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A B S T R A C T   

Passive microwave remote sensing observations at L-band provide key and global information on surface soil 
moisture and vegetation water content, which are related to the Earth water and carbon cycles. Only two space- 
borne L-band sensors are currently operating: SMOS, launched end of 2009 and thus providing now a 10-year 
global data set and SMAP, launched beginning of 2015. This study provides a state-of-the-art scientific over
view of the SMOS-IC retrieval data set based on the SMOS L-band observations. This SMOS product aims at 
improved performance and independence of auxiliary data, key features for robust applications. The SMOS-IC 
product includes both a soil moisture (SM) and a L-band vegetation optical depth (L-VOD) data set which are 
currently at the basis of several studies evaluating the impact of climate and anthropogenic activities on 
aboveground carbon stocks. Since the release of the first version, the algorithm has been significantly changed in 
support to key applications, but no document is available to report these changes. This paper fills this gap by 
analyzing key science questions related to the product development, reviewing application results and presenting 
an extensive description of the last version of the product (version 2) considering changes in comparison to the 
previous version (V105). For the future it is planned to merge the SMOS and SMAP L-VOD data sets to ensure L- 
VOD data continuity in the event of failure of one of the space-borne SMOS or SMAP sensors.   

1. Introduction 

Two L-band passive microwave space-borne missions are currently 
monitoring the Earth surface: SMOS (Soil Moisture and Ocean Salinity) 
developed by ESA (European Space Agency) and SMAP (Soil Moisture 
Active Passive) developed by NASA (National Aeronautics and Space 
Administration) (Kerr et al., 2016 ; Entekhabi et al., 2010). These two 
instruments are operating in a full-polarization mode and have 
demonstrated a strong capability to monitor both the soil and vegetation 
features over the land surfaces at global scale (Wigneron et al., 2017). 
The SMOS instrument, launched end of 2009, is based on a large Y- 
shaped interferometric antenna allowing multi-angular observations. 
The multi-angular capability is key for two-parameter retrievals of soil 

moisture (SM) and of the L-band vegetation optical depth at nadir (L- 
VOD) from the inversion of the L-MEB (L-band Microwave Emission of 
the Biosphere) model (Wigneron et al., 2000, 2007; Kerr et al., 2012). 
The SMAP instrument was launched more recently (January 2015) and 
provides mono-angular (at the incidence angle θ of 40◦) observations 
(Entekhabi et al., 2010; O’Neill et al., 2018). The official default SMAP 
retrieval algorithm relies presently on the single-channel algorithm at 
the vertical polarization (SCA-V) (Colliander et al., 2017; O’Neill et al., 
2018) which is used to retrieve SM. In SCA-V, L-VOD is computed from 
the vegetation water content (VWC, kg/m2), which is estimated from 
climatological values of the Normalized Difference Vegetation Index 
(NDVI) (O’Neill et al., 2018). The link between L-VOD and VWC is given 
from the linear relation L-VOD = b ⋅ VWC where values of the b- 
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parameter are obtained from a land cover look up table. As SMAP does 
not have multi-angular capabilities, other retrieval algorithms have 
been developed/used to achieve simultaneous retrievals of SM and L- 
VOD. For instance, the multi-temporal dual channel algorithm (MT- 
DCA, Konings et al., 2016), based on a number of consecutive obser
vations, has been applied to the SMAP observations (Konings et al., 
2017a). Recently, the enhanced SMAP SPL2SMP-E product that offers 9- 
km SM and L-VOD retrievals has been released (Chaubell et al., 2020). 
This product is based on a modified dual channel algorithm (MDCA) 
applied to disaggregated brightness temperatures computed from the 
Backus-Gilbert interpolation (Long et al., 2019a). Exploiting the SMOS 
capabilities for two-parameter retrievals of SM and L-VOD, the alter
native SMOS INRA-CESBIO (SMOS-IC) product has been recently 
developed (Fernandez-Moran et al., 2017a). The main objectives of this 
new algorithm were: (i) to improve performance by relying on the 
original and simpler algorithm initially proposed for SMOS (Wigneron 
et al., 2000), and (ii) to achieve maximal independence of auxiliary data; 
contrary to the official algorithms no modelled SM data and optical 
vegetation indices are used in SMOS-IC. This latter feature allows 
avoiding possible circularity in evaluation studies comparing modelled 
and remotely-sensed variables. 

Both the SMOS-IC SM and L-VOD products released in version 105 
(V105) have been evaluated in several studies. Recent inter-comparisons 
have found that the SMOS-IC, SMAP and ESA CCI (Climate Change 
Initiative) SM products have very good performances, each product 
being more or less performant depending on specific soil and vegetation 
conditions (Al-Yaari et al., 2019a; Ma et al., 2019; Quets et al., 2019). 
Inter-comparisons of the SMOS L-VOD products have also showed 
SMOS-IC was better related to several vegetation features and vegeta
tion optical indices (aboveground biomass (AGB), tree height, NDVI, 
LAI) in terms of spatial correlation than the official Level 2 and Level 3 
SMOS products (Rodriguez-Fernández et al., 2018). 

The satellite L-VOD vegetation index, as measured from the SMOS or 
SMAP instruments, has allowed the development of many applications 
in fields of research related to the Earth water and carbon cycles. As 
quickly summarized in the following, L-VOD can be used to monitor two 
very distinct vegetation features: vegetation water status and biomass. 
From in situ experiments, L-VOD was found to be almost linearly related 
to the vegetation water content (VWC) over crop fields during the 
vegetation growth (Jackson and Schmugge, 1991; Wigneron et al., 1995, 
2007). From numerical simulations, some studies (Ferrazzoli et al., 
2002; Wigneron et al., 2017) have shown that this good relationship 
could be extended to woody vegetation. L-VOD, through its close rela
tionship to VWC, depends on both the quantity of vegetation (parame
terized by biomass) and its moisture content (Mg, kg/kg). Disentangling 
the effects of both variables on L-VOD is not straightforward but several 
approaches based on some hypotheses can be used. From the analysis of 
the diurnal and daily changes in VWC, L-VOD was used to monitor the 
vegetation water status (Konings and Gentine, 2016). Conversely, 
assuming that the yearly average of the vegetation moisture content 
(Mg) is relatively constant from year to year, the yearly average of L- 
VOD can be considered as a good proxy of aboveground vegetation 
biomass (AGB) (Liu et al., 2015; Brandt et al., 2018a; Chaparro et al., 
2019). Direct validation at the 25 × 25 km scale is difficult and the latter 
assumption can only be indirectly evaluated by computing the spatial 
correlation between L-VOD and AGB or between changes in L-VOD vs 
changes in forest fraction over different years (Qin et al., 2020). More
over, L-VOD-related proxies of AGB have been developed considering 
the seasonal dynamic of the moisture content of vegetation and 
assuming lower changes in Mg during the wet season(s) in the tropical 
forests (Qin et al., 2020). However, predawn soil and plant water po
tentials are tightly coupled (Slatyer, 1967) and they are both related to 
the vegetation moisture content across many species. Interannual soil 
moisture differences can occur even in tropical forests (least-water 

limited) which would most certainly lead to less saturated plant condi
tions (Brando et al., 2010). Therefore, plant saturation can be expected 
to be different from year to year even in the tropics. So, the use of L-VOD 
in AGB monitoring applications reveals the strong need for better dis
entangling biomass and water content effects on L-VOD across all 
timescales as carried out in several studies (Konings et al., 2019; Momen 
et al., 2017; Zhang et al., 2019). VOD has generally been retrieved at 
relatively high frequency bands; most generally at C- and X-bands cor
responding, respectively, to a frequency (f) of ~6 and 10 GHz and to a 
wavelength (λ) of ~3 and 6 cm (Moesinger et al., 2020). Conversely, L- 
VOD is retrieved at a relatively low frequency (L-band, f = 1.4 GHz, λ ~ 
20 cm). VOD is depending on frequency: the lower the frequency, the 
better the penetration capabilities of the microwave radiations within 
the canopy layer. The VOD index retrieved at L-band (L-VOD) is thus 
better related to the vegetation features of the whole canopy layer, 
including the woody component, while the high-frequency VOD prod
ucts (at C- and X-bands) are more related to top-of-the-canopy vegeta
tion features (Brandt et al., 2018a; Rodriguez-Fernández et al., 2018). 

In this context, the SMOS and SMAP L-VOD indices have been used in 
a number of application studies and only those related to the SMOS-IC 
product were considered here. In particular, the SMOS-IC L-VOD 
index whose time series exceeds 10 years now, was found to be a key 
index to evaluate the inter-annual variations in the aboveground 
biomass (AGB) stocks. Several studies have been carried out recently on 
that topic over sub-Saharan Africa (Brandt et al., 2018a), southern China 
(Tong et al., 2020), Europe (Bastos et al., 2020), and the pan-tropics 
(Bastos et al., 2018; Fan et al., 2019; Wigneron et al., 2020). L-VOD 
has also been a key vegetation index to reveal specific hydraulic features 
of dry tropical forests in the Miombo area (Tian et al., 2018). Following 
these initial and pioneer studies, the number of studies based on the 
SMOS-IC L-VOD index is growing quickly in several fields of 
applications. 

The technical details of the original SMOS-IC approach have been 
first presented by Fernandez-Moran et al. (2017a) and the optimisation 
of the soil and vegetation parameters has been analyzed in Fernandez- 
Moran et al. (2017b). Since the first version (V105), several changes 
have been applied to the original SMOS-IC retrieval algorithm and 
several versions have been released, leading to the production of the 
current version (V2). However, none of these changes have been 
described and analyzed to date and no reference paper of the present 
SMOS-IC product is available. In this paper, we filled this gap by 
providing (i) a review of the SMOS-IC algorithm and of its main appli
cations and (ii) a presentation and an evaluation of the most recent 
SMOS-IC version (V2) against reference remote sensing, modelled and in 
situ data sets. Eventually, we analyzed key points of the data set 
requiring improvements and presented perspectives. 

2. SMOS-IC: History, rationale, objectives 

2.1. Before the SMOS launch 

SMOS-IC is based on the retrieval algorithm which was proposed 
originally by Wigneron et al. (2000) in support to the answer to the Call 
for Earth Explorer Opportunity Missions from ESA (European Space 
Agency) led by Y. Kerr in 1998. The original algorithm (referred to as L2P 
in the following) relied on the two-parameter inversion of the L-MEB 
model to retrieve simultaneously SM and L-VOD from multi-angular 
microwave brightness temperature (TB) measurements at L-band 
(Wigneron et al., 1995, 2007). As for most microwave remote sensing 
algorithms, L2P considered homogeneous pixels. 

The SM and L-VOD retrievals are based on an iterative approach 
minimizing a cost function (CF) which accounts for (i) the Root Mean 
Square Difference (RMSD) between measured (TBmes) and modelled 
(TB*) data for all available TB observations and (ii) a priori information 
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available on the retrieved parameters (Pulliainen et al., 1993; Wigneron 
et al., 2003): 

CF =

∑
(TBmes − TB*)

2

σ(TB)2 +
∑2

i=1

(
Pini

i − P*
i

)2

σ(Pi)
2 (1)  

where the sum of the differences between measured (TBmes) and simu
lated (TB*) brightness temperatures is computed from observations over 
the range of available incidence angles (θ) and for both Horizontal (p =
H) and Vertical (p = V) polarizations; σ(TB) is the standard deviation 
associated with the brightness temperature measurements. The second 
term of the equation corresponds to the background information, in the 
form of an a priori estimate, which is important to make the minimiza
tion process a well-posed problem. In that term, Pi* (SM* and L-VOD*, 
respectively for i = 1, 2) is the value of retrieved SM or L-VOD; Pi

ini (SMini 

and L-VODini, respectively for i = 1, 2) is the initial value of SM or L-VOD 
in the retrieval process and corresponds to an a priori (or “first guess”) 
estimate; σ(Pi) is the standard deviation associated with this estimate. In 
SMOS-IC V2, L-VODini is computed from previous values of retrieved L- 
VOD (as presented later in Eq. (2)) constraining the L-VOD value to 
relatively low changes from overpass to overpass. 

