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Abstract
We obtain an exact analytic expression for the average distribution, in the ther-
modynamic limit, of overlaps between two copies of the same random energy
model (REM) at different temperatures. We quantify the non-self averaging
effects and provide an exact approach to the computation of the fluctuations in
the distribution of overlaps in the thermodynamic limit. We show that the over-
lap probabilities satisfy recurrence relations that generalise Ghirlanda–Guerra
identities to two temperatures. We also analyse the two temperature REM using
the replica method. The replica expressions for the overlap probabilities sat-
isfy the same recurrence relations as the exact form. We show how a gener-
alisation of Parisi’s replica symmetry breaking ansatz is consistent with our
replica expressions. A crucial aspect to this generalisation is that we must allow
for fluctuations in the replica block sizes even in the thermodynamic limit.
This contrasts with the single temperature case where the extremal condition
leads to a fixed block size in the thermodynamic limit. Finally, we analyse the
fluctuations of the block sizes in our generalised Parisi ansatz and show that in
general they may have a negative variance.
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1. Introduction

Since replica symmetry breaking (RSB) was invented by Parisi, 40 years ago [1], it has been
used in many different contexts and the subtle physical meaning of the scheme he used has
been elucidated [2–4] (for reviews see [5] or [6]). Here we would like to provide a simple
example to explore how the Parisi scheme could be extended to calculate correlations between
different temperatures.

In the replica approach, a central role is played by the overlaps which represent the corre-
lations between pure states. For a system of N Ising spins with the interactions sampled from
some disorder distribution (as in the Sherrington–Kirkpatrick model [7], for example), the
overlap between a configuration C and a configuration C′ is defined by

q(C, C′) =
1
N

N∑
i=1

σC
i σ

C′
i , (1)

where σC
i = ±1 is the value of the spin at site i in configuration C. The distribution P(q) of this

overlap at a single inverse temperature β for a particular sample is then given by [2]

P(q) =
∑
C,C′

e−βE(C)

Z(β)
e−βE(C′)

Z(β)
δ
(
q − q(C, C′)

)
, (2)

where Z(β) =
∑

C e−βE(C) is the partition function at inverse temperature β and E(C) is the
energy of configuration C for the particular sample. In a disordered system the energies are
quenched random variables and P(q) is itself a random quantity, sample dependent in the sense
that it depends on the energies E(C). One of the achievements of Parisi’s theory of spin glasses
was to predict that P(q) remains sample dependent even in the thermodynamic limit, and to
allow the calculation of various averages and moments which characterize its sample to sample
fluctuations [3, 4, 8, 9].

The notion of overlap distribution can be generalized when the two configurations are at
different temperatures

Pβ,β′ (q) =
∑
C,C′

e−βE(C)

Z(β)
e−β′E(C′)

Z(β′)
δ
(
q − q(C, C′)

)
. (3)

This clearly reduces to (2) when β = β′. These multiple temperature overlaps have mostly
been studied in the context of temperature chaos, in order to see how the random free energy
landscapes are correlated at different temperatures (see for example [10]). Several spin glass
models exhibit temperature chaos, meaning that the overlap between different temperatures
vanishes in the thermodynamic limit (in which case, the question of the fluctuations of Pβ,β′ (q)
becomes superfluous). One way to predict temperature chaos is to show that Pβ,β′(q) vanishes
exponentially with the system size when β �= β′ and q > 0 [11]. There are however models
for which these multiple temperature overlaps do not vanish and the question of how the Parisi
theory has to be modified in these cases is, to our knowledge, not fully understood (see for
example the multi-p-spin models analysed in [12]). Here we attack this question in the sim-
plest model which exhibits RSB, the random energy model (REM, see [13, 14]) which has the
advantage of being open to both exact and replica analysis. This will allow us to propose a way
to adapt Parisi’s scheme for the two temperature case, in order to be compatible with our exact
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results of section 2. The absence of chaos in the REM has been discussed in [15] as well as its
dynamical effects such as rejuvenation in [16].

One of our motivations is the hope that the insight developed here into the use of the
replica method in two temperature situations will be applicable to spin glass problems where
there is no alternative to the replica method such as the multi-p-spin spherical models discussed
in [12].

In the REM, the energies E(C) are 2N independent random variables distributed according to
a Gaussian distribution of width proportional to N. The overlap can then only take two values

q(C, C′) = δC,C′ .

Therefore P(q) consists of two delta function peaks [5, 17],

P(q) = (1 − Y2) δ (q) + Y2 δ (q − 1) , (4)

where Y2 is the probability, at equilibrium, of finding two copies of the same sample in the
same configuration.

Y2 =
∑
C

(
e−βE(C)∑
C e−βE(C)

)2

=
Z(2β)
Z(β)2

. (5)

In the large N limit, Y2 vanishes in the high temperature phase (β < βc), while in the low
temperature phase (β > βc) it takes non zero values with sample to sample fluctuations.

A direct calculation [8, 9] as well as a replica calculation [4] lead to

〈Y2〉 = 1 − μ ; 〈Y2
2 〉 − 〈Y2〉2 =

μ− μ2

3
=

〈Y2〉 − 〈Y2〉2

3
, (6)

where 〈.〉 denotes the disorder average i.e. the average over the random energies E(C) and

μ =
βc

β
. (7)

The quantity Y2 can be generalized to the probabilities Yk of finding k copies of the same
sample in the same configuration

Yk =
∑
C

(
e−βE(C)∑
C e−βE(C)

)k

=
Z(kβ)
Z(β)k

. (8)

As for Y2, the large N limits of the disorder averages of these overlaps are known [3, 4, 18, 19]

〈Yk〉 =
Γ(k − μ)

Γ(1 − μ) Γ(k)
. (9)

Since μ = 1 − 〈Y2〉, equation (9) implies

(kβ − βc) 〈Yk〉 = kβ 〈Yk+1〉 , (10)

which can be seen as simple cases of the Ghirlanda–Guerra identities [20–23].
At two different temperatures, the overlap distribution (3) for the REM is still a sum of two

delta functions

Pβ,β′ (q) = (1 − Y1,1) δ (q) + Y1,1 δ (q − 1) , (11)

3
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where the random variable

Yk,k′ =
∑
C

(
e−βE(C)

Z(β)

)k
(

e−β′E(C)

Z(β′)

)k′

=
Z(kβ + k′β′)
Z(β)k Z(β′)k′ (12)

is the probability that k copies of a given sample at temperature β and k′ at temperature β′ are
all in the same configuration.

