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ABSTRACT
A key issue in artificial intelligence methods for interactive pref-

erence elicitation is choosing at each stage an appropriate query

to the user, in order to find a near-optimal solution as quickly as

possible. A theoretically attractive method is to choose a query that

minimises max setwise regret (which corresponds to the worst case

loss response in terms of value of information). We focus here on

the situation in which the choices are represented explicitly in a

database, and with a model of user utility as a weighted sum of

the criteria; in this case when the user makes a choice, an agent

learns a linear constraint on the unknown vector of weights. We

develop an algorithmic method for computing minimax setwise

regret for this form of preference model, by making use of a SAT

solver with cardinality constraints to prune the search space, and

computing max setwise regret using an extreme points method. Our

experimental results demonstrate the feasibility of the approach

and the very substantial speed up over the state of the art.
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1 INTRODUCTION
Multi-attribute utility theory (MAUT) [23] is a field of study in-

volving decision-making problems where the available alternatives

are evaluated w.r.t. (with respect to) a fixed number of conflicting

criteria. The main purpose of MAUT is to define a value function

for a specific decision-maker, which represents his/her preferences

with respect to the criteria used to evaluate the alternatives of the

decision problem. Of particular interest in this paper are interac-

tive preference elicitation methods for MAUT models [7, 8, 11–

13, 20, 29, 31, 33] in which an agent iteratively asks questions to a

user to reduce the uncertainty of his value function and recommend

an alternative.

A principled approach for selecting recommendations with un-

certain value function is to use minimax regret. Minimax regret
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(MMR) selects as recommendation an alternative that minimises

the worst case loss w.r.t. feasible parameters of the value function.

The practical effectiveness of regret-based recommendations has

been shown in numerous works (see, e.g., [8, 10, 33]) including a

study carried out with real users [13].

In [31] and [32] the authors generalized the concept of Mini-

max Regret, defining the Setwise Max Regret (SMR) which is used

to evaluate the maximum regret of a set of alternatives, and the

setwise minimax regret (SMMR), which is used to select an optimal

recommendation set of a given cardinality 𝑘 w.r.t. SMR, i.e., a set
of 𝑘 alternatives that minimises the worst case loss w.r.t. feasible

parameters of the value function. A remarkable property of SMMR
is that an optimal recommendation set is also a myopically optimal

query set, that is, the set maximizes an analogue of value of infor-

mation [16] in a distribution-less sense. This gives a compelling

reason to use this measure in an interactive user-agent system, with

a combined preference elicitation and recommendation purpose:

the agent proposes a set of recommended items, the user picks the

one he prefers, then the agent updates the model and shows a new

set of items; and this proceeds until a termination condition is met

(max regret being at most a threshold value; or simply when the

user is satisfied). However, optimising setwise regret is computa-

tionally very demanding; a straightforward approach requires the

consideration of all subsets of a given cardinality, and the evalua-

tion of their setwise max regret. Because of this high complexity,

several heuristic methods are considered in [31, 32],

This paper addresses the problem of computing SMMR exactly

for database problems (e.g., when a list of items with a fixed number

of evaluation criteria is readily available, as opposed to configura-

tion problems where alternatives need to be constructed through

constraint satisfaction). The main contribution is an efficient algo-

rithm for computing an optimal set of a given cardinality 𝑘 w.r.t. the

setwise max regret criterion, i.e., a set optimising SMMR, which can

then be used for both elicitation and recommendation purposes.

Our method relies on search; nodes in the search tree correspond

to sets of alternatives with cardinality up to𝑘 , and leaves correspond

to sets with cardinality exactly 𝑘 . Pruning is done when we are

sure that no extension of the current set with cardinality less than

𝑘 can beat the set with cardinality 𝑘 with minimum SMR found so

far; to check this condition we use a SAT solver with cardinality

constraints. This idea is combined with a fast subroutine to compute

the setwise max regret of a set of alternatives, using the extreme

points of the epigraph of the value function (instead of using linear

programming techniques as in previous works).

The paper is organized as follows. In Section 2 we state our

general assumptions, we recall the definitions of minimax regret



and its setwise extensions, and provide some basic properties. In

Section 3 we describe the ideas behind our algorithm and its main

components; in Section 4 we provide a detailed description of the

algorithm to compute SMMR. We provide some experimental results

to validate our approach in Section 5, and conclude with a final

discussion in Section 6.

2 BACKGROUND
We now give some general background and notation, we formally

define minimax regret and its setwise variant, and introduce some

basic properties.

We assume an underlying decision problem where the task is to

choose one among a finite set A of alternatives (items, products,

options). The user, also known as the Decision Maker (DM), is

assumed to be endowedwith a utility or value function𝑢𝑤 , mapping

from 𝐴 to R;𝑤 represents the parameters of the value function (a

specific choice of𝑤 uniquely determines the value function). The

goal is to pick an alternative 𝑥 maximising 𝑢𝑤 (𝑥); however we
assume that we (i.e., taking the point of view of a recommender

system tasked to support decision-making) do not have access to the

DM’s true value function. The problem is to make recommendations

under value function uncertainty (strict uncertainty); we suppose
that our knowledge about the user’s preferences is such that we can

identifyW as the set of scenarios representing all the consistent

parameters𝑤 of a DM’s value function 𝑢𝑤 .

Minimax regret. The Minimax Regret (MMR) [19, 25] criterion
is frequently used to solve decision problems under uncertainty.

More recently, it has been used in Artificial Intelligence to evaluate

alternatives as potential recommendations, where the uncertainty

refers to the parameters of the decision model [11, 24]. When con-

sidering a single recommendation, alternatives can be evaluated

according to the max regret, quantifying the worst-case loss due to

utility uncertainty:

MRW (𝛼,A) = max

𝑤∈W
max

𝛽∈A
(𝑢𝑤 (𝛽) − 𝑢𝑤 (𝛼)) (1)

= max

𝑤∈W
(ValA (𝑤) − 𝑢𝑤 (𝛼)), (2)

where we let ValA (𝑤) = max𝛽∈A 𝑢𝑤 (𝛽) be the DM’s value function

for A defined as the maximum value that can be obtained from any

alternative 𝛽 ∈ A w.r.t. the value function 𝑢𝑤 . The minimax regret
represents the minimum worst-case loss i.e., minimum max regret:

MMRW (A) = min

𝛼 ∈A
MRW (𝛼,A) = min

𝛼 ∈A
max

𝑤∈W
(ValA (𝑤) − 𝑢𝑤 (𝛼)) .