The multi-angular algorithm (L2P) proposed by Wigneron et al. 
(1995), defined from tower-based observations with fixed ranges of 
incidence angles, was extended by Wigneron et al. (2000) to account for 
the specific multi-angular capabilities of the aperture synthesis radi
ometer of the SMOS mission. For this latter instrument, each pixel on the 
Earth can be observed for a range of incidence angles as the satellite 
moves along its track. This range of incidence angles is not constant as it 
depends on the distance between the pixel and the sub-satellite path. 
This range is maximal in the central part of the Field of View (FOV) and 
minimal at the edge of the FOV (here, by FOV we refer more precisely to 
the extended alias-free FOV (EAF-FOV)). The uncertainties associated 
with the retrievals based on observations acquired at the edge of the 
FOV are thus larger than those for retrievals based on observations in the 
central part of the FOV (where more available observations allow to 
constrain more efficiently the retrieval process). However, it is impor
tant to consider all observations, even those at the edge of the FOV, to 
improve the revisit frequency of the SMOS retrievals (Wigneron et al., 
2000). Several 1-, 2- or 3-Parameter retrieval approaches were evalu
ated, considering retrievals of SM only (1-P retrievals) and simultaneous 
retrievals of SM and L-VOD (2-P retrievals) and of SM, L-VOD and sur
face temperature (3-P retrievals). The main idea developed in Wigneron 
et al. (2000) and which is now currently used in several multi-orbit 
retrievals (Kerr et al., 2016; Konings et al., 2017a) is that L-VOD var
ies relatively slowly in time and that it can be correctly estimated using a 
revisit time of about 5 to 10 days. So, 2-P retrievals of SM and L-VOD can 
be done in the central part of the FOV and in a second step, the estimate 
of L-VOD obtained from this 2-P retrieval can be used as a first guess 
(VODini in Eq. (1)) to retrieve only SM (1-P retrieval) at the edges of the 
FOV. Several variations of this main idea can be developed in order to 
find the best compromise between the accuracy of the retrievals (using 
mainly 2-P retrievals from observations made in the central part of the 
FOV) and the revisit time of the SM and L-VOD retrievals. 

Relying on these foundations and on the L-MEB inversion, the official 
ESA/SMOS Level 2 algorithm (referred to as L2 in the following) was 
developed during the 2000s (Kerr et al., 2012). In comparison to the 
“original” L2P algorithm based on the L-MEB inversion considering ho
mogeneous pixels, several changes have been considered in the L2 al
gorithm. It is not possible to list all of them, but one of the most 
important is that several approaches have been implemented in L2 to 
account for the pixel heterogeneity. To summarize the main features of 
L2 vs SMOS-IC (see detailed information in Supplementary about L2), we 
highlight that the L2 retrievals (i) are computed only over a fraction of 
the pixel (the “dominant” fraction), while the contribution of the default 
fraction (such as forests, forested areas, barren land (rocks), water 
bodies, urban areas, permanent ice, and snow) is modelled (ii) involve a 

complex processing including ancillary information (modelled SM, land 
use and Leaf Area Index (LAI) maps), a decision tree and a convolution 
process with the antenna pattern, to model the contribution from the 
“default” fraction. Most importantly, modelled SM from ECMWF (Eu
ropean Centre for Medium-Range Weather Forecasts) ERA-Interim and 
MODIS LAI (Cf Eq. 17 in Kerr et al., 2012) are used in some mixed pixels 
to compute the default TB contribution; the use of these ancillary data is 
limiting potential applications of the L2 products as discussed below. 

2.2. After the SMOS launch 

After the SMOS launch, the official L2 SM and L-VOD products have 
been rapidly available for the scientific community and large inter- 
comparison studies of the SM products have been published (Al-Yaari 
et al., 2014). In parallel, studies based on the non-official L2P algorithm 
have continued. For instance, L2P was applied to Level 1-C TB data over 
the VAS site (Valencia Anchor Station, Spain), one of the main SMOS 
calibration/validation sites in Europe (Wigneron et al., 2012). It was 
found the retrievals computed from L2P, that did not consider the pixel 
heterogeneity, produced a much lower bias against in situ measurements 
(Bias ~ − 0.06 m3/m3) than the official L2 products (Fig. S1). These 
results allowed to make recommendations to ESA about potential future 
improvements of the L2 algorithm. In particular, the high SM bias ob
tained in the L2 retrievals could be due to the fact the L2 retrievals 
tentatively accounted for pixel heterogeneity. For instance, if L2 re
trievals are made over short vegetation (“dominant” fraction), a “het
erogeneity” correction is applied through the use of ancillary data to 
estimate the “default” forest fraction. If the “heterogeneity” correction is 
erroneous, for instance if the modelled forest TB contribution is under
estimated, due to overestimated ECMWF ERA-Interim SM or under
estimated L-VOD values over the forest fraction, it could lead to a large 
dry bias in the retrieved L2 SM values over the short vegetation fraction. 

The results of these inter-comparisons between retrievals based on 
the non-official L2P approach and the official L2 algorithm stimulated 
the interest of developing an alternative SMOS product. Eventually, the 
L2P approach was implemented globally and led to the development of 
the SMOS-IC product, as presented in the next section. 

3. SMOS-IC development 

3.1. Materials 

A presentation of the data sets used to optimize or evaluate the 
SMOS-IC product in their different versions is given here. We refer the 
readers to Li et al. (2020a), who evaluated a Two-Stream version of 
SMOS-IC, for more details. 

3.1.1. ECMWF ERA-Interim and ERA5-Land modelled SM 
To analyze the SMOS-IC SM data, we used two ECMWF reanalysis SM 

data sets of the top 0-7 cm soil layer: ERA-Interim (Dee et al., 2011) and 
ERA5-Land which is a replay of the land component of ERA5 (Hersbach 
et al., 2020). The ERA-Interim SM products have shown a very good 
accuracy, similar or higher than remote sensing products in inter- 
comparison studies made against in situ observations (Albergel et al., 
2012, 2013; Peng et al., 2015; Zeng et al., 2015) and have been used in 
several reference inter-comparison studies (Al-Yaari et al., 2014, 2019a; 
Li et al., 2020a). In a recent study, Li et al. (2020b) have shown ERA5 SM 
presents higher skills than four other reanalysis SM products and a sig
nificant improvement over its predecessor (ERA-Interim). ERA5-Land 
(https://www.ecmwf.int/en/era5-land) was used here instead of ERA5 
as it is independent of the assimilated SMOS observations and it has 
enhanced spatial resolution (9 km grid spacing vs 31 km for ERA5). We 
used hourly ERA5-Land SM products which was aggregated (using 
averaging) to the SMOS resolution over the 2014–2017 study period. As 
noted above, SMOS-IC SM is completely independent of both ERA- 
Interim and ERA5-Land SM. To be more independent in the 
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calibration and evaluation steps, ERA-Interim SM was used in the cali
bration step of SMOS-IC V2 (Section 3.3) while ERA5-Land SM was used 
in the inter-comparison step of SMOS-IC V2 and V105 (Section 4). 

3.1.2. ISMN in situ SM data sets 
To evaluate the SMOS-IC SM data, we used in situ measurements 

from all networks included in ISMN (International Soil Moisture 
Network; Dorigo et al., 2011) with sufficiently long SM time series over 
2014–2017. This represents 738 sites from 20 networks over all conti
nents (Table 1). 

3.1.3. Aboveground biomass (AGB) data sets 
Strong spatial correlation is expected between yearly average L-VOD 

and AGB (Brandt et al., 2018a; Wigneron et al., 2017), so that AGB is 
often used as an evaluation criteria of VOD products (Li et al., in press; 
Rodriguez-Fernández et al., 2018). Here, to evaluate the SMOS-IC L- 
VOD products in terms of spatial correlation with AGB, we used three 
different reference AGB maps, referred to as Saatchi (Saatchi et al., 
2011), Globbiomass (Santoro et al., 2018) and ESA CCI (http://cci.esa.in 
t/biomass). The Saatchi map used in the present study is an updated 
version corresponding to AGB circa 2015 (Carreiras et al., 2017). Saatchi 
AGB has already been used in several studies to calibrate the L-VOD/ 
AGB relationship (Fan et al., 2019; Wigneron et al., 2020). Globbiomass 
is a recent AGB data set for the year 2010 which is obtained from 
multiple remote sensing and in situ observations at 100 m spatial reso
lution. Forest growing stock volume (GSV) is first estimated from the 
remote sensing observations and GSV is then converted to AGB with 
spatially explicit estimates of wood density and stem-to-total biomass 
expansion functions derived from forest inventory data sets (Yang et al., 
2020). The ESA CCI AGB data set was developed within the ESA’s 
Climate Change Initiative Biomass project which considers AGB, as SM, 
as an Essential Climate Variable (ECV). Global maps of AGB (Mg ha− 1) 
were developed at 500 m to 1 km spatial resolution with a relative error 
of less than 20% where AGB exceeds 50 Mg. ha− 1 and for four epochs 
(mid 1990s, 2010, 2017 and 2018). We used here the CCI AGB data set 
for 2017 at a resolution of 100 m (CCI AGB D4.3, 2020). 

All the three AGB estimates used here are based on optical, lidar and 
radar observations from multiple Earth observation satellites and in
ventory data sets. They are thus completely independent of SMOS-IC L- 
VOD, as SMOS-IC does not use ancillary information on vegetation as 
presented above. 

3.1.4. IGBP land cover classes 
As in Fan et al. (2019), the land cover classes were defined using 

MODIS 500 m land cover type data product (MCD12Q1) considering the 
International Geosphere–Biosphere Programme (IGBP) classes (Broxton 
et al., 2014) (Table 2). 

3.1.5. MODIS LAI, NDVI 
Spatial correlation between yearly average VOD and optical vege

tation indices (LAI, NDVI) and temporal correlation between the sea
sonal variations in the VOD and optical indices are often used as an 
evaluation criteria of VOD products (Li et al., in press; Rodriguez- 
Fernández et al., 2018). To evaluate these spatial and temporal corre
lations, we used the NASA MODIS LAI (MOD15A2, resolution of 1 km) 
and NDVI (MOD13A2, 1 km) products (Collection 6, from 2014 to 2017, 
https://neo.sci.gsfc.nasa.gov). As for AGB, the MODIS products are in
dependent of the SMOS-IC L-VOD product. 

3.1.6. Precipitation 
Precipitation data from 2014 to 2017 were obtained from NASA’s 

Global Precipitation Measurement (GPM) IMERG Late Precipitation L3 1 
day 0.1 × 0.1◦ (version 06) (Huffman et al., 2019). These data were used 
here to help interpreting the impact of rainfalls on the time series of the 
SMOS-IC SM and L-VOD data. 