In section 2 and in the appendix A we will derive the following exact expressions of the
sample averages of these generalized overlaps

〈Yk,k′ 〉 =
β

βc

1
Γ(k)

1
Γ(k′)

∫ ∞

0
dv vk′−1

Ψ
(

k + k′ β
′
β

; v
)

(−ψ(v))
, (13)

where the functions ψ(v) and Ψ(v) are given by

ψ(v) =
∫ ∞

0
du (e−u−vu

β′
β − 1) u−1− βc

β (14)

and

Ψ(z ; v) =
∫ ∞

0
du e−u−vu

β′
β

uz−1− βc
β . (15)

These two functions are generalisations of the Gamma function. Like the Gamma function
which satisfies Γ(z + 1) = zΓ(z), they obey some recursion relations (which can be obtained
from (15) via integrations by parts) leading to the following relations

(kβ + k′β′ − βc) 〈Yk,k′ 〉 = kβ 〈Yk+1,k′ 〉+ k′β′ 〈Yk,k′+1〉 (16)

which generalize (10).
We will also show that

〈
(
Y1,1
)2〉 = β

βc

∫ ∞

0
dv v

⎡
⎢⎣Ψ

(
2 + 2 β′

β ; v
)

(−ψ(v))
+

Ψ
(

1 + β′
β ; v

)2

(−ψ(v))2

⎤
⎥⎦ . (17)

By varying β one can draw, using the exact expressions (13) and (17), the variance
〈
(
Y1,1
)2〉 − 〈Y1,1〉2 versus the average 〈Y1,1〉 as in figure 1. Clearly the relation (6) (which is

a direct consequence of Parisi’s ansatz) is no longer satisfied when the two temperatures are
different (β �= β′).

In the rest of the paper we will show in section 2 how the expressions (13)–(15) and (17)
can be derived directly. We will also give the generalisation of these expressions when the
overlaps are weighted by the partition functions to some power (in the replica language when
the number of replicas is non-zero). Then in section 3 we will show what needs to be done
in order to calculate these overlaps in a replica approach and in section 4 we will propose a
scheme which generalises Parisi’s ansatz and is compatible with our exact results. Finally, in
section 5 we will explore the nature of the fluctuations in block size that we observe in this
generalisation of Parisi’s ansatz to two temperatures.
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Figure 1. The variance of Y1,1 versus its average when β = β′ and β = 2β′. The curves
are obtained by varying β ′ between βc and ∞. The lines represent the expression (6)
in the case β = β ′ and (13) when β = 2β′. The points are the results of Monte Carlo
simulations in these two cases.

2. The direct calculation of the overlaps

In this section, after recalling the definition of the REM, we explain how the expressions of the
overlaps such as (13)–(15) can be derived. In the REM, a sample is determined by the choice
of 2N random energies E(C) chosen independently from a Gaussian distribution

P(E) =
1√

NπJ2
exp

[
− E2

NJ2

]
. (18)

It is known that, in the thermodynamic limit (N →∞), there is a phase transition [13, 14] at
an inverse temperature

βc =
2
√

log 2
J

(19)

and that in the frozen phase β > βc (which is the only phase with non-zero overlaps) the par-
tition function is dominated by energies close to the ground state which itself has fluctuations
of order 1 around a characteristic energy E0 = −JN

√
log 2 + J log N/(4

√
log 2). As only

energies at a distance of order 1 (i.e. 
 N) contribute to the partition function one can replace
the REM by a Poisson REM [24] which has, in the frozen phase and for large system sizes,
the same properties as the original REM [13]. In this Poisson REM (PREM), the values of the
energies, for a given sample, are the points generated by a Poisson process [18] on the real line
with intensity

ρ (E) = C exp[βc (E − E0)] with C =
1

J
√
π
. (20)

One way to think of it is to slice the real axis into infinitesimal energy intervals (E, E + dE)
indexed by ν, and to say that there is an energy Eν in the interval ν with probability

5
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pν = ρ(E)dE. In other words the partition function is given by

Z(β) =
∞∑

ν=−∞
yν exp[−βEν], (21)

where the yν are independent binary random variables such that yν = 1 with probability pν and
yν = 0 with probability 1 − pν (because the intervals are infinitesimal, there is no interval ν
occupied by more than one energy).

The details of the calculation leading to the expressions (13)–(15) are given in appendix A.
One can generalize (13) to obtain (see (76) of appendix A) the average over disorder of

Yk1,k2;k′1,k′2
defined by

Yk1,k2;k′1,k′2
=

∑
ν �=ν′ yν yν′ e−(βk1+β′k′1)Eν−(βk2+β′k′2)Eν′

Z(β)k1+k2 Z(β′)k′1+k′2
.

In particular this allows one to obtain (17) from (76) as one has from the definition (12)

(Y1,1)2 = Y2,2 + Y1,1;1,1.

In the replica approach, as we will see, it is often convenient to deal with weighted overlaps
defined as

〈Yk,k′ 〉n,n′ =

〈
Z(kβ + k′β′) Z(β)n−k Z(β′)n′−k′

〉
〈Z(β)n Z(β′)n′ 〉 (22)

(see (12)). These averages can be performed (see appendix A) to get expressions (82) and (83)
(valid for n < 0 and n′ < 0) which generalize (13) and (16)

〈Yk,k′ 〉n,n′ =
(−r) Γ(−n) Γ(−n′)
Γ(k − n) Γ(k′ − n′)

×
∫∞

0 dv vk′−n′−1Ψ
(

k + k′ β
′
β

; v
)

(−ψ(v))r−1∫∞
0 dv v−n′−1 (−ψ(v))r

, (23)

where

r =
nβ + n′β′

βc
(24)

and

(kβ + k′β′ − βc) 〈Yk,k′ 〉n,n′ = (k − n)β〈Yk+1,k′ 〉n,n′ + (k′ − n′)β′〈Yk,k′+1〉n,n′ .

(25)

Remark 2.1. The n, n′ → 0 limit
As explained in appendix A (see (85)) the expression (23) reduces to (13) in the limit n → 0−

and n′ → 0−. Very much like the integral representation of the Gamma function the expres-
sion (23) would take a different form for n and/or n′ > 0, and so we would need to use these
alternative expressions to verify that the limits n → 0+ and n′ → 0+ lead also to (13).

