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Abstract: The carbon system in the eastern tropical Atlantic remains poorly known. The variability 

and drivers of the carbon system are assessed using surface dissolved inorganic carbon (DIC), alka-

linity (TA) and fugacity of CO2 (fCO2) measured in the 12° N–12° S, 12° W–12° E region from 2005 

to 2019. A relationship linking DIC to temperature, salinity and year has been determined, with 

salinity being the strongest predictor. The seasonal variations of DIC, ranging from 80 to 120 µmol 

kg−1, are more important than the year-to-year variability that is less than 50 µmol kg−1 over the 

2010–2019 period. DIC and TA concentrations are lower in the northern part of the basin where 

surface waters are fresher and warmer. Carbon supply dominates over biological carbon uptake 

during the productive upwelling period from July to September. The lowest DIC and TA are located 

in the Congo plume. The influence of the Congo is still observed at the mooring at 6° S, 8° E as 

shown by large salinity and chlorophyll variations. Nevertheless, this site is a source of CO2 emis-

sions into the atmosphere. 
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1. Introduction 

Tropical regions are strong sources of CO2 to the atmosphere due to the equatorial 

upwellings, bringing CO2-rich waters to the surface, and to high sea surface temperatures. 

Among all tropical regions, the Pacific Ocean is the most studied as El Niño events de-

velop there and they are the dominant process governing the interannual variability of 

the air–sea CO2 flux (e.g., [1]). The Atlantic Ocean has been less studied with relatively 

fewer observations and modelling analyses [2]. The Western Tropical Atlantic (WTA) and 

the Eastern Tropical Atlantic (ETA) receive the discharge of the two largest rivers of the 

world with the Amazon, near the equator in the west, and the Congo near 6° S in the east. 

Numerous studies have highlighted the impact of the Amazon outflow on productivity 

and carbon uptake in the WTA [3–10]. The dynamics of the Congo plume and its influence 

on the coastal ocean of the ETA are less documented than the Amazon plume [11]. The 

Congo plume, like large river plumes, supplies inorganic nutrients, which stimulates bi-

ological production. There is evidence of high chlorophyll concentrations (>10 mg m−3) 

near its delta [12]. A few studies reported carbon uptake in the outer plume of the Congo 

river [13,14]. However, the extent of its influence on carbon properties in the ETA is poorly 

known. 
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Here, we focus on the 12° N–12° S, 12° W–12° E region defined as the ETA. This re-

gion is dominated by the seasonal variation of equatorial and coastal upwellings. The At-

lantic cold tongue, which spreads between the African coast and 20° W south of the equa-

tor, usually forms in June and lasts nearly 5 months [15]. Its formation coincides with the 

intensification of the southeasterly trade winds. Its spatial extent is maximum in July–

September as well as its cooling [15]. The coastal upwelling along the coast between Cape 

Palmas (Ivory Coast) and Cotonou (Benin) is also seasonal with the main cooling period 

occurring at the same time, from July to September and a minor upwelling occurring from 

January to February [16,17]. 

Earlier studies showed that the tropical Atlantic Ocean has a low productivity except 

in areas where nutrients are brought to the surface such as the equatorial region and the 

coastal upwelling [18]. In the Gulf of Guinea, along the northern African coast, the highest 

chlorophyll concentrations are observed in July–September and coincide with the pres-

ence of the upwelling, which leads to large fish catches [19,20]. This productive region is 

part of the Guinea Current Large Marine Ecosystem extending from the Guinea-Bissau to 

the Cape Lopez in Gabon [21]. 

The equatorial upwelling is also a productive region with a main phytoplankton 

bloom in July–August, when the Atlantic cold tongue is most developed, and a secondary 

bloom in December as observed by chlorophyll concentrations from ocean color satellite 

[22]. The surface productivity is explained by the vertical supply of nutrients that fuel the 

phytoplankton development [23]. When the thermocline is deeper, the vertical supply is 

more limited and the surface productivity remains low [24]. Chlorophyll and nitrate are 

the biochemical variables for which extensive data exist and they were used for modelling 

studies in this region [25]. 

Carbon observations collected during oceanographic cruises in the 1980s enabled es-

timates of the source of CO2 in this region (e.g., [26,27]). The seasonality of the flux and 

the CO2 outgassing have been further documented by hourly monitoring of the fugacity 

of CO2 (fCO2) at the time-series station at 6° S, 10° W, e.g., [28]. More recently, a coupled 

physical-biogeochemical model was used to compare the air–sea CO2 flux between the 

equatorial Atlantic and the equatorial Pacific [2]. One of the main result was that the var-

iability of the sea surface partial pressure of CO2 (pCO2) appears to be driven by sea sur-

face temperature (SST) in the equatorial Atlantic whereas it is driven by dissolved inor-

ganic carbon (DIC) in the equatorial Pacific. However, the authors pointed out that the 

driving parameter in the equatorial Atlantic was subject to high uncertainty due to the 

lack of observations. They recommended regional analyses of key variables that regulate 

oceanic pCO2 such as DIC. 

The objective of this paper is to analyze the seasonal and interannual variability of 

the carbon system in the Eastern Tropical Atlantic and the impact of the Congo outflow, 

using surface carbon measurements from 2005 to 2019 and satellite data. We determine 

the driving factors of DIC and alkalinity (TA) spatial variations and provide empirical 

relationships for the ETA. 

2. Materials and Methods 

As part of the US–France–Brazil prediction and research moored array in the tropical 

Atlantic (PIRATA) program, five moorings have been deployed to monitor temperature, 

salinity, wind speed and precipitation in the eastern Tropical Atlantic [29]. The moorings 

are serviced and replaced every year during the French cruises. Two of these moorings 

have been equipped with a CO2 CARIOCA sensor to monitor seawater fCO2 at about 1.5 

m depth. The fCO2 has been measured hourly by spectrophotometry at 6° S, 10° W since 

2006 [30] and at 6° S, 8° E from 2017 to 2019. The accuracy of the CARIOCA sensor is 

estimated at ±3 µatm. The fCO2 data are archived by the Surface Ocean CO2 Atlas project 

(SOCAT, www.socat.info). The buoy at 6° S, 8° E drifted in 2018 and again in 2019; there-

fore, this site has been abandoned. During the cruises for servicing the PIRATA moorings, 
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seawater samples were taken for inorganic carbon and alkalinity (National Center for En-

vironmental Information (NCEI), Ocean Carbon Data System (OCADS), 

https://www.ncei.noaa.gov/access/, accession numbers 0108086–0108091, 0171189–

0171191, 0171193–0171197). The samples were analyzed by potentiometric titration with a 

closed-cell using the method of Edmond et al. [31]. The system was calibrated by Certified 

Reference Materials (CRMs) provided by Prof. A. Dickson (Scripps Institution of Ocean-

ography, San Diego, CA, USA). The accuracy of TA and DIC is estimated at ±3 µmol kg−1 

and ±5 µmol kg−1, respectively. In June 2006 and March 2019, seawater and atmospheric 

fCO2 were measured underway during the PIRATA cruises (EGEE 3 and PIRATA FR-29), 

using a CO2 system including an infrared LiCor 7000 analyzer [14]. The accuracy of fCO2 

is estimated at ±2 µatm. The PIRATA cruises have provided a good coverage of carbon 

measurements from ship and moorings in the 10° S–6° N, 12° W–12° E region (Figure 1). 

