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Abstract. In recent years, metasurfaces have become a rapidly growing domain of research in several fields
of engineering and applied physics due to their ability to manipulate both phase and amplitude of electro-
magnetic fields. These artificial 2D-materials, usually composed of metallic elements printed on dielectric
substrates, have the advantages of being low profile, lightweight as well as easy to fabricate and integrate
with standard circuit technologies. In this context, this paper reviews the latest progress in metasurface an-
tenna design, where metasurfaces are used to miniaturize the profile, increase the bandwidth, and control
the radiation pattern in the near- and far-field regions.

Résumé. Ces dernières années, la thématique des métasurfaces est devenue un sujet de recherche en pleine
expansion dans plusieurs domaines de l’ingénierie et de la physique appliquée, en raison de leur capacité
à manipuler à la fois la phase et l’amplitude des champs électromagnétiques. Ces matériaux artificiels bi-
dimensionnels, généralement composés d’éléments métalliques imprimés sur des substrats diélectriques,
ont l’avantage d’être de très faible épaisseur, légers et faciles à fabriquer et à intégrer avec les circuits
imprimés. Cet article passe en revue les dernières avancées dans la conception d’antennes à métasurface,
où les métasurfaces sont utilisées pour minimiser l’épaisseur, augmenter la bande passante et contrôler le
diagramme de rayonnement en champ proche et en champ lointain.
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1. Introduction

In the last years, metamaterials have become an appealing subject of research in applied physics
and electrical engineering. They are synthetic materials that present unusual properties that can-
not be found in nature such as double negative materials or negative index materials. Metasur-
faces can be considered as the equivalent of metamaterials in 2D structures [1]. These synthetic
surfaces are composed of periodic sub-wavelength elements. The special properties of metasur-
faces, due to the electromagnetic scattering from the subwavelength elements, are controlled by
the dimension and the specific shape of these scatterers. The properties of these surfaces are
described in terms of surface impedances (or admittances) or dimensionless susceptibility ten-
sors (analogous to the constitutive parameters for volumetric metamaterials). Using the first ap-
proach, the metasurface is described by the surface impedance tensor Zs relating, for a particular

wavevector ksw, the tangential electric (Et ) and magnetic (Ht ) fields at the surface boundary S:

Et (ρ′)|ρ′∈S = Zs(ksw) · n̂×Ht (ρ′)|ρ′∈S = Zs · J(ρ′) (1)

where n̂ is the unit vector normal to S, ρ′ is a point on the metasurface and J(ρ′) = n̂×Ht (ρ′)|ρ′∈S

is the equivalent surface current density. For simple element geometries as circular or squared
patch, TM and TE polarizations are decoupled (diagonal impedance tensor). These structures are
known as scalar impedance metasurfaces, while geometries leading to full impedance matrices
are known as tensorial impedance metasurfaces. The first implementations made use of simple
printed geometries as dipoles for capacitive surfaces or rectangular slots for inductive ones
[2] leading to diagonal impedance tensors. Later, with the availability of rigorous numerical
simulation tools for periodic structures and the development of general impedance extraction
methods [3, 4] more complicated geometries have been used to obtain full impedance tensors.
It is important to stress the fact that only large metasurfaces (containing a large number of
elements) could be homogenized with an effective impedance. In fact, under this hypothesis,
each basic element will behave as inside an infinite periodic lattice. Then, using classical Floquet
theory, an equivalent medium or impedance could be defined. In other words, the scattered field
from the metasurface illuminated by a plane-wave is essentially a plane wave in the specular
direction as for a homogeneous media. In small size metasurfaces, the edge effect becomes very
strong (each basic element contribution depends on its physical position) and the scattered field
under plane-wave illumination will be composed of several harmonics (plane-waves). As a result,
the metasurface behaves as a passive array of elements and not as an effective medium. The
analysis and the design of antennas using this latter kind of metasurfaces can only be done using
numerical optimizations.