Remark 2.2. The β′ = β case

6
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In the particular case where β = β′, one can perform the integrals in (14), (15) as in (79),
(80) and obtain more explicit expressions of the overlaps as in (81). In particular one gets (see
(81)) that

〈Yk,k′ 〉 =
1

Γ(k + k′)

Γ(k + k′ − βc
β

)

Γ(1 − βc
β )

(26)

which agrees with (9) as Yk,k′ = Yk+k′ when β = β′ (see the definitions (9) and (12)). Similarly
(23) becomes when β = β′

〈Yk,k′ 〉n,n′ =
Γ(1 − n − n′)

Γ(k + k′ − n − n′)

Γ(k + k′ − βc
β

)

Γ(1 − βc
β

)
. (27)

As in this single temperature case Yk,k′ = Yk+k′ , (16) reduces to equation (10). Therefore once
〈Y2〉 is known, all the other 〈Yk〉 can be determined by the relations (10). Clearly for β ′ �= β
this is not the case. However, (16) or (25) would allow to determine all the 〈Yk,k′ 〉 from the
knowledge of all the 〈Yk,1〉.

In the rest of the paper we will see how expressions (13) or (23) can be interpreted in terms
of replica symmetry breaking.

3. The replica method

In this section we apply the replica method to the REM. To illustrate the approach we first recall
the computation of the free energy and overlap probability 〈Yk〉n for a single temperature. It is
well known that a single step in Parisi’s replica symmetry breaking scheme [1] gives the correct
low temperature solution [14, 17]. Here we will start with a slightly more general approach
that allows for fluctuations in the block sizes. In the single temperature case the need to allow
fluctuations in the block sizes has been discussed in [25, 26] and used in [24, 27] to compute
finite size corrections in the REM.

In the two temperature case block size fluctuations have also been discussed in the con-
text of temperature chaos in spin glasses (see [28, 29] appendix G for a detailed discussion),
but computing the full overlap distribution between two temperatures by averaging over these
block fluctuations has proved challenging. In this section we outline a replica symmetry break-
ing scheme for the two temperature case and show that it satisfies the same recursion (16) as
the exact solution.

3.1. The REM at a single temperature

To implement the replica method, the first step is to calculate the integer moments of the par-
tition function, 〈Z(β)n〉, then one assumes that the expression is valid for non-integer n and
finally one makes use of

〈log Z〉 = lim
n→0

log 〈Z(β)n〉
n

(28)

to obtain the disorder average of the free energy.

7
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3.1.1. Integer moments of the partition function. As shown in appendix B the integer moments
of the partition function for the REM are given by

〈Z(β)n〉 =
∑
r�1

1
r!

∑
μ1�1

· · ·
∑
μr�1

Cn,r
(
{μi}

)
〈Z(βμ1)〉 〈Z(βμ2)〉 · · · 〈Z(βμr)〉 ,

(29)

(see (91) in appendix B) where

Cn,r
(
{μi}

)
=

n!
μ1!μ2! · · · μr!

δ

[
r∑

i=1

μi = n

]
(30)

and the Kronecker delta δ
[∑r

i=1 μi = n
]

ensures that the {μi} sum to n. As

〈Z(β)〉 =
∫ ∞

−∞
ρ(E)e−βEdE = eN f (β) (31)

with

f (β) = log 2 +
(βJ)2

4
. (32)

One can rewrite (29) as

〈Z(β)n〉 =
∑
r�1

1
r!

∑
μ1�1

. . .
∑
μr�1

Cn,r
(
{μi}

)
eNA(r,{μi}), (33)

where

A(r, {μi}) =
r∑

i=1

f(μi β) = r log 2 +
(βJ)2

4

r∑
i=1

μ2
i . (34)

One can interpret a given term of the sum (29) or (33) as n replicas distributed over r distinct
configurations with μi replicas in configuration i. Before using the replica method to compute
the free energy from these expressions we compute the overlap probability for integer n.

An expression for the overlap probability Yk, defined in (8), can be obtained from the ratio
of integer moments

〈Yk〉n =
〈Yk Z(β)n〉
〈Z(β)n〉 =

〈
Z(kβ) Z(β)n−k

〉
〈Z(β)n〉 . (35)

The denominator in the rightmost expression is the single temperature moment in (33). If n
and k are positive integers with n > k then the numerator is a two temperature moment of the
partition function that is computed (see (96) and (97) in appendix B) and one gets

〈Yk〉n =

〈
r
μ1(μ1 − 1) · · · (μ1 − k + 1)

n(n − 1) · · · (n − k + 1)

〉
{μi}

, (36)

where the average 〈.〉{μi} means that for any function F
(
{μi}

)
,

〈
F
(
{μi}

)〉
{μi}

=

∑
r�1

∑
{μi�1}

F
(
{μi}

)
Wr({μi})∑

r�1

∑
{μi�1}

Wr({μi})
. (37)

8
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with (see (30) and (33))

Wr({μi}) =
Cn,r

(
{μi}

)
r!

eNA(r,{μi}).

3.1.2. The thermodynamic limit and the extremal condition. In the thermodynamic limit
〈Z(β)n〉 in equation (33) should be dominated by terms which maximize A(r, {μi}) in
equation (34). At high temperatures the maximum corresponds to all n replicas being in
different configurations. Thus r = n, μi = 1 for all i. Then

〈Z(β)n〉 � eN n f (β) (38)

which gives (see (28))

〈log Z〉 = N f (β) = N

[
log 2 +

(βJ)2

4

]
. (39)

The entropy of this solution is

〈S〉 = N
[

f (β) − β f ′(β)
]
= N

[
log 2 − (βJ)2

4

]
. (40)

There is a critical inverse temperature βc where this entropy vanishes. It is the solution of

f (βc) − βc f ′(βc) = 0 (41)

and therefore given by (19). When β < βc the entropy in (40) is positive and (39) is indeed
the right free energy [13]. On the other hand at low temperatures, when β > βc, the entropy is
negative and one must look for a different solution.

To do so we proceed as Parisi did in his original papers [1, 2, 30, 31] on replica symme-
try breaking. To identify the terms that dominate the sum in (33) in the thermodynamic limit
(N →∞) in the low temperature phase we make the following three assumptions:

(a) We expect all the dominant terms to have a large N behaviour of the form exp NA(r, {μi})
with the same value of A and the same value of r.

