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Tryptophan Metabolism as a
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Highlights
L-Tryptophan (L-Trp) is metabolized via
three pathways: the indole pathway in
bacteria and the kynurenine and seroto-
nin pathways in mammalian cells.

Disruptions in L-Trp metabolism are
reported in several diseases making
L-Trp metabolism a promising thera-
peutic target.
L-Tryptophan is an essential amino acid required for protein synthesis. It undergoes
an extensive and complex metabolism along several pathways, resulting in many
bioactive molecules acting in various organs through different action mechanisms.
Enzymes involved in its metabolism, metabolites themselves, or their receptors,
represent potential therapeutic targets, which are the subject of dynamic research.
Disruptions in L-tryptophan metabolism are reported in several neurological, meta-
bolic, psychiatric, and intestinal disorders, paving the way to develop drugs to
target it. This review will briefly describe L-tryptophan metabolism and present
and discuss the most recent pharmacological developments targeting it.
Manipulating L-Trp metabolism is an
attractive therapeutic strategy.

Key enzymes of L-Trp metabolism are
targets of inhibitors currently undergoing
clinical trials in cancerology, dermatology,
and gastroenterology.

Serotonin and aryl hydrocarbon receptor
(AhR) receptors are targeted in the treat-
ment of gastrointestinal diseases, inflam-
mation, and many cancers.

Next-generation probiotics producing
indoles are being developed for their
ability to activate AhR in the gut.
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Introduction
L-Tryptophan (L-Trp) is an essential amino acid required for protein biosynthesis. It is also a
biochemical precursor of metabolites that significantly affect mammalian physiology, including
gastrointestinal functions, immunity, metabolism, and the nervous system. In the gastrointestinal
tract L-Trp metabolism can follow three significant pathways, all of which are influenced by the
gutmicrobiota: (i) the kynurenine pathway (KP) in both immune and epithelial cells, (ii) the serotonin
(5-hydroxytryptamine, 5-HT; see Glossary) production pathway in enterochromaffin cells (ECCs), a
specialized subtype of intestinal epithelial cell, and (iii) direct transformation by the gut microbiota of
L-Trp into several molecules, including ligands of the aryl hydrocarbon receptor (AhR)
(Figure 1). Enzymes involved in these pathways, metabolites themselves, or their receptors repre-
sent therapeutic targets. Alterations in L-Trp metabolism have been reported recently in several
neurological, metabolic, psychiatric, and intestinal diseases, paving the way for developing drugs
to target it. Here, we will discuss in particular: (i) inhibitors of enzymes of the KP and analogs of
neuroprotective metabolites, (ii) antagonists of 5-HT peripheral receptors and inhibitors of 5-HT
synthesis, (iii) different strategies to target AhR via agonists or antagonists, (iv) direct administration
of L-Trp metabolites, and (v) the use of live biotherapeutic products for the potential exploitation of
their enzymatic machinery in modulating L-Trp metabolism.