From the engineering point of view, these structures have several inherent advantages like
low cost, low profile, low mass and easy fabrication/integration which are required in electrical
engineering for applications from microwave to THz frequency regimes. Metasurfaces have been
used mainly using three different approaches: as a passive element to improve already existing
antennas; to develop new classes of antennas, and to develop new kinds of feeding networks for
the antenna. For these reasons, different kind of metasurface antennas that perform better or
differently than classical antennas were designed in the last years. As the interest in metasurfaces
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Figure 1. AMC based on a 2-D array of metallic patches with vertical vias proposed in [9].
Brillouin diagram showing a band gap preventing surface waves to propagate along the
metasurface. ©1999 IEEE. Reprinted, with permission, from [9].

is rapidly expanding, several review articles or books can be found in the literature, as for example
in [2, 5–8]. Here, we focus our attention on reviewing the recent progress of metasurface-based
antennas during the past few years presenting a compact profile and that cannot be included
in well-known classical antenna theory as reflectarray, transmittarray, or Frequence Selective
Surfaces (FSS).

The paper is organized as follows: Section 2 reviews the principle and the application of high-
surface-impedance metasurfaces in antenna design. Adding a metasurface close to a classical
planar antenna is possible to enhance some specific antenna parameters as bandwidth or gain.
Section 3 discusses metasurface applications in Fabry–Perot cavities and 2-D leaky wave anten-
nas. In this context, the metasurface is used as a semi-transparent wall to design resonant radi-
ating cavities having some desired property. Section 4 describes recent developments in holo-
graphic antenna and aperture field wave-front engineering. The use of modulated metasurfaces
allows the conversion of surface-waves into radiating waves having the desired direction and
polarization leading to thin versable radiation diagram antennas. Section 5 highlights recent
research work on parallel-plate metasurfaces to design planar lenses or control the dispersion
properties in antenna structures. The use of multiple shifted metasurface layers (high order sym-
metries) allows the bandwidth enhancement of the beamforming network used in thin antennas.
Conclusions are drawn in the final section.

2. High-impedance-surface antennas

Probably the most immediate way to enhance antenna properties by means of a metasurface is
placing the antenna in the vicinity of the metasurface in order to enhance its performance. For
exemple, metasurfaces can act as flat lenses if placed on the top of an antenna, thus modifying
its radiation features [10]. A more common approach is the replacement of the perfect electric
conductor (PEC) of the ground slab in a printed antenna with a high-impedance surface (HIS)
approximating an artificial magnetic conductor (AMC) [9] (see Figures 1, 2). In other terms, the
AMC enforces a dual boundary condition (null total magnetic tangential field) with respect to a
PEC (null total electric tangential field). The AMC has then an ideally infinite surface impedance,
while a PEC has a null surface impedance, which explains the term HIS commonly used in the
literature for surfaces approximating AMC.

The different values of the surface impedances have an impact on both the reflective (plane-
wave incidence) and the dispersive (surface-wave propagation) features of these surfaces. These
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Figure 2. (a) Printed antenna on an AMC. (b) Electric-field reflection coefficient of the
AMC, showing a 0 phase at the resonant frequency around 1.25 GHz, and input impedance
of a short dipole close and parallel to the metasurface. ©2011 IEEE. Reprinted, with permis-
sion, from [11].

two properties allow for complementary explanations of the performance of printed antennas
close to HIS.

Regarding its reflective behaviour, the AMC reflects plane waves with an electric-field reflec-
tion coefficient equal to 1, while the PEC has an electric-field reflection coefficient equal to −1.
This is equivalent to a different sign of the images of currents placed near to the surface created
by the two types of conductors: a tangential electric current is short circuited by a PEC, but not
by a HIS.

For this reason, a HIS at the place of a PEC can lead to low-profile, larger bandwidth, and more
compact designs. A radiating element close to a PEC should be at a distance of approximately
λ/4 from the PEC (corresponding to the thickness of the dielectric slab, λ being the wavelength
in the dielectric). A much thinner slab would short circuit the printed element, since the image
of a planar electric current with respect to a PEC is opposed to the real current and cancels it
out, thus reducing the gain of the antenna. Dense dielectrics can reduce this thickness, but will
also reduce the bandwidth. An HIS removes this thickness limitation: the image of the planar
electric current with respect to an AMC adds up to the real element without deteriorating the
antenna gain and the input matching. For this reason, much thinner substrates can be used (but
the thickness of the HIS itself should also be taken into account in the final design). Furthermore,
the bandwidth limitation related to the frequency dispersion introduced by the electric thickness
of the slab is overcome. Of course, the HIS synthesis relies on a resonant behaviour of the surface
impedance, and the bandwidth can be limited by the practical HIS implementation. In [12] a
circuit model including both the capacitance and the inductance of the metasurface is used
to derive in closed form the fractional operational bandwidth of a HIS. In [11], a transverse-
resonance method [13] is applied to take into account the spatial dispersion and the anisotropy
of the surface, which should be considered when optimizing the full device. Degradation of the
radiation pattern also plays a role in limiting the bandwidth of the complete device as discussed
in [14]. Among other parameters, front-to-back radiation is reported to be enhanced when
considering truncated structures [15]. A more general reactive surface condition has also been
proposed, whose reactance can be optimized according to the device [16] in order to achieve a
large bandwidth and antenna miniaturization.