(b) The dominant terms in the n → 0 limit correspond to the minimum of A(r, {μi}) and not
the maximum. This seems an unreasonable assumption, but gives the correct result when
replica symmetry is broken. One argument to support this assumption is that when the
number of independent parameters we are maximising over is negative the maximum
becomes a minimum [5]. In (34) there are r − 1 independent parameters μi (due to the
constraint

∑r
i=1 μi = n) and, as we will see in (44) below, r − 1 is negative when n < βc

β
.

(c) We allow n, r, μi to become real parameters when we compute the minimum of A(r, {μi}).

As for Parisi’s original ansatz, it is clear that these assumptions, as such, have no rigorous
justification. However, the free energy obtained using these assumptions has been verified for
a number of spin glass models by a rigorous mathematical analysis (for reviews see [32, 33]).
They also lead to the correct free energy of the REM in the low temperature phase [14]. In
addition, there is a representation of the free energy as a contour integral in the complex plane
[24, 27], where the minimum of A(r, {μi}) and the non-integer values of r and the μi appear
naturally as a consequence of taking the saddle point along the contour.

9
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The minimum of A(r, {μi}) in (34) with respect to the {μi} subject to the constraint∑r
i=1 μi = n can be found using a Lagrange multiplier and it corresponds to all μi taking the

same value. The constraint then gives immediately

μi =
n
r
. (42)

for all i. Then (34) gives A(r, {μi}) = r f ( nβ
r ) and taking the extremal value with respect to r

one gets

f

(
βn
r

)
− βn

r
f ′
(
βn
r

)
= 0. (43)

Comparison with (41) gives

r = n
β

βc
, so that μ =

βc

β
(44)

so that for large N we can approximate (29) as

〈Z(β)n〉 ∼ exp

{
Nn

[
1
μ

log 2 +
β2

4
μ

]}
= exp

{
Nn

β

2βc

}
, (45)

where we have defined μ = βc
β . The free energy (28) in the frozen phase is therefore

〈log Z〉 = N β
2βc

which is known to be the correct expression [13]
The extremal condition (42) tells us that μi = μ and r = n

μ
for the dominant terms. So the

μi do not fluctuate and we can immediately write

〈Yk〉n = r
μ(μ− 1) · · · (μ− k + 1)
n(n − 1) · · · (n − k + 1)

=
Γ(k − μ)Γ(1 − n)
Γ(1 − μ)Γ(k − n)

(46)

which in the n → 0 limit gives the well known result (9) and confirms that 〈Y2〉 = 1 − μ.
We are now going to see that in the two temperature case this simple last step is not possible
because fluctuations of μi remain even in the thermodynamic limit.

3.2. The REM at two temperatures

3.2.1. Integer moments of the partition function. In the two temperature case our starting point
is the following expression for the moments (see appendix B)〈

Z(β)nZ(β′)n′
〉
=
∑
r�1

1
r!

∑
{μi�0}

∑
{μ′i�0}

δ
[
μi + μ′

i � 1
]

× Cn,r
(
{μi}

)
Cn′,r

(
{μ′

j}
)

eNA
(

r,{μi ,μ
′
i}
)

, (47)

where the sum on {μi}, {μ′
i} is over all non-negative integers, the Cn,r

(
{μi}

)
and Cn′,r

(
{μ′

i}
)

are combinatorial factors defined in (30) and

A
(
r, {μi,μ′

i}
)
=

r∑
i=1

f (μi β + μ′
i β

′) = r log 2 +
J2

4

r∑
i=1

(
μi β + μ′

i β
′)2

. (48)

As in (33) each term in the sum (47) corresponds to a different grouping of the n + n′ repli-
cas: in configuration i there are μi replicas at inverse temperature β and μ′

i replicas at inverse

10
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temperature β ′. There is an additional constraint associated with each configuration i that
μi + μ′

i � 1; in other words we need at least one replica, which can be from either n or n′,
in each configuration.

We are interested in how the single temperature overlap calculation leading to (46) gener-
alises to the two temperature case. We start with the weighted form of Yk,k′ defined in (22)

〈Yk,k′ 〉n,n′ =

〈
Yk,k′Z(β)nZ(β′)n′

〉
〈
Z(β)nZ(β′)n′

〉 =

〈
Z(βk + β′k′)Z(β)n−kZ(β′)n′−k′

〉
〈
Z(β)nZ(β′)n′

〉 . (49)

The denominator in the rightmost expression is the two temperature moment in (47). The
numerator is a three temperature moment of the partition function (95) computed in appendix
B. By a direct generalisation of the derivation (96) and (97) of (36) one gets

〈Yk,k′ 〉n,n′ =

〈
r
μ1(μ1 − 1) · · · (μ1 − k + 1)

n(n − 1) · · · (n − k + 1)
μ′

1(μ′
1 − 1) · · · (μ′

1 − k′ + 1)
n′(n′ − 1) · · · (n′ − k′ + 1)

〉
{μi,μ′i}

,

(50)

where the average 〈.〉{μi,μ′i} means that for any function F
(
{μi,μ′

i}
)
,

〈
F
(
{μi,μ′

i}
)〉

{μi,μ′i}
=

∑
r�1

∑
{μi�0}

∑
{μ′i�0}

F
(
{μi,μ′

i}
)

Wr({μi,μ′
i})

∑
r�1

∑
{μi�0}

∑
{μ′i�0}

Wr({μi,μ′
i})

(51)

with (see (30) and (48))

Wr({μi,μ
′
i}) =

Cn,r

(
{μi}

)
Cn′,r

(
{μ′

i}
)

r!
eNA(r,{μi ,μ

′
i})

r∏
i=1

θ
[
μi + μ′

i � 1
]
.

Here θ
[
μi + μ′

i � 1
]

is one if μi + μ′
i � 1 and zero otherwise.

