1 1.8 1.8 0.055

Step 1
m.v. 0.75 0.009 0.60 15.8 0.59 7.5 0.9 0.024 0.07 0.2 1.8 0.012
RSE 1 2 2 4 2 2 21 3 2 61 3 11
r.e. 0.1 0.2 0.2 0.3 0.2 0.2 0.7 0.3 0.2 2 0.3 0.9
RSE 7 7 7 8 7 7 23 7 8 21 7 11
shrinkage -1 8 12 18 13 1 100 -1 39 96 4 82
Step 2
m.v. 0.76 0.009 0.59 17.2 0.58 7.9 0.3 0.024 0.07 - 1.9 0.012
RSE 1 2 2 4 2 2 17 3 2 - 3 11
r.e. 0.1 0.2 0.2 0.3 0.2 0.2 0.5 0.3 0.2 - 0.3 0.9
RSE 7 7 7 8 7 7 26 7 8 - 7 10
shrinkage -1 10 12 20 15 1 100 -1 46 - 4 80
Step 3
m.v. 0.75 0.01 0.59 17.0 0.58 7.8 - 0.025 0.07 - 1.8 0.013
RSE 1 2 2 3 2 2 - 3 3 - 3 9
r.e. 0.1 0.2 0.2 0.3 0.2 0.2 - 0.3 0.2 - 0.3 0.7
RSE 7 7 7 8 7 7 - 7 8 - 7 10
shrinkage -1 8 11 17 13 1 - -1 34 - 2 82
Step 4
m.v. 0.76 0.009 0.66 21.2 0.61 7.3 - 0.024 0.1 - 1.8 -
RSE 1 2 1 2 1 2 - 3 1 - 2 -
r.e. 0.1 0.2 0.1 0.2 0.1 0.2 - 0.3 0.1 - 0.2 -
RSE 7 7 7 7 7 7 - 7 7 - 7 -
shrinkage -1 3 6 6 7 -1 - -1 0 - 1 -

4.9. A3. Predicted individual dynamics from VV and Tumor data sets 21323

Predicted individual dynamics from VV and Tumor data sets 2, discussed in Section 2.4, are available at1324

https://plmlab.math.cnrs.fr/audebert/cd8-responses.1325

https://plmlab.math.cnrs.fr/audebert/cd8-responses