The different datasets (AGB, MODIS NDVI, precipitation) described 

Table 1 
In situ networks from ISMN used for the V105 and V2 evaluation. The type of the 
site vegetation cover is characterized with the IGBP land cover type. A total of 20 
networks was used.  

Network 
name 

Country Number of 
available 
sites 

Land cover type 
(IGBP labels) 

References 

AMMA- 
CATCH 

Niger 3 cropland/natural 
vegetation 
mosaics 

Lebel et al. 
(2009) 

ARM USA 8 grasslands, 
croplands 

https://www. 
arm.gov/ 

BIEBRZA-S-1 Poland 5 croplands http://www. 
igik.edu.pl/en 

DAHRA Senegal 1 grasslands Tagesson et al. 
(2015) 

FMI Finland 10 woody savannas Rautiainen et al. 
(2012) 

FR-Aqui France 3 mixed forests Al-Yarri et al. 
(2018) 

HOBE Denmark 27 croplands http://www.ho 
be.dk/index.ph 
p/soil-moistur 
e-network 

MySMNet Malaysia 5 evergreen 
broadleaf forests 

https://ismn.ge 
o.tuwien.ac.at/e 
n/sites/ne 
tworks/ 
MySMNet/ 

OZNET Australia 8 grasslands, 
croplands 

Smith et al. 
(2012) 

PBO-H2O USA 54 evergreen 
needleleaf forests, 
grasslands, open 
shrublands, 
croplands, barren 
or sparsely 
vegetated 

Larson et al. 
(2008) 

REMEDHUS Spain 20 croplands Sanchez et al. 
(2012) 

RISMA Canada 20 croplands, 
cropland/natural 
vegetation 
mosaics 

http://agricult 
ure.canada. 
ca/SoilMonit 
oringStations 

RSMN Romania 15 croplands, 
cropland/natural 
vegetation 
mosaics 

http://assimo. 
meteoromania. 
ro/ 

SCAN USA 146 cropland/natural 
vegetation 
mosaics, barren or 
sparsely 
vegetated, 
croplands, 
deciduous 
broadleaf forests, 
evergreen 
needleleaf forests, 
grasslands, mixed 
forests, woody 
savannas, open 
shrublands 

Schaefer et al. 
(2007) 

SMOSMANIA France 20 croplands, 
evergreen 
needleleaf forests, 
woody savannas, 
mixed forests, 
cropland/natural 
vegetation 
mosaics 

Calvet et al. 
(2007) 

SNOTEL USA 200 croplands, 
evergreen 
needleleaf forests, 
mixed forests, 
grasslands, woody 
savannas, open 
shrublands 

Serreze et al. 
(2001) 

(continued on next page) 
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here were rescaled to the SMOS 25 km × 25 km spatial resolution by 
simple averaging. 

3.2. SMOS-IC V105 

3.2.1. Features and parameterizations 
The SMOS-IC product which was developed during 2015–2017 

(Fernandez-Moran et al., 2017a), relied on the foundation of the L2P 
approach presented above. In SMOS-IC, as for SMOS Level 2 (L2) and 
Level 3 (L3), L-VOD and SM are retrieved simultaneously from a two- 
parameter inversion of the L-MEB model from the multi-angular and 
dual-polarized SMOS observations. The initial released product (V105) 
provided global daily L-VOD and SM data from the descending and 
ascending orbits at a spatial resolution of 25 km over the period from 12 
January 2010 to 31 December 2017. 

SMOS-IC differs from L2 and L3 in several respects (we refer the 
reader to Fernandez-Moran et al. (2017a) for more details), but the main 
one is that SMOS-IC assumes the pixel to be homogeneous: L-VOD and 
SM are retrieved over the whole pixel rather than over a fraction of it. 
We anticipated that the L2 complexities may result in more uncertainty 
in the retrieval process, so that they should be carefully evaluated. 
SMOS-IC contributed to this evaluation by:  

(1) deleting complex corrections, whose full evaluation is very 
difficult and which may lead to add more noise than improve
ment. In particular, accounting for the pixel heterogeneity can be 

very tricky in the specific case of SMOS: the daily SMOS obser
vations have different angular configurations in terms of inci
dence angle and azimuth, so that the SMOS footprint changes 
from one day to the other and for each multi-angular observation. 

(2) avoiding the use of a decision tree which may lead in disconti
nuities linked to the definition of pixel cells considered as 
“default” or “dominant” contributions.  

(3) most importantly, developing a product as independent as 
possible from auxiliary data: in SMOS-IC, L-VOD and SM are 
retrieved without external vegetation or hydrologic products as 
inputs in the L-MEB inversion model. L-VOD and SM retrievals 
thus depend only on temperature fields from ECMWF ERA- 
Interim (0-7 cm soil temperature and skin temperature) for 
calculating the effective surface temperature (Wigneron et al., 
2007) and are independent of any vegetation index and modelled 
SM data. This later step is very important for robust applications 
(especially when the objective is to improve models) and avoids 
circularity when evaluating remotely-sensed products against 
modelled ones. Advancing science and improving global models, 
both in terms of carbon and hydrological cycles is an objective 
which is often put forward to justify the remote sensing missions. 
However, can this objective be easily reached if modelled and 
remotely-sensed products are not developed independently, 
preventing independent inter-comparisons, evaluations and 
assimilation approaches? 

As SMOS-IC does not account for pixel heterogeneity, a new cali
bration of the soil and vegetation parameters was carried out. SMOS-IC 
distinguishes values of the effective scattering albedo (ω) for forest (ω =
0.06, as estimated in Parrens et al., 2017) and non-forest vegetation 
canopies (ω ~ 0.1, Fernandez-Moran et al., 2017b). The effective 
roughness parameter HR was estimated from the global roughness map 
of Parrens et al. (2016) while the roughness parameters NRP (P = V, or P 
= H for the vertical and horizontal polarizations) were distinguished for 
forest (NRV = − 1; NRH = 1) and non-forest (NRV = − 1; NRH = − 1) soils. 

The input TB data of SMOS-IC are a specific non-filtered (and non- 
public) version of the Level 3 TB data provided by CATDS (Centre 
Aval de Traitement des Données SMOS) the French ground segment for 
the SMOS Level 3 and 4 data. This non-filtered option was obtained from 
CATDS as the official and public CATDS L3 TB products (Al Bitar et al., 
2017) used a strong filtering procedure on sun-glint effects, which led to 
delete TB observations in the central part of the SMOS FOV, exhibiting 
characteristic central stripes in the orbital L3 TB maps. This filtering was 
estimated to be too strict for SMOS-IC as it deleted many data in the 
central region of the FOV, a region which is the richest in terms of ranges 
of multi-angular TB data. SMOS-IC used its own filtering procedure to 
filter out the non-filtered L3 TB data as described in the following sec
tions. Note that the official ESA/SMOS L2 algorithm has not been 
affected by this issue as it is directly based on Level 1 TB products. In the 
near future, this issue should no longer affects the official L3 TB products 
since as a new L3 TB product is being released. 

3.2.2. Data filtering 
Data filtering is a key component associated with the SMOS-IC al

gorithm. This filtering has been progressively improved since the initial 
paper by Fernandez-Moran et al. (2017a) to support the development of 
applications. Data filtering is essential because data errors would affect 
the SMOS SM and L-VOD retrievals: 

(i). errors associated with the viewing angle geometry of the inter
ferometric antenna of SMOS; in SMOS-IC, only observations for 
incidence angles >20◦ and < 55◦ are kept in the retrievals, to 
avoid observations which are relatively noisy and inaccuracies in 
L-MEB for large angles. Note that this chosen range of angles 
corresponds relatively well to the alias free field of view (AF- 
FOV): most of the observations for incidence lower than 20◦ and 

Table 1 (continued ) 

Network 
name 

Country Number of 
available 
sites 

Land cover type 
(IGBP labels) 

References 

SOILSCAPE USA 105 grasslands, open 
shrublands, 
savannas, woody 
savannas 

Moghaddam 
et al. (2010) 

TERENO Germany 1 mixed forests http://teodoor. 
icg.kfa-juelich. 
de/overview-de 

USCRN USA 91 cropland/natural 
vegetation 
mosaics, barren or 
sparsely 
vegetated, 
croplands, 
deciduous 
broadleaf forests, 
evergreen 
needleleaf forests, 
grasslands, mixed 
forests, woody 
savannas, open 
shrublands 

Bell et al. (2013) 

iRON USA 4 grasslands http://ironagci. 
blogspot.com/  

Table 2 
Eleven main IGBP classes considered in the study.  

Main type  Land Cover  

EBF Evergreen broadleaf forests 
Woody vegetation Cover DNF Deciduous needleleaf forests 

DBF Deciduous broadleaf forests 
MF Mixed forests 
WS Woody savannas 

Herbaceous or sparse vegetation 
types 

SH Shrublands 
S Savannas 
G Grasslands 
C Croplands 
CNVM Cropland/natural vegetation 

mosaics 
BSV Barren or sparsely vegetated  
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higher than ~60◦ are out of the AF-FOV. Retrievals are imple
mented only when the range of angular values exceeds 10◦, as a 
small range of angular variations correspond with observations 
made at the edge of the SMOS FOV which are associated with a 
higher uncertainty (Wigneron et al., 2000).  

(ii). errors associated with the radio frequency interferences (RFI). 

RFI are very present at L-band and strongly affect the SMOS TB ob
servations and, consequently, the SM and L-VOD retrievals. RFI may 
strongly vary both in space and time so that detecting and filtering them 
out is very difficult. Several RFI filtering procedures have been devel
oped and combined in an effort to limit their impact on the SMOS-IC 
retrievals (all observations are affected, albeit to varying degrees). 
These corrections are detailed more specifically here, as they are key for 
applications and they have not been yet analyzed in detail in the liter
ature. Contrary to L2 and L3, SMOS-IC does not use probability maps of 
RFI occurrence, but it provides an estimate of the actual RFI impacts. 

Following Wigneron et al. (2012), the Root Mean Square Error 
(RMSE) value between the measured and the L-MEB modelled TB data 
(referred to as TB-RMSE) is used as an index to estimate the impact of 
RFI on the SMOS TB data. The rationale behind the choice of this index is 
that L-MEB is able to fit very well the multi-angular and dual- 
polarization signatures of the SMOS observations over a large variety 
of land surface scenes (covered by soil, vegetation, water, ice, snow, 
rocks etc. for low, medium or high topography). 

So, in the absence of RFI, L-MEB will be able to fit very well the SMOS 
TB observations and the TB-RMSE index will be low, as it will deter
mined primarily by the standard deviation associated with the SMOS TB 
data (typically close to 3 to 4 K). Most of the differences between this 
lower limit value (TB-RMSE ~3–4 K) and the actual value of TB-RMSE 
are due to RFI effects. If there is RFI, the SMOS TB observations will 
be noisy (Cf Fig. S2) and L-MEB will be unable to provide a good fit to the 
SMOS multi-angular observations, leading to high TB-RMSE values. In 
other words, high TB-RMSE values are indicative of noisy multi-angular 
observations, which are, to our knowledge, mostly due to RFI effects. 