3.2.2. The thermodynamic limit and the extremal condition. Let us focus on the low temper-
ature phase and take β > βc and β′ > βc when replica symmetry is broken. We proceed as
we did in the single temperature case, by making a similar set of three assumptions on how
to take the thermodynamic limit as in the single temperature case. As before we look for the
minimum of A(r, {μi, μ′

i}) in (48) and the only difference is that we now have the additional
parameters n′ and {μ′

i}. Using Lagrange multipliers we find that the minimum corresponds to
βμi + β′μ′

i being independent of i. Summing on i and using the constraints
∑r

i=1 μi = n and∑r
i=1 μ

′
i = n′ we find that

βμi + β′μ′
i =

βn + β′n′

r
for all i. (52)

The value of r that gives the minimum of A(r, {μi,μ′
i}) = r f ( nβ+n′β′

r ) is then given by

f

(
βn + β′n′

r

)
− βn + β′n′

r
f ′
(
βn + β′n′

r

)
= 0. (53)

so that from (41)

r =
βn + β′n′

βc
. (54)

11
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Together with equation (52) this gives

βμi + β′μ′
i = βc, (55)

which constrains the fluctuations of μi and μ′
i, but, unlike the single temperature case, (55)

does not eliminate them completely.
One can however, without any further assumption, recover (25) from (50). Using the replica

form (50) one can see that

(k − n)β〈Yk+1,k′ 〉n,n′ + (k′ − n′)β′〈Yk,k′+1〉n,n′

=

〈
(βk + β′k′ − βμ1 − β′μ′

1)

× r
μ1(μ1 − 1) · · · (μ1 − k + 1)

n(n − 1) · · · (n − k + 1)
μ′

1(μ′
1 − 1) · · · (μ′

1 − k′ + 1)
n′(n′ − 1) · · · (n′ − k′ + 1)

〉
μi,μ′i

. (56)

If we take the large N limit of the right-hand side we expect (see (55)) that the extremal
condition βμ1 + β′μ′

1 = βc should apply. Then (56) simplifies to give

(k − n)β〈Yk+1,k′ 〉n,n′ + (k′ − n′)β′〈Yk,k′+1〉n,n′ = (kβ + k′β′ − βc) 〈Yk,k′ 〉n,n′ (57)

the same recursion relation (25) as in the direct calculation. This gives at least some confidence
in the assumptions that we have made in developing the replica approach so far for the two
temperature problem.

Ideally we would like to go a step further and recover the exact solution (23) directly from
(50) using the replica approach. The challenge is to find a way to compute the average over
{μi, μ

′
i} in (50) subject to the constraints (54) and (55) that is valid when n, n′ are no-longer

integers. We have not found an approach that is sufficiently convincing to merit inclusion here.
The problem essentially has to do with the r and the {μi, μ

′
i} becoming non-integer. We will

see however in section 5 that by matching with the exact expressions of section 2 one can
obtain the generating function of the {μi, μ

′
i}.

4. Parisi overlap matrices

For the REM the replica method in section 3 could be implemented without explicitly using
the replica overlap matrices. However, for more complex problems such as the Sherring-
ton–Kirkpatrick model [7] the saddle point equations are expressed in terms of replica overlap
matrices and so it is useful to see what they look like in the case of the REM. In this section
we describe the structure of these matrices in the single and two temperature case of the REM.
The Parisi ansatz is used in the single temperature case and we show how it can be generalised
to two temperatures in the case of the REM.

We could have approached this by applying the replica method to the large p limit of the p-
spin models introduced in [14] as was done in [17] for the single temperature case. However, the
corresponding two temperature calculation is rather long and is not essential to understanding
how to generalise the Parisi ansatz.

4.1. Single temperature case

In the single temperature case 〈Z(β)n〉 is expressed in equation (33) as a sum over the param-
eters r and μ1, μ2, . . . μr with the constraint

∑r
i=1 μi = n. We can use these parameters to

12



J. Phys. A: Math. Theor. 54 (2020) 045002 B Derrida and P Mottishaw

define an n × n replica overlap matrix Q({μi}). We divide the n replicas into r groups of sizes
μ1, μ2, . . . μr. The overlap matrix is then defined as

Qa,b({μi}) =

{
1, if replicas a, b are in the same group ,

0, otherwise.
(58)

This means that, up to a permutation of the replica indices, the n × n matrix Q({μi}) con-
sists of r blocks of size μ1 × μ1, μ2 × μ2, . . . , μr × μr, along the diagonal where the
matrix elements take value unity and they are zero elsewhere. For example if n = 6, r = 3,
μ1 = 2, μ2 = 3, μ3 = 1

(Here we have taken Qa,a = 1 for simplicity). In terms of this overlap matrix, one can rewrite
(34) as

A(r, {μi}) = r log 2 +
(βJ)2

4

n∑
a=1

n∑
b=1

Qa,b({μi}), (60)

where we have used that
∑n

a=1

∑n
b=1 Qa,b({μi}) =

∑r
i=1 μ

2
i .

The thermodynamic limit gives us the extremal condition (42) which indicates that the dom-
inant form of Q({μi}) has all the μi equal. This fixed block structure gives the one step RSB
form of the overlap matrices introduced by Parisi [1] to solve mean field spin glass models
such as the Sherrington–Kirkpatrick model [7]. It should be noted that any permutation of the
replica indices will also give a Q({μi}) that satisfies the extremal condition and we should sum
over all these saddle points when computing physical properties such as P(q) (see [34]).

4.2. Two temperature case

In the two temperature case
〈

Z(β)nZ(β′)n′
〉

is expressed in equation (47) as a sum over

the parameters r; μ1, μ2, . . . μr and μ′
1, μ′

2, . . . μ′
r with the constraints

∑r
i=1 μi = n and∑r

i=1 μ
′
i = n′. We can use these parameters to define three different replica overlap matrices.

We divide the n replicas into r groups of size μ1, μ2, . . . μr and the n′ replicas into r groups of
size μ′

1, μ′
2, . . . μ′

r. We then have the single temperature n × n replica overlap matrix Q({μi})
defined in equation (58) and the equivalent n′ × n′ matrix Q′({μ′

i}) at inverse temperature β′.
We can also define an n × n′ overlap matrix R({μi, μ′

i}) between the inverse temperature β
and the inverse temperature β′ by

Ra,b′({μi,μ′
i}) =

{
1, if replicas a, b′ are in the same group;

0, otherwise.
(61)

So all the matrix elements of the rectangular matrix R({μi, μ′
i}) are zero except r blocks of

sizes μ1 × μ′
1, μ2 × μ′

2, . . . , μr × μ′
r, along the diagonal where they take value unity. It has

13
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the property that
∑n

a=1

∑n′
b′=1 Ra,b′({μi,μ′

i}) =
∑r

i=1 μiμ
′
i so that we can write (48) as

A
(
r, {μi,μ′

i}
)
= r log 2 +

(βJ)2

4

n∑
a=1

n∑
b=1

Qa,b({μi})

+ ββ′ J
2

2

n∑
a=1

n′∑
b′=1

Ra,b′({μi,μ′
i})

+
(β′J)2

4

n′∑
a′=1

n′∑
b′=1

Q′
a′,b′ ({μ′

i}). (62)

As an example of the overall matrix, for n = 6, n′ = 9, r = 3, μ1 = 2, μ2 = 3,
μ3 = 1, μ′

1 = 4, μ′
2 = 1, μ′

3 = 3, one has

(63)

This type of two temperature order parameter has already been discussed in the context of
spin models in a number of works on temperature chaos (see [10] for a review).