(3)

By recommending to the decision maker an alternative associated

with minimax regret, i.e., alternative 𝛼∗ ∈ argmin𝛼 ∈AMRW (𝛼,A),
we provide robustness in the face of uncertainty (due to not know-

ing the user’s value function).

Regret-based elicitation has been applied to areas such as the

elicitation of multi-attribute utilities (see, e.g., [5, 12, 33]), or the

elicitation of preferences for ranking and voting problems (see, e.g.,

[3, 7, 21]).

Example 2.1. Consider a bi-criteria problem with the set of al-

ternatives A = {𝛼1 = (4, 4), 𝛼2 = (2, 10), 𝛼3 = (10, 2)}. The two

criteria evaluating each alternative could e.g., represent the cost

Figure 1: Plot of the linear value functions𝑢𝑤 (𝛼𝑖 ) = 𝑤 ·𝛼𝑖 for
the alternatives 𝛼1 = (4, 4) (blue solid), 𝛼2 = (2, 10) (black
dotted) and 𝛼3 = (10, 2) (green dashed) with 𝑤 ∈ W =

{𝑤 ∈ 𝐼𝑅2 : 𝑤𝑖 ≥ 0,𝑤1 +𝑤2 = 1}.

and quality of a certain product, where the higher the value, the bet-

ter. The associated value functions are shown in Figure 1: 𝑢𝑤 (𝛼 𝑗 ) =
𝑤 · 𝛼 𝑗 =

∑
2

𝑖=1𝑤𝑖𝛼 𝑗 (𝑖) with𝑤 ∈ W = {𝑤 ∈ 𝐼𝑅2 : 𝑤𝑖 ≥ 0,
∑
2

𝑖=1𝑤𝑖 =

1} MRW (𝛼1,A) = 6 is maximised with 𝑤1 = 0 and 𝑤1 = 1,

MRW (𝛼2,A) = 8 is maximised with𝑤1 = 1, and MRW (𝛼1,A) = 8

is maximised with𝑤1 = 0. Thus, MMRW (A) = 6.

Setwise regret. In many applications it is desirable to produce

a recommendation set, and not just a single recommendation, giv-

ing the opportunity to the decision maker to pick the alternative

(among those of the recommendation set) that provides most value

to him/her. Intuitively, by providing several recommendations, it is

more likely that at least one of them will have high utility value to

the decision maker. As originally observed by Price and Messinger

[22] it is therefore a good idea to show “diverse” recommendations

that have high value for different parts of the parameter spaceW.

Setwise regret constitutes a principled way to measure the qual-

ity of a recommendation set. Assume that, when we provide B as

recommendation set, the decision maker is able to pick the most

preferred item (the one with highest value) in B, thus perceiving

value ValB (𝑤) = max𝛼 ∈B 𝑢𝑤 (𝛼) when the “true” value function

is dictated by parameters 𝑤 . The regret of a set B w.r.t. 𝑤 is the

difference between the utility of the best item under𝑤 in the whole

dataset A and the utility of the best item w.r.t.𝑤 in the set B; that

is, ValA (𝑤) − ValB (𝑤). The setwise max regret (SMR) [31, 32] of a
subset B of the finite set of alternatives A, w.r.t. the parameter space

W, is then defined as the maximum of this difference:

SMRW (B,A) = max

𝑤∈W
(ValA (𝑤) − ValB (𝑤)) . (4)

The value SMRW (B,A) is the worst case loss, due to value function
uncertainty, of recommending the set B. Notice that, by Equation 2,

SMR reduces to MR when the set B is a singleton; at the other

extreme, if 𝐵 = 𝐴 (the whole dataset is recommended), then SMR is



zero. An optimal recommendation set of size 𝑘 is a subset of A of

cardinality 𝑘 that minimizes setwise max regret w.r.t.W. Thus, the

setwise minimax regret (SMMR) [31, 32] of size 𝑘 w.r.t.W is defined

by:

SMMR𝑘W (A) = min

B⊆A: |B |=𝑘
SMRW (B,A). (5)

The value SMMR𝑘W (A) is then the minimum setwise max regret

we can obtain from all the possible subsets B of A with cardinality

𝑘 . Notice that 𝑘 is usually a small number, usually identified by an

application expert.

Recommendation sets can be used in elicitation, where they are

treated as choice queries (i.e., questions of the kind “Among 𝑎, 𝑏, and
𝑐 , which one do you prefer?”) with the goal of reducing uncertainty

in order to improve the quality of future recommendations; that

is, reducing minimax regret. It turns out [31, 32] that optimal rec-

ommendation sets w.r.t. SMMR are also myopically optimal in an

elicitation sense, as they ensure the highest worst-case (w.r.t. the

possible query’s responses) reduction of minimax regret a posteriori.

Example 2.2. Consider the set of alternatives A = {𝛼1, 𝛼2, 𝛼3},
where 𝛼1 = (4, 4), 𝛼2 = (2, 10), 𝛼3 = (10, 2), whose value function
𝑢𝑤 (𝛼𝑖 ) = 𝑤 · 𝛼𝑖 with 𝑤 ∈ W = {𝑤 ∈ 𝐼𝑅2 : 𝑤𝑖 ≥ 0,𝑤1 + 𝑤2 =

1} is shown in Figure 1. SMRW ({𝛼1, 𝛼2},A) = 6 is maximised in

𝑤1 = 1, SMRW ({𝛼1, 𝛼3},A) = 6 is maximised in 𝑤1 = 0, and

SMRW ({𝛼2, 𝛼3},A) = 0 since Val{𝛼2,𝛼3 } (𝑤) ≥ 𝑢𝑤 (𝛼1) for any
𝑤 ∈ W. Thus, SMMR2W (A) = 0.

Optimisation of setwise regret. Computation of SMMR differs ac-

cording to the type of decision problem. When alternatives are

constructed from a configuration problem, the decision space is

encoded with variables, and hard constraints express which com-

binations of variables are feasible [4, 8, 12]; for example, this is

the case when configuring computer parts to obtain a customized

laptop. In this type of problem setwise regret can be optimised with

a mixed-integer program and solved by techniques such as Bender’s

decomposition and constraint generation [31, 32].