 

Figure 1. Distribution of DIC observations (2005–2019) and location of the five PIRATA moorings 

(×). The main zonal surface currents are the eastward Guinea Current (GC) and the westward South 

Equatorial Current (SEC). The location of the Angola Dome (AD) is indicated. 

The sampling covers the two main surface currents: the eastward Guinea Current 

(GC) in the north and the westward South Equatorial Current (SEC) in the south. The 

boundary between the two currents is located approximately along 3° N [32]. The carbon 

system includes four parameters: fCO2, DIC, TA and pH. The knowledge of two parame-

ters allows the calculation of the other two using the equations of the carbon system. At 

the deployment of the moorings and during the EGEE 3 and PIRATA FR-29 cruises, the 

three parameters fCO2, DIC and TA were measured so that the carbon system was over-

determined. Two parameters are used to calculate the remaining one that is subsequently 

compared with the measurement. The calculation is performed with the CO2SYS software 

for Matlab [33] using the dissociation constants of Mehrbach et al. [34] refitted by Dickson 

and Millero [35]. 

A number of 119 concomitant measurements of DIC, TA and fCO2 are used to check 

the consistency of the carbon system (Table 1). 

Table 1. Statistics of the calculation of a carbon parameter from a given pair of parameters given 

by the Root Mean Squared Error (RMSE) and the correlation coefficient (r) between the calculated 

and the 119 measured values. 

Pair Calculated Parameter RMSE r 

TA–DIC fCO2 11.7 µatm 0.90 

DIC–fCO2 TA 7.4 µmol kg−1 0.99 

fCO2–TA DIC 5.9 µmol kg−1 0.99 
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From the three possible pairs of parameters, the fCO2–TA pair gives a relatively low 

uncertainty to calculate DIC. The pair DIC–TA gives a high uncertainty to calculate fCO2, 

which is explained by the strong co-variation between DIC and TA (r = 0.96). This is in 

agreement with previous works estimating combined uncertainties in calculated parame-

ters from different measurement pairs and reporting DIC–TA as the worst pair of param-

eters to calculate fCO2 [36,37]. 

The air–sea flux of CO2, FCO2, is calculated at the PIRATA moorings as follows: 

FCO2 = k * sol * ΔfCO2 (1)

where k is the gas transfer velocity depending on the wind speed [38], sol is the solubility 

of seawater CO2 [39] and fCO2 is the difference of fCO2 between the ocean and the atmos-

phere. A positive flux means a source of CO2 to the atmosphere. The PIRATA sites are 

equipped with an anemometer but, due to the failure of the sensor, there are some data 

gaps. Therefore, we use the wind speeds from the Cross-Calibrated Multiplatform 

(CCMP) product version 2 [40]. They are usually in good agreement with the PIRATA 

winds. 

Empirical relationships are a useful means to estimate data from more accessible pa-

rameters, such as temperature and salinity, when no observation is available. In order to 

calculate DIC and pH from fCO2 at the moorings, we use the following empirical TA–sea 

surface salinity (SSS) relationship determined by Koffi et al. [41] with 190 observations 

collected from 2005 to 2007: 

TA (± 7.2) = 65.52 (± 0.77) * SSS + 2.50 (± 27.22), r2 = 0.97, (2)

Using 638 observations of TA from 2005 to 2019, the RMSE is 8.5 µmol kg−1 and r is 

over 0.99, which confirms the robustness of this TA–SSS relationship for the eastern trop-

ical Atlantic. The salinity-normalized TA given by TA*35/SSS gives an average of 2298.1 

± 8.1 µmol kg−1 and is close to the value of 2291 ± 4 µmol kg−1 given by [42] for the Atlantic 

between 30° S and 30° N for SST >20 °C. 

Relationships between DIC and physical parameters are investigated through vari-

ous techniques such as MLR (multiple linear regressions), decision trees, random forest 

and feed forward neural networks (Appendix A). 

Statistical tests are used to compare different groups of data. When the parameters 

do not follow a normal distribution, we use the Wilcoxon rank sum test, equivalent to the 

Mann–Whitney U test. In particular, we tested whether the data located north of the equa-

tor were significantly different from the data located south of it. 

We examine the link between the year-to-year variability and the tropical southern 

Atlantic (TSA) index. The TSA index is an indicator of the SST in the eastern tropical South 

Atlantic. It is the average of SST in the box 30° W–10° E, 20° S–0° [43]. 

Satellite images of SST, SSS, chlorophyll and precipitation provide the spatial envi-

ronmental conditions in the ETA, and their seasonal variability in the region. The chloro-

phyll concentrations are monthly composites from MODIS (Moderate-Resolution Imag-

ing Spectroradiometer) Aqua on a 4 km grid. The monthly composites of SST are on a 9 

km grid. MODIS data are available from July 2002 to January 2020. The sea surface salinity 

fields are 18-day Gaussian means from SMOS (Soil Moisture and Ocean Salinity Satellite) 

at a resolution of 25 km (CATDS CEC LOCEAN debias V4.0, doi:10.17882/52804). The data 

from SMOS cover the period from January 2010 to September 2019. A monthly climatol-

ogy of SSS is calculated over this period. The precipitations are from the Tropical Rainfall 

Measuring Mission (TRMM) and are available monthly, on a 0.25° grid. The monthly cli-

matology of rain rate is calculated for the 2005–2019 period.  
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3. Results 

3.1. Environmental Setting 

In the 12° S–12° N, 12° W–12° E region, the MODIS climatological SST varies from 

24.55 °C in July to 27.01 °C in March. During the warm season, warm water spreads over 

most of the basin as shown for the month of March (Figure 2a). From June to September, 

the surface water is cooler (<25.5 °C) as the equatorial and coastal upwellings are well 

developed. The months of March and August are chosen to illustrate the contrasts be-

tween the two seasons (Figure 2a,b). During the cold season, a central West African 

upwelling occurs in the northern part of the Gulf of Guinea between approximately 8° W 

and 4° E, north of 2° N, from June to October [17]. The cooling is visible in the SST map of 

August as a small band of cooler SST along the coast (Figure 2b). Along the coast of Gabon, 

around 10° E near the equator, the coastal upwelling merges with the equatorial upwelling 

forming the Atlantic cold tongue (ACT). In the southernmost part of the basin, austral 

winter cooling leads to the coldest SST. 

 

Figure 2. Distribution of the climatological sea surface temperature (SST) for (a) March and (b) 

August and chlorophyll a (Chla) for (c) March and (d) August from Moderate-Resolution Imaging 

Spectroradiometer (MODIS). The five PIRATA moorings are indicated by the black stars (*). 