The HIS can be then described by its electric-field reflection coefficient close to 1 when the
surface is illuminated by a plane wave, usually with normal incidence. Of course, the printed
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antenna will be placed in proximity of the surface, so that the use of a far-field quantity for the
design could be somehow questionable. However, starting from HIS designed under plane-wave
illumination, an optimization of the complete device leads to the expected enhanced results.

A different interpretation of HIS, related to near-field quantities, is based on the dispersion
behavior of these surfaces. As shown in [9, 17], HIS have usually an electromagnetic bandgap
(EBG) behavior in the frequency band close to the impedance resonance. This means that
surface waves cannot propagate along the HIS, and explains why HIS are also used to minimize
surface-wave losses [18, 19] and inter-element coupling among elements in printed arrays [20,
21]. If surface-wave blockage is of interest, the EBG surface can also be printed on the same
interface as the radiating element on the same grounded slab [22]. An in-depth treatment of these
applications is presented in [23]. Other kinds of artificial surfaces can be used in order to enhance
surface-wave contributions [11], thus obtaining a stronger excitation of the radiating element and
a coherent radiation from the truncated edges of the device.

Different surface implementation methods have been proposed in the last two decades, based
on patches with central vias [9, 24], or on purely planar realizations [18, 19, 25–27]. Via-less
solutions may have weaker EBG behaviour and may be less robust with respect to the incidence
angle, but are easier to fabricate [28]. However, via-less metasurfaces can be made more effective
if placed in an embedded configuration [29].

Recently, different geometrical lattices have been proposed to realize the HIS, which could
optimize the coupling with the antenna. Specifically, circular lattices have been investigated
in [30–32] and have been found to be more effective in proximity of curvilinear radiating elements
(circular slots, helicoidal antennas). In squared lattices, an interleaved texture enlarges the oper-
ational bandwidth and offers more angular and polarization stability [33]. If a multilayered con-
figuration is allowed, a miniaturization of the cell size can be achieved through glide-symmetric
configurations [34].

Applications to dual-band antennas have also been studied by using higher-order resonances
of metasurfaces. In [35] fractal motives are used at first, and a more general genetic algorithm
approach is also proposed. Different solutions have been designed more recently based on
slotted patches [36] or angular-defined textures [37].

More complex implementations enable the tunability of the HIS in order to modify the central
frequency of operation and to compensate for different environments (in [38] different kinds of
human tissues are matched for on-body applications by reconfiguring the metasurface).

3. Fabry–Perot cavity antennas and other 2-d leaky wave antennas

The single refraction process that determines the aperture field in flat lenses or, more generally,
transmitarrays (TAs), which locally involves a single uniform plane wave and a uniform homoge-
nized interface, becomes a multiple refraction process in Fabry–Perot Cavity Antennas (FPCAs),
structurally similar to TAs but based on highly reflecting screens, usually indicated in this con-
text as Partially Reflecting Surfaces (PRSs). Such multiple refraction process increases the illumi-
nated area of the aperture plane and hence the directivity of the primary pattern produced by the
feeder, which is typically a simple, non-directive source like, e.g., a printed dipole, a slot on the
ground plane, or a vertical coaxial probe.

Such a ray-optics radiation model was indeed adopted since the seminal paper of 1956 by
von Trentini [39], where the very first FPCA was proposed, based on patterned metal PRSs, as
well as in many of the more recent works on the subject [40–42]. Alternatively, the directive
properties of FPCAs can be related to their resonant behavior when operated in reception under
plane-wave illumination [43]. A third and very fruitful radiation model is based on recognizing
that the extended illumination of the aperture plane is due to the excitation of dominant and
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weakly attenuated leaky waves that propagate radially along the FPCA [44–48], now seen as a
partially open parallel-plate waveguide, in the form of cylindrical waves [49].