Based on this principle, several post-processing filtering procedures are 
used in SMOS-IC and they are presented below: 

3.2.3. TB-RMSE daily filtering 
The TB-RMSE index is used to filter out daily SMOS TB observations 

strongly affected by the RFI effects: all retrievals associated with a TB- 
RMSE index higher than a threshold are deleted. Wigneron et al. 
(2012) suggested initially a threshold value of 12 K, but a stricter 
threshold value of 8 K is recommended now. The selection of this 
threshold is a compromise: decreasing the value will lead to more ac
curate retrievals but to less data. Following several evaluation studies, 
an even stricter filtering (threshold value of 6 K) has been recommended 
for L-VOD, as the retrieved L-VOD values were found to be more sen
sitive to RFI effects than the SM ones. 

3.2.4. TB-RMSE spatial filtering 
Daily filtering based on TB-RMSE can filter out most of obvious and 

strong RFI effects, but it is not 100% safe and RFI-contaminated obser
vations may pass through it. This daily filtering can be supplemented by 
a spatial filtering based on annual maps of the average TB-RMSE index 
which are good proxies of the average RFI annual intensity. These 
annual maps can provide an interesting overview of the temporal dy
namics of the RFI effects at global scale as shown in Fig. 1 and they can 
be applied to carry out a spatial filtering of pixels strongly affected by 
RFI effects. This spatial filtering can be applied each year (or each 6 
months or even monthly) to account for temporal changes in the spatial 
RFI patterns. For instance, it can be noted that RFI effects strongly 
decreased over China in the recent years. 

3.2.5. ΔL-VOD filtering 
As the boresight of the SMOS antenna is forward tilted by 32.5◦ with 

respect to nadir, the observations made for the ascending (Asc) and 
descending (Desc) orbits do not have the same sensitivity to the RFI 
effects; the latter being directional. This feature is interesting to detect 
RFI. The rationale is that, for low RFI effects, low differences (referred to 

Fig. 1. Temporal dynamics of the RFI effects at global scale: annual maps of the average TB-RMSE index for (a) 2010 (b) 2013 (c) 2016 and (d) 2019. Blank areas 
correspond to areas where no data is available (defined here by TB-RMSE larger than 20 K); grey areas correspond to areas filtered out considering the scene flag 
(fraction of water bodies or urban areas or strong topography >10%, Cf Table 3). Very high level of RFI contamination found in China and the Arabian Peninsula in 
2010 and 2013 agree well with maps based on other RFI indices (e.g. Soldo et al., 2016). We can note generally a decrease in the RFI effects, especially in Europe and 
China, but a slight increase in some regions of Africa. A large RFI pattern at the USA/Canada border in 2010–2011 disappeared. 
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as ΔL-VOD) between the retrieved values of L-VOD can be expected from 
observations made from the Asc and Des orbits at, respectively, 6 am and 
6 pm local time. Non-zero values of ΔL-VOD can be expected due to (i) 
the change in the water content of vegetation between morning and 
afternoon (Konings and Gentine, 2016) and (ii) possible effects of dew 
and water interception by the canopy (Saleh et al., 2006). However, 
these differences should not be large. A very detailed analysis of the RFI 
event that occurred at the Canada-USA border during the 2010–2011 
period (Al-Yaari et al., 2020) showed that ΔL-VOD values larger than 
~0.05 are generally indicative of RFI effects affecting Asc or Desc or 
both Asc/Desc orbits. A threshold value of 0.05 was thus used in this 
study for the ΔL-VOD filtering index. Note that we focused here on L- 
VOD as it is, as noted above, more sensitive than SM to RFI. 

3.2.6. Combined (Asc and Desc) yearly median L-VOD 
From the three post-processing filtering procedures described above, 

it is possible to compute yearly median or average L-VOD values which 
are used in science applications. An additional post-processing filtering 
can be used to compute these median or average L-VOD values. It con
sists in computing them by combining the Asc and Desc L-VOD products 
and by selecting the least RFI-contaminated Asc and/or Desc observa
tions. The rationale is that, as noted above, observations made for Asc 
and Desc orbits do not have the same sensitivity to the RFI effects. So, for 
a given pixel and date, the use of data for Asc or Desc orbits can be 
preferable. Based on this principle, the combined yearly average L-VOD 
product can be built as follows:  

• each year, a combined L-VOD data set is built by selecting the “best” 
N observations estimated from either Asc or Desc orbits; “best” being 
defined here in terms of lower TB-RMSE values; typical values of N 
are N=30 and N=50,  

• over each year, the median of the L-VOD values retrieved from the N 
“best” observations are computed. 

For instance, over China, as the Asc observations are generally more 
contaminated by RFI than the Desc ones, the combined products over 
China will mainly include Desc observations. Similarly, a strong RFI 
event affecting mostly the Asc observations was noted at the USA/ 
Canada border in 2010 and 2011. In that case, over that region in 
2010–2011, the combined product will mainly select Desc L-VOD data, 
corresponding generally to lower TB-RMSE values. Note that, when 
applying the “combined asc/desc” method, important caution should be 
taken to ensure that the asc vs desc L-VOD data are selected similarly 
year to year; otherwise computation of interannual L-VOD trends could 
be biased. 

In addition to these RFI filtering procedures, several effects associ
ated with specific climate or topographic conditions can be filtered out 
using flags indicative of specific conditions. These flags, referred to as 
“scene” flags, are listed in Table 3. 

3.3. SMOS-IC V2 

Since V105, several changes have been made to develop the SMOS-IC 
V2 product: (i) continuous improvements in the initialization maps of L- 
VODini (ii) continuous improvements in data filtering (Cf above section), 
which impacted too the computation of the L-VODini maps (iii) evalu
ating the use in SMOS-IC of a first order modelling approach (2-Stream) 
instead of the zero-order Tau-Omega model (Li et al., 2020a). The 
enhanced physical background of 2-Stream allows its implementation as 
a unified emission model to estimate SM and VOD, snow properties and 
ground freeze or thaw conditions. The 2-Stream model can be easily 
substituted to the Tau-Omega model in Version 2 (option not evaluated 
here for the sake of conciseness) (iv) development of a multi-temporal 
(MT) approach. The development of a MT approach relies on the 
assumption that L-VOD varies relatively slowly in time (Wigneron et al., 
2000). This assumption has been used in the SMOS L3 (Kerr et al., 2016) 

and in the MT-DCA SMAP retrieval algorithm (Konings et al., 2017a) 
where observations acquired for several dates during a moving time 
window are used to constrain the simultaneous retrievals of SM and 
VOD. We used a multi-temporal (MT) approach in V2, as it allowed 
adding more constraints in the retrievals by using observations for 
several dates, instead of only one in version V105. The MT approach 
could be particularly interesting in the case of SMOS as the range of the 
available observation angles vary from day to day. For instance, the MT 
approach allows to use “best” estimates of VOD, retrieved at a date when 
the range of multi-angular observations is optimal, to estimate a first 
guess value of VOD for subsequent SM & VOD retrievals (Wigneron 
et al., 2000). 

This concept translates more concretely into the following approach 
which was implemented in SMOS-IC V2. In the cost function (Eq. (1)), to 
retrieve SM & VOD at a date t, we used an a priori estimate of L-VOD 
(referred to as L-VODini(t)) which is computed as the average L-VOD* 
values retrieved from the previous N days (these previous dates are 
denoted here by t− 1, t− 2, … t-N): 

L VODini(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

average
(

L VOD*
t− 1,L VOD*

t− 2,⋯,L VOD*
t− N

)
if available

L VODm(t) if mean value of previous N days not available

(2) 

Eq. (2) means that to compute L-VODini(t):  

(i). L-VODini(t) was set equal to the average L-VOD value computed 
over the time interval [t− 1, t− 2, … t-N], if this average value is 
available. This average value may not be available for several 
reasons: if no retrieval is available during the N previous days 
(because of soil freezing in winter for instance, if all previous 
retrievals made during the previous N days are filtered out after 
quality control, etc.) 

Table 3 
Summary of the SMOS-IC filtering procedures.  

Filtering type Threshold value (indicative 
value that depends on 
applications) 

Conditions of 
applications 

RFI filtering 
TB-RMSE daily filtering TB-RMSE <6 K or 8 K 

(depending on applications) 
for each pixel and 
each date 

TB-RMSE annual filtering annual average TB-RMSE <6 
K or 8 K 

for each pixel and 
each year 

ΔL-VOD daily filtering ΔVOD <0.1 for each pixel and 
each date 

ΔL-VOD annual filtering annual average ΔVOD <0.1 for each pixel and 
each year 

Combined yearly L-VOD 
data set (Asc & Desc) 

-select N = 30 or N = 50 
“best”* yearly observations 

for each pixel and 
each year 

Combined yearly median 
L-VOD (Asc & Desc) 

-compute median of the N 
“best” L-VOD values  

Scene flags (Cf Supplementary data format) 
Topography flag low-, medium- or high- 

topography 
for each pixel ( 
Mialon et al., 2008) 

Contaminated scene (water 
bodies, urban area, ice) 

summed fraction <10% for each pixel and 
each date 

Frozen conditions ERA-Interim top soil layer 
temperature > 273 K 

for each pixel and 
each date 

Data filtering**   

SM range 0 ≤ SM ≤ 1; SM (m3/m3)  
L-VOD range 0 ≤ L-VOD ≤ 2   

* “best” being defined here in terms of lower TB-RMSE values; 
** Filtering is done after computing yearly average, as negative daily SM or L- 

VOD values are not physical but are numerically possible in arid areas and 
should not be deleted before computing yearly averages. 

J.-P. Wigneron et al.                                                                                                                                                                                                                           



Remote Sensing of Environment 254 (2021) 112238

8

(ii). otherwise, L-VODini(t) was set equal to L-VODm(t), where L- 
VODm(t) is the average monthly L-VOD value of the month cor
responding to date t. L-VODm is a 12-element vector including 
average monthly L-VOD values computed for each pixel over 
2012–2019. The latter period was used as, starting from 2012, the 
retrieved VOD data was found to be no more sensitive to the 
initial first guess VOD value used at the very beginning of the 
retrieval process, e.g. beginning of 2010. 

In version 2, all the other model parameters and inputs to the cost 
function in Eq. (1) are consistent with the first version (V105) of SMOS- 
IC and are defined in Fernandez-Moran et al. (2017a). 

In Eq. (2), the value of N (N = 5, 10, 15… 30 days for instance) 
cannot be too small to ensure a good quality of the mean value of the 
retrieved L-VOD values before date t; it cannot be too large too to ensure 
that L-VOD did not change much over the period of N days. In reality, 
following the time variations in VWC, L-VOD may change quickly from 
one day to the other. For instance, VWC may present quick temporal 
changes at the scale of a few hours, in relation with changes in the 
vegetation water status (for instance during a rainfall event following a 
drought period) or in the intercepted water storage (Saleh et al., 2006). 
However, these temporal changes can be considered as relatively small 
at large scale as the SMOS footprint includes a variety of vegetation 
types and conditions. This hypothesis was further supported by the re
sults of Tian et al. (2018) who found a small amplitude in the L-VOD 
annual changes (less than 0.1 in general at global scale). Note that this 
assumption contrasts with recent studies that directly investigated non- 
negligible AMSR2 (Advanced Microwave Scanning Radiometer 2) and 
SMAP VOD changes over the day and after rain events. Such changes 
over the day and post rainfall are attributed to rehydration and water 
loss patterns (Feldman et al., 2018; Konings et al., 2016, 2017b). The 
differences found between SMOS and the other SMAP and AMSR sensors 
could be related to the specific SMOS antenna viewing system that limit 
its capability to monitor accurately the changes between the ascending 
and descending observations (Wigneron et al., 2018). Note that here, 
contrary to some other MT retrieval approaches, the assumptions made 
in V2 are not so strict: we only assume slow time changes in L-VOD and 
we do not need to make the hypothesis that L-VOD is constant over a 
moving time window (typically one week). 