During the warm season, the productivity is low and the chlorophyll concentrations 

remain close to 0.2 mg m−3 except along the coastline, and in the Congo plume near 6° S, 

10° E (Figure 2c). During the cold season, the chlorophyll concentrations increase along 

the coast, especially in the coastal upwelling of the Gulf of Guinea, and in the equatorial 

upwelling (Figure 2d). In the south, near 10° S, 9° E, the Angola Dome is maintained by 

the dynamic uplift of the thermocline, and it is also a productive region [44]. Signorini et 

al. [12] explain the surface distribution of the chlorophyll in the tropical Atlantic by the 

upwelling, defined as large vertical excursions of the thermocline, and by the river 

plumes. Both processes supply nutrients that lead to biological activity. Productive waters 

are advected by surface currents and arrive at the PIRATA moorings with the exception 

of the mooring at 10° S, 10° W that remains in very low chlorophyll waters throughout the 

year (Figure 2c, d). From 2010 to 2019, the MODIS chlorophyll concentrations during the 

July–September months are significantly higher than during the remaining months of the 

period (p-value < 0.0001), in agreement with previous studies [22]. This confirms that the 

cold season corresponds to the productive season. 
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The region is also affected by freshwater input from precipitation and river runoff. 

The maximum precipitation is an indicator of the position of the Intertropical Conver-

gence Zone (ITCZ). The ITCZ migrates seasonally and is located at its northernmost posi-

tion in July and at its southernmost position in March. In the ETA, the ITCZ is over the 

ocean during the warm season from approximately December to June. In March, it is lo-

cated slightly north of the equator (Figure 3a) whereas in August it is over the land (Figure 

3b). The precipitation feeds the numerous rivers that discharge into the Atlantic, which 

affects the distribution of SSS in the basin. The northern part of the basin is fresher than 

the southern part because of the presence of the ITCZ, and of the runoff of the rivers (e.g., 

Niger, Volta) located in the eastern Gulf of Guinea. North of about 2° N, the eastward 

Guinea Current, an extension of the North Equatorial Counter Current (NECC), is rela-

tively fresh as it receives large precipitation due to the presence of the Intertropical Con-

vergence Zone (ITCZ). 

 

Figure 3. Distribution of the Tropical Rainfall Measuring Mission (TRMM) rain rate for (a) March 

and (b) August and Soil Moisture and Ocean Salinity Satellite (SMOS) SSS for (c) March and (d) 

August DIC. The PIRATA moorings are indicated by the black stars (*). 

South of the equator, the areas of freshwater are located along the coastline, associated 

to high precipitation, and near the Congo mouth at 6° S (Figure 3). The Congo River has a 

bimodal hydrological cycle with its maximum river discharge in December and a secondary 

peak of discharge in May, whereas the minimum discharge is in August and March [45]. In 

March, the SSS distribution follows the precipitations with low SSS (<35) associated to high 

precipitation in the northern and southeastern parts of the basin (Figure 3a,c). In August, 

the salinity is higher and low salinity (<34) is encountered near the rivers mouths of the 

Volta and Niger in the north and of the Congo in the south (Figure 3d). During this month 

of minimum discharge, the extension of low SSS water near the Congo mouth is limited. 

The physical conditions in this region show a north–south difference between 

warmer and fresher waters in the north and colder and saltier waters in the south because 

of the precipitations, river outflows and the coastal and equatorial upwellings. In the 

northern part of the basin, the climatological SST ranges between 25.26 °C in July and 

28.82 °C in February and the SSS is below 35.2, reached in August. In the southern part, 

the SST varies from 22.41 °C in July to 27.41 °C in February, and the SSS varies from 35.2 

in April to 35.88 in July. The north–south gradient is visible on the satellite SST throughout 
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the year. Even during the warm season, as illustrated in March (Figure 2a), the surface 

water is warmer north of the equator than south of it. 

3.2. Variability and Drivers of the Carbon System 

The DIC concentrations of the samples collected from 2005 to 2019, west of 10° E, 

range from 1618 to 2133 µmol kg−1 with the lowest concentrations (<1800 µmol kg−1) close 

to the Congo outflow and the highest (>2100 µmol kg−1) in the southwestern part of the 

region. The distribution of the DIC samples highlights the lower concentrations north of 

the equator compared to the south (Figure 1). As TA is strongly correlated to SSS, TA 

exhibits also a north–south difference. In the north, TA is lower with values ranging from 

2114 to 2369 µmol kg−1 and a mean of 2278 ± 38 µmol kg−1. In the south, TA has a mean 

value of 2324 ± 66 µmol kg−1 with a maximum of 2433 µmol kg−1 reached south of 8° S, 

near 4° W where evaporation dominates. The lowest TA value of 1832 µmol kg−1 is found 

in the Congo plume. Warm and fresh waters are located in the GC system and exhibit 

lower TA and DIC concentrations whereas colder and saltier water mass transported by 

the SEC have higher alkalinity and DIC content. The distributions of SST, SSS, DIC and 

TA north and south of the equator are significantly different (p < 0.001). 

DIC concentrations vary according to the main system of currents and depend on the 

water masses present in the region, which are characterized by their SST and SSS. This led 

Koffi et al. [41] to propose an empirical relationship using data over 2005–2007. However, 

due to the atmospheric CO2 increase and air–sea exchange, CO2 increases in the ocean 

over time and the relationship presents a bias. The difference between the observations 

and the regression increases over time, which confirms that the relationship is no longer 

valid for recent years. According to the atmospheric CO2 measurements during EGEE 3 

and PIRATA FR-29, the atmospheric fCO2 has increased from 367.6 ± 1.7 µatm in June 

2006 to 392.2 ± 2.4 µatm in March 2019, which corresponds to a rate of 1.9 µatm yr−1. 

In order to take into account the CO2 increase over time, we develop a new multiple 

linear regression (MLR) by adding a time variable: 

DIC = −4585.8 (± 371.16) − 12.46 (± 0.53) * SST + 54.36 (± 0.93) * SSS + 2.49 (± 0.19) * Year (3)

This relationship is based on 637 samples collected in the 12° W–10° E, 10° S–10° N 

region from 2005 to 2019. The RMSE is 15.3 µmol kg−1 and r2 = 0.93. The negative sign of 

the SST coefficient in Equation (3) reflects the contribution of the upwelling with cold SST 

leading to higher concentrations of DIC. The same regression is performed after normali-

zation of the data (by subtracting the mean and dividing by the standard deviation) in 

order to determine the weight of each predictor. The coefficients for SST, SSS and Year are 

−0.42, 0.75 and 0.20, respectively. The stronger predictor is SSS, which is the dominant 

factor driving the DIC variations. However, without taking into account the SST, the var-

iance explained would drop from 93% to 87% and the RMSE would increase to 21 µmol 

kg−1.  

Equation (3) is determined using discrete samples of DIC and needs to be validated 

with independent data. Surface fCO2 has been measured underway during two cruises 

(EGEE 3 and PIRATA FR-29) and at two moorings (6° S, 10° W and 6° S, 8° E) on an hourly 

basis. In order to check the robustness of Equation (3), DIC is calculated from the alkalin-

ity–SSS relationship and the fCO2 measurements. The calculated DIC is then compared 

with the predicted DIC (Table 2). DIC given by Equation (3) is in good agreement with 

DIC calculated from underway fCO2. The correlation coefficient is always over 0.96 and 

the RMSE is within the uncertainty given by Equation (3). The highest RMSE is found at 

6° S, 8° E. 
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Table 2. Comparison between the DIC predicted by Equation (3) and DIC calculated from meas-

ured fCO2 and alkalinity from Equation (2). The statistics include the Root Mean Squared Error 

(RMSE), the correlation coefficient (r) and the number of data (N). The data of the moorings corre-

spond to daily means. 