In this paper we focus on database problems, where the alter-

natives are enumerated and represented with an explicit list of

multi-attribute outcomes (see, e.g., [7, 12, 13]); for example the

problem of choosing from a catalogue of already assembled lap-

tops. In this case the straightforward approach to optimise SMMR
is based on the generation of all the possible sets of a specific size

𝑘 and choosing the one with lowest setwise maximum regret SMR.
Given the high complexity of the computation of an optimal set

using the SMMR criterion, in [31, 32] the authors have also pro-

posed several heuristics methods that have been shown to have

good performance in simulation.

Value functions. While the previously introduced concepts are

quite general and apply to any kind of value function, in this

work we focus on multi-attribute problems with linear value func-

tions. An alternative 𝛼 is represented with a vector of 𝑝 reals, with

each component corresponding to a criterion, and 𝛼 (𝑖) being the
evaluation of 𝛼 w.r.t. the 𝑖th criterion. We define 𝑢𝑤 (𝛼) = 𝛼 · 𝑤
(=

∑𝑝

𝑖=1
𝑤𝑖𝛼 (𝑖)) to be the value function parametrised w.r.t. 𝑤 ,

where 𝛼 ∈ A ⊂ 𝐼𝑅𝑝 and𝑤 ∈ U and

U = {𝑤 ∈ 𝐼𝑅𝑝 : 𝑤𝑖 ≥ 0,

𝑝∑
𝑖=1

𝑤𝑖 = 1},

and the weight𝑤𝑖 relates to the importance that the DM gives to

criterion 𝑖 .

In general, setwise (minimax) regret is defined for any closed (and

thus compact) subsetW ofU. Our algorithmic approach assumes

thatW is a compact convex polytope. For example,WΛ could be

a reduction ofU given by a set Λ of DM’s input preferences, with,

for instance, a user preference of alternative 𝛼 over 𝛽 leading to

the constraint 𝛼 ·𝑤 ≥ 𝛽 ·𝑤 (see, e.g., [34]). Thus,WΛ is the set of

elements ofU that satisfy the constraints induced by Λ.

Basic properties of setwise regret. We now give some basic prop-

erties of setwise regret that we will use later. The definitions easily

imply that SMRW (B,A) is monotone, w.r.t. set inclusion, in both B

andW, and that SMMR𝑘W is monotone in 𝑘 .

Lemma 2.3. SMRW (B,A) is monotonically decreasing in B, and
monotonically increasing inW, i.e., if B′ ⊇ B andW ′ ⊆ W, then
SMRW′ (B′,A) ≤ SMRW (B,A). SMMR𝑘W (A) is monotonically de-

creasing in 𝑘 , i.e., for 1 ≤ 𝑘 ≤ 𝑘 ′, SMMR𝑘W (A) ≥ SMMR𝑘
′

W (A).

An alternative 𝛼 ∈ A is said to beW-dominated in A if there

exists another alternative 𝛽 ∈ A such that the former has higher-or-

equal value than the latter for any𝑤 ∈ W, and the relation is strict

for at least one value; otherwise, 𝛼 isW-undominated in A. Let
UDW (A) ⊆ A be the set of elements of A that areW-undominated

in A. Alternatives that are known to be dominated givenW can

be removed as they do not impact the value of setwise max regret,

as shown by the next lemma. This follows because for any𝑤 ∈ W,

and any set of alternatives A, we have Val
UDW (A) (𝑤) = ValA (𝑤).

Lemma 2.4. SMRW (B,A) = SMRW (UDW (B),UDW (A)) and,
for any 𝑘 ≥ 1, SMMR𝑘W (A) = SMMR𝑘W (UDW (A)).

3 AN EFFICIENT ALGORITHM TO COMPUTE
SETWISE MINIMAX REGRET

The main idea behind our algorithm is to use a depth-first search

over subsets of A, with setwise max regret computations at leaf

nodes of the search tree, and with a method of pruning branches

that reduces the number of setwise max regret computations. More

precisely, for a given subset C of A with cardinality less than 𝑘 ,

we use a method that determines, for a particular discrete subset

W ′ ofW, if SMRW′ (B,A) ≥ 𝑟 holds for all supersets B of C with

cardinality 𝑘 , where 𝑟 is the current upper bound of SMMR𝑘W (A).
If this holds then, by Lemma 2.3, SMRW (B,A) ≥ 𝑟 for all such B,

enabling us to backtrack at this point of the search.

In the next paragraph we define how we represent subsets of

A; then we define how to bound the setwise max regret of a set

of subsets of A simultaneously using a Boolean satisfiability (SAT)

problem.

Search space: We consider the set of Boolean strings of length at

most 𝑛 = |A| as a representation of the search space over subsets

of A with cardinality less or equal to 𝑘 . For string 𝑥 , let Len(𝑥)
be the length of 𝑥 . Let us label A as {𝛼1, . . . , 𝛼𝑛}. We say that a

string is complete if it is of length 𝑛, and otherwise it is partial. Each
complete string 𝑥 corresponds to a subset B𝑥 of A, where B𝑥 is the

set of all 𝛼𝑖 ∈ A such that 𝑥 has a one at its 𝑖-th position. We say

that complete string 𝑥 is of cardinality 𝑘 if it contains 𝑘 ones, i.e.,



if the corresponding subset B𝑥 is of cardinality 𝑘 . If 𝑥 and 𝑦 are

Boolean strings then we say that 𝑦 extends 𝑥 if Len(𝑦) ≥ Len(𝑥)
and the first Len(𝑥) places of 𝑦 are the same as those of 𝑥 . We say

that 𝑦 is a complete extension of 𝑥 if 𝑦 extends 𝑥 and 𝑦 is a complete

string. Each partial string 𝑥 represents a set B𝑥 of subsets of A, i.e.,

all those subsets of cardinality 𝑘 that correspond to extensions of 𝑥 .

B𝑥 is thus the set of all sets B𝑦 for complete extensions 𝑦 of 𝑥 of

cardinality 𝑘 . In Section 3.3 we define how to generate strings 𝑥 in

turn using a depth-first search on a binary tree.

Example 3.1. Let A = {𝛼1, . . . , 𝛼5} be a set of 𝑛 = 5 elements,

and let 𝑘 = 3. The complete string 𝑧 = 01101 represents the subset

B𝑧 = {𝛼2, 𝛼3, 𝛼5}. The partial string 𝑥 = 011 represents the subsets

B𝑥 = {{𝛼2, 𝛼3, 𝛼4}, {𝛼2, 𝛼3, 𝛼5}}, where the complete extensions of

𝑥 are 𝑦 = 01101 and 𝑦′ = 01110.