Metasurfaces have played an important role in the recent developments of FPCAs, providing
different means of improving their overall antenna performance. A first example is the use of
Artificial Magnetic Conductors (AMCs), like the HIS described in Section 2, as ground planes;
this allows for reducing the thickness of the cavity, which is typically on the order of λ/2 for FPCAs
with a standard uniform metal ground plane, to values on the order of a λ/4 [50, 51]; using more
general metasurface ground planes, that exhibit a reflection phase between −π and 0, the thick-
ness can be furher reduced to λ/6 [52], or even λ/16 [53]. By employing an AMC-like metasurface
also as a PRS further dramatic reductions in thickness can be achieved, down to λ/64 [54].

Other advanced designs employ metasurfaces with the aim of increasing the inherent small
fractional pattern bandwidth of FPCAs. One approach is based on the observation, first made
in [40], that wideband directive radiation can be obtained if the PRS has a reflection coefficient
whose phase is a linearly increasing function of frequency. Such a non-Foster behavior is im-
possible to achieve using a single thin, passive, lossless PRS placed above an ordinary dielectric
slab; therefore, more complex PRS structures have been proposed, e.g., based on two- or three-
layer PRSs made from multiple dielectric slabs covered by metal screens and separated by air
gaps [55–57]; on a single dielectric slab with periodic metal screens printed on both sides [58,59];
on Electromagnetic-BandGap (EBG) structures with defect layers, either metallized [60] or all-
dielectric [61, 62]. A leaky-wave analysis of the broadband response of FPCAs based on a thick
multilayer PRS with a double metallized side was proposed in [63] and, for general FPCAs with
thick PRS, in [64].

Whereas most FPCAs are operated to radiate a narrow pencil beam at broadside, by increasing
the operating frequency their leaky-wave nature allows for obtaining also conical scanned pat-
terns. However, the degree of omnidirectionality of such patterns gradually decreases with the
beam angle, due to the different dispersion features of the two cylindrical leaky waves, one TM
and one TE with respect to the broadside direction, excited along the antenna. In [65] a simple
metal strip grating is considered as a PRS, whose particular spatially dispersive nature allows for a
single cylindrical leaky wave to propagate with the same radial wavenumber in all azimuthal di-
rections; such wave is TM with respect to the strip axis, hence hybrid with respect to the broadside
direction, and produces scanned patterns with improved omnidirectionality and high polariza-
tion purity. Alternatively, multilayer FPCAs with metal patch PRSs have been designed to support
a pair of TM and TE leaky waves with equalized wavenumbers at a single frequency, whose in-
dependent excitation allows for designing narrow-band FPCAs with dual or even reconfigurable
polarization [66].

The inherently dispersive nature of the leaky waves supported by FPCAs is responsible for
their typical frequency scanning feature, i.e., the variation of the radiated beam angle with fre-
quency. Since this may be undesirable in many applications, various designs have been proposed
for achieving pattern-reconfigurable FPCAs at a fixed frequency. One of the first examples is that
proposed in [67], based on a mechanically tunable impedance ground plane. More practical elec-
tronically tunable PRSs have been extensively investigated by many authors, typically including
varactor diodes in the PRS structure [68–72]. In [73] beam steering is instead achieved through
varactor-based phase-agile reflection cells placed on the antenna ground plane.

A different approach to electronic reconfigurability is based on the use of tunable materials,
whose permittivity can be changed by applying suitable electrostatic bias fields. In [75], for
instance, a tunable 2-D LWA was proposed, where a thin ferroelectric layer was inserted directly
below the slot-type metal PRS inside the antenna cavity. In [76] a multistack PRS was instead
considered, made of alternating layers of highly birefringent nematic liquid crystal and high-
permittivity dielectric. The use of graphene has also been considered for achieving reconfigurable
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Figure 3. Graphene-based FPCA in a substrate-superstrate configuration. (a) Transverse
view of the multilayer, including the graphene biasing scheme. (b) 3-D view of the conical
pattern. More information can be found in [74]. ©2017 IEEE. Reprinted, with permission,
from [74].

Figure 4. Radiation patterns in the principal planes for the Graphene-based FPCA in
Figure 3: scanning process at a fixed frequency by varying the graphene chemical potential
µc via voltage bias in (a) the H-plane and (b) the E-plane. More information can be found
in [74]. ©2017 IEEE. Reprinted, with permission, from [74].