Mooring or Cruise RMSE * r N Time Period 

6° S, 10° W 9.7 µmol kg−1 0.96 6611 2006–2017 

6° S, 8° E 14.4 µmol kg−1 0.99 239 2017–2019 

EGEE 3 9.8 µmol kg−1 0.98 6895 2006 

PIRATA FR-29 10.0 µmol kg−1 0.99 4462 2019 

* RMSE using the coefficients of Equation (3) with all decimal places are calculated in Appendix A. 

Using monthly MODIS SST and SMOS SSS fields on a 0.25° grid, the monthly re-

gional distribution of DIC can be estimated using Equation (3) to map its spatial variations 

(Figure 4). The monthly climatology of DIC is built for the January 2010 to September 2019 

period. Overall, the monthly maps of DIC are similar to the SSS maps with lower values 

in the northern part of the basin and close to the river mouths. 

 

Figure 4. Climatology of DIC (in µmol kg−1) obtained from Equation (3) with the monthly fields of 

MODIS SST and SMOS SSS. The DIC climatology is calculated over the January 2010 to September 

2019 period. 

Lower DIC concentrations are associated with the northern water mass and range 

from a mean value of 1924 µmol kg−1 in April to 2027 µmol kg−1 in August. Higher DIC 

concentrations are found in the southern water mass with a mean value of 2001 µmol kg−1 

in April to 2096 µmol kg−1 in August. The monthly north–south DIC concentrations are 

significantly different throughout the year (p-value < 0.0001). During the upwelling period 

(July–September), the DIC concentrations are significantly higher than during the warm 

season (p-value < 0.0001). Thus, for the upwelling period, the mean DIC is 2070 ± 70 µmol 

kg−1, whereas it is 2007 ± 28 µmol kg−1 during the warm season over the 2010–2019 period. 
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In the upwelling season, the north–south contrast in DIC corresponds to a north–south 

SST difference. For example, in August, warm surface waters (>26 °C) are separated from 

cold waters (<24 °C) with the frontal zone located around the equator (Figure 2b). This 

front is also observed on the DIC maps from June to September (Figure 4). 

3.3. Impact of the Congo Plume 

The Congo has by far the strongest river discharge in this region. Near the Congo 

mouth, the carbon system is affected by the Congo discharge and is examined from nine 

observations taken east of 10° E, around 6° S, over the period 2013–2018 from March to 

June. The lowest salinity (27.3 psu) was observed in March 2018, at the time of the second-

ary minimum of the Congo discharge. There was no sampling during the period of high 

Congo discharge, in December and May. Using the nine samples near the Congo outflow, 

the mixing between the river and oceanic waters gives the following equation: 

DIC = 50.60 (± 1.97) * SSS + 231.73 (± 62.19) (4)

with a RMSE of 16.0 µmol kg−1 and r2 = 0.99. The relationship covers the region close to 

the Congo mouth from 6° S to 5° S, east of 10° E. Further west, carbon data are available 

at the mooring at 6° S, 8° E. Hourly fCO2 has been monitored at 6° S, 8° E from 2017 to 

2019 with a CARIOCA sensor. This dataset includes observations from March to August. 

In addition, DIC samples have been taken at this site. These DIC samples and the DIC 

calculated from daily averages of fCO2 and TA–SSS tend to depart from the mixing line 

(Figure 5). The RMSE is 32 µmol kg−1 (N = 358) and 24 µmol kg−1 (N = 11) for the calculated 

DIC and for the DIC samples at 6° S, 8° E, respectively.  

 

Figure 5. DIC–SSS relationship obtained with the samples near the Congo outflow (dashed line) 

with DIC samples used for the regression (red stars), DIC samples at 6° S, 8° E (blue squares) and 

DIC calculated (cyan dots) from daily fCO2 measured at 6° S, 8° E and TA calculated from SSS at 

6° S, 8° E. 

The DIC data at 6° S, 8° E are better estimated by Equation (3), giving a RMSE of 14 

µmol kg−1 for both the 11 samples taken at the site and the DIC calculated from the daily 

fCO2. This suggests that the conservative mixing applies near the River mouth but it is no 

longer valid further west, at 8° E. Nevertheless, the influence of the Congo at the mooring 

is noticeable. Using satellite based data products, Hopkins et al. [46] show that the Congo 
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plume extends northwest along the coastline or west-southwest into the Atlantic trans-

ported by the SEC. From MODIS chlorophyll images (Figure 2c,d), high chlorophyll con-

centrations are observed at the mooring at 6° S, 8° E in both seasons and originate from 

the coast near the Congo mouth. 

Using all the available data measured at 6° S, 8° E over the 2006–2019 period, the SSS 

are grouped by month (Figure 6a). A data gap occurred from 2007 to 2013 as no mooring 

was deployed. This site exhibits large salinity variations. The lowest salinity of 30.22 psu, 

occurs in May 2018 during the secondary maximum discharge of the Congo. The numer-

ous outliers usually point towards lower salinity than the median. In December, during 

the maximum Congo discharge, the salinity of the outliers ranges from 32 to 29 psu. The 

large range of salinity of the outliers (>1 psu) is usually observed around the maximum 

discharge periods, December and May. The median salinity of December is over 35 psu, 

which indicates that the plume has not reached the mooring yet, except for some years as 

in 2006 when a salinity close to 29 psu was observed. The lowest SSS median is in January, 

which suggests that the Congo plume, transported by the westward SEC, reaches the 

mooring. Based on satellite images, Hopkins et al. [46] found that the maximum offshore 

extent of the Congo plume occurs between December and April with a January peak. The 

freshwater supplied by the secondary peak of discharge, in May, tend to move towards 

the Gulf of Guinea [47]. The minimum Congo discharge occurs in August, which corre-

sponds to the highest salinity at 6° S, 8° E. The measured values of SSS and DIC, calculated 

from fCO2 at the mooring in 2017, 2018 and 2019, and averaged for each month, are also 

indicated (Figure 6).  

 

Figure 6. (a) Distribution of SSS at 6° S, 8° E grouped by month using SSS observations from 2006 

to 2019 (the data at 6° S, 8° E are for the periods 28 June 2006 to 10 June 2007 and 5 July 2013 to 8 

August 2019). The central mark of the box corresponds to the median with the bottom and top 

edges of the box indicating the 25th and 75th percentiles. The whiskers extend to the extreme data 

points and the crosses (×) are considered as outliers. (b) Same for the distribution of DIC at 6° S, 8° 

E calculated with Equation (3) using the SSS and SST recorded at the PIRATA mooring. The 

monthly measurements of SSS and DIC calculated from fCO2 at the PIRATA mooring are indi-

cated for 2017 (black stars), 2018 (green stars) and 2019 (red stars). 