To develop IC V2, several parameters constraining the retrievals 
were optimized. The main key parameters to consider were:  

(1) N (days), which corresponds to the length of the time interval 
[t− 1, t− 2, … t-N] used to compute L-VODini.  

(2) the TB-RMSE (K) value (referred to as TBR) used to filter the 
retrieved L-VOD values within the [t− 1, t− 2, … t-N] interval.  

(3) σVOD, the standard deviation value used in the last term of Eq. (1) 
that constrains the L-VOD retrievals; this value parameterizes the 
confidence we have in the estimated first guess L-VODini value. 

As discussed above, at large spatial scale, the “true” value of the SM 
and L-VOD data that drives the microwave measurements cannot be 
estimated (Gruber et al., 2020): only proxies which are more or less 
pertinent for specific soil and vegetation conditions can be found. The 
parameter optimization was carried out in this study considering only 
one criterion for the retrieved SM and L-VOD parameters (Cf section 
3.1):  

- for SM, as a criterion, we used the global ERA-Interim SM 
simulations.  

- for L-VOD, as a criterion, we used the spatial correlation between 
yearly averages of L-VOD and Saatchi AGB. 

The evaluation was made here using classical statistical metrics as in 
Li et al. (2020a): correlation in terms of coefficient of correlation (R), 
Root Mean Square Error (RMSE, m3/m3), unbiased Root Mean Square 

Error (ubRMSE, m3/m3) and bias (m3/m3). To obtain best scores in the 
SM and L-VOD retrievals considering the above criteria, we evaluated 
possible values of N, σVOD and TBR. Based on previous studies (Wigneron 
et al., 2007, 2012), we evaluated only a limited number of cases cor
responding to N = 10 or 20 days, σVOD = 0.05 or 0.1 and TBR = 6 or 8 K. 
So, 8 “retrieval algorithms” corresponding to 8 cases corresponding to 
different values of N, σVOD and TBR were evaluated here by comparison 
to the ancillary data sets (ERA5-Land SM for SM and Saatchi AGB for L- 
VOD). Based on this analysis, the differences in the performances of IC 
for these 8 different algorithms were generally small (Table S1–5). We 
selected for V2 the algorithm providing best results (i.e. N = 10 days, 
σVOD = 0.05 and TBR = 6 K; very similar results obtained for N = 20 days 
and σVOD = 0.1). Based on this approach, circularity that may happen 
when considering the same ancillary data for the “calibration” and 
“evaluation” steps is very limited in this study. Moreover, ECMWF ERA- 
Interim SM was used for calibration and ECMWF ERA5-Land SM was 
used for validation and even though these two SM datasets are very 
similar, they are not the same. 

4. SMOS-IC evaluation 

SMOS-IC is a SM and L-VOD product and so the product evaluation 
generally benefits from a simultaneous evaluation of both the SM and L- 
VOD products, contrarily to other RS microwave products where eval
uation is generally focused separately on either the SM or the VOD 
product. Our philosophy here is that improved L-VOD products are 
beneficial to SM retrievals and vice versa. Since the original studies 
presenting the retrieval method (Wigneron et al., 2000, 2012), several 
papers have evaluated the first version (V105) of SMOS-IC in terms of 
SM and L-VOD products. A summary of these evaluations is given here 
and, in a second step, we evaluated the “improvements” obtained with 
the new version (V2). 

The criteria used in the SMOS-IC evaluation have limitations and 
missed a one to one representation of SM or L-VOD at a resolution of 
~25 km. For instance, (i) in situ data are very interesting (Dong et al., 
2020), but are at point scales and not representative of microwave sat
ellite scales (Crow and Wood, 2002) (ii) AGB and NDVI are limited 
because they only provide biomass proxies and water content changes 
that can be out of phase with the LAI and NDVI metrics (Tian et al., 
2018). So, the evaluation made in this work used several criteria for both 
the SM and VOD retrievals; a multi-criteria evaluation being more able 
to reveal strengths and weaknesses of the updated SMOS-IC version. 
Moreover, in the following, the term “improvement” will not be used. 
We will use instead terms as “closer to benchmarks/proxies” or “better 
scores” as the evaluation data sets used in this study have errors and do 
not represent integrated satellite data at a resolution of 25 km × 25 km. 

4.1. SMOS-IC V105 evaluation 

4.1.1. Soil moisture 
Fernandez-Moran et al. (2017a) have evaluated the IC V105 and L3 

SM products against ERA-Interim SM, a reference SM product at global 
scale (Albergel et al., 2012). They found IC V105 presented better scores, 
in terms of both correlation (R), over almost 90% of the studied pixels, 
and unbiased Root Mean Square Error (ubRMSE); similar dry bias pat
terns being noted for both products. This good performance was all the 
more surprising and satisfying as IC V105 SM is, contrary to L3 SM, 
completely independent of ERA-Interim SM. This initial study was 
limited to a comparison with modelled data, but since then, more 
detailed studies have been published. For instance, Al-Yaari et al. 
(2019a) have evaluated five recently developed/reprocessed microwave 
satellite soil moisture products against in situ measurements from ISMN. 
The study carried out over 2015–2017 included five SM products: 
SMOS-IC (V105), SMOS L2 (V650), SMOS L3 (V300), SMAP (Level3, V4) 
and CCI (V04.2). IC V105 and SMAP presented very good and relatively 
similar global performances and, in particular, IC V105 presented high 
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performances in terms of correlation computed from SM anomalies, 
which are related to the day to day variability of in situ SM. Ma et al. 
(2019) extended the inter-comparison and found globally best correla
tion results for SMAP and CCI (European Space Agency (ESA) Climate 
Change Initiative) products, followed by IC V105; with IC V105 
achieving the highest R value for dense vegetation conditions. IC V105, 
as the other SMOS official products, presented generally a dry bias. Even 
if bias is an interesting criterion, it was considered as the least important 
performance metric in the SMOS-IC SM algorithm calibration processes 
(Fernandez-Moran et al., 2017a). Several reasons led to this choice: (i) it 
is very difficult to define an absolute SM value over mixed pixels at 25 
km × 25 km. At such a coarse resolution, SM represents an effective 
value whose absolute level can be different depending on the application 
(Gruber et al., 2020). (ii) As noted by Al-Yaari et al. (2019a), bias 
strongly depends on the auxiliary data sets and parameters used to 
compute absolute SM values (e.g. porosity data for ASCAT, modelled 
data sets for CCI). (iii) Remotely-sensed at different frequencies, 
modelled and in situ SM data sets are estimated or simulated for different 
sampling depths (which may vary with the moisture conditions), making 
inter-comparisons of absolute SM values difficult. (iv) Many applications 
use relative SM indices rather than SM absolute values; for instance, bias 
is generally removed prior to assimilation, or else estimated as part of 
the assimilation system (De Lannoy and Reichle, 2016). To complete this 
section, we list in a non-exhaustive fashion some other studies including 
evaluations or inter-comparisons related to the SMOS IC SM data: Fan 
et al. (2020), Kim et al. (2020) and Zhang et al. (2020) at the global 
scale; Li et al. (2020a) for the 2-Stream version; Liu et al., in press, in 
Tibet; Sadeghi et al. (2020) in relation with SM data sets computed from 
GRACE observations; Quets et al. (2019) based on the SMAP cal/val 
sites, etc. 

4.1.2. L-VOD 
Contrarily to SM, few studies have inter-compared the VOD products 

retrieved from different microwave space-borne sensors. The evaluation 
is more difficult than for SM, as no data can be considered as a reference 
for L-VOD. As noted in introduction, VOD and more particularly L-VOD 
can be linearly related to vegetation water content (VWC, kg/m2). A 
strong linear relationship: L-VOD = b ⋅ VWC, with b ~ 0.12 (±0.03) was 
computed by Jackson and Schmugge (1991). A relatively good rela
tionship was obtained too between retrieved L-VOD values and LAI: L- 
VOD = b’ LAI + b”, with b’ ~ 0.06 (Wigneron et al., 2017). However, 
these relationships have been mainly investigated for crops and they are 
relatively linear only during the vegetation growth and not during crop 
senescence (Wigneron et al., 2004). From space-borne observations, 
several studies have also found good relationships between VOD and 
vegetation indices, as NDVI (normalized difference vegetation index), 
EVI (enhanced vegetation index), LAI (Leaf Area Index), computed from 
optical remote sensing observations (Grant et al., 2016; Lawrence et al., 
2014). However, temporal correlation between VOD and vegetation 
indices should also be evaluated carefully considering time lags of 
several weeks or months that occur between different climate and 
vegetation variables (SM, VOD, LAI, EVI) in some ecosystems as was 
found over dry and wet tropical forests (Jones et al., 2014; Tian et al., 
2018). A lower time lag of ~19 days was found for crops in the USA 
(Lawrence et al., 2014). VOD can also be evaluated by comparing its 
spatial variations against AGB maps (Liu et al., 2015; Brandt et al., 
2018a). Moreover, as plant saturation may change from year to year 
confounding effects of biomass, one can attempt to control for saturation 
by using wet season 90th or 95th percentile of L-VOD (Qin et al., 2020). 

In summary, evaluating the quality & accuracy of the retrieved VOD 
products is not straightforward and only indirect and approximate as
sessments can be done. We tentatively list the main ones here: (i) spatial 
correlation between yearly average of VOD and AGB at continental 
scales; this criterion being more appropriate for woody vegetation (ii) 
temporal correlation between VOD and vegetation optical indices (as 
NDVI, EVI, LAI, etc.); considering the saturation of the optical indices in 

densely vegetated area, this criterion is more appropriate for herbaceous 
vegetation. Temporal correlations can be computed on raw data, 
climatology data using moving average or anomalies (Al-Yaari et al., 
2019a; Dong et al., 2020). Here, to limit the impact of noise of the daily 
raw L-VOD data, correlations were computed on a bi-monthly basis 
which corresponds to the format of the used MODIS NDVI data sets; (iii) 
spatial correlation between VOD and vegetation optical indices (as 
NDVI, EVI, LAI, etc.), considering yearly average or daily values at 
continental scales; this criterion being also more appropriate for her
baceous vegetation. 

In an initial study at global scale, Fernandez-Moran et al. (2017a) 
found higher temporal and spatial correlation between L-VOD and 
MODIS NDVI for SMOS-IC vs SMOS-L3. In a larger inter-comparison 
study considering the criteria listed above with the SMOS-L2 and -L3 
products, Rodriguez-Fernández et al. (2018) have confirmed the good 
performances of the SMOS-IC data set for vegetation studies. Rodriguez- 
Fernández et al. (2018) and Brandt et al. (2018a) were the first to 
analyze the relationship between SMOS-IC L-VOD and biomass. This 
relationship was found to be almost linear and to present low signs of 
saturation at high levels of biomass, contrarily to results obtained from 
higher frequency products as C- and X-VOD (C- and X-VOD refer here to 
VOD products estimated from observations at C- and X-bands). This 
result was expected as microwave radiations are impacted by extinction 
effects (through attenuation and scattering effects) as they propagate 
through the vegetation canopy. These extinction effects increase with 
frequency, making low frequency observations at L-band more suitable 
for monitoring SM over dense vegetation canopies than observations at 
higher frequencies such as C- and X-bands (Al-Yaari et al., 2014). These 
effects explain the lower saturation effects obtained at L-band vs X-band 
when comparing L-VOD with AGB or aboveground carbon (AGC) stocks 
(Fig. S3). 