4.3. When the numbers n and n′ of replicas become non integer

In the thermodynamic limit, in the case of a single temperature, we have seen in section 3.1.2
that the number r of blocks is fixed and that all the μi are equal to the value μ = βc

β (see (44)).
Therefore the matrix Q in (59) takes precisely the form first proposed by Parisi [1] with blocks
of equal sizes along the diagonal.

In the case of two temperatures, we have seen in section 3.2.2 that the number r of blocks
is still fixed (see (54)) and that there is a constraint βμi + β′μ′

i = βc (see (55)) for each pair
μi, μ

′
i. The simplest assumption would be to take μi = μ and μ′

i = μ′ independent of i. This
choice is not consistent with the exact expressions (13) of 〈Yk,k′ 〉 presented in section 2 and
therefore μi and μ′

i fluctuate subject to the constraint (55).
However, to obtain the exact results (13) or (23), using the replica method we must sum

over all the saddle points that satisfy the constraints (54) and (55). In the single temperature
case this was fairly straightforward (see [34]) because all the saddle points are related by a
simple permutation of the replica indices. In the two temperature case this is no longer true, as
discussed in detail in [12], and it is not clear how to sum over the saddle points.
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5. The fluctuations in block sizes μi, μ′
i

In this section we analyse the fluctuations of the block sizes μi, μ
′
i in the thermodynamic limit.

We first obtain the mean and the variance of the μi and μ′
i. We will then obtain the moment

generating function for the distribution of these block sizes from the exact expression (23)
for 〈Yk,k′ 〉n,n′ . One outcome of our results is that the μi and the μ′

i do fluctuate even in the
equal temperature case. However extracting the distribution of P(μi, μ

′
i) from this generating

function is not an easy task and can be interpreted as a signed measure, i.e. a measure with neg-
ative probabilities. Also not all properties of the distribution of these block sizes have physical
implications: for example, we will see that in the limit n → 0− and n′ → 0− these distributions
depend on the ratio n′/n although all physical properties have a limit independent of this ratio.

In this section n, n′ are negative real numbers because our analysis is based on the exact
expression (23) which is only valid for this range of values.

5.1. The first moments of μi

As Y1,0 = 1 (see (12)) and as r does not fluctuate (see (54)) one can show from (50) that

〈μi〉{μi,μ′i} =
nβc

nβ + n′β′

〈μ2
i 〉{μi,μ′i} =

nβc(1 − (1 − n)〈Y2,0〉n,n′ )
nβ + n′β′ =

nβc(βc − n′β′〈Y1,1〉n,n′)
β(nβ + n′β′)

, (64)

where we have used the relation between 〈Y2,0〉n,n′ and 〈Y1,1〉n,n′

〈Y2,0〉n,n′ =
β − βc + n′β′〈Y1,1〉n,n′

(1 − n)β

which follows from (25) and the fact that Y1,0 = 1.
From these expressions (64) one can notice first that the limit of the first moment 〈μi〉, when

n → 0− and n′ → 0−, depends on the ratio n′/n. This means that not all the properties of the
μi have a physical meaning, since one expects all physical properties to be independent of this
ratio when n and n′ vanish.

One can also notice that the variance of μi is in general non-zero. Depending on n, n′, β, β′,
this variance may change its sign, implying that the distribution of μi is not really a probability
distribution. For example when β = β′, one has (27)

〈Y1,1〉n,n′ = 〈Y2,0〉n,n′ =
1 − βc

β

1 − n − n′

and

〈μ2
i 〉{μi,μ′i} − 〈μi〉2

{μi,μ′i}
=

nn′βc(β(n + n′) − βc)
β2(n + n′)2(n + n′ − 1)

which in general does not vanish and can be of either sign. We already observed such negative
variances of the block sizes when we tried to reproduce, using replicas, finite size corrections
of the REM at a single temperature [24].

Expressions similar to (64) can be obtained for μ′
i by using either the symmetry n, β ↔ n′β ′

or the fact that the sum βμi + β′μ′
i = βc does not fluctuate (55).
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5.2. The generating function of μi and μ′
i

We are now going to obtain the exact expression of the generating function
〈

xμ1yμ
′
1

〉
{μi,μ′i}

where the average 〈·〉{μi,μ′i}
is defined in equation (51). Taking the Taylor expansions of xμ1 , yμ

′
1

about x = 1, y = 1 the generating function can be written as

〈
xμ1yμ

′
1

〉
{μi,μ′i}

=
∑
k�0

∑
k′�0

(x − 1)k

k!
(y − 1)k

k′!

× 〈μ1(μ1 − 1) · · · (μ1 − k + 1)μ′
1(μ′

1 − 1) · · · (μ′
1 − k′ + 1)〉{μi,μ′i}

.

(65)

In the thermodynamic limit we can express the average on {μi, μ
′
i} on the right-hand side in

terms of 〈Yk,k′ 〉n,n′ using equation (50). This gives

〈μ1(μ1 − 1) · · · (μ1 − k + 1) μ′
1(μ′

1 − 1) · · · (μ′
1 − k′ + 1)〉{μi,μ′i}

=
1
r

n′(n′ − 1) · · · (n′ − k′ + 1)n(n − 1) · · · (n − k + 1)〈Yk,k′ 〉n,n′ , (66)

where we have used the fact that r does not fluctuate in the thermodynamic limit (see (24)).
Using the exact expression (23) for 〈Yk,k′ 〉n,n′ we obtain

〈μ1(μ1 − 1) · · · (μ1 − k + 1) μ′
1(μ′

1 − 1) · · · (μ′
1 − k′ + 1)〉{μi,μ′i}

= (−1)k+k′

∫∞
0 dv vk′−n′−1Ψ

(
k + k′ β

′
β

; v
)

(−ψ(v))r−1∫∞
0 dv v−n′−1 (−ψ(v))r

. (67)

Finally, substituting into equation (65) and summing on k, k′ we obtain

〈
xμ1yμ

′
1

〉
{μi,μ′i}

=

x
βc
β
∫∞

0 dv v−n′−1

(
−ψ

(
vyx−

β′
β

))
(−ψ(v))r−1

∫∞
0 dv v−n′−1 (−ψ(v))r

, (68)

where r is given by (24). (Note that, as mentioned at the beginning of this section the above
expression (65) is valid for n < 0 and n′ < 0.)

Remark 5.1. One recovers (55)
Making the substitution x = zβ , y = zβ

′
in (68) gives

〈
zβμ1+β′μ′1

〉
{μi,μ′i}

= zβc . (69)

This confirms the fact that the sum βμ1 + β ′μ′
1 does not fluctuate and takes the value βc, as

expected from (55).

Remark 5.2. The n, n′ → 0− limit
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One can show using the asymptotics (85) that, in the limit n → 0− and n′ → 0−, the
generating function (68) becomes

〈
xμ1yμ

′
1

〉
{μi,μ′i}

=
βnx

βc
β + β′n′y

βc
β′

βn + β′n′ +
ββ′nn′(y

βc
β′ − x

βc
β )

βc(βn + β′n′)
log

⎛
⎝Γ

(
1 − βc

β′

)
Γ
(

1 − βc
β

)
⎞
⎠

+
βnn′

βn + β′n′ x
βc
β

∫ ∞

0
log v

d
dv

⎡
⎣ψ(yx−

β′
β v)

ψ(v)

⎤
⎦ dv + o(n, n′). (70)

To leading order one finds that the distribution of μ1 and μ′
1 consists of two delta functions

P(μ1,μ′
1) =

[
nβ

nβ + n′β′ δ

(
μ1 −

βc

β

)
+

n′β′

nβ + n′β′ δ (μ1)

]
β′δ(βμ1 + β′μ′

1 − βc).

Clearly this expression does not contain any information on the overlaps 〈Yk,k′ 〉. In fact the
generating function of these overlaps only appears in the first order term in (70). Note also that
as for the variance of μ1, the n → 0−, n′ → 0− limit depends on the ratio n′/n.

5.3. Trying to describe P(μ1, μ′
1) the probability distribution

As the variance of the μi can become negative, it is clear from the very beginning that
it is not possible to find a meaningful distribution of the block sizes compatible with the
generating function (68). We made a number of attempts which became rather complicated
and we do not think it is of much interest to mention them here. Let us however discuss briefly
one case for which we could get a rather simple picture, the equal temperature case, i.e. when
β = β′.

In this case we have an explicit expression (79) of the function ψ(v). Then (68) becomes

〈
xμ1yμ

′
1

〉
{μi,μ′i}

=

∫∞
0 v−n′−1 (1 + v)n+n′− βc

β (x + vy)
βc
β dv∫∞

0 v−n′−1 (1 + v)n+n′dv
.

After a simple change of variable v = (1 − t)/t this becomes

〈
xμ1yμ

′
1

〉
{μi,μ′i}

=
Γ(−n − n′)

Γ(−n)Γ(−n′)

∫ 1

0
dt t−1−n(1 − t)−1−n′(tx + (1 − t)y)

βc
β .

(71)

In order to give an interpretation to (71) let us consider a random variable s, sum of m i.i.d.
random variables τ i which take the value τ i = 1 with probability t and τ i = 0 with probability
1 − t. The distribution of s is a binomial distribution and one has

〈zs〉 = (zt + 1 − t)m. (72)

Let us further consider that the parameter t is itself randomly distributed according to some
distribution ρ(t) so that the distribution of s becomes a superposition of binomial distributions.
Then the generating function of s becomes

〈zs〉 =
∫ 1

0
ρ(t)(zt + 1 − t)mdt.
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This is exactly the form we have in (71) (by taking x = z and y = 1) if one chooses for ρ(t)

ρ(t) =
Γ(−n − n′)

Γ(−n)Γ(−n′)
t−1−n(1 − t)−1−n′

(remember that here n and n′ are negative).
Therefore the distribution of μ1 can be thought as a superposition of binomial distributions.

The only odd aspect is that s is a sum of m = βc
β binary variables, that is s is a sum of a

non-integer number of random variables!

Remark 5.3. A signed measure
If one takes a non-integer m in (72) one gets by expanding in powers of z

〈zs〉 =
∑
p=0

(1 − t)m−ptp m(m − 1) · · · (m − p+ 1)
p!

zp

which one can interpret, for t < 1
2 , as the probability P(s) of s being a signed measure con-

centrated on positive integers. Expanding in powers of 1/z leads, for 1
2 < t < 1, to a different

signed measure. Combining these two representations by cutting the integral (71) into two parts
(t < 1

2 and t > 1
2 ) leads to a signed measure concentrated on the points (μi = p,μ′

i =
βc
β
− p)

and (μi =
βc
β
− p,μ′

i = p) for all positive integers p � 0.

6. Conclusion

In this paper we have analysed the distribution of overlaps (11) between two copies of the
same REM at two temperatures. A direct calculation was used to obtain exact expressions (23)
for the two temperature overlaps (12) in the thermodynamic limit. Generalising this approach
allows us to quantify (17) the non-self-averaging effects illustrated in figure 1.

An alternative approach using the replica method enables us to obtain expressions for the
two temperature overlaps in terms of replicas (50). In the thermodynamic limit the exact and
replica expressions satisfy the same Ghirlanda–Guerra type recurrence relation, (25) and (57),
giving confidence that the replica expressions are valid. We also proposed a way to generalise
the Parisi ansatz (63), in the one step RSB form, to the two temperature case which is consistent
with the replica expressions for the overlaps. In contrast to the single temperature case we
find that the block sizes at the two different temperatures fluctuate even in the thermodynamic
limit subject the constraint (55). We characterised these fluctuations in terms of a moment
generating function for the block sizes (68). It is well known that in the single temperature case
the strange properties of Parisi’s RSB ansatz (non-integer number of blocks and block sizes)
lead to a perfectly good physical description in terms of overlaps [3]. In the two temperature
case the distribution ofμi andμ′

i analysed in section 5 also has strange properties, but it remains
an open question as to which of these properties have a clear physical interpretation.

It would be interesting to extend both the exact and replica approaches to the generalised
random energy model [35], directed polymer in a random medium [36] and other models where
exact methods are likely to be tractable. In contrast to the single temperature case, the multi-
temperature overlaps should be different in the REM and in the directed polymer problem on
a tree because the lowest energies of the directed polymer can be thought of as a decorated
Poisson process and it has been proved that the multi-temperature overlaps depend on the
decoration [37]. One could also look at spin models where one step RSB occurs to see if the
two temperature ansatz with fluctuating block sizes is applicable. An obvious starting point
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would be the p-spin spherical model proposed in [38]. In order to address these spin problems,
where exact expressions for the two temperature overlaps are not currently available, it would
be essential to develop a systematic approach to summing over the fluctuations in block sizes
in the replica expressions.

Appendix A. Direct calculation of the overlaps (13) and (23)

To begin with, it is easier to think that the energies can take only a discrete set of values Eν

indexed by ν and that the partition function at inverse temperature β is given by

Z(β) =
∑
ν

yν e−βEν ,

where

yν =

{
1 with probability pν

0 with probability 1 − pν
.

So a given sample is specified by the value of all these binary random variables yν . Then the
probability of finding k copies at temperature β and k′ copies at temperature β ′ in the same
configuration is given by

Yk,k′ =

∑
ν yν e−(βk+β′k′)Eν

Z(β)k Z(β′)k′ .

These Yk,k′ are random quantities as they depend on the realization of the yν’s. Using the
identity Z−k = Γ(k)−1

∫∞
0 dt e−tZ tk−1 one gets

Yk,k′ =
∑
ν

yν e−(βk+β′k′)Eν

∫ ∞

0

tk−1dt
Γ(k)

×
∫ ∞

0

t′k
′−1dt′

Γ(k′)
exp

[
−
∑
ν′

yν′
(

te−βEν′ + t′e−β′Eν′
)]

.

Averaging over the yν’s leads to

〈Yk,k′ 〉 =
∫ ∞

0

tk−1dt
Γ(k)

∫ ∞

0

t′k
′−1dt′

Γ(k′)

∑
ν

pν e−(βk+β′k′)Eν

× exp
[
−te−βEν − t′e−β′Eν

] ∏
ν′ �=ν

(
1 − pν′ + pν′ exp

[
−te−βEν′ − t′e−β′Eν′

])
.

Now if we go to the continuum limit, by saying that each energy interval (E, E + dE) is
either occupied by an energy level or empty and if we choose as in (20)

pν = C′eβcE dE with C′ = Ce−βcE0

one gets

〈Yk,k′ 〉 =
∫ ∞

0

tk−1dt
Γ(k)

∫ ∞

0

t′k
′−1dt′

Γ(k′)
W(k, k′; t, t′) ew(t,t′),
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where

w(t, t′) = C′
∫

eβcEdE
(

exp
[
−te−βE − t′e−β′E

]
− 1

)
and

W(k, k′; t, t′) = C′
∫

eβcEdE e−(βk+β′k′)E exp
[
−te−βE − t′e−β′E

]
.

Then these expressions can be simplified by noticing that

w(t, t′) =
C′

β
t
βc
β ψ

(
t′

t
β′
β

)

and

W(k, k′; t, t′) =
C′

β
t
βc
β −k− β′

β k′ Ψ

(
k + k′

β′

β
;

t′

t
β′
β

)
,

where

ψ(v) =
∫ ∞

0
du

(
e−u−vu

β′
β − 1

)
u−1− βc

β (73)

and

Ψ(z ; v) =
∫ ∞

0
du e−u−vu

β′
β

uz−1− βc
β . (74)

This leads to

〈Yk,k′ 〉 =
β

βc

1
Γ(k)

1
Γ(k′)

∫ ∞

0
dv vk′−1

Ψ
(

k + k′ β
′
β ; v

)
(−ψ(v))

. (75)

Remark A.1. To generalize (75) one can define the probability of finding k1 copies at
inverse temperature β and k′1 copies of the same system at inverse temperature β′ in the same
configuration, and similarly k2 and k′2 in a different configuration and so on i.e.

Yk1,k′1;...kp,k′p =

∑
ν1···νp

e−(βk1+β′k′1)Eν1−···(βkp+β′k′p)Eνp

Z(β)k1+···kp Z(β′)k′1+···k′p
,

where, in the sum, the configurations ν1 �= ν2 �= · · ·ν p are all different. By a straightforward
extension of the above calculation one gets

〈Yk1,k′1;...kp,k′p〉 =
β

βc
Γ(p)

1
Γ(k1 + · · · kp)

1
Γ(k′1 + · · · k′p)

×
∫ ∞

0
dv vk′1+···k′p−1

Ψ
(

k1 + k′1
β′
β

; v
)
· · ·Ψ

(
kp + k′p

β′
β

; v
)

(−ψ(v))p .

(76)

Remark A.2. In the way the above formulae are written, β and β ′ seem to play asymmetric
roles. One can however check from the definitions (73), and (74) of ψ and Ψ that

ψβ,β′ (v) =
β

β′ v
βc
β′ ψβ′ ,β(v

− β
β′ ) (77)
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Ψβ,β′ (z ; v) =
β

β′ v
βc
β′ −

β
β′ z

Ψβ′ ,β

(
β

β′ z ; v
− β

β′
)

(78)

and using these relations one can easily prove that the expressions (75) and (76) are left
unchanged by the symmetry

(
β, β′, {k1, . . . kp}, {k′1, . . . k′p}

)
←→

(
β′, β, {k′1, . . . k′p}, {k1, . . . kp}

)
.

Remark A.3. When β = β′, the expressions (73) and (74) become

ψ(v) = Γ

(
−βc

β

)
(1 + v)

βc
β (79)

Ψ(v) = Γ

(
z − βc

β

)
(1 + v)

βc
β −z. (80)

The integrals in (76) can then be performed and one gets

〈Yk1,k′1;...kp,k′p〉 =
β

βc

Γ(p)
Γ(k1 + k′1 + · · · kp + k′p)

p∏
i=1

(
Γ(ki + k′i − βc

β )

−Γ(− βc
β )

)
(81)

which was already known (see for example [24]).

Remark A.4. It is easy to show, using an integration by parts in (74), that (for z > βc
β

)

(
z − βc

β

)
Ψ(z ; v) = Ψ(z + 1 ; v) +

β′

β
v Ψ

(