The DIC variations follow closely the SSS variations with the highest salinity corre-

sponding to the highest DIC in August, the largest variations in January and the lowest 

DIC concentrations occurring during the January–May period (Figure 6b). The year-to-

year variability is very pronounced as shown by the samples taken at this site. In April 

2017, the salinity is lower than 1 psu and DIC is higher than 50 µmol kg−1 compared to 

April 2018 and 2019. Likewise, in June 2018 a low salinity (34 psu) corresponds to a low 

DIC (1968 µmol kg−1) whereas in June 2017 and 2019 the salinity is over 35 psu and the 

DIC concentrations over 2029 µmol kg−1. 
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The distribution of the chlorophyll from MODIS is examined at the 6° S, 8° E mooring 

(Figure 7). The chlorophyll concentrations at this site are relatively high, which is in con-

trast with the other four PIRATA moorings where concentrations are always lower than 

1.5 mg m−3 at 6° S, 10° W and lower than 3 mg m−3 at the two equatorial moorings. The 

lowest chlorophyll concentrations (<0.25 mg m−3) are encountered at 10° S, 10° W as this 

site is outside the area of influence of both the Atlantic cold tongue and the Congo plume. 

Figure 7. Distribution of MODIS chlorophyll at 6° S, 8° E grouped by month using data from 2002 

to 2019. The central mark of the box corresponds to the median with the bottom and top edges of 

the box indicating the 25th and 75th percentiles. The whiskers extend to the extreme data points 

and the crosses are considered as outliers. 

At 6° S, 8° E, the highest concentrations of MODIS chlorophyll a occur in July–Sep-

tember and, to a lesser extent, in January–February, which is in agreement with the results 

of Signorini et al. (1999) using SeaWiFS (Sea-viewing Wide Field-of-view Sensor) chloro-

phyll a from 1997 to 1998. The concentrations of the years 2017, 2018 and 2019 are indicated 

(Figure 7) to compare with the DIC variations (Figure 6b). The chlorophyll a from MODIS 

is highly variable at 6° S, 8° E with the highest concentrations in August, as shown by the 

whisker reaching over 7 mg m−3 (Figure 7), when the concentrations of DIC are the highest. 

There is no clear link between DIC and chlorophyll concentrations as the highest chloro-

phyll are not associated with low DIC that would occur if strong carbon uptake were tak-

ing place. In July–September, both chlorophyll and DIC concentrations are high. This sug-

gests that biological activity is not the dominant driver of carbon variations at this site. 

3.4. Year-to-Year Variability of the Carbon Parameters 

In the ETA, the longest time-series of carbon parameters is the monitoring of hourly 

fCO2 at 6° S, 10° W that started in 2006. At 6° S, 8° E, the monitoring of fCO2 is rather 

limited with observations from 2017 to 2019 and a large data gap in 2018–2019 due to the 

drift of the buoy. The daily DIC at these two sites, calculated from daily fCO2, is compared 

with the DIC from the MLR, and with the samples taken during the PIRATA cruises at 

both locations (Figure 8a, b). The MLR reproduces rather well the variations of DIC at 6° 

S, 10° W but overestimates the DIC concentrations in some years, such as in July–Septem-

ber 2011 where the difference is over 35 µmol kg−1. The timing of the decreases and in-

creases in DIC is in good agreement between the DIC calculated by the MLR and the DIC 

calculated from underway fCO2. At 6° S, 10° W, DIC values are higher in July–November 
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and lower in April–June each year. At 6° S, 8° E the daily variations of DIC tend to show 

the lowest concentrations in April and the highest in August but with large variations. For 

example, DIC concentrations vary by more than 150 µmol kg−1 within days in April 2017 

(Figure 8b). In April 2019, the lowest DIC is much higher than in April 2017 with a differ-

ence reaching 125 µmol kg−1. Nevertheless, the MLR captures well the high frequency var-

iations of DIC. 

Figure 8. (a) Daily DIC determined from the multiple linear regressions (MLR) using SST and SSS 

recorded at the 6° S, 10° W mooring since 2006 (in black) and calculated from measured seawater 

fCO2 and TA–SSS (in cyan) at 6° S, 10° W The DIC samples are in red. (b) as in a) for the mooring 

at 6° S, 8° E from 2017 to 2019. (c) Monthly DIC calculated with the MLR using SST and SSS rec-

orded at the mooring (in black) and using satellite SST and SSS (in blue) collocated at 6° S, 10° W. 

(d) same as in (c) for the mooring at 6° S, 8° E from 2017 to 2019. 

As expected, given the discrepancy observed in the daily variations, monthly DIC 

derived from satellite data tend to give higher concentrations than DIC calculated with 

the PIRATA data but reproduce the seasonal variations of DIC (Figure 8c,d). The monthly 

DIC smooth significantly the variations. It is especially visible at 6° S, 8° E on the MLR 

with a reduced range of variations of DIC, decreasing from 460 to 320 μmol kg−1. The 

seasonal cycle of DIC at 6° S, 8° E is more distinct than on the daily variations. Given that 

the satellite pixels correspond to a much larger area than the observations at the mooring, 

there is expected discrepancy between the two products but overall, the MLR reproduces 

well the seasonal cycle and the year-to-year variations of DIC. 

After verifying the DIC variations over time at the two sites where observations are 

available, we examine the monthly DIC variations given by the MLR using satellite data 

at regional scale. The DIC concentrations are lower in the north than in the south with the 

maximum values occurring from July to September each year in both regions (Figure 9). 

The monthly means of DIC over the entire region are closer to the DIC variations observed 

in the south in Figure 9 because the region north of the equator includes a large section of 

land and, hence, the weight of this region is much smaller in the global average. The low-

est concentrations of DIC occur in March–April in the south, whereas, north of the equa-

tor, low DIC concentrations (<1950 µmol kg−1) occur over a much longer period, usually 

from November to May. The difference between the highest and the lowest DIC concen-

trations range from about 80 to 125 µmol kg−1 in both regions. This range is much higher 
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than the year-to-year variability of DIC that is less than 50 µmol kg−1 over the 2010–2019 

period. On annual average, over the whole region, the DIC variations are less than 35 

µmol kg−1. In both the northern and southern regions, the seasonal variability is responsi-

ble for the large variations of DIC (Figure 9). 

Figure 9. Monthly DIC determined from the MLR using satellite SST and SSS for the region north 

and south of the equator between January 2010 and September 2019. 

The year 2010 exhibits the lowest annual average of DIC in the north (p-value = 0.006) 

and in the south but, in the southern region, it is not significantly different from the other 

years. The salinity data retrieved from SMOS are of lower quality from January to March 

2010, at the beginning of the series. If we remove these 3 months in the time series, the 

annual mean of DIC in 2010 is no longer significantly different from the other years in 

both regions. The highest DIC annual average occurs in 2015 north of the equator and in 

2017 south of it, but these years are not significantly different from the other years. Over-

all, the year-to-year variability of DIC does not highlight any anomalous year over the 

2010–2019 period. 