4.2. SMOS-IC V2 evaluation 

No evaluation study has yet been published for SMOS-IC V2 and we 
focused here on the changes of the new (V2) version vs the previous 
(V105) one. To that aim, we inter-compared the SMOS-IC SM and L-VOD 
products of V105 and V2 using all the five criteria presented in Section 
3.3. The present analysis is carried out over a 4-year period (2014–2017) 
which is large enough to analyze the seasonal variations in both SM and 
L-VOD, and short enough to correspond to relatively homogeneous RFI 
conditions; considering the changes in the spatio-temporal patterns in 
RFI (Fig. 1), a longer evaluation time period would make the interpre
tation of performance results more complex. Note that, in this section, 
we did not expect a large improvement (associated with a large change 
in the values of the correlation and ubRMSE metrics) in the performance 
of V2 vs V105. There are two main reasons: (i) V105 has already been 
found to be a performant product and it is likely the performance metrics 
of SMOS-IC, SMAP and ASCAT in evaluation studies are close to 
maximum now; (ii) there is no accurate and large scale reference SM 
data set at the spatial resolution of 25 km × 25 km. So, the true per
formance of the different SM products cannot be evaluated in a very 
accurate and definitive way (Gruber et al., 2020). 

4.2.1. Soil moisture 
V2 was closer to the reference SM values (modelled ERA5 Land and 

in situ ISMN SM data) than V105, considering both correlation (R) and 
ubRMSE criteria for all IGBP vegetation types (Fig. S4, Tables 4 & 5). 
Comparing globally with the ERA5-Land SM data, when upgrading from 
V105 to V2 the average ubRMSE decreased from 0.058 m3/m3 to 0.055 
m3/m3 and the median correlation (R) increased from 0.65 to 0.66 
(Table 4). Interestingly, when using in situ ISMN SM data instead of 
ERA5-Land SM data as a reference, better scores were obtained for both 
V105 and V2 and the differences between V105 and V2 were slightly 
larger: globally, the average ubRMSE decreased from 0.062 m3/m3 to 
0.059 m3/m3 and the median correlation coefficient (R) increased from 
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Table 4 
Performance metrics in the soil moisture inter-comparison of SMOS-IC V105 and SMOS-IC V2 against ERA5-Land SM (2014–2017) in terms of temporal correlation 
coefficient (R), unbiased RMSE (ubRMSE, m3/m3), Bias (m3/m3) and RMSE (m3/m3), for different vegetation types, as defined by the IGBP land cover classification; 
overall (last column) corresponds to all pixels at global scale after filtering with the scene flag.   

Version ENF EBF DNF DBF MF SH WS S G C CNVM BSV Overall 

R V2 0.37 0.34 0.29 0.59 0.40 0.69 0.74 0.81 0.73 0.73 0.68 0.57 0.66 
V105 0.29 0.29 0.22 0.57 0.35 0.69 0.70 0.79 0.72 0.72 0.67 0.56 0.65 

ubRMSE V2 0.064 0.069 0.061 0.064 0.064 0.049 0.065 0.059 0.052 0.057 0.057 0.026 0.055 
V105 0.079 0.077 0.079 0.073 0.076 0.051 0.073 0.060 0.053 0.058 0.060 0.027 0.058 

Bias V2 − 0.128 − 0.184 − 0.221 − 0.148 − 0.181 − 0.058 − 0.097 − 0.120 − 0.130 − 0.145 − 0.163 0.016 − 0.110 
V105 − 0.117 − 0.184 − 0.199 − 0.142 − 0.173 − 0.054 − 0.092 − 0.118 − 0.129 − 0.145 − 0.160 0.016 − 0.106 

RMSE V2 0.148 0.198 0.228 0.164 0.194 0.086 0.122 0.136 0.142 0.157 0.175 0.036 0.130 
V105 0.146 0.201 0.214 0.161 0.192 0.083 0.122 0.135 0.142 0.158 0.173 0.037 0.129  

Table 5 
Same as Table 4, except that the soil moisture inter-comparison is made between SMOS-IC V105 and SMOS-IC V2 against the ISMN in situ SM (738 sites from 20 
networks, 2014–2017).   

Version ENF EBF DBF MF SH WS S G C CNVM BSV Overall 

R V2 0.63* 0.54* 0.65* 0.70* 0.62* 0.63NS 0.86* 0.66* 0.68* 0.72* 0.59* 0.68* 
V105 0.58 0.48 0.65 0.62 0.61 0.62 0.85 0.64 0.67 0.72 0.58 0.66 

ubRMSE V2 0.069* 0.070* 0.064* 0.055* 0.046* 0.058* 0.060* 0.061* 0.057* 0.054* 0.041NS 0.059* 
V105 0.076 0.080 0.070 0.066 0.047 0.069 0.063 0.063 0.059 0.056 0.042 0.062 

Bias V2 0.010 0.024 − 0.082 − 0.041 − 0.021 0.036 − 0.002 − 0.073 − 0.053 − 0.095 − 0.034 − 0.048 
V105 0.013 0.021 − 0.074 − 0.038 − 0.020 0.042 0.000 − 0.071 − 0.051 − 0.091 − 0.033 − 0.045 

RMSE V2 0.095 0.072 0.101 0.106 0.059 0.109 0.072 0.101 0.095 0.114 0.056 0.093 
V105 0.101 0.083 0.108 0.104 0.060 0.109 0.075 0.101 0.095 0.113 0.056 0.094  

* indicates that the difference between the two versions of SMOS-IC is significant at least at the 0.05 probability level using one-way ANOVA test. ‘NS’ indicates non- 
significant difference at the 0.05 probability level. 

Fig. 2. Box plots of (a) correlation (R) and 
(b) ubRMSE for the relationship between 
SMOS-IC V105 (blue) or V2 (red) SM and in 
situ SM (2014–2017) for different L-VOD 
intervals corresponding to different 
“biomass” intervals: VOD-I: 0– 0.1 (n = 88 
stations); VOD-II: 0.1– 0.2 (n = 199 sta
tions); VOD-III: 0.2– 0.3 (n = 245 stations); 
VOD-IV: 0.3– 0.4 (n = 93 stations); VOD-V: 
0.4– 0.5 (n = 73 stations); VOD-VI: >0.5 
(n = 40 stations). The central mark within 
each box shows the median value, and the 
bottom and top edges mark the extent of the 
25th and 75th percentiles. Whiskers include 
99.3% of all data, corresponding approxi
mately to ±2.7 σ. (For interpretation of the 
references to colour in this figure legend, the 
reader is referred to the web version of this 
article.)   
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0.66 to 0.68 (Table 5). The global results show contrasted results when 
considering different land covers: even if V2 had better scores for almost 
all land covers and for both the correlation and ubRMSE metrics (Fig. S4, 
Tables 4 & 5), the improved scores of V2 were particularly noticeable 
over woody vegetation (ENF, EBF, … Woody Savanna) and relatively 
smaller over short and sparse vegetation areas (Shrublands, Grasslands, 
Croplands). In terms of bias, which was considered, as noted above, as a 
second-order performance criterion in SMOS-IC, results of V105 and V2 
are very close and SMOS-IC shows a dry bias of ~0.1 m3/m3 against 
ERA5-Land SM and of ~ − 0.045 m3/m3 against ISMN in situ sites for 
both V2 and V105 (Tables 4 & 5). To have a better overview of the 
evaluation results in terms of spatial patterns we used ERA5 Land SM as 
a reference (Fig. S5, S6). SMOS-IC V2 is closer to the reference ERA5- 
Land SM data in terms of both correlation and ubRMSE over most of 
the pixels at global scale and in particular in forested areas in the 
tropical regions (Congo and Amazon basins) and northernmost regions 
of America and Russia. SMOS-IC V105 is closer to the reference ERA5- 
Land SM data mostly for the ubRMSE metric in southern China. 

The impact of vegetation on the SM retrieval accuracy was evaluated 
using L-VOD as a parameter of vegetation density: L-VOD is directly 
related to the microwave extinction effects within the vegetation layer. 
Considering the correlation (R) metric, it is found V2 SM retrievals have 
a relatively low sensitivity to vegetation effects. A higher sensitivity is 
found for the ubRMSE metric which increases slowly for increasing L- 
VOD values (Fig. 2). Considering both the R and ubRMSE metrics, it is 
found V105 SM is more sensitive to vegetation effects than V2 SM. In 
particular, we can note the improvement (i.e. results closer to reference 
in situ data set than V105) obtained with V2 increases regularly for 
increasing L-VOD values (Fig. 3). These results are in good agreement 

with above results obtained for woody vegetation (Tables 4 and 5, Fig. 
S4, S5, S6) and with results using LAI, instead of L-VOD, as a proxy of 
vegetation density (Fig. S7, S8). 

4.2.2. L-VOD 
The spatial patterns of the temporal correlation between L-VOD and 

NDVI are relatively similar for V2 and V105 (Fig. 4). Positive correla
tions are generally found globally but negative correlations can be 
noted, especially in the tropics, including a very negative signature in 
the tropical forest of the Miombo (Tian et al., 2018), in southern, 
northern and central Europe and in the northwestern regions of the USA. 
In regions where correlation was positive, higher correlation values 
were generally obtained with V2 to the noticeable exception of the 
boreal regions in northeastern Russia and in Alaska (Fig. 4). The cor
relation increased over all land cover types which are not exclusively 
forest types (Table 6). Considering woody vegetation, correlation 
decreased slightly for categories DNF (Deciduous Needleleaf Forests), in 
link with the decreased correlation noted in eastern Russia, EBF (Ever
green Broadleaf Forests) and WS (Woody Savannas). But as noted 
before, spatial and temporal correlation between L-VOD and NDVI are 
not accurate criteria of the L-VOD quality over woody vegetation types 
as leaf development and plant water storage are not synchronous in 
many forest ecosystems (Tian et al., 2018; Jones et al., 2014). For 
instance, in regions where correlation was negative, more negative 
correlation values were generally obtained with V2, as in the dry trop
ical forests of Miombo (green area south of the Congo basin in Fig. 5), 
where plant water storage and leaf development are decoupled with a ~ 
6 month lag (Cf section 5; Tian et al., 2018). The same caution in 
interpreting correlation values between L-VOD and NDVI can be 

Fig. 3. idem as Fig. 2 but we computed here the differences in correlation (red) and ubRMSE (blue) for the relationship between SMOS-IC V105 SM vs in situ SM and 
V2 SM vs in situ SM (2014–2017) for different L-VOD intervals (Cf caption of Fig. 2). Note: differences between the two versions of SMOS-IC are statistically sig
nificant (p < 0.05, one-way ANOVA test) for all classes of R and ubRMSE. 
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Fig. 4. Correlation coefficient of the temporal relationship between L-VOD and NDVI for (a) SMOS-IC V105 and (b) SMOS-IC V2. Blank areas correspond to pixels 
filtered out with the scene flags (Cf Table 3) and to deserts; grey areas to pixels where the correlation is not significant (non-significance was defined here by a p- 
value >0.05). 

Table 6 
Correlation coefficient of the temporal relationship between L-VOD and NDVI for SMOS-IC V105 and SMOS-IC V2 (2014–2017) for different vegetation types, as 
defined by the IGBP land cover classification.  