2-D LWA operation since, as is well known, the conductivity of graphene can be tuned via electric-
field effect by means of a suitable electrostatic bias. This has prompted in the last few years
a number of investigations on different kinds of graphene reconfigurable antennas. Recently,
examples of graphene-based reconfigurable 2-D LWAs have also appeared, operating in the
THz range and based on patterned graphene HISs [77] or unpatterned graphene sheets above
a grounded slab [78] or in a substrate-superstrate configuration [74, 79] (see the structure in
Figure 3 and the relevant radiation patterns in the principal planes in Figure 4).

In addition to producing directive far-field patterns, FPCAs can also generate near-feld distri-
butions with nondiffracting features, such as Bessel beams, exploiting the radiating features of
backward cylindrical leaky waves [80,81], on the basis of the approach originally proposed in [82]
and based on standing-wave aperture distributions. Bessel beams can also be produced using
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Figure 5. (a) Bull-eye microstrip antenna for microwave Bessel-beam generation via back-
ward cylindrical leaky waves. (b) Measured radial electric near field at f = 18 GHz in a lon-
gitudinal plane, showing the desired Bessel-like pattern inside the non-diffracting range.
More information can be found in [88]. ©2018 IEEE. Reprinted, with permission, from [88].

traveling-wave aperture distributions [83], which can be synthesized, e.g., through radial-line slot
antennas [84–86]. Alternatively, they can be synthesized by using 2-D LWAs not belonging to the
class of FPCAs, based on radially periodic structures that cannot be homogenized (hence lack
translational invariance) and support backward cylindrical leaky waves [87–89] (see Figure 5);
similar structures also offer the possibility of focusing the radiation in the near field around a pre-
scribed focal point [90,91]. These so-called “bull-eye” configurations were first proposed in [92] in
the form of concentric microstrip rings for far-field operation in the microwave range; they were
subsequently extensively studied by various groups, both at microwaves [93, 94] and, in variants
based on metal corrugated structures, at millimeter-wave [95] and terahertz frequencies [96].

4. Holographic antennas

The present section reviews the research on using metasurfaces to transform guided waves into
waves propagating in free space for the antenna design. This approach was firstly introduced
by Sievenpiper’s group at the microwave regime using the holographic concept to design the
impedance surfaces [97]. Then, this concept has been used and extended by several other groups
adding more physical insight [98–108]. The general geometry is shown in Figure 6a. A planar
feeder is illuminating a metasurface composed by subwavelength metallic elements printed over
a grounded dielectric slab. If the metasurface is spatially homogenous the structure is able to
support eigen guided modes (TM modes for the scalar case or hybrid TM–TE mode for the
tensorial one) with propagation constant k sw

ρ > k0. Since the spacing between adjacent elements
is subwavelength, it is possible, using a slow variation of the impedance, to modify the wavevector
of a guided wave adiabatically. Some techniques have been developed in order to study the
propagation of the SW on such inhomogeneous metasurfaces [102–104].

In the scalar case the design is addressed considering as local tangent problem a sinu-
soidally modulated impedance of the form Z (x) = j Xs [1+ M cos(2πx/p)], where Xs represents
the average reactance value, p the period, and M < 1 is the modulation index. The field over
the metasurface can be expressed as the sum of Floquet modes. However, as demonstrated
in [98, 100, 108], to the first order with respect to the small parameter M , only 3 modes con-
tribute significantly to the field. If k sw

ρ −2π/p < k0 one term radiates in free-space in the direction
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Figure 6. (a) General geometry. A propagating SW is transformed into a LW via impedance
modulation. (b) Coaxial Feeder geometry. (c) A metasurface antenna geometry working at
12 GHz designed at Sorbonne Université.

θ = arcsin((k sw
ρ −2π/p)/k0) with an amplitude proportional to M . The antenna is synthesized us-