4. Discussion 

4.1. Main Features of the Carbon Parameters 

Both DIC and TA are strongly correlated to physical parameters. The TA–SSS rela-

tionship is robust and does not vary much with new observations. The DIC can be esti-

mated by taking into account the water masses, characterized by their temperature and 

salinity, and an increase in oceanic surface CO2 over time due to the atmospheric CO2 

increase. In stratified regions, like the tropics, the oceanic CO2 tends to follow the rate of 

the atmospheric increase. The MLR used here shows that SSS, SST and year describe well 

the DIC variations in this region. Other methods, taking into account non-linear processes, 

do not perform significantly better than the MLR (Appendix A), which implies that the 

DIC dependency on the SSS, SST, and the year is essentially linear. However, feed forward 

neural networks show slightly better results with values of the first and last quantiles of 

DIC, suggesting that a non-linear dependency exists between DIC and input variables 

(Appendix A). Low concentrations of DIC are mostly encountered in coastal area in river 
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plumes. As most samples are in the open ocean region, the MLR is adequate here. How-

ever, a non-linear method would be required when more samples in the coastal zone be-

come available.  

The DIC distribution in the 12° W–10° E, 12° S–12° N region (Figure 4) shows high 

DIC concentrations in most part of the ETA during the upwelling season. Overall, the DIC 

values range from 1945 to 2090 µmol kg−1 with an average of 2024 ± 37 µmol kg−1 from 

2010 to 2019. The highest DIC values occur during the cold and productive season, in July–

September each year (Figure 9). In this season, the MODIS chlorophyll is significantly 

higher. The vertical supply of subsurface waters is responsible for bringing CO2-rich wa-

ters to the surface that spread over the basin. It is the dominant process and the biological 

activity is not strong enough to counterbalance the carbon supply. 

The DIC concentrations in the ETA are similar to DIC observations collected further 

west. In the Western Tropical Atlantic, in the SEC, DIC concentrations average 2045 ± 40 

µmol kg−1 in April–September and 2058 ± 22 µmol kg−1 in October–March from analyses 

made over the period 1989–2014 [48]. In the ETA, south of the equator, the DIC concen-

trations, between 2010 and 2019, average 2059 ± 39 µmol kg−1 in April–September and 

2036 ± 32 µmol kg−1 in October–March.  

The lowest DIC concentrations in the ETA are observed east of 10° E near the Congo 

mouth. In this area, DIC is better estimated with the conservative mixing Equation (4) 

than with the MLR. The slope of Equation (4) is different from the ones given by published 

relationships (Table 3). As previously noticed [49], the value of the slope is sensitive to the 

salinity range. Using all the data or data with salinity higher than 33 changes the slope 

from 46.5 µmol kg−1/psu to 50.6 µmol kg−1/psu [49]. It also changes the end-member (DIC 

at SSS = 0) for the Congo from 355 ± 48 µmol kg−1 to 221 ± 97 µmol kg−1. As no sample was 

taken during the highest Congo discharge, our lowest salinity is above 27. Nevertheless, 

the end-member for the Congo River of 231.7 ± 62.2 µmol kg−1 is in good agreement with 

the average riverine DIC concentrations of 258 ± 29 µmol kg−1 measured at Brazzaville–

Kinshasa by [45]. 

Table 3. Mixing equations, including Equation (4), between the Congo River and oceanic waters. 

Mixing Equation Salinity Range Reference 

DIC = 50.6 (± 2.0) * SSS + 231.7 (± 62.2) S > 27 This work 

DIC = 54.0 * S + 109 S > 33 [13] 

DIC = 46.5 (± 1) * SSS + 355 (± 48) S > 22 [49] 

TA values are also lower near the Congo mouth and are better estimated by the fol-

lowing equation than by Equation (2): 

TA = 61.89 (± 0.70) * SSS + 137.51 (± 22.08) (5)

which gives a TA end-member of 137.51 ± 22.08 µmol kg−1, in agreement with the riverine 

TA values ranging from 85 to 235 µmol kg−1, the variations being strongly dependent on 

the Congo discharge unlike the DIC end-member that is relatively constant [45]. 

The chlorophyll images show the high biological activity near the Congo mouth, 

which decreases DIC concentrations and leads to carbon uptake as previously proved by 

the estimates of the CO2 flux in this region [13,14]. The mouth of the Congo is located at 

6° S, 12.3° E and its plume can be traced 400 to 1000 km from the mouth. The influence of 

the Congo plume is evidenced at 6° S, 8° E by the large salinity (Figure 6a) and chlorophyll 

variations (Figure 7), as well as the spatial distributions of chlorophyll (Figure 2c,d) and 

salinity (Figure 3c,d). In order to relate the DIC distribution (Figure 4) to the chlorophyll 

climatology, the chlorophyll fields were re-gridded on a 0.25-degree map and the correla-

tion between DIC and chlorophyll concentrations was calculated at each grid point from 

January to December (Figure 10). 
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Figure 10. Map of correlations between chlorophyll and DIC concentrations calculated over 12 

climatological months. 

The blue regions correspond to negative correlations and coincide with high chloro-

phyll concentrations and low DIC, which are caused by carbon uptake. The positive cor-

relations (in red) correspond to regions where chlorophyll and DIC follow the same sea-

sonal cycle. In the equatorial upwelling region, high DIC and high chlorophyll concentra-

tions are observed during the upwelling season (July–September) and lower concentra-

tions occur during the rest of the year, which explains the positive correlation between 

DIC and Chla. Outside the upwelling region, low chlorophyll concentrations are observed 

but follow the seasonal cycle and the DIC–Chla correlation is also positive. Near river 

outflows, high chlorophyll concentrations are usually associated with low SSS and low 

DIC concentrations leading to negative DIC–Chla correlations. The spatial extension of 

the negative correlations indicates the areas of influence of the river discharge. As SSS is 

a strong driver of DIC variations in the ETA, the negative DIC–Chla correlations corre-

spond to areas with low SSS and high chlorophyll concentrations. 

At 6° S, 8° E, low DIC and TA are observed especially in March–April during the 

period of maximum offshore extension of the Congo plume [46]. Nevertheless, the DIC 

observations at this site are better reproduced by the MLR, which suggests rapid mixing 

of the plume with oceanic waters during its westward propagation.  

Observations made at 6° S, 8° E are compared with those at 6° S, 10° W. Unfortu-

nately, measurements of fCO2 are available at both sites for 6 months only, from March to 

August 2017. The CO2 flux is much lower at 6° S, 8° E than at 6° S, 10° W (Table 4). How-

ever, the difference of fCO2 between the ocean and the atmosphere, ΔfCO2, is similar at 

both sites. DIC and SSS, and hence TA, are significantly lower at 6° S, 8° E. An increase in 

DIC would increase fCO2 but the increase in TA would decrease fCO2. The increase in DIC 

from 6° S, 8° E to 6° S, 10° W is compensated by the increase in alkalinity, so that overall, 

the mean fCO2 (and ΔfCO2) remains similar to the mean fCO2 at 6° S, 8° E. 
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Table 4. Mean and standard deviation of the carbon parameters, salinity and temperature at 6° S, 

8° E and 6° S, 10° W from March to August 2017 from observations at the PIRATA moorings. The 

winds are from the Cross-Calibrated Multiplatform (CCMP). 