3.1 Pruning the Search Space using SAT
Evaluating subsets of A: Given a partial string 𝑥 , if a set B𝑦 ∈ B𝑥

is such that SMRW (B𝑦,A) < 𝑟 , then B𝑦 has to contain at least one

alternative with worst case regret lower than 𝑟 for each𝑤 ∈ W ′.
This concept is formally defined with the following lemma and it

will be used to check if there could exists a set in B𝑥 improving the

current upper bound 𝑟 of SMMR𝑘W (A).

Lemma 3.2. Let 𝑟 be an upper bound of SMMR𝑘W (A),W
′ ⊆ W

and B ⊆ A. For 𝑤 ∈ W, let Γ𝑤 be the set of 𝛼 ∈ A such that
ValA (𝑤) − 𝑢𝑤 (𝛼) < 𝑟 . Then SMRW′ (B,A) < 𝑟 if and only if for all
𝑤 ∈ W ′, there exists 𝛼 ∈ B such that 𝛼 ∈ Γ𝑤 .

Proof. From the definition of setwise max regret it follows that

SMRW′ (B,A) < 𝑟 if and only if ValA (𝑤) − ValB (𝑤) < 𝑟 for all

𝑤 ∈ W ′, which is if and only if for all𝑤 ∈ W ′ there exists 𝛼 ∈ B
such that ValA (𝑤) − 𝑢𝑤 (𝛼) < 𝑟 , with the latter condition being

equivalent to 𝛼 ∈ Γ𝑤 since B ⊆ A. □

To check if there exists a set B𝑦 ∈ B𝑥 such that SMRW′ (B𝑦,A) <
𝑟 , we define a SAT problem with cardinality constraint 𝑐 (see, e.g.,

[27]), where the cardinality constraint is used to define the size 𝑘

of the sets in B𝑥 .

Example 3.3. Consider the following SAT formula: 𝑋 = (𝑋1 ∨
𝑋2) ∧ (𝑋1 ∨ 𝑋3) with cardinality constraint 𝑐 = 1, where 𝑋𝑖 with

𝑖 = {1, 2, 3} are {0, 1}-valued variables (with 1 meaning TRUE), and

(𝑋1∨𝑋2) and (𝑋1∨𝑋3) are clauses. The cardinality constraint 𝑐 = 1

means

∑
3

𝑖=1 𝑋𝑖 = 1. In this example, 𝑋 is satisfiable since if 𝑋1 = 1

then 𝑋 = 1. But if for example we add the constraint 𝑋1 = 0, then

𝑋 is unsatisfiable since for any valid assignment of the cardinality

constraint, i.e., (𝑋1 = 0, 𝑋2 = 1, 𝑋3 = 0) or (𝑋1 = 0, 𝑋2 = 0, 𝑋3 = 1),
we get 𝑋 = 0.

In our SAT problem, we use a {0, 1}-valued variable 𝑋𝑖 for each

𝛼𝑖 ∈ A. These are used to reason about the unknown sets B𝑦 in

B𝑥 , which we want to be such that SMRW′ (B𝑦,A) < 𝑟 . Then

𝑋𝑖 = 1 means that B𝑦 ∋ 𝛼𝑖 . Given a partial string 𝑥 , we define the

corresponding SAT problem with cardinality constraint as follows:

(1) The cardinality constraint |B𝑦 | = 𝑘 is expressed as
∑
𝛼𝑖 ∈A 𝑋𝑖 =

𝑘 .

(2) The constraint that 𝑦 extends 𝑥 is expressed as: for all 𝑖 ∈
{1, . . . , Len(𝑥)},

– if 𝑥 (𝑖) = 1 then 𝑋𝑖 = 1 (where 𝑥 (𝑖) is the 𝑖-th value of 𝑥 );

– if 𝑥 (𝑖) = 0 then 𝑋𝑖 = 0.

(3) For each𝑤 ∈ W ′ we define a clause ∨𝛼𝑖 ∈Γ𝑤 𝑋𝑖 , where Γ𝑤
is the set of 𝛼 ∈ A such that ValA (𝑤) − 𝑢𝑤 (𝛼) < 𝑟 .

This SAT problem is satisfiable if and only if there exists B𝑦 ∈ B𝑥
such that for all 𝑤 ∈ W ′ there exists 𝛼 ∈ B𝑦 such that 𝛼 ∈
Γ𝑤 , which (by Lemma 3.2) is if and only if there exists B𝑦 ∈ B𝑥
such that SMRW′ (B𝑦,A) < 𝑟 . Therefore, if the SAT problem is

unsatisfiable, then for each B𝑦 ∈ B𝑥 , SMRW′ (B𝑦,A) ≥ 𝑟 , and

thus (by Lemma 2.3) SMRW (B𝑦,A) ≥ 𝑟 . This means that there is

then no need to explore any string 𝑦 extending 𝑥 , so we can then

backtrack from the current search node associated with 𝑥 , saving

us from computing SMRW (B𝑦,A) for B𝑦 ∈ B𝑥 .

Example 3.4. Consider the set of alternatives A = {𝛼1 = (4, 4), 𝛼2 =
(2, 10), 𝛼3 = (10, 2)} whose value function 𝑢𝑤 (𝛼𝑖 ) = 𝑤 · 𝛼𝑖 with
𝑤 ∈ W = {𝑤 ∈ 𝐼𝑅2 : 𝑤𝑖 ≥ 0,

∑
2

𝑖=1𝑤𝑖 = 1} is shown in Fig-

ure 1. Let 𝑘 = 2,W ′ = {(0, 1), (0.5), (1, 0)}, 𝑟 = 1, and let 𝑥 be the

string 1. Thus, Γ(0,1) = {𝛼2}, Γ(0.5,0.5) = {𝛼2, 𝛼3}, Γ(1,0) = {𝛼3} and
B𝑥 = {{𝛼1, 𝛼2}, {𝛼1, 𝛼3}} since the complete extensions of 𝑥 with

cardinality 𝑘 = 2 are 𝑦 = 110 and 𝑦′ = 101. The corresponding SAT

problem is then 𝑋2 ∧ (𝑋2 ∨𝑋3) ∧𝑋3 with constraints 𝑐 = 2 (the car-

dinality constraint) and 𝑋1 = 1. It is easy to see that in this case the

SAT problem is unsatisfiable; hence, we can avoid the computation

of SMRW ({𝛼1, 𝛼2},A) and SMRW ({𝛼1, 𝛼3},A). In fact, the subset

B of A cardinality 2 that minimises SMRW (B,A) is B = {𝛼2, 𝛼3}.