ing an inhomogeneous modulation of the impedance (Figure 6c) obtained by varying the M and
p parameters of the modulation law. The entire metasurface is seen as an equivalent aperture
surface magnetic current distribution whose phase and amplitude depend on the local modula-
tion parameters, while the direction is dictated by the source. Using standard aperture antenna
theory is it possible to optimize the parameters to obtain the desired radiation pattern. However,
the range of different aperture field distributions achievable is limited by the inability to control
the direction of the equivalent aperture surface current [100]. The most commonly used incident
wave in the literature is the cylindrical SW generated by a coaxial probe (Figure 6b) placed at
the center of the metasurface (equivalent magnetic current oriented along φ). Single beam cir-
cularly polarized antennas have been developed and experimentally validated (Figure 6a) using
a spiral dependance of the impedance for the broadside direction [98] while an elongated spiral
distribution is needed for tilted beams [100]. Linearly polarized beams have been achieved using
some azimuthal phase discontinuity [100,109] in order to compensate in the opposite direction of
symmetric current elements with respect to the origin. Multiple modulations have been used to
generate beams at different frequencies [110]. Scalar metasurfaces have been also used to design
near-field antennas as a Bessel beam [100]. From the scalar nature of the metasurface follows that
the TM and TE polarization of the field could be designed separately. This aspect has been used to
design polarization-insensitive antennas [111], dual-circularly polarized antenna [112], polariza-
tion reconfigurable antennas [113] and to generate different beams using multiple sources [114].

Tensorial metasurface antennas can be used to produce complex radiation patterns taking
advantage of the ability to control the current orientation. Energy conservation and reciprocity
imply that impedance tensor must be anti-Hermitian. Thus, physical impedances are described
only by 3 real parameters. The antenna design is addressed considering as local tangent problem
a modulated impedance tensor which elements have the form Zi (x) = j X i

s [1+Mi cos(2πx/pi )],
where each component can have different period. As for the scalar case, the field above the
metasurface can be seen as the sum of TM and TE Floquet modes. However, several terms
now contribute to the radiated field as shown in [108]. In the first paper on the topic [97], the
impedance tensor obtained from the holography principle was not anti-Hermitian, thus the
impedance was synthesized using only the anti-Hermitian part of such tensor. This operation
leads to non-sinusoidal modulations that can excite undesired radiating Floquet’s modes [108].
Later, a different approach was successfully introduced by another group [103], where the SW-
field is considered as quasi-TM mode, thus the design is performed using two independent tensor
parameters. A third approach based on a local holography principle was introduced in [104],
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Figure 7. (a) Circularly polarized beam generated by a spiral scalar impedance metasur-
face. ©2011 IEEE. Reprinted, with permission, from [122]. (b) Isoflux antenna generated by
tensorial metasuface. ©2012 IEEE. Reprinted, with permission, from [118]. (c) Near-field
shaping and confinement using tensorial metasurface. ©2019 IEEE. Reprinted, with per-
mission, from [121].

where the whole impedance parameters were used in order to implement a general aperture field
distribution. More recently, a numerical optimization method based on the electric field integral
equation (EFIE) was successfully used in order to generate numerical results [115].

Single beam antennas have been experimentally validated in [116,117] (Figure 7a). Numerical
results of shaped beam configurations have been presented in [103]. More complex radiation
pattern as isoflux [118] or flat-top [104] have been successfully designed (Figure 7b), while multi-
beam configurations have been presented in [104, 119], and experimentally validated in [120].
In addition, the near-field shaping capability of tensorial metasurface has been experimentally
demonstrated in [121] where the energy has been confined in 4 beams (Figure 7c).

5. Parallel plate metasurfaces for antennas

Often, metasurfaces are not directly used in radiation, but rather that to control the propagation
of confined waves. Commonly, these metasurfaces are embbeded between parallel plates to avoid
any leakage. Once the desired distributions of both phase and amplitude are tailored, it is possible
to produce high performance antennas [123]. The unit cells inside of the parallel plate must
be adequately designed and distributed in order to produce the required equivalent refractive
indexes (isotropic or anisotropic) and impedances [124, 125] that produce the desired phase and
amplitude at the end of the metasurface. This type of metasurfaces can be classified as metallic
and dielectric.

5.1. Fully-metallic metasurfaces

Fully-metallic metasurfaces are used to produce low-loss electromagnetic devices that can han-
dle high power. Dielectric losses are typically high in the millimetre bands, above 30 GHz. There-
fore, for high-frequency applications, such as 5G, fully-metallic solutions are preferred [126].
Fully-metallic configurations are also desired in radar systems and defense applications, where
the systems must typically handle elevated amount of power [127].

There are two main types of metallic-configurations: bed-of-nails [128, 129] and holey struc-
tures [130]. These configurations are illustrated in Figure 8(a). Holey structures are more ro-
bust and cost-effective than pins. However, pin-type metasurfaces can achieve higher equivalent
refractive indexes, and they do not require of thin air-gaps between layers [131]. The dispersion
properties of these two type of structures are illustrated Figure 8(a).
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Figure 8. Dispersion diagrams of (a) pin-type and holey metallic metasurfaces, (b) patch-
and holey-type dielectric metasurfaces.