Site 
CO2 Flux 

(mmol m−2d−1) 

fCO2 

(�atm) 

DIC 

(�mol kg−1) 

SSS 

 

SST 

(°C) 

Wind 

(m s−1) 

6° S, 8° E 3.06 ± 1.74 59 ± 28 1973 ± 87 34.3 ± 1.1 26.6 ± 2.8 5.0 ± 0.6 

6° S, 10° W 5.61 ± 1.49 55 ± 16 2047 ± 27 35.9 ± 0.2 26.9 ± 1.7 7.1 ± 0.7 

The flux is significantly lower at 6° S, 8° E because the wind speed is much weaker 

close to the coast than offshore. However, the CO2 flux remains positive with only slight 

negative values, or close to zero, that may occur in March–April in some years (Figure 10). 

The flux and the ΔfCO2 are strongly correlated at this site (r = 0.95). During this time, the 

offshore spatial extension of the Congo plume is maximum [46] and the SSS at 6° S, 8° E 

is low (Figure 6a). The surface waters coming at the mooring are from the Congo plume 

and have low CO2 content because of the biological activity near the Congo mouth and 

the low CO2 content of the Congo waters. Although DIC–TA is the worst pair to calculate 

fCO2, the flux has been reconstructed at 6° S, 8° E to examine its annual variations (Figure 

11, MLR sat). Some differences can reach more than 2 mmol m−2 d−1 as in June 2017 but the 

reconstruction suggests that the site is a source of CO2 with some possible CO2 uptake 

occurring during the first months of the year. 

Figure 11. CO2 flux from daily fCO2 observations at 6° S, 8° E (in cyan), averaged monthly (in blue) 

and using the MLR with satellite SST and SSS (in red). 

4.2. Year-to-Year Variability 

Using the MLR and the SST and SSS satellite fields from 2010 to 2019 at regional scale, 

the anomalies of DIC are calculated and compared with the anomalies of the physical 

parameters (Figure 12). As salinity is a strong predictor of DIC, the monthly variations of 

DIC anomalies from 2010 to 2019 are correlated with SSSA (r = 0.87). The anomalies of DIC 

are negatively correlated with SSTA and the correlation is much weaker (r = −0.38). The 

anomalies of SST in the ETA are related to the TSA index that cover a much larger area of 

the South Atlantic (30° W–10° E, 20° S–0°), with a correlation coefficient between SSTA 

and TSA of 0.77. 
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Figure 12. (a) Monthly DIC and SSS anomalies (DICA and SSSA), (b) SST anomalies (SSTA) and 

Tropical Southern Atlantic (TSA) index from January 2010 to September 2019. 

In the tropical region, the year 2010 is characterized by much warmer temperatures 

whereas 2012 is a cold year [50]. The positive SSTA in 2010 are observed in the northern 

Tropical Atlantic and affect the air–sea CO2 flux [51]. In the ETA, SSTA are close to zero 

suggesting that the anomalous conditions of 2010 are limited to the Northern Tropical 

Atlantic. However, the ETA presents negative SSS anomalies throughout the year 2010 

that result in negative DIC anomalies (Figure 12a). There was no anomaly of precipitation 

in the ETA in 2010 but, during the first months of 2010, the position of the ITCZ in the 

tropical Atlantic remained north of the equator instead of migrating south of it. As the 

ITCZ is associated with high precipitations, lower-than-usual salinities advected by the 

NECC might explain the negative SSSA in the ETA. When comparing the SSS anomalies 

in 2010 north and south of the equator, the SSSA are significantly lower north of the equa-

tor (mean of −0.36) than south of it (mean of −0.16, p-value = 0.0024). Nevertheless, the 

impact of the SSSA anomalies on DIC is moderate as it does not exceed 40 µmol kg−1, 

which is much less than the seasonal DIC variations in this region, as shown, for example, 

in Figure 9. 

The other strong anomaly in the tropical Atlantic is the cold event of 2012 mainly 

observed in the northeastern Atlantic and the southern hemisphere [50]. From November 

2011 to early 2012, a strong cooling anomaly (SSTA < 0) occurs in the region and is associ-

ated with a negative TSA index (Figure 12b). The distribution of fCO2 at 6° S, 10° W was 

affected by the cooling with a decrease in fCO2 associated to a decrease in SST during 

January–March 2012 compared to other years [52]. However, the SST variations have a 

moderate effect on DIC and this cooling anomaly does not affect much the DIC concen-

trations (Figure 12a). 

According to [2], interannual fCO2 is mainly driven by SST in the equatorial Atlantic 

extending from 50° W to 5° E and by DIC in the equatorial Pacific. The fCO2 monitoring 

is still sparse in the tropical Atlantic to conclude. Nevertheless, the interannual events of 

2010 and 2012 affected fCO2 and suggest an important role of SST anomalies whereas in 

the ETA, DIC is mainly driven by SSS variations. The use of DIC and TA to calculate fCO2 

does not reproduce well the fCO2 variations observed at 6° S, 10° W, which might be ex-

plained by the strong co-variation of fCO2 and SST. Using pH that has a strong depend-

ency with SST with either DIC or TA would better reproduce observed fCO2. Monitoring 
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fCO2 and calculating TA, with the robust TA–SSS relationship, allow the calculation of 

pH. This would be a substitute for direct pH measurements. Given the strong seasonality 

of carbon parameters in this region, long term monitoring is necessary to be able to quan-

tify the acidification rate in this region. 

5. Conclusions 

The DIC distribution has been examined in the ETA (12° W–12° E, 12° S–12° N) as 

well as the factors controlling its distribution. DIC strongly depends on the water masses 

and increases over time due to the atmospheric CO2 increase. In the northern part of the 

basin, relatively fresh and warm waters are associated with lower DIC concentrations 

compared to the southern part where colder and saltier waters are enriched in CO2. A 

multiple linear regression between DIC and SST, SSS and year has been determined with 

SSS as the main predictor of DIC. Other regression techniques, such as decision tree, ran-

dom forest and feed forward neural networks, do not significantly improve the DIC esti-

mation except for low DIC concentrations corresponding to coastal data. However, a neu-

ral network would be required when more coastal data become available as non-linearity 

occurs at low values. 

East of 10° E, the strong influence of the Congo plume is evidenced with a different 

relationship which corresponds to conservative mixing between the river and oceanic wa-

ters. The end-members of 231.7 ± 62.2 µmol kg−1 for DIC and 137.5 ± 22.1 µmol kg−1 for 

TA are in good agreement with published riverine measurements. The Congo plume 

reaches its more offshore spatial extension during December–April and affects the distri-

bution of DIC at the 6° S, 8° E mooring. Nevertheless, the conservative mixing is no longer 

valid as the plume rapidly mixes with oceanic waters. Consequently, the carbon uptake is 

restricted to the region close to the Congo mouth and the carbon supplied by the 

upwelling season is the dominant process in the ETA. The seasonal cycle dominates the 

variations of DIC in the region, whereas the year-to-year variability of DIC is less than 40 

µmol kg−1 over the 2010–2019 period. SSS is the main driver of DIC in this region and the 

cold event of 2012 does not lead to significant DIC anomalies.  