3.2 Computation of max regret
With linear value functions 𝑢𝑤 , a standard method to compute

the setwise max regret SMRW (B,A) of a set B ⊆ A consists of

the evaluation of a linear programming (LP) problem for each

𝛼𝑖 ∈ A (see [31]). Briefly, for 𝛼𝑖 ∈ A we have SMRW (B, {𝛼𝑖 }) =
max𝑤∈W (𝛼𝑖 · 𝑤 − ValB (𝑤)), which means that we can compute

SMRW (B, {𝛼𝑖 }) as the maximum value 𝛿𝑖 subject to the constraints

𝑤 ∈ W, and (𝛼𝑖 − 𝛽) ·𝑤 ≥ 𝛿𝑖 for each 𝛽 ∈ B. We can then com-

pute SMRW (B,A) as max𝛼𝑖 ∈A SMRW (B, {𝛼}). However, here we
also make use of a method, described briefly in the next paragraph,

which was recently developed for computing SMRW (B,A) [30].
With linear value functions𝑢𝑤 , the max regret of an alternative 𝛽

can be easily computed evaluating only the extreme points Ext(W)
ofW, i.e., SMRW (𝛽, A) = SMRExt(W) (𝛽,A). For the setwise max

regret of a set B instead, we need to evaluate the extreme points

points ofW𝛽 for each 𝛽 ∈ B, whereW𝛽 = {𝑤 ∈ W : 𝛽 ·𝑤 ≥ 𝛽 𝑗 ·
𝑤,∀𝛽 𝑗 ∈ B}. Let 𝛾 (W, B) = {(𝑤, 𝑟 ) : 𝑤 ∈ W, 𝛽 ·𝑤 ≤ 𝑟 ∀𝛽 ∈ B};
this can be seen to be the epigraph [9] of the value function ValB

onW. Let UE(B) = ⋃
𝛽∈B Ext(W𝛽 ) be the union of the sets of

extreme points Ext(W𝛽 ) for each 𝛽 ∈ B. In [30] it is shown that

UE(B) equals the projection inW of the set of extreme points

Ext(𝛾 (W, B)) of 𝛾 (W, B). Also, for each (𝑤, 𝑟 ) ∈ Ext(𝛾 (W, B))
we have that 𝑟 = ValB (𝑤). This implies that SMRW (B,A) can be

computed as:

SMRW (B,A) = max

𝑤∈UE(B)
(ValA (𝑤) − ValB (𝑤)) . (6)

Example 3.5. Consider the example in Figure 2 with A = {(2, 8),
(8, 2), (6, 6)} and let B = {(2, 8), (8, 2)}. The extreme points of the re-

gion ofW in which (2, 8) and (8, 2) are optimal are Ext(W(2,8) ) =



Figure 2: Value function 𝑢𝑤 (𝛼𝑖 ) = 𝑤 · 𝛼𝑖 for each alterna-
tive in A = {(2, 8), (8, 2), (6, 6)} (green dashed) where 𝑤 ∈
W = {𝑤 ∈ 𝐼𝑅2 : 𝑤𝑖 ≥ 0,

∑
2

𝑖=1𝑤𝑖 = 1}. Note that we show 𝑢𝑤 (𝛼𝑖 )
only w.r.t. 𝑤1 since 𝑤2 = 𝑤1 − 1. The red dotted line rep-
resents ValA (𝑤), the blue area is the epigraph 𝛾 (W,B) =

{(𝑤, 𝑟 ) : 𝑤 ∈ W, 𝑟 ≥ ValA (𝑤)} for B = {(2, 8), (8, 2)}, and the
red points are the extreme points of the epigraph.

{(0, 1), ( 1
2
, 1
2
)} and Ext(W(8,2) ) = {( 12 ,

1

2
), (1, 0)}. The set of ex-

treme points of the epigraph of B is Ext(𝛾 (W, B)) = {((0, 1), 8),
(( 1

2
, 1
2
), 5) ((1, 0), 8)}, and the corresponding projection inW is

UE(B) = {(0, 1), ( 1
2
, 1
2
), (1, 0)}. Then SMRW (B,A) = max((8 −

8), (6 − 5), (8 − 8)) = 1 which is maximised with 𝑤 = ( 1
2
, 1
2
), and

ValB (( 12 ,
1

2
)) = 5.

3.3 Generating subsets of A using depth-first
search

We generate strings 𝑥 representing subsets of A sequentially using

a depth-first search with backtracking on a binary tree 𝑇 , and

with a fixed value and variable ordering. Note that we are not

interested in all the possible binary strings of length 𝑛, but instead

we want to generate complete strings 𝑥 (i.e., with 𝑘 ones) and the

corresponding sub-strings since these will represent subsets B of

A with |B| ≤ 𝑘 . The order in which we reach complete strings

(and their associated subsets) is based on the obvious lexicographic

order, i.e., ascending numerical order if the strings are viewed as

binary numbers. We then define 𝑇 as follows: the root represents

the empty string; internal nodes represent strings of length less

than 𝑛; and leaves represent strings of length 𝑛 with 𝑘 ones. The

out-edges of an internal node pointing to the corresponding left

and right children have values 0 and 1 respectively. Thus, if an

internal node represents the string 𝑥 , then the left child represents

the string 𝑥0 and the right child represents the string 𝑥1.

We generate strings sequentially starting from the leftmost leaf

node representing the subset (𝛼𝑛−𝑘+1, . . . , 𝛼𝑛). Given a generic

string 𝑥 𝑗 , we define two methods to generate the next string 𝑥 𝑗+1,
namely, the backtracking case and the non-backtracking case.