Version ENF EBF DNF DBF MF SH WS S G C CNVM BSV Overall 

V2 0.35 0.21 0.52 0.52 0.47 0.53 0.43 0.67 0.46 0.42 0.52 0.35 0.49 
V105 0.33 0.24 0.57 0.50 0.43 0.50 0.45 0.60 0.40 0.40 0.49 0.33 0.46  

Fig. 5. Global map showing where the SMOS-IC V105 or SMOS-IC V2 L-VOD product provides the stronger temporal correlation (positive or negative) with MODIS 
NDVI. Pixels where the correlation is not significant (p-value >0.05, grey) or where the difference in correlation for V105 and V2 is less than 0.02 (yellow-green) are 
shown. Blank areas correspond to pixels filtered out with the scene flags and to deserts. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.) 

J.-P. Wigneron et al.                                                                                                                                                                                                                           



Remote Sensing of Environment 254 (2021) 112238

13

Fig. 6. Density plot of the spatial relationship between L-VOD and AGB, considering (left) L-VOD V105 and (right) L-VOD V2 and (top panel) Saatchi AGB, (middle 
panel) Globbiomass AGB and (bottom panel) CCI AGB. Bin-averaged L-VOD values (blue points) are fitted using a logistic function, which provided here a better fit to 
the data than a linear fit and are defined in Rodriguez-Fernández et al. (2018) (Table S6). R1 is the spatial correlation coefficient computed between L-VOD and 
reference AGB, while R2 is that between L-VOD-predicted AGB using the fitted logistic function and reference AGB. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 

Table 7 
Correlation coefficient (R) of the spatial relationship between L-VOD for V105 and V2 against Saatchi, Globbiomass and CCI reference AGB maps (2014–2017).   

Version ENF EBF DNF DBF MF SH WS S G C CNVM BSV Overall 

Saatchi V2 0.44 0.72 0.63 0.43 0.35 0.74 0.57 0.58 0.66 0.67 0.67 0.39 0.87 
V105 0.39 0.70 0.67 0.40 0.19 0.75 0.51 0.59 0.64 0.60 0.66 0.38 0.86 

Globbiomass V2 0.52 0.75 0.59 0.59 0.30 0.69 0.46 0.67 0.64 0.55 0.68 0.09 0.88 
V105 0.48 0.77 0.58 0.57 0.43 0.68 0.49 0.68 0.64 0.57 0.69 0.09 0.88 

CCI V2 0.47 0.75 0.45 0.44 0.28 0.38 0.37 0.62 0.72 0.46 0.62 0.40 0.86 
V105 0.43 0.76 0.44 0.42 0.36 0.38 0.36 0.62 0.71 0.49 0.63 0.40 0.86  
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extended to low vegetation ecosystems, considering the two L-VOD and 
NDVI indices are sensitive to very different vegetation features. 

Considering spatial correlations, the spatial relationships computed 
for V105 and V2 between yearly averages of L-VOD and NDVI are very 
similar (Fig. S9). 

The spatial correlations between average L-VOD and biomass esti
mated from three reference AGB maps (Saatchi, Globbbiomas and CCI) 
were found to be very close globally for both V105 (R ~ 0.87) and V2 (R 
~ 0.88) (Fig. 6, Table 7). However, the correlation increased generally 
for all forest types (ENF, EBF, DBF, MF and WS) and all three reference 
AGB maps, except for Deciduous Needleleaf Forest (DNF) (Table 7). As 
noted before, this latter land cover type is mainly represented in boreal 
regions of northeastern Russia and this specific issue will be analyzed 
more in depth in the Discussion. 

As illustrated over two tropical forest sites in the Congo and Amazon 
basins (Fig. 7), we found large differences between the time variations in 
L-VOD for V2 and V105, particularly in terms of high frequency varia
tions: the time variations in L-VOD are visually found to be much 
smoother for V2. This can be interpreted as directly resulting from the 
constraint added in Eq. (2) that penalizes large VOD changes since the 
last VOD observations. To a lesser extent, there are also differences in 
terms of amplitudes and seasonal changes: the timing in the seasonal 
increase and decrease of L-VOD is slightly different for both L-VOD 

products. We attempted to quantify the change in the high frequency 
variations of L-VOD by mapping the standard deviation (SDHF) of L-VOD 
for both V105 & V2 versions after removing the seasonal trend in L-VOD 
(Fig. 8); SDHF corresponding to an estimate of the high-frequency vari
ability in the L-VOD time series. This high-frequency variability 
decreased strongly with V2, particularly in the dense forests of the 
tropical and boreal areas (Fig. 8, Fig. S10) where SDHF is generally lower 
than 0.02. The areas with relatively large SDHF values (~0.05–0.08; 
corresponding to yellow-orange values in Fig. 8b) correspond to areas 
affected by RFI as presented in Fig. 1. 

5. Review of applications 

Since 2017, the use of the SMOS-IC products has been considered in 
several studies aiming at applications in the fields of ecology, hydrology 
and carbon cycle. We review some of the main achievements based on 
the SMOS-IC product in the following summary. All the results presented 
here are based on the version V105 as ongoing studies based on the 
version 2 have not been published yet. These results were based on both 
the L-VOD and SM data sets, but L-VOD played a more dominant role 
than SM. This can be explained by the fact that SM can be estimated 
globally with a good accuracy from many modelled and remotely sensed 
products (Al-Yaari et al., 2019a; Dong et al., 2020; Ma et al., 2019). 

Fig. 7. L-VOD (7-day moving average) and SM time series for SMOS-IC V2 and V105 over two dense forest areas in a) the Congo basin and b) the Amazon basin. The 
sites cover around 16 pixels (100 km × 100 km) each, centered on (1.962◦N, 18.415◦E) for Congo and (− 4.713◦S, − 63.545◦W) for Amazon. The Landcover type is 
Evergreen Broadleaf Forest (EBF). Precipitation is shown by grey vertical bars. 
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Conversely, the SMOS-IC vegetation product (L-VOD) could more easily 
lead to innovative results as L-VOD is a good proxy of vegetation vari
ables, such as leaf phenology, vegetation water content, yearly average 
biomass, etc. whose dynamics are more difficult to measure in the field 
and to simulate with a high accuracy with current land surface models at 
the global scale. 

As discussed above, based on a spatial calibration (as shown in Fig. 
S3), the SMOS-IC L-VOD product can be used to monitor the interannual 
variations in the aboveground carbon stocks at continental scales. The 
latter capabilities, showing no sign of saturation effects at high biomass 
levels, allowed monitoring the changes in the AGC stocks in tropical 
regions. A pioneer work was carried out by Brandt et al. (2018a) who 
revealed the applicability of L-VOD to monitor and map the yearly time 
changes in carbon losses and gains associated with drying trends in sub- 
Saharan Africa between 2010 and 2016. The trend of the net changes of 
AGC in drylands (53% of the land area) was − 0.05 Pg C yr− 1, reflecting 
the importance of the highly dynamic and vulnerable carbon pool of 
dryland savannahs for the global carbon balance, despite their relatively 
low carbon stock per unit area. This analysis was recently extended to 
the whole tropics by Fan et al. (2019) who confirmed for the first time 
from large-scale continuous Earth Observation (EO) that the tropical net 
AGC budget was approximately neutral. The large interannual and 
spatial fluctuations of tropical AGC, quantified during the wet 2011 La 
Niña and the extreme dry and warm 2015–2016 El Niño episodes, were 
shown to be closely related to independent global atmospheric CO2 
growth-rate anomalies highlighting the pivotal role of tropical AGC in 
the global carbon budget. Following the 2015–2016 El Niño episode, the 
AGC stocks of the tropical forests were expected to partly recover. The L- 

VOD-based estimates of AGC, showed that the recovery of the tropical 
ecosystems was slow and that by the end of 2017, AGC had not reached 
pre-drought levels of 2014: from 2014 to 2017 tropical AGC stocks 
decreased by 1.3 Pg.C (Wigneron et al., 2020). Persistent AGC losses in 
Africa, mainly in humid forests, represented almost 70% of these losses 
which could be related to both deforestation and to a massive cumula
tive soil moisture depletion at the end of 2016, as a result of the com
bined El Niño anomaly and of a pre-existing drought. 

In parallel to these studies focused on yearly AGC changes, the L- 
VOD product was applied to monitor the seasonal variations in the 
vegetation water content (VWC) at continental scales. Tian et al. (2018) 
have analyzed the coupling between L-VOD, a proxy of plant water 
storage (e.g. VWC), and leaf phenology (LAI) at global scale. The study 
revealed that the seasonal variations in L-VOD and LAI are highly 
asynchronous in dry tropical forests, where an increase in plant water 
storage precedes vegetation greening by ~25 to 180 days. In particular, 
a very intriguing signature was found in the Miombo region, an immense 
surface area south of the African rainforests where LAI increases several 
weeks before the rainy season begins (so called pre-rain green-up). In 
this forest area, the seasonal changes in L-VOD and LAI are asynchro
nous by almost 6 months: trees in Miombo takes up water at the end of 
the rainy season (when transpiration losses fall) and stores it in woody 
tissues during most of the dry season in support to the emergence of new 
leaves a few weeks before rain starts. This specific hydraulic behavior 
had previously been revealed from in situ experiments in dry tropical 
forests, particularly in Costa Rica (Borchert, 1994). The L-VOD data 
allowed demonstrating that this behavior is a large-scale phenomenon 
which extends over very large forested areas in the Miombo woodlands, 

Fig. 8. Map of the standard deviation of the high-frequency variations (SDHF) in the L-VOD time series for versions (a) V105 and (b) V2; the high-frequency var
iations in L-VOD were computed after removing the seasonal trend that was estimated with a moving average filter (period = 30 days); a map of the differences 
between the SDHF values obtained for V105 and V2 is given in Fig. S10. 
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the northern African woodlands and the Brazilian Cerrado. 
So far, most of the important findings based on L-VOD were obtained 

in the tropics. There are several explanations to this fact: (i) L-VOD is 
little affected by the strong limitations (cloud coverage, saturation vs 
biomass, etc.) affecting the optical sensors in the tropics and can thus 
bring a new insight over the tropical vegetation ecosystems (ii) Tropical 
vegetation has a pivotal role in the global carbon budget (iii) RFI has 
generally a weak impact on the SMOS observations in the tropical 
American and African continents. Yet, L-VOD is potentially a very 
interesting index in other regions of the world and it is currently used in 
several ongoing applications which could not be included in this review. 
These ongoing studies concern in particular Australia, where RFI is very 
low and L-VOD is performing very well to monitor the impact of 
droughts and fires on the AGC stocks and the high latitudes, where 
optical observations indicate widespread greening, but numerous 
questions and uncertainties about the vegetation change remain in those 
regions (Myers-Smith et al., 2018a). To complete this section, we list the 
SMOS IC applications in a non-exhaustive fashion in Table 8. 

6. Discussion 

The L-VOD products computed from the SMOS and SMAP observa
tions are increasingly used to evaluate the link between the changing 
environmental conditions and vegetation functioning. In comparison to 

SMAP which was launched beginning of 2015, the SMOS L-VOD data set 
presents the advantage of being available since 2010, allowing to 
analyze longer trends in both soil moisture and vegetation carbon 
stocks. Conversely, SMAP which includes more recent technological 
developments, presents the advantage of being less sensitive to RFI ef
fects which strongly affect the SMOS observations, particularly in 
Europe, northern Africa and many regions of Asia. 