5.2. Dielectric metasurfaces

For lower frequencies, dielectric metasurfaces are a preferred solution, since they are more cost-
effective. Here again, there are two types of dielectric metasurfaces: patch- [132] and holey-
type [133]. Patch-type metasurfaces are quite independent of the height between parallel plates.
However, holey-type metasurfaces require thin plate gaps to produce high refractive indexes
[134]. In general, holey-type structures provide lower losses than patch-type, since the waves
will propagate mainly in the air. These two configurations and their dispersion diagrams are
illustrated in Figure 8(b).

5.3. Lens designs

All these configurations have employed to produce a number of lenses, such as the Maxwell fish-
eye lens [135] and its generalized version [136]. However, the most popular lens for antenna
designs is the Luneburg lens. A Luneburg lens antenna typically needs a transformation from
parallel plate to free-space. There are two methods to produce an efficient radiation: leaky-waves
[137] or flares [138].

Among these two, the most used technique is the flare, since leaky-waves are dispersive,
meaning that the angle of radiation changes with the frequency [139]. In the case of patch-type
metasurfaces, it is difficult to reduce the reflections at the end of the structure since most of
the fields are confined in the dielectric slab [140]. This problem does not exist in fully-metallic
structures [131] and dielectric holey-type [134]. However, in the case of holey-type structures
(metallic or dielectric), the flare may be long to achieve low-level of reflections. This is due to
the fact that the air-gap between the metasurface and the ground plane must thin to achieve the
required equivalent refractive index [141].

5.4. Glide-symmetric metasurfaces

Glide symmetry is a new degree of freedom that has been recently proposed to improve the
properties of metasurfaces, for example, to increase the bandwidth and attenuation of stopbands
created by periodic structures [142–144]. One periodic structure possesses glide symmetry if
it is invariant after a translation and a mirroring [145, 146]. By adding glide symmetry to a
metasurface, it is possible to increase its bandwidth of operation, i.e. to reduce its dispersion
[147]. Additionally, glide symmetry can be used to increase the equivalent refractive index of
periodic structures [131, 141], their anisotropy [148] and their magnetic response [149]. These

C. R. Physique, 2020, 21, n 7-8, 659-676



670 Massimiliano Casaletti et al.

Figure 9. Glide-symmetric metasurface antenna in Ka-band: (a) Photo of the antenna,
(b) Radiation patterns at 28 GHz. More information can be found in [141]. ©2018 IEEE.
Reprinted, with permission, from [141].

features are beneficial to produce lens antennas. An example of a Luneburg lens antenna made
of glide-symmetric metasurfaces is illustrated in Figure 9. This antenna operates in Ka-band and
it designed for 5G communications. The antenna is able to produce a extreme angles of radiation
with low scan-losses and high efficiency.

6. Conclusions

Metasurfaces have revolutionized the design of electromagnetic devices through tailoring sub-
wavelength structures to shape the electromagnetic field. In this paper, we have reviewed the re-
cent development in metasurface antenna design by introducing the fundamental concepts and
presenting the actual state of the art of the physical realizations. Most of the presented examples
operate at microwave but the same concept can be used up to visible light.

Starting from high impedance surface antennas, we have discussed how placing a planar an-
tenna in the vicinity of a suitable metasurface could enhance its performances. We introduced
how similar approaches could be used to improve the performances of Fabry–Perot cavity anten-
nas and other 2-D leaky wave antennas. Furthermore, we discussed how the wave-front shap-
ing ability of the metasurfaces can be used to design holographic aperture metasurface anten-
nas (based on the conversion of a surface-wave into a radiated one) or to design planar lenses or
control the dispersion properties in antenna structures.

With the level of advancements made already, there is a great prospect for the future. In re-
cent years, research has been mainly conducted with the focus to improve the antenna perfor-
mances using passive metasurfaces. Some active solutions have been presented (using control
elements such as varactors, etc. . . ), leading to bulky and expensive devices (complexity and cost
proportional to the number of unit cells). The challenge for the next years will be the develop-
ment of low-cost fully tunable or reconfigurable metasurfaces. This aspect will dramatically im-
prove both antenna and optical beam-forming applications and open up new possibilities for
electromagnetic devices.
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