Backtracking case: Setting NextBT(𝑥 𝑗 , 𝑛, 𝑘) = 𝑥 𝑗+1 corresponds
to the backtracking case for the 𝑗-th string. With NextBT(𝑥 𝑗 , 𝑛, 𝑘)
we move from the current node representing 𝑥 𝑗 towards the root

until we find an edge 𝑒 with value zero. Let 𝑣 be the parent of 𝑒 . We

define NextBT(𝑥, 𝑛, 𝑘) as the string represented by the right child of
𝑣 . We will use this method to generate the string 𝑥 𝑗+1 when 𝑥 𝑗 is a

complete string, or when 𝑥 𝑗 is a partial string but SMRW (B,A) ≥ 𝑟

for all B ∈ B𝑥 𝑗
. Roughly speaking, we use NextBT(𝑥 𝑗 , 𝑛, 𝑘) when

we want to evaluate a new set of subsets (since B𝑥 𝑗
∩ B𝑥 𝑗+1 = ∅).

Non-backtracking case: SettingNext(𝑥 𝑗 , 𝑛, 𝑘) = 𝑥 𝑗+1 corresponds
to the non-backtracking case for the 𝑗-th string. With Next(𝑥 𝑗 , 𝑛, 𝑘)
we compute the next string following the depth-first search logic.

We will use this method to generate the string 𝑥 𝑗+1 for the cases not
covered by the backtracking case, i.e., when 𝑥 𝑗 is not a complete

string and we can’t ensure that SMRW (B,A) ≥ 𝑟 for all B ∈ B𝑥 𝑗
.

Roughly speaking, we use Next(𝑥 𝑗 , 𝑛, 𝑘) to reduce the sets to evalu-

ate, in fact, B𝑥 𝑗+1 ⊂ B𝑥 𝑗
.

In both cases, when we visit the root, and the corresponding

out-edges have already been visited, we stop the search. Note that

if B𝑥 𝑗+1 is a singleton set with 𝑥 𝑗+1 not being a complete string,

then we can speed up the computation by jumping to the leaf node

corresponding to the unique set in B𝑥 𝑗+1 . This can happen when

𝑥 𝑗+1 can be extended only with ones or only with zeros in order to

satisfy the constraint that a complete string 𝑥 must have 𝑘 ones.

3.4 Further implementation details
GeneratingW ′: We start withW ′ = ∅ and 𝑟 = ∞. Then for

each SMR computation of a subset B of A, if SMRW (B,A) is greater
than the current upper bound 𝑟 of SMMR𝑘W (A), we updateW

′
.

Depending on which method we use for the computation of SMR
(see Section 3.2), we use one of the following method to update

W ′:
(1) Epigraph of the value function:W ′ =W ′ ∪ UE(B) where

UE(B) is the projection of Ext(𝛾 (W, B)) toW.

(2) Linear programming: W ′ = W ′ ∪ {𝑤1, . . . ,𝑤𝑛} where
𝑤𝑖 ∈ W is the preference model in which SMRW (B, {𝛼𝑖 })
is maximised.

One could updateW ′ using only the point 𝑤 ∈ W in which

SMRW (B,A) is maximised; however, collecting more points in

W ′ adds more clauses to the SAT problem, and thus increases the

possibility of unsatisfiability, leading to pruning of the search tree.

Incremental updating of SAT instances: For a givenW ′, when the
SAT problem associated with a string 𝑥 is solvable, we can use the

corresponding instantiation to define the SAT problem associated

to a string 𝑦 extending 𝑥 . In fact, the SAT problem corresponding to

𝑦 will be the same as that associated with 𝑥 but with the additional

constraints 𝑋𝑖 = 𝑦𝑖 for all 𝑖 ∈ {Len(𝑥) + 1, . . . , Len(𝑦)}. This is
particularly useful when 𝑦 is a substring of the solution 𝑋 found

for the SAT problem for x, since in this case 𝑋 is a solution also to

the SAT problem associated with 𝑦, and thus we do not need to call

the SAT solver. For example, suppose that 𝑛 = 5, 𝑘 = 3 and 𝑥 = 01,

and suppose that the solution of the SAT problem associated with

𝑥 is 𝑋 = 01110. Then, if 𝑦 = 011 andW ′ has not changed, we
don’t need to define from scratch a new SAT problem since the SAT

problem associated with 𝑦 is the same as that associated with 𝑥 but



with the additional constraint 𝑋3 = 1. Furthermore, in this case 𝑦

is also a substring of 𝑋 , so we do not need to call the SAT solver

since 𝑋 is a solution also for the SAT problem associated with 𝑦.

4 PSEUDOCODE
In Algorithm 1 we combine the concepts presented in Section 3,

defining the an iterative procedure for computing SMMR𝑘W (A).
The inputs of our algorithm are:

(1) A finite set A of alternatives represented with 𝑝-dimensional

vectors of reals.

(2) The DM’s preference state spaceW ⊆ {𝑤 ∈ 𝐼𝑅𝑝 : 𝑤𝑖 ≥ 0,∑𝑝

𝑖=1
𝑤𝑖 = 1} representing the possible parameters𝑤 of the

value function 𝑢𝑤 .

(3) An integer𝑘 ≤ |A| representing the cardinality of the subsets
of A that we want to evaluate.

When we have gone through all of the space of strings, i.e.,

when 𝑥 is the empty string, the value of 𝑟 will equal SMMR𝑘W (A),
i.e., the minimum value of SMRW (B,A) over all subsets B of A of

cardinality 𝑘 .

The notion SAT(𝑥, 𝑘,A,W ′, 𝑟 ) refers to the SAT procedure de-

scribed in Section 3.1 which returns true iff there exists B𝑦 ∈
B𝑥 such that SMRW′ (B𝑦,A) < 𝑟 . UE(B𝑥 ) is the projection of

Ext(𝛾 (W, B𝑥 )) toW.

Algorithm 1 EPI SAT

1: procedure SMMR(𝑘,A,W)
2: W ′ ← ∅
3: 𝑟 ←∞
4: 𝑥 ← string of 𝑛 − 𝑘 zeros concatenated with 𝑘 ones

5: do
6: if Len(𝑥) = 𝑛 then
7: ifW ′ = ∅ or SMRW′ (B𝑥 ,A) < 𝑟 then
8: SMR← SMRW (B𝑥 ,A)
9: if SMR < 𝑟 then
10: 𝑟 ← SMR
11: W ′ ←W ′ ∪ UE(B𝑥 )
12: 𝑥 ← NextBT(𝑥, 𝑛, 𝑘)
13: else if SAT(𝑥, 𝑘,A,W ′, 𝑟 ) then
14: 𝑥 ← Next(𝑥, 𝑛, 𝑘)
15: else
16: 𝑥 ← NextBT(𝑥, 𝑛, 𝑘)
17: while 𝑥 ≠ empty string

18: return 𝑟

5 EXPERIMENTAL RESULTS
In our experimental results we used CPLEX 12.8 [17] as the lin-

ear programming solver, and we used the Python library pycddlib

[14] for computing the extreme points of the epigraph of the value

function. As the SAT solver, we used Minicard implemented in the

Python library Pysat [28] which has a native method to set a cardi-

nality constraint. All experiments were performed on a computer

facilitated by two Intel Xeon E5620 2.40GHz processors and 32 GB

RAM. For the sake of reproducibility, we made the code available
1
.