SMOS has multi-angular capabilities allowing daily simultaneous 
retrievals of SM and L-VOD. These capabilities were used in the first- 
released version of SMOS-IC (Fernandez-Moran et al., 2017a), while 
multi-temporal retrieval approaches have been developed for accurate 
SMAP L-VOD retrievals (Konings et al., 2017a). The new version (V2) of 
SMOS-IC which is presented in this study combines both a multi-angular 
and a multi-temporal retrieval approach. This combined approach led to 
better scores in the SM and L-VOD products considering a series of 
criteria for both the SM and L-VOD data: 

- Considering retrieved SM data: when changing from V105 to V2, 
better scores were obtained in terms of both correlation (R) and ubRMSE 
criteria for all IGBP vegetation types, considering both in situ ISMN and 
ERA5-Land modelled data sets as a reference for comparison. For 
instance, considering ERA5-Land as a reference, better scores in terms of 
correlation and ubRMSE were obtained with SMOS-IC V2 over most (>
90%) of the pixels at global scale. Considering all ISMN in situ sites, the 
average ubRMSE decreased from 0.062 m3/m3 to 0.059 m3/m3, and 
median correlation (R) increased from 0.66 to 0.68 (Table 5). Using both 
ERA5-Land and ISMN SM data sets as references, the improved scores of 
V2 were larger over woody vegetation and smaller over short and sparse 
vegetation areas. The dry bias noted in SMOS-IC V105 remained almost 
constant (~ − 0.045 m3/m3 vs ISMN). 

- Considering retrieved L-VOD data: it should be noted that, contrary 
to SM, no direct estimates of L-VOD are available from measurements or 
models, so that only indirect evaluations based on proxies (some proxies 
are more relevant for short and sparse vegetation, others for forests) can 
be made. These limitations being noted, we found that, consistently, 
when upgrading from V105 to V2, better scores were obtained consid
ering all used proxies/criteria: the spatial and temporal correlation be
tween L-VOD/NDVI increased particularly over short vegetation areas 
(where the criterion is more relevant) and the spatial correlation with 
AGC stocks increased over woody vegetation covers (where the criterion 
is more relevant). Through the use of constraints (Eq. (2)), the V2 time 
series presented much smoother time variations than those of V105, 
particularly over dense forests in the tropics. Only one main limitation of 
V2 could be noted: lower performances were found in some boreal re
gions, mostly in northeastern Russia, where (i) a lower temporal cor
relation was found between L-VOD and NDVI (ii) a lower spatial 
correlation was found between L-VOD and AGB for DNF (deciduous 
needleleaf forest). 

The improved scores of V2 SM could be noted particularly over 
woody land covers. A possible interpretation of this result is the 
following one: the main change considered in V2 was improving the L- 
VOD initialization in the cost function (Eqs. 1 & 2). This change affecting 
L-VOD will have a larger impact for woody land covers which corre
spond to denser vegetation canopies and higher biomass levels. So, 
improving the L-VOD retrievals should have a larger impact on the ac
curacy of the SM retrievals for those dense vegetation types which have 
larger extinction properties of the microwave radiations. 

One exception to the improved score obtained with V2 could be 
noted for L-VOD retrievals in Russia. It is likely that the slight decrease 
in the performance of V2 vs V105, can be related to the specific envi
ronmental conditions prevailing in the boreal regions. In these northern 
regions, due to frozen conditions, the L-VOD retrievals cannot be done in 
winter. So, the computation of the first guess of L-VOD (e.g. L-VODini in 
Eq. (2)) has to be interrupted each year making the V2 multi-temporal 
retrieval approach less continuous and thus less efficient. Moreover, in 
V2 we used the same soil and vegetation model parameters as in V105. It 
is likely that the changes made in V2 could impact these model 

Table 8 
Overview (non-exhaustive) of scientific studies using the SMOS-IC SM or L-VOD 
or both SM & L-VOD data (Both) in application studies.  

Region/ 
continent 

Reference Focus: Main topic of the study 

Africa Brandt et al. 
(2018a) 

Both Carbon losses in African drylands 
(2010–2016)  

Rodriguez- 
Fernández et al. 
(2018) 

L- 
VOD 

Sensitivity of L-VOD to above- 
ground biomass 

Africa 
Drylands 

Bernardino et al. 
(2020) 

Both Woody plant die-off in the western 
Sahel  

Brandt et al. (2019) Both Herbaceous/woody foliage 
production in the Sahel 

Boreal Tagesson et al. 
(2020) 

L- 
VOD 

Divergence in the carbon sink of 
tropical and boreal forests 

China Brandt et al. 
(2018b) 

Both Greening and biomass increase in 
South China Karst during recent 
decade  

Tong et al. (2020) Both Carbon sequestration from forest 
management 

Europe Al-Yaari et al. 
(2018) 

Both Time series of SM and L-VOD at the 
FR-AQUI site  

Bastos et al. (2020) Both Legacy effects of the 2018 drought 
on ecosystem productivity  

Scholze et al. 
(2019) 

Both Mean European Carbon Sink over 
2010–2015 

Global Ebrahimi-Khusfi 
et al. (2018) 

Both SMOS/SMAP Synergy  

Frappart et al. 
(2020) 

L- 
VOD 

Review  

Li et al. (in press) L- 
VOD 

VOD Product Inter-comparison  

Tian et al. (2018) Both Coupling between plant water 
storage and leaf phenology 

Tropics Bastos et al. (2018) Both Impact of the 2015–16 El Nino on 
the terrestrial carbon cycle  

Fan et al. (2020) Both Pantropical carbon dynamics 
(2010–2017)  

Wigneron et al. 
(2020) 

Both Recovery of tropical forests from 
the 2015–2016 El Niño event 

USA Al-Yaari et al. 
(2020) 

Both Asymmetric responses of 
ecosystem productivity  

Al-Yaari et al. 
(2019b) 

SM Temperature biases in CMIP5 
simulations over conterminous 
United States  

Dong et al. (2020) SM Soil moisture climatology  
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parameters. But these changes have not been accounted for and the 
impact could be larger in boreal regions considering the specific envi
ronmental conditions prevailing there and in particular: (1) a large soil 
organic matter (SOM) which affects the soil dielectric properties in the 
upper soil layers (Mironov and Savin, 2015; Bircher et al., 2016); ac
counting for this effect in L-MEB will require the use of an accurate and 
global SOM map (2) land cover types with specific vegetation structure 
and phenology features, as can be found in particular in deciduous 
needleleaf forests (more than 90% of the cover fraction of this IGBP class 
can be found in eastern Russia) which would require performing a 
specific calibration of the effective scattering albedo (ω); the current L- 
MEB calibration of ω being only based on observations over dense 
tropical forests (Parrens et al., 2017). 

An intriguing signature common to both V105 and V2 could be 
noted: the temporal correlation between L-VOD and both NDVI and SM 
is low in some regions of the tropics and particularly in the Amazon and 
Congo basins (Figs. 4 & 7). The validity of this result cannot be clearly 
evaluated as very few in situ data sets are available in these tropical 
regions to carry out an accurate evaluation of the SM and L-VOD 
products. It could be due to an artefact in the retrieval process in these 
regions with very dense vegetation covers. But many questions are still 
open on that topic in the Amazon basin. For instance, relatively large 
time lags (~3 months in some regions and following a gradient from 
West to East) have been found between different climate variables (SM, 
rainfalls, Photosynthetically active radiation) and vegetation indices 
(NDVI and VOD) (Jones et al., 2014; Tian et al., 2018). Note that this 
time lag was also found considering the SMAP SM retrievals which 
correlate very well with the SMOS-IC SM data in the Amazon basin (M. 
Sadeghi, personal communications). 

7. Conclusions and perspectives 

Higher scores were obtained with SMOS-IC V2 vs the previous V105 
version considering several criteria for both SM and L-VOD. Moreover, 
the algorithmic changes made in Eq. (2) might result in more stable 
retrievals which is reflected in particular by more stable time variations 
in L-VOD. This should be very beneficial for the different application 
topics that we reviewed in this study. The analysis of the V2 results made 
in the previous sections clearly opened new fields of investigations and 
perspectives: 

-Improving RFI filtering. To avoid very erroneous results, the RFI 
effects which contaminate the SMOS-IC time series should be filtered 
very carefully. This is particularly true for L-VOD which is more sensi
tive to RFI effects than SM. So, currently, the difficulty in applying 
automatic multi-annual and global RFI filtering still strongly limits the 
potential applications of SMOS-IC. Such automatic filters are being 
evaluated for the next SMOS-IC versions. 

-Improving L-VOD retrievals in boreal regions, particularly in eastern 
Russia. The key and specific features to consider in these regions 
include: (i) the large fraction of soil organic matter (SOM) (ii) the 
vegetation structure and phenological features of deciduous needleleaf 
forests and (iii) the soil frozen conditions which affect the multi- 
temporal retrieval continuity. 

-Evaluating a new calibration of the soil and model parameters in 
SMOS-IC, considering the combined multi-temporal and multi-angular 
retrieval approach developed in V2. In particular, all recent inter- 
comparison studies showed that the retrieved SMOS-IC SM values 
were affected by a negative bias, which is higher than that of most 
products, including SMOS L2 and L3 (Al-Yaari et al., 2019a; Dong et al., 
2020; Ma et al., 2019; Quets et al., 2019). Even though reducing the bias 
in retrieved SM was considered as a second order priority, as compared 
to the correlation and ubRMSE metrics, the SMOS-IC SM bias may affect 
the L-VOD retrievals. Future activities will consider reducing this SM 
bias by improving parameter calibration and ancillary data inputs such 
as surface temperature as suggested by Ma et al. (2019). Evaluating 
more in depth the seasonal variations in both SM and L-VOD in the 

tropical regions and particularly in the Amazon and Congo basins, which 
are key regions of application of the SMOS-IC product (Brandt et al., 
2018a; Fan et al., 2019; Wigneron et al., 2020). The evaluation should in 
particular consider the time lag found between the SMOS-IC SM, L-VOD 
and MODIS NDVI (Tian et al., 2018). 

Beyond the results of the present evaluation of V2, the review of the 
SMOS-IC application studies in link with climate change and increased 
mortality risks in forests (Cf section 5) showed the key interest of long- 
term SM and L-VOD times series. ESA CCI and other remotely-sensed 
and modelled products provide long time series of soil moisture. How
ever, no passive microwave satellite at L-band was available before the 
SMOS launch (end of Nov. 2009) and, to our knowledge, all L-VOD time 
series begin in 2010 with SMOS. To extend the L-VOD time series in the 
past, before 2010, merging method with VOD products derived from 
other sensors such as the Advanced Microwave Scanning Radio
meter—EOS (AMSR-E) can be used (Jones et al., 2014). To our knowl
edge, this is not done already. Continuity in the future should also be 
considered. Some passive microwave space-borne missions including L- 
band have been investigated in China (Water Cycle Observation Mission 
(WCOM); Shi et al., 2016) and are still under evaluation in Europe 
(Copernicus Imaging Microwave Radiometer (CIMR); Kilic et al., 2018), 
but no decision has been taken to date by any Space Agencies. So, 
continuity in the L-VOD time series will be supported only by the SMOS 
and SMAP instruments in the coming years and the next step in the 
SMOS-IC project will be merging the SMOS and SMAP L-VOD time se
ries, in an effort to ensure L-VOD continuity if one of the two sensors fails 
in the near future. 
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