Although no pH measurements are made, the observations of fCO2 and the calcula-

tion of TA from SSS allow the calculation of pH. Pursuing the monitoring of fCO2 at time-

series stations will contribute to the quantification of the rate of ocean acidification in this 

region. 
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Appendix A. Regression Methods and Results 

Four data-driven regression methods (Multiple Linear Regression, Decision Tree, 

Random Forest and Feed Forward Neural Networks) have been applied to estimate DIC 

in the Eastern Tropical Atlantic. Figure A1 presents the dataset with the relationships be-

tween DIC and the predictors (SST, SSS and Year) and the distribution divided by DIC 

quantiles (in color). 

 

Figure A1. Scatter plots between variables and density plots for each variable (on the main diago-

nal). Data are colored according to the intervals of the quantiles of DIC (25%, 50%, 75%). 

Decision Trees (DT) are a non-parametric supervised learning method used for clas-

sification and regression. The goal is to create a model that predicts the value of a target 

variable by learning simple decision rules inferred from the data features. During the tree 

construction, the dataset is iteratively split by the parameters maximizing the variance of 

the predicted variable. 

Random Forest (RF) algorithms are ensemble methods using so called perturb-and-

combine techniques [53] designed for decision trees. This means a diverse set of regressors 

is created by introducing randomness in the model construction. The prediction of the 

ensemble is given as the averaged prediction of the individual regressors. Each tree in the 

ensemble is built from a sample drawn with replacement (i.e., a bootstrap sample) from 

the training set. In addition, when splitting each node during the construction of a tree, 

the best split is found either from all input features or a random subset of a predefined 

size. 

Feed forward neutral networks (NN) are part of artificial neural networks. NN are 

non-linear functions able to uniformly approximate a wide class of functions encountered 

in physics [54], which include continuous and derivable functions with respect to each 

variable. The minimization used allows a global optimization of the set of parameters. 

Feed forward neural networks are a broadly applied technique in classification and re-

gression tasks. Table A1 summarizes the characteristics of the feed forward Neural model. 

We use keras API [55] in Python using TensorFlow [56] as back-end. 
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Table A1. Characteristics of the neutral networks (NN). 

Meta-Parameters Specifications 

Input variables Year, SST, SSS, SinDoY, CosDoY 

Output variables DIC 

Train/Val DIC 4 quantiles (1/6 for Val from each quant.) 

Normalization Center-reduction (both Input and Output) 

Architecture  Layers size: Input: 5, Hidden: 15, Output: 1 

The relationship between the DIC and its potential predictors, such as the sea surface 

salinity (SSS), sea surface temperature (SST), the interannual trend (expressed by the year 

variable) have been explored using four regression models and four independent obser-

vation datasets. 

For the NN, the intra-annual variations were taken into account by adding two vari-

ables: sinDoY and cosDoY, representing the sine and cosine of the day of the year, respec-

tively, normalized between 0 and 2π. Having a validation dataset is fundamental to avoid 

overfitting on trained data. From the data available for training, i.e., the DIC (2005–2019), 

two datasets were created for training and validation processes. We applied the following 

method to get a homogeneous representation of data in the validation dataset: the 637 

measurements of DIC (2005–2019) were separated into 4 groups according to the 25%, 

50%, 75% quantiles of DIC (this corresponds to the 1941.1 µmol kg−1, 1992.2 µmol kg−1 and 

2044.6 µmol kg−1 DIC values). Finally, data in each group were sorted by SST and a sample 

was chosen for validation, leaving the rest for training. Best results were obtained by se-

lecting one data out of six. The sizes of these datasets are given in Table A2. 

Table A2. Data distribution for the NN showing the total number of data (N), the number of data 

for training (NTrain) and for validation (NVal) according to the 25%, 50%, 75% quantiles (Q25, Q50, 

Q75) of the DIC. The corresponding values of DIC are indicated in µmol kg−1. 

 Condition N NTrain NVal 

DIC < Q25 DIC < 1941.1 159 132  27 

Q25 < DIC < Q50 1941.1 ≤ DIC < 1992.2 159 132 27 

Q50 < DIC < Q75 1992.2 ≤ DIC < 2044.6 158 132  26 

DIC > Q75 DIC ≥ 2044.6 161 135 27 

The NN is then compared with the MLR using the same groups of data (Table A3). 

The two methods give similar RMSE but the NN tends to perform better than the MLR 

for low DIC values. 

Table A3. RMSE for each DIC interval for both MLR and NN methods tested on the two time-

series stations and the two cruises. 

Mooring or 

Cruise  

Regression 

Method 

DIC < Q25 Q25 < DIC < Q50 Q50 < DIC < Q75 DIC > Q75 

RMSE 

[μmol kg−1] 

RMSE 

[μmol kg−1] 

RMSE 

[μmol kg−1] 

RMSE 

[μmol kg−1] 

6° S, 10° W MLR NaN 13.8 7.2 7.8 

  NN NaN 13.4 7.3 7.0 

6° S, 8° E MLR 18.0 15.0 12.7 9.4 

  NN 14.0 15.0 11.5 8.9 

EGEE 3 MLR 7.1 8.3 12.5 18.1 

  NN 4.8 7.5 9.9 14.1 

PIRATA-FR-29 MLR 11.2 8.1 4.8 6.9 

  NN 8.1 11.1 5.3 9.2 
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The different methods, MLR, NN, DT and RF are compared without separating the 

data into groups (Table A4). The NN usually performs slightly better than the other meth-

ods but, as it does not lead to significant improvement, we use the MLR, which is the 

simplest method. This also means that the dependencies of the DIC on its main predictors, 

SSS, SST, and year, are mostly linear. Among these features, the SSS has the largest impact. 

For random forests and decision trees, the relative importance of SSS is more than 90% 

(up to 95% for 6° S, 10° W), while that of the SST is about 5% (calculated as total variance 

reduction brought by the corresponding variable). 

Table A4. Same as Table 2, but including a comparison between the multiple linear regression 

(MLR), the decision tree (DT), the random forest (RF) and the feed forward neural networks (NN) 

methods. 

Mooring or Cruise 
Regression 

Method 

RMSE 

(�mol kg−1) 
r N Time Period 

6° S, 10° W MLR 7.7 0.96 6611 2006–2017 

  DT 14.1 0.87   

 RF 9.8 0.94   

 NN 7.3 0.97   

6° S, 8° E MLR 14.8 0.98 239 2017–2019 

  DT 25 0.95   

 RF 24 0.95   

 NN 12.8 0.99   

EGEE 3 MLR 11.8 0.97 6895 2006 

  DT 14 0.96   

 RF 10 0.98   

 NN 9.3 0.98   

PIRATA FR-29 MLR 8.1 0.99 4462 2019 

 DT 11 0.98   

 RF 9 0.98   

 NN 9.4 0.99   

Although not very different, the DT is slightly less efficient than the other methods. 

The DT tend to group the predicted values into clusters, due to relatively small tree depths 

and consequently small numbers of leaves (i.e., discrete cases with observations attributed 

to them). DTs typically exhibit high variance and tend to lead to overfitting. RFs decrease 

the variance of the ensemble estimator. By taking an average of tree predictions, with in-

jected randomness, some errors can cancel out. In our examples RF yield slightly better 

results that DT for all stations, in most cases being close to the MLR model. Nevertheless, 

all methods used here give similar results. 
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