1
https://github.com/federicotoffano/SMMR

From Lemma 2.4 we have SMMR𝑘W (A) = SMMR𝑘W (UDW (A)),
where UDW (A) represents the set ofW-undominated alternatives

in A. In our experiments we noticed that filtering out dominated

alternatives can be a veryworthwhile preliminary step. For example,

generating 10 random sets A with |A| = 25000 and 𝑝 = 4, we got

an average of |UDW (A) | = 220 alternatives computed in roughly

10 seconds.

In Table 1we show the average computation time of SMMR𝑘W (A)
over 20 repetitions with 𝑘 ∈ {2, 3}, 𝑝 ∈ {3, 4}, and an input set of

50 random undominated alternatives. Time SAT EPI and Time SAT

LP indicate the average time in seconds to compute SMMR𝑘W (A)
using the SAT solver, where we compute SMRW (B,A) using the

epigraph of the value function, and a linear programming solver,

respectively. Time BF EPI and Time BF LP indicate the average

time in seconds to compute SMMR𝑘W (A) using a straightforward
algorithm evaluating all the subsets of size 𝑘 , where also in this case

we compute SMRW (B,A) using the epigraph of the value function,

and a linear programming solver, respectively. Thus, the results

on the first column relate to our best algorithm, and the results on

the last column relate to a straightforward algorithm based on the

definition of SMMR𝑘W (A); as we can see, with our algorithm we

get a very significant improvement. Also, comparing EPI SAT with

LP SAT, and EPI BF with LP BF, we can see that the computation

of the setwise max regret using the epigraph of the value function

(rather than the LP method) seems to improve the performance.

In Tables 2 and 3 we show the average timing of our algorithm

EPI SAT with 𝑘 = 2 and 𝑝 = 4, varying the number of user pref-

erences and the size of the undominated input sets. The SMMR

with 𝑘 = 2 is of particular interest since the corresponding set with

minimum setwise max regret is a myopically optimal binary query

[32]. Binary queries have been often used in preference elicitation

systems (see, e.g., [1, 4, 12, 13, 15, 18, 26]), and our algorithmmay be

used as a query selection strategy in these contexts when the set of

alternatives is not too large. In Table 2, Λ represents the set of (con-

sistent) user preferences (corresponding to linear constraints on the

user preference spaceU), each being of the form 𝛼 ·𝑤 ≥ 𝛽 ·𝑤 . This

constraint can be interpreted as a preference of alternative 𝛼 to al-

ternative 𝛽 . Each set of constraints Λ therefore defines a subsetWΛ

ofU which is a convex polytope. The sets of constraints Λ used in

our experiments are generated supposing a random user preference

model𝑤 , and simulating an iterative elicitation process with binary

queries. At each iteration, we simulate the user preference w.r.t. a

myopically optimal binary query 𝑄 = {𝛼, 𝛽} computed with our

algorithm, and we use the simulated user preference model 𝑤 to

define the sign of the inequality associated with 𝑄 . The resulting

constraint will then be added to Λ. As we can see in Table 2, setting

for example 𝑘 = 2 and 𝑝 = 4 with |UDW (A) | = 500 alternatives,

the number of undominated alternatives rapidly decreases when

increasing the number of constraints, with a consequent improving

of the computation time of SMMR𝑘WΛ
(A). In fact, as we can see in

Table 3, the time performance of our main algorithm seems to grow

exponentially w.r.t. the size of the input set UDWΛ
(A) of undom-

inated alternatives. In Table 2 we reported also the computation

time to filter out dominated alternatives, and, as we can see, it is a

very fast operation in comparison with the computation of SMMR.

https://github.com/federicotoffano/SMMR


Table 1: Average computation time in seconds to compute SMMR𝑘
W (A) with EPI SAT, LP SAT, EPI BF and LP BF over 20 repe-

titions varying 𝑘 and 𝑝 with an input set of 50 undominated alternatives andW = U.

𝑘 𝑝 Time[s] EPI SAT Time[s] LP SAT Time[s] EPI BF Time[s] LP BF

2 3 0.17 8.5 4.15 413.71

2 4 0.19 6.69 5.88 424.90

3 3 0.43 17.46 76.43 6739.02

3 4 0.63 17.72 115.97 6922.82

Table 2: Average time in seconds to compute SMMR𝑘
W (A)

with EPI SAT over 20 repetitions varying the number of user
preferences Λ with |UDW (A) | = 500,W = U, 𝑘 = 2 and 𝑝 = 4.
|W ′ | represents the average number of user preferencemod-
els used to evaluate subsets of Awith SAT, andUD represents
the algorithm to filter out dominated alternatives.

|UDWΛ
(A) | |Λ| Time[s] EPI SAT |W ′ | Time[s] UD

500 0 16.18 68.4 1.467

267.7 1 5.86 61.8 0.460

180.9 2 2.25 56.8 0.154

140.45 3 1.36 59 0.067

100.55 4 0.76 47.7 0.036

65.15 5 0.49 45.5 0.021

90.6 6 0.88 46.6 0.016

34.1 7 0.26 42.8 0.013

40.8 8 0.43 37.2 0.008

24.45 9 0.24 34.4 0.006

Table 3: Average computation time in seconds to compute
SMMR𝑘

W (A) with EPI SAT over 20 repetitions varying the
size of the input set UDW (A) of undominated alternatives
with |Λ| = 0 (i.e.,W = U), 𝑘 = 2, 𝑝 = 4. |W ′ | represents the
average number of user preference models used to evaluate
subsets of A with SAT.

|UDW (A) | Time[s] EPI SAT |W ′ |

100 0.37 46.9

200 1.45 54.3

300 5.29 58.6

400 9.69 62.2

500 28.27 56.9

600 35.95 72.5

In Figure 3 we show how EPI SAT scales w.r.t. 𝑘 and 𝑝 . The y-axis

represents the average timing of our algorithm with a logarithmic

scale. The x-axis represents the number of criteria 𝑝 ∈ {2, . . . , 6}.
Each line represents the average time performance of 20 repetitions

with an input set A of 100 undominated alternatives and varying

𝑘 ∈ {2, . . . , 6}. As we can see, the computation times increases

exponentially w.r.t. 𝑘 , reflecting the exponential growth of the

number of subsets of A of cardinality 𝑘 . The computation time

Figure 3: Average computation time in seconds to compute
SMMR𝑘

W (A) with EPI SAT (y-axis) over 20 repetitions vary-
ing 𝑘 and 𝑝 with an input set of 100 undominated alterna-
tives andW = U.