Tryptophan Metabolism
Host Tryptophan Metabolism
In mammalian cells, most L-Trp is metabolized via the KP, while the remainder is utilized in the
synthesis of 5-HT and melatonin (MT). In KP, L-Trp is catabolized into the unstable derivative
N-formyl-L-kynurenine (NFK) by rate-limiting enzymes tryptophan 2,3-dioxygenase (TDO) and
indoleamine 2,3-dioxygenases (IDO1/IDO2) (Figure 1). Globally, the enzymes of KP are
expressed in a tissue-specific manner. TDO is expressed in the liver, whereas IDO1 is expressed in
many cell types and tissues and is inducible by cytokines [1]. NFK is rapidly metabolized by
kynurenine formamidase (expressed in liver, kidney, and brain) to form L-kynurenine (L-kyn). L-kyn
is a crucial metabolite with potent immunoregulatory functions through its binding to AhR [1–3]. L-
kyn is mainly metabolized by kynurenine monooxygenase (KMO) to form 3-hydroxykynurenine
(3-HK). 3-HK is then degraded to 3-hydroxyanthranilic acid (3-HAA) by kynureninase (KYNU).
KYNU is subsequently metabolized to 2-amino-3-carboxymuconic 6-semialdehyde (ACMS) by 3-
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Glossary
Aryl hydrocarbon receptor (AhR):
the AhR transcription factor belongs to
the basic helix–loop–helix (bHLH) –
Per-Arnt-Sim (PAS) family involved in
environment sensing. Cytoplasmic in the
basal state, it translocates in the nucleus
after fixation of a ligand to induce the
transcription of target genes including
the cytochromes (cyp) 1a1, 1a2 and
1b1. Pharmacological duality according
to the immune or cancerous nature of
the pathology to be treated.
Indoleamine 2,3-dioxygenase
(IDO) 1: ubiquitous and nonspecific
enzyme that catabolizes L-Trp into NFK.
IDO1 is inducible by proinflammatory
stimuli. Pharmacological target in
cancers.
Kynureninase (KYNU): enzyme
expressedmainly in the liver and kidneys
and responsible for the metabolism of
3-HK to 3-HAA.
Kynurenine aminotransferase (KAT):
enzyme which metabolizes L-kyn and
3-HK to KYNA and XANA, respectively.
Unlike other KP enzymes, KAT
expression decreases in response to
inflammatory stimuli favoring the shift of
KP toward the production of neurotoxic
QUIN. Promising target in schizophrenia
where the increase in KYNA leads to the
hypofunction of glutamatergic
transmission.
Kynurenine monooxygenase (KMO):
catalyzes the hydroxylation of L-kyn to
form 3-HK. Absent from astrocytes but
predominant in microglia where it actively
participates in the synthesis of precursors
of the neurotoxic metabolite QUIN.
Promising target in neurodegenerative
diseases to stop the synthesis of
deleterious metabolites (3-HK and QUIN).
Probiotics: microorganisms which,
when administered live and in adequate
amounts to the host, bring beneficial
health effects [WorldHealthOrganization
(WHO)].
Quinolinate
phosphoribosyltransferase (QPRT):
enzyme responsible for the conversion
of the neurotoxic QUIN to coenzyme
NAD involved in numerous reactions of
energy and tissue homeostasis. The
administration of recombinant QPRT
could overcome the rapid saturation of
the endogenous enzyme and remove
the excess of QUIN.
Serotonin (5-HT): endogenous
monoamine involved in a wide range of
physiological processes such as
behavior, vascular function, hemostasis,
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hydroxyanthranilic acid 3,4-dioxygenase (3-HAO). The former is expressed in the liver, kidney, cen-
tral nervous system (CNS), and placenta, while the latter has a broad tissue distribution [3]. ACMS
can be cyclized to quinolinic acid (QUIN) or metabolized by the enzyme 2-amino-3-
carboxymuconate-semialdehyde decarboxylase (ACMSD), found mainly in the kidney and to a
lesser extent in the liver, and responsible for the synthesis of 2-aminomuconic-6-semialdehyde
(AMS). AMS is either metabolized by 2-aminomuconic semialdehyde dehydrogenase (AMSD) to
result in acetyl-CoA or cyclized nonenzymatically to form picolinic acid (PICA). In the CNS, QUIN
is mainly produced by microglia. It acts as a neurotoxic agent on astrocytes mainly by its selective
agonist effect on ionotropic glutamate glutamatergic N-methyl-D-aspartate (NMDA) receptors
(Figure 2). However, mechanisms determining the engagement of KP in its synthesis remain unde-
termined [4,5]. QUIN is also a precursor for the de novo synthesis pathway for NAD via the enzyme
quinolinate phosphoribosyltransferase (QPRT) expressed mainly in the liver and kidney. NAD
is a cofactor for numerous enzymes involved in cellular energy metabolism, adaptive responses of
cells to bioenergetic and oxidative stress, and genome stability. Its deficiency affects tissues that
need high cellular energy, such as the brain, gut, and skin, causing pellagra [6]. Finally, PICA is a
neuroprotective molecule whose concentration is reduced in the serum of patients with autism,
and plasma and cerebrospinal fluid (CSF) of subjects who have attempted suicide [7,8].

Hepatic and cerebral kynurenine aminotransferase (KAT) synthesizes kynurenic (KYNA) and
xanthurenic acid (XANA) from L-kyn and 3-HK, respectively [3]. Four KATs have been identified in
the mammalian brain (KAT I–IV), but KAT II activity accounts for the highest proportion (60%) of
the total KAT activity in the mammalian brain [9]. KYNA is a neuroprotective metabolite that
acts as an AhR ligand and has an antagonist effect on NMDA and α-amino-3-hydroxy-5-
methylisoazol-4-propionate (AMPA) receptors [3]. It also participates in tissue homeostasis and
inflammation regulation via its binding to the orphan receptor GPR35 [10,11]. KYNA has been
reported to antagonize the α-7 acetylcholine receptor, but this effect remains controversial [12].
Its structural analog XANA acts on AhR and the metabotropic glutamate receptors mGlu2 and
mGlu3 [13].

The KP is organized with several intersections, and the flux through various routes with the KP is
not equal. This means that the production of different end-products of KP, such as KYNA, XANA,
PICA, or QUIN, is not identical, and the balance between them can change according to the
situation.

The remaining L-Trp not metabolized in KP leads to intestinal and cerebral 5-HT production
through the Trp hydroxylase (TPH) enzymes. More than 90% of 5-HT is produced in the gut,
particularly in ECCs through TPH1, the activity of which is modulated by intestinal microbiota
[14–16]. Synthesis of 5-HT at the central level is carried out via the enzyme TPH2. 5-HT is an
important gastrointestinal signaling molecule that conveys signals from the gut to intrinsic or
extrinsic neurons and influences intestinal peristalsis, motility, secretion, vasodilatation, and
nutrient absorption. Thus, it represents an attractive target for the treatment of several intestinal
disorders. 5-HT can be metabolized secondarily to MT, a circadian hormone promoting sleep,
but also has anti-inflammatory properties [17].

Microbial Tryptophan Metabolism
Intestinal microorganisms metabolize unabsorbed L-Trp into several molecules, such as indole
derivatives [indole-3-aldehyde (IAld), indole-3-acetic acid (IAA), indole-3-propionic acid (IPA),
indole-3-acetaldehyde (IAAld), indole-3-lactic acid (ILA), and indole acrylic acid] but also
tryptamine and skatole. These metabolites are involved in intestinal permeability, regulation of
inflammation, and host immunity [18–24]. Several of these metabolites are ligands for AhR
Trends in Pharmacological Sciences, January 2021, Vol. 42, No. 1 61



hepatic regeneration, intestinal motility,
insulin secretion, erythropoiesis,
adipocytes differentiation, immune
responses, and the fibrosis process.
Tryptophan 2,3-dioxygenase (TDO):
specific enzyme that catabolizes the
same reaction as IDO at physiological
level. Constitutively expressed on the liver,
it is also involved in physiopathology of
many cancers where it plays a role in
immune escape. Pharmacological target
in cancers.
Tryptophan hydroxylase (TPH): 5-HT
synthesis enzyme from L-Trp. Tph1 and
Tph2 isoforms are responsible,
respectively, for the synthesis of 5-HT in
ECCs of the intestine, pancreatic β cells,
fat cells, lung, pineal gland, CNS, and
enteric nervous system neurons.
Interesting pharmacological target for
inhibiting pathophysiological
mechanisms such as inflammation,
angiogenesis, fibrosis, and cell
proliferation. Pharmacological target in
intestinal diseases associated with
transit disorders.
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[24,25]. Of note, it was recently shown that some of these molecules are not only synthesized by
microbiota, but also by tumor cells through the effect of an L-amino acid oxidase, IL-4-induced-1
(IL-4I1), metabolizing L-Trp into indole-3-pyruvic acid and subsequently into IAA, IAld, and
ILA, thus allowing escape from the immune system, survival, and tumor motility in an AhR-
dependent manner [25]. AhR signaling is considered a vital component of the immune response
at barrier sites. Thus, it is crucial for intestinal homeostasis by acting on epithelial renewal, barrier
integrity, and many immune cell types, such as intra-epithelial lymphocytes, T helper (Th)17 cells,
innate lymphoid cells, macrophage dendritic cells, and neutrophils [26]. Dietary molecules and
xenobiotics directly activate AhR. Also, many AhR ligands are processed and inactivated by
cytochrome p450 family proteins, such as cyp1a1, which is a direct AhR transcriptional target
constituting a feedback loop for AhR signaling [27]. However, some metabolites such as 5-HT
act indirectly on AhR through a CYP inhibiting mechanism, thereby expanding receptor ligands
[28]. Interestingly, 5-hydroxy indole acetic acid (5-HIAA) is, unlike 5-HT, an AhR agonist [29].

Pharmacological Targeting of L-Trp Metabolism
L-Trp metabolism leads to the production of several essential molecules for host physiology. It is
perturbed in many diseases, notably neurological, psychiatric, metabolic, infectious, intestinal
diseases, and cancer cells, making it an ideal pharmacological target [5,12–18].

Enzymatic Modulation
Dioxygenases Inhibitors
While present in healthy tissues, an increase and constitutive IDO expression has been described in
multiple cancers, contributing to immune suppression and neovascularization [30]. IDO1 inhibitors
allow the restoration of immune cell function [1]. These inhibitors are currently being evaluated in
Phase I or II clinical trials (indoximod, epacadostat, navoximod, EOS200271, and BMS-986205;
Table 1). They are well-tolerated, but their effects as a monotherapy are insufficient. They are
now evaluated in combination with immune checkpoint inhibitors. However, the results obtained
are mixed [31,32]. A possible explanation for the failure of this combination may result from the
induction of IL-4I1 by IDO1, allowing the immune escape of the tumor clone [25]. Under these
circumstances, a tritherapy comprising an inhibitor of IDO1, a checkpoint inhibitor, and an inhibitor
of IL-4I1 could be an interesting avenue. Research for new IDO1 inhibitors continues actively
[25,33]. Beyond cancer, targeting of IDO1 could also concern patients with metabolic disorders
since obesity is associated with an increase of IDO1 activity in the gut, which hijacks L-Trp to the
KP at the production expense of indoles by the microbiota. Genetic or pharmacological inhibition
of IDO1 improves insulin sensitivity, decreases endotoxemia, and regulates lipid metabolism [34].
Initially, TDO was thought to be only constitutively expressed in the liver. However, TDO was
also shown to be expressed in various cancer cells, including breast cancer, ovarian carcinoma,
and gliomas. It is involved in progression and immune suppression through the TDO-L-kyn-AhR
pathway, and inhibition of TDO contributes to reverse immune escape [1,35,36]. Currently, TDO
inhibitors are mainly in preclinical stages. However, research is moving toward dual IDO1 and
TDO inhibitors since both are involved in the pathophysiology of cancer through the synthesis of
the immunomodulatory metabolite L-kyn. Inhibitors targeting both enzymes include HTI-1090,
DN14066131, RG70099, and EPL-1410. The oral inhibitor HTI-1090 (SHR9146) is being
evaluated in a Phase I clinical trial alone or in combination with a programmed cell death protein
1 (PD-1) or vascular endothelial growth factor receptor (VEGFR) inhibitor for the treatment of
solid tumors (NCT03208959 and NCT03491631; https://www.clinicaltrials.gov/ ).

KAT Inhibitors
The impaired glutamatergic activity of the NMDA receptors is involved in schizophrenia, with a
potential role for the NMDA antagonist KYNA. A meta-analysis of 13 studies showed an elevation
62 Trends in Pharmacological Sciences, January 2021, Vol. 42, No. 1
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Figure 1. L-Trp Metabolism and Pharmacological Targets. Host L-Trp metabolism follows the 5-HT and the kynurenine pathways in which several pharmacological
targets are currently under development. (A) L-Trp ismetabolized to 5-HTwhich can either be degraded to 5-HIAA ormetabolized toMT. Pharmacological targets are the rate-
limiting enzyme in 5-HT synthesis TPH and the peripheral 5-HT receptors. (B) The L-kyn pathway involves a series of enzymatic reactionswhich constitute potential therapeutic
targets. (C) Unabsorbed L-Trp is metabolized by intestinal microorganisms into several molecules, such as indole derivatives, tryptamine, and skatole, some of which are AhR
ligands. After binding of its ligand in the cytosol, AhR translocates in the nucleus and binds to specific DNA sequences resulting in the transcription of target genes including
those of the cytochrome p450 family. AhR could be targeted by antagonist or agonist molecules. Administration of next-generation probiotics could also modulate L-Trp
metabolism. Abbreviations: 1-MT, 1-methyltryptophan; 3-HAA, 3-hydroxyanthranilic acid; 3-HAO, 3-hydroxyanthranilic acid 3,4-dioxygenase; 3-HK, 3-hydroxykynurenine;
5HIAA, 5-hydroxyindole acetic acid; 5-HT, serotonin; ACMS, 2-amino-3-carboxymuconic acid-6-semialdehyde; ACMSD, 2-amino-3-carboxymuconate-semialdehyde
decarboxylase; AhR, aryl hydrocarbon receptor; AMSD, 2-aminomuconic semialdehyde dehydrogenase; IDO, indoleamine 2,3-dioxygenase; KAT, kynurenine
aminotransferase; KMO, kynurenine monooxygenase; KYNA, kynurenic acid; KYNU, kynureninase; L-kyn, L-kynurenine; L-Trp, L-tryptophan; MT, melatonin; NAD,
nicotinamide; PICA, picolinic acid; QPRT, quinolinate phosphoribosyltransferase; QUIN, quinolinic acid; TDO, tryptophan 2,3-dioxygenase; TPH1, tryptophan hydroxylase 1;
XANA, xanthurenic acid.
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of KYNA in the CSF and CNS of patients with schizophrenia. In rats, the cerebral level of KYNA
has been positively correlated with cognitive deficits similar to the ones observed in schizophrenia
[37–39] (Figure 2). In this context, KAT inhibitors showed promising effects on cognitive functions,
likely through decreased production of KYNA [40]. Several KAT inhibitors, such as PF-04859989,
BFF-122, and S-ESBA (Table 2), have been identified. PF-04859989 and BFF-122 act as KAT II
inhibitors by irreversibly binding to the pyridoxal phosphate (PLP) cofactor [41,42]. This vitamin
B6-derived coenzyme plays a role in a wide variety of enzymatic reactions. However, because
over 300 PLP-dependent enzymes and proteins have been identified, irreversible binding to
PLP may cause side effects. Such is the case with carbidopa that irreversibly binds to free PLP
and PLP-dependent enzymes [43].
Trends in Pharmacological Sciences, January 2021, Vol. 42, No. 1 63
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Figure 2. Pathological Deregulation of L-Trp Metabolism in the CNS. (A) In the CNS, KYNA is mainly produced by astrocytes while QUIN is produced in microglia
by KAT and KMO, respectively. Any imbalanced ratio of these two pathways leads to pathological repercussions. (B) As glioma cells are unable to produce QUIN, microglial
production of QUIN and its transformation into NAD by glioma cells allows their proliferation and survival. Abbreviations: AD, Alzheimer’s disease; ALS, amyotrophic lateral
sclerosis; CNS, central nervous system; HD, Huntington’s disease; KAT, kynurenine aminotransferase; KMO, kynurenine monooxygenase; KYNA, kynurenic acid; L-kyn,
L-kynurenine; L-Trp, L-Tryptophan; MS, multiple sclerosis; NMDA, N-methyl-D-aspartate; PD, Parkinson’s disease; QUIN, quinolinic acid.
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Moreover, recently a central function for vitamin B6 and PLP in the homeostatic host–microbiota
crosstalk through L-Trp metabolism has been shown [44]. It may be hazardous to exacerbate an
imbalance in L-Trp metabolism in patients since dysregulation of host–microbiota homeostasis
has shown its involvement in many diseases. S-ESBA has shown interesting effects in rats, but
its inhibitory activity on the human enzyme is too weak to consider its clinical use [45]. Given
potential toxicity or lack of efficacy, these molecules have not reached the threshold for clinical
trials, and research has moved toward the development of inhibitors targeting the active site of
the enzyme [46].

Finally, KAT inhibition by itself might be detrimental. In inflammatory bowel disease (IBD), the
increased KAT activity is thought to be a compensatory mechanism for modulating inflammation
and reducing cytotoxicity [47]. However, it should be noted that the elevation of KYNA observed in
schizophrenia could be caused by an increase of peripheral L-kyn synthesis, making it more available
for its passage through the blood–brain barrier (BBB) [38]. Also, the elevation of KYNA in patients with
64 Trends in Pharmacological Sciences, January 2021, Vol. 42, No. 1
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Table 1. List of Currently Investigated IDO1 Inhibitorsa

Molecule Structure and properties Investigations Published studies Active or recruiting studiesb

1-MT-L-Trp Analog of L-Trp
Nonspecific competitive inhibitor of
IDO1
Increases the effectiveness of
anticancer drugs and increases KYNA
in vivo and ex vivo regardless of IDO

Fundamental
research [83]

Advanced malignancies:
well tolerated
(monotherapy) [67]

Phase I/II: breast (NCT01042535,
NCT01792050), pancreatic (NCT02077881),
prostate (NCT01560923), non-small cell lung
cancer (NCT02460367), solid (NCT00567931,
NCT01191216), brain tumors (NCT04049669,
NCT02052648, NCT02502708), leukemia
(NCT02835729), and melanoma
(NCT03301636, NCT02073123)

1-MT-D-Trp
(indoximod)

Low in vitro activity but effective in vivo,
preferentially inhibit IDO2
May promote tumor growth by
off-target effect
Prodrug: NLG802

Cancers (alone or
in combination)
[84,85]

Epacadostat
INCB024360

Selective reversible competitive inhibitor
of IDO1

Antitumoral (decreases Tregs, increases
synthesis of IFNγ by T cells) but lack of
activity as a monotherapy

Metabolized by the intestinal microbiota
and the enzyme UGT1A9 (AhR target)

Cancers (only in
combination)
[86,87]

Ovarian cancer: no benefit
[88]

Tumors: well tolerated and
had encouraging antitumor
activity [89]

Metastatic melanoma: no
benefit [31]

Phase I/II: thymic carcinoma (NCT02364076),
naso-pharyngeal (NCT04231864), gastric
(NCT03196232), gastrointestinal
(NCT03291054), pancreatic (NCT03006302),
urothelial bladder (NCT03832673), non-small
cell lung (NCT03322566, NCT03322540), and
rectal (NCT03516708) cancers, melanoma
(NCT01961115), sarcoma (NCT03414229),
metastatic solid tumors (NCT03347123)

Phase III: urothelial (NCT03361865,
NCT03374488) and renal carcinoma
(NCT03260894), head and neck carcinoma
(NCT03358472)

Linrodostat
BMS-986205

Potent, selective, and irreversible IDO1
inhibitor, restores T-cell proliferation and
reduces intratumoral L-kyn up to 90%

Cancers [90–92] Tumors: well tolerated
(± nivolumab), need further
investigations for efficacy
[91]

Phase I/II: pharmacokinetics (NCT03378310,
NCT03312426) and safety (NCT03192943),
Endometrial (NCT04106414), liver
(NCT03695250), gastric (NCT02935634) head
and neck (NCT03854032) and bladder
(NCT03519256) cancers, solid tumors
(NCT03792750, NCT03459222,
NCT02658890) glioblastoma (NCT04047706)
Phase III: bladder cancer (NCT03661320,
NCT03661320), melanoma (NCT03329846)

EOS200271 IDO1 specific non-competitive inhibitor
Oral use
Brain permeable

Glioma

Association with
PD-L1 inhibitors
[93,94]

Malignant glioma: well
tolerated [94]

Navoximod,
GDC-0919,
or NLG-919

Moderately selective noncompetitive
reversible inhibitor
Dose-dependent activation and
proliferation of effector T cells,
Regression of large established tumors
Synergy with indoximod
Increases survival (± chemotherapy)
currently optimized by prodrug formulation

Cancers [96] Recurrent advances solid
tumors: well tolerated and
reduced plasmatic L-kyn
[97]

Phase I/II: solid tumors (NCT02471846,
NCT02048709)

aAbbreviations: IFN, interferon; Treg, regulatory T cell.
bClinical trials can be accessed at https://www.clinicaltrials.gov/.
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Table 2. List of Currently Investigated KAT and KMO Inhibitors

Molecule Structure and properties Investigations

KAT inhibitors

S-ESBA L-kyn analog
Selective competitive inhibitor of KAT II
Decreases KYNA and increases dopamine in rat brain but
has a very low activity against human KAT II
Synergizes with QUIN in the induction of striatum lesions

Discontinued
(weak human KAT inhibitor)
[49,98]

BF-122 Levofloxacine analog
Potent human KAT II inhibitor
Decreases KYNA without affecting QUIN and increases
dopamine

Discontinued (pyridoxal
phosphate binding) [49,98]

PF-04859989 Selective and irreversible inhibitor
Brain-penetrable
Decreases KYNA in the prefrontal cortex (50%)
Restores nicotine-induced glutamatergic activity
Low oral bioavailability and rapid metabolism
Lead compound for the synthesis of numerous derivatives

Discontinued (pyridoxal
phosphate binding) [49,98]

KMO inhibitors

UPF648 L-kyn derivative
Selective inhibitor
Increases KYNA (dose-dependent), decreases QUIN and
3-HK synthesis
Protects against QUIN-mediated toxicity

[49]

Ro61-8048 L-kyn derivative
Inhibits QUIN synthesis
Increases KYNA
Analgesic effect

Parkinson’s, Alzheimer’s,
Huntington’s
Addiction treatment
Multiple sclerosis, CNS
infection [49,99]

CHDI-340246 Chlorine derivative
Low BBB pass
Increases striatal and plasma L-kyn, KYNA
Decreases plasma 3-HK

Huntington’s [49,51,100]

GSK-180 Oxazolidinone derivative
Potent and specific but low cell penetration

Acute pancreatitis [101]

Trends in Pharmacological Sciences
neurodegenerative disease remains controversial. Recently, an increase in KYNA has been shown in
the CSF of patients with Alzheimer’s disease [48]. This underlines the need to deepen our knowledge
of the regulatory mechanisms of KP to provide more targeted therapeutic interventions. A more de-
tailed review of the development of the KAT inhibitors is provided by Jacobs et al. [49].

KMO Inhibitors
KMO is located at a critical branching point in KP, leading to the synthesis of downstreammetabolites
3-HK and QUIN. Given the deleterious effects of these two metabolites as observed in neurode-
generative diseases, epilepsy, autism, CNS infection (Figure 2), acute pancreatitis, pain, and certain
cancers, KMO represents a key target in the treatment of these conditions. KMO is mainly
expressed in microglia, where its inhibition induces a decrease of 3-HK and QUIN and shifts
L-kyn metabolism toward the production of neuroprotective KYNA [50,51]. KMO inhibitors include
halogenated L-kyn derivatives (UPF648, Ro61-8048), chlorine derivative (CHDI-340246), and
66 Trends in Pharmacological Sciences, January 2021, Vol. 42, No. 1
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chlorinated benzisoxazole (GSK-180). However, all are still at the preclinical phase of development
(Table 2). Peripheral KMO inhibition is sufficient to increase cerebral levels of KYNA via increasing
L-kyn transport to the brain. However, KMO inhibitors that cross the BBB would be more attractive
for treating neuropsychiatric conditions and are currently being developed [52]. Finally, diclofenac, a
potent non-steroidal anti-inflammatory drug, was recently shown to exhibit a KMO inhibition effect,
which can account for some of its efficacy [53–55].

KYNU Inhibitors
While cancers are characterized by upregulation of IDO1, dermatological diseases such as
psoriasis or atopic dermatitis are associated with an increased expression of KYNU, which corre-
lates with the severity of the disease and tends to decrease with anti-inflammatory treatments [56].
To date, no efficient KYNU inhibitors have been developed. The use of this type ofmoleculemay be
limited by the inhibitory role of KYNU on cancer cell proliferation [57].

QPRT Inhibitors
QPRT is involved in the de novo synthesis of NAD, an essential cofactor for many cellular functions,
including oxidative phosphorylation, macrophage physiology, and global immune system homeo-
stasis. This cofactor is crucial for the survival of glioma cells. The neoplastic transformation of
normal astrocytes into glioma cells is associated with a QPRT-mediated switch in NADmetabolism.
It exploits microglia-derived QUIN as an alternative source to replenish intracellular NAD pools [58].
Blocking QPRT seems attractive for glioma treatment, but it causes an accumulation of neurotoxic
QUIN, which is linked to many neurological disorders such as Parkinson’s, autism, epilepsy,
Huntington disease, multiple sclerosis, Alzheimer’s disease, and depression [7,8,59–61]. To
date, the only known inhibitor of QPRT is phthalic acid, a QUIN analog acting as a moderately
potent competitive inhibitor leading to increased urinary excretion of QUIN [62]. Moreover, as
NAD is essential for global metabolic and immune homeostasis, QPRT inhibitors for cancer
therapy could target malignant cells selectively.

ACMSD Inhibitors
By blocking the pathway leading to PICA and acetyl-CoA, ACMSD inhibitors such as phthalate
esters shift the KP toward QUIN synthesis and downstreammetabolite NAD. However, phthalate
esters being endocrine disruptors are excluded from any therapeutic use. Thus, other molecules,
such as TES-991 and TES-1025, have been developed [63,64]. The first proved to reduce
hepatic steatosis, inflammation, and hepatic lipid accumulation in a murine model of non-
alcoholic fatty liver disease. Simultaneously, the second had a protective effect in a mouse
model of acute kidney injury [63]. It is important to emphasize that the synthesis of NAD requires
the metabolism of QUIN by QPRT. This enzyme being easily saturable, the efflux of QUIN secondary
to the inhibition of ACMSD could lead to the deleterious accumulation of this neurotoxic metabolite
[8]. There is currently no attempt to inhibit ACMSD in humans pharmacologically and, NAD supple-
mentation, which is much safer, is preferred.

Recombinant KYNUs
Beyond IDO/TDO inhibition, L-kyn depletion can rely on the use of recombinant KYNU. Because
the human enzyme preferentially degrades 3-HK, research is directed toward bacterial KYNUs,
which have a significant catalytic activity toward L-kyn. Bacterial polyethylene glycol (PEG)ylated
KYNUs can deplete L-kyn produced by human cancer cells expressing IDO1 and TDO. A single
subcutaneous dose of KYNU can deplete L-kyn in both plasma and tumors and increase the
intratumoral effector T-cells in mice [65]. KYNU combined with anti-PD-1 showed greater efficacy
than epacadostat/anti-PD-1 combination in tumor-bearing mice and resulted in complete tumor
eradication in 60% of the animals [66].
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TPH Inhibitors
Besides its physiological functions, 5-HT is involved in cancer (including carcinoid syndrome),
gastrointestinal disorders, thrombosis, inflammation, diabetes, obesity, pulmonary hypertension,
and fibrosis. Inhibiting its production by targeting TPH is thus a strategy explored in these indica-
tions. Several TPH inhibitors have been developed (LP-521834, LP-534193, and telotristat), but
only telotristat is currently used. This molecule is a non-brain-permeable TPH inhibitor recently
approved by the FDA to treat diarrhea in carcinoid syndrome combined with a somatostatin
analog [67]. It also reduces the severity of dextran sodium sulfate (DSS)-induced colitis in mice and
increases the number of goblet cells that produce protective mucus in the colon [68].

Receptor Modulators
5-HT Receptors
5-HT3 and 5-HT4 receptors expressed in the intestine are the subjects of clinical investigations
for the treatment of gastrointestinal disorders, notably irritable bowel syndrome (IBS). The 5-
HT3 receptor is expressed on excitatory cells, including afferent and efferent nerve fibers. It is
the target for antagonists belonging to the class of ‘setrons’ useful for treating nausea and
vomiting during chemotherapy. As one of their side effects is constipation, they have also been
investigated in the treatment of predominantly diarrheal IBS. Conversely, the 5-HT3 receptor
could also be targeted with partial agonists such as pumosetrag for predominantly diarrheal
IBS treatment to decrease receptor activation when the 5-HT concentration in the cellular envi-
ronment is too high. The 5-HT4 receptor is expressed on ECCs and enteric neurons. It facilitates
the release of acetylcholine to relax colonic smooth muscles. This receptor is targeted by
prokinetic agents used in the treatment of constipation associated or not with IBS, but the lack
of selectivity of the first molecules, such as tegaserod or cisapride, has led to the development
of more selective 5-HT4 receptor agonists including prucalopride, naronapride, mosapride, and
velusetrag, which have been marketed (except naronapride).

AhR
AhR is an attractive therapeutic target in autoimmune, cancerous, neurodegenerative, or intestinal
disorders owing to its involvement in a wide variety of physiological and pathological processes. In
oncology, AhR is involved in an immunotolerance loop that allows tumor escape and receptor
antagonists, such as CH223191, CB7993113, and GNF351 (Table 3) have been used as antitumor
agents. However, because of the pleiotropic effect of AhR, its inhibition could lead to deleterious
consequences.

StemRegenin 1 (SR1) is a compound originally isolated from donor blood for its ability to increase
the number of CD34+ cells for hematopoietic stem cell transplantation (HSC) [69,70]. Its ex vivo
use makes it possible to overcome the pleiotropic effects of AhR antagonism, and the molecule is
currently under clinical investigation for malignant hemopathies and neutropenia treatment. SR-1
is also named HSC-835 or MGTA-456.

Research on AhRmainly focuses on its anti-inflammatory potential via the use of agonist molecules
such as tranilast, laquinimod, and tapinarof (Table 3). The former is already marketed for the treat-
ment of bronchial asthma. It is currently undergoing Phase II (rheumatoid arthritis) and Phase III
(hyperuricemia, pterygium) clinical trials. Beyond AhR activation, it has many other functions widely
reviewed in [71]. Laquinimod is a KYNA-like molecule with a quinoline structure, currently under
development for the treatment of multiple sclerosis, active lupus arthritis (NCT01085084), lupus
nephritis (NCT01085097), and Huntington’s disease (NCT02215616). It has shown positive results
in a Phase III randomized controlled trial (RCT) in Crohn’s disease [72], but the effects weremixed in
multiple sclerosis. Tapinarof is in Phase III clinical trials for psoriasis treatment. Beyond conventional
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Table 3. List of Currently Investigated AhR Agonists and Antagonists

Molecule Structure and properties Investigations Published studies Active or recruiting studiesc

AhR agonists

Laquinimod Quinoline 3-carboxamide
structural similar to KYNA
AhR-dependent effects on
encephalomyelitis
Mixed results (Phase II and III
clinical trials – multiple sclerosis)
Allows remyelination

Huntington’s
Multiple sclerosis
Crohn’s disease [102,103]

Multiple sclerosis: well
tolerated, significant
reduction in brain
atrophy [104,105]

Crohn’s disease: well
tolerated, promising
effects [72]

Phase I/II: efficacity and safety in relapsing
multiple sclerosis (NCT01047319), Huntington’s
disease (NCT02215616), lupus arthritis
(NCT01085084),lupus nephritis
(NCT01085097), Crohn’s disease
(NCT00737932), relapsing multiple sclerosis
(NCT01975298)

Tranilast Synthetic analog of ANA Asthma (marketed)
Rheumatoid arthritis
Multiple sclerosis
Hyperuricemia
Cancer [71]

Prostate cancer:
benefit on prognosis
[71]

Phase I/II: mucinoses (NCT03490708)
scleredema diabeticorum (NCT03512873)
sarcoidosis (NCT03528070),
cryopyrin-associated periodic syndrome
(NCT03923140), pterygium (NCT01003613),
hyperuricemia (NCT00995618, NCT01052987),
gout (NCT01109121), rheumatoid arthritis
(NCT00882024)

Tapinarof
(benvitimod)

Bacterial stilbene
Free radical scavenger
Dermal application

Psoriasis
atopic dermatitis [106]

Psoriasis and atopic
dermatitis: well
tolerated [107,108]

Phase I/II: safety, tolerability, and
pharmacokinetics of tapinarof cream, 1%
(extensive plaque psoriasis) (NCT04042103)

Phase III: efficacy and safety of topical tapinarof
cream, 1% (plaque psoriasis) (NCT03956355)

AhR antagonists

CH223191 Competitive selective antagonist
No antagonistic activity with
non-HAH ligandsa

Fundamental research but
may be a promising effect in
pancreatic cancer [109]

No active clinical trials

CB7993113 Good oral bioavailability
Blocks tumor cell migration and
reduces the invasive phenotype
of ER–/PR–/HER2–b breast
cancer cells in vitro

[70,95]

StemRegenin-1 Ex vivo application
Expand CD34+ cells

Stem cell transplantation
Neutropenia
Thrombocytopenia

CD34+ cell expansion
[69,70]

Malignant hemopathies (NCT01474681 and
NCT01930162)
Neutropenia and thrombocytopenia
(NCT03406962)

aNon-HAH ligands (halogenated aromatic hydrocarbons) include polycyclic aromatic hydrocarbons (PAHs) as well as endogenous L-Trp ligands. HAHs are distinguished
from PAHS and endogenous ligands by very slow metabolism and a prolonged effect on the AhR receptor.
bAbbreviations: ER, estrogen receptor; HER, human epidermal growth factor receptor 2; PR, progesterone receptor.
cClinical trials can be accessed at https://www.clinicaltrials.gov/.
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agonists and antagonists, the new concept of selective AhRmodulators (SAhRMs) designates any
AhR ligand that lacks agonist activity but can repress the expression of acute inflammatory phase
genes. These molecules are reviewed in [73].

Administration of KYNA and its Derivatives
To date, neuroprotective KYNA is the only KPmetabolite directly used for therapeutic purposes. It
is well-tolerated by the dermal route and could be used in the prevention of scars. It does not
cross the skin barrier, thus avoiding systemic effects [74]. Owing to its short half-life and reduced
Trends in Pharmacological Sciences, January 2021, Vol. 42, No. 1 69
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Outstanding Questions
What are the consequences of blocking
one L-Trp metabolism pathway on the
others (undesirable effects, disease
development)?

How do you selectively target a specific
enzyme or metabolite in cells of interest?

What are the effects of indole derivatives
produced by bacteria on KP and on the
5-HT production pathway?

What are the interconnections between
the three major pathways of L-Trp
metabolism?

What are the precise regulatory
mechanisms of KP?

What would be the implications of
development of kynureninase inhibitors?

How do you leverage gut microbiota to
modulate L-Trp metabolism in a thera-
peutic perspective?
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brain permeability, chlorinated analogs crossing the BBB have been synthesized, such as
4-chloro-kynurenine. This KYNA prodrug has an anti-epileptogenic effect by reducing
seizure duration, hippocampal lesions, and has an antidepressant effect [75]. KAT metabolizes it
to 7-chloro-kynurenic acid, an NMDA receptor inhibitor. Despite encouraging results in vivo and
good tolerance in humans, a Phase II RCT (NCT02484456) did not affect the treatment of depres-
sion [76–78]. The AhR agonist laquinimod, mentioned earlier, is also a derivative of KYNA. At
present, no other metabolite of KP has been investigated.

Beyond KP, several molecules derived from the bacterial metabolism of L-Trp have shown promising
effects in vivo on colitis andmetabolic syndrome through their agonist effect on AhR [21,24,79]. Thus,
the administration of live microbes able to metabolize L-Trp into therapeutic indole derivatives could
also be envisaged.

Next-Generation Probiotics
With the rapid improvement of knowledge on intestinal microbiota, a significant effort to identify
and characterize new microbial strains with therapeutic potential isolated from the intestine (live
biotherapeutic products) has been carried out to target mechanisms of action and diseases
[80]. For example, the administration of Lactobacillus, which naturally produces AhR agonists,
improves colitis severity in mice and dietary-induced metabolic impairments, suggesting thera-
peutic interventions for IBD [24] and metabolic disorders [79]. Next-generation probiotics
have been mostly identified based on comparative analysis of microbiota compositions between
healthy and unhealthy individuals [81]. They also include recombinant microorganisms over-
expressing genes of interest and could represent an excellent alternative approach to modulate
host physiology. Genes of interest could be human genes with therapeutic potential or bacterial
genes involved in the synthesis of indole derivatives. The main obstacles to developing next-
generation probiotics are the lack of a clearly defined regulatory pathway and the manufacturing,
as many of these microorganisms require highly demanding conditions to grow [82]. However,
probiotics may allow local delivery of desired metabolites and modulate other beneficial signaling
pathways in the host.

Concluding Remarks
While the immunomodulatory role of metabolites such as L-kyn and KYNA seems protective, a
deleterious function is attributed to them in cancer and schizophrenia, respectively. In addition,
QUIN and 3-HK are involved in neurodegenerative diseases. The former is also the precursor of
the essential cofactor NAD. This same duality is found for AhR since the therapeutic strategy differs
according to the disease reserving the agonists for inflammatory diseases and the antagonists for
targeting cancer. Targeting 5-HT receptors can also have dual effects, depending on the context.
The metabolism of L-Trp is thus a promising therapeutic target. However, it requires in-depth
knowledge of the regulatorymechanisms and their interconnections to define the appropriate inter-
vention for each supposed indication, and to have the ability to precisely act on the targeted
metabolite or enzyme (see Outstanding Questions).

Besides the multiple molecules currently under clinical investigation, next-generation probiotics
carrying the appropriate enzymatic machinery for the synthesis of indoles are also in develop-
ment. They offer numerous possibilities for modulation of the pleiotropic receptor AhR.
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