Table 4: Average computation time in seconds to compute
SMMR𝑘

W (A) with EPI SAT over 20 repetitions varying 𝑝 with
|UDW (A) | = 100, |Λ| = 0 (soW = U) and 𝑘 = 4. |W ′ | repre-
sents the average number of user preference models used to
evaluate subsets of A with SAT.

𝑝 Time[s] EPI SAT |W ′ |

2 0.62 20.7

3 2.15 77.6

4 2.53 152.2

5 5.61 301.9

6 8.09 507.5

seems to grow exponentially also w.r.t. 𝑝 , and this may be due to

the exponential growth of the number of extreme points ofW
w.r.t. 𝑝 (cf. Table 4 for 𝑘 = 4).

We also tested our algorithm with the databases used in the

experimental results of [32]:

(1) Synthetic: A synthetic database of 81 undominated alter-

natives evaluated with 𝑝 = 12 criteria with binary domain



Table 5: Computation of SMMR𝑘
W (A) with the databases considered in the experimental results of [32]. The first four columns

show information regarding the input databases. The fifth and the sixth columns show the performances of filtering out
dominated elements. The last two columns show the time performance of our algorithm EPI SAT and the method used in [32]
(whose results are shown in their Table 8.)

A 𝑘 𝑝 |A| |UDW (A) | UDW (A)[s] EPI SAT[s] [32][s]

Synthetic 2 12 81 81 0.22 0.09 19.47

Synthetic 3 12 81 81 0.22 0.93 -

Synthetic 4 12 81 81 0.22 5.86 -

Synthetic 5 12 81 81 0.22 17.72 -

Rental 2 23 187 100 0.57 0.19 0.17

Rental 3 23 187 100 0.57 0.28 -

Rental 4 23 187 100 057 4.01 -

Rental 5 23 187 100 0.57 172.32 -

Boston 2 14 506 475 3.29 60.73 277.53

Boston 3 14 506 475 3.29 182.18 -

{0, 1}. This is a small dataset used in [32] to test the compu-

tation of SMMR with an exact algorithm.

(2) Rental: Real university student rental database with 187

alternatives evaluated with 𝑝 = 23 criteria with four of them

being real values in the interval [0, 1] and the remaining

being binary values {0, 1}.
(3) Boston: Boston housing database [2] with 506 alternatives

evaluated with 𝑝 = 14 real values. In this case, the alterna-

tives are preprocessed to lie within a common scale.

We assume the higher the value of a criteria the better for all the

alternatives of the above datasets.

In Table 5 we compare the performance of our algorithm EPI

SAT w.r.t. the results reported in Table 8 of [32] related to the three

datasets described above. The precise algorithm used in the experi-

mental results of [32] to compute SMMR is not described, and the

authors show the performance only for 𝑘 = 2, with the computation

of SMMR for 𝑘 > 2 not being feasible with their algorithm. Regard-

ing our algorithm EPI SAT, the computation of SMMR with 𝑘 = 4

was unfeasible for the Boston database. However, we were able to

compute it for 𝑘 ∈ {2, 3}. With the datasets Synthetic and Rental

we were able to compute SMMR even with 𝑘 = 5. Furthermore,

with 𝑘 = 2, for example, our approach performed better than the

heuristic approximate methods used in [32]. Only being able to

manage up to 𝑘 = 3 for the Boston database may be because of

the large number of both alternatives and criteria (and the results

from Table 3 and Figure 3 suggest that the time performance of our

algorithm increases exponentially w.r.t. these parameters).

6 CONCLUSIONS
Interactive elicitation methods maintain a model of the user prefer-

ences which is incrementally revised by an agent asking questions

to a decision maker. In particular, several works [6–8, 10, 33] have

used (standard, single-item) minimax regret to provide a robust

recommendation to the decision maker.

The notion of setwise regret [31, 32] allows one to provide a

sound and principled approach for generating, based on the current

uncertainty about the decision maker’s value function, a set of

alternatives (1) to be used as a recommendation set, and (2) to be

used as a choice query to drive the elicitation forward.

Despite the attractiveness of setwise minimax regret, the high

computational burden of this approach has limited its adoption in

applications. To address this issue, in this paper we provided an

efficient algorithm to compute exactly the setwise minimax regret

for database problems, making use of a SAT solver to prune the

search; this is valuable for generating queries and recommendation

sets, to help a user find amost-preferred item in the databasewith an

interactive user-agent system. Our algorithm may replace heuristic

approaches when the query size is fairly small since the complexity

burden increases exponentially w.r.t. 𝑘 . However, in preference

elicitation systems it is very common to ask binary queries, and

with 𝑘 = 2 we compute an optimal binary query w.r.t. the minimax

regret criterion. Also, our approach could also be a starting point for

new heuristic methods, based on exploring just the most promising

parts of the search space.

We validated our approach in numerical experiments that showed

a very substantial improvement w.r.t. the state of the art. Our im-

plementation gives a proof of concept, using an algorithm of quite

a simple structure. However, it can probably be speeded up a lot us-

ing various optimisations, and for example, a parallel evaluation of

different branches whilst keeping track of a common upper bound.

Future works could involve testing our method in a preference

elicitation context with the purpose of evaluating the quality of

queries for the DM w.r.t. the setwise minimax regret criterion. It

would be interesting also to explore a constraint programming

approach for this problem, with a global constraint replacing the

call to the SAT solver, potentially enabling propagation of literals

to further reduce the search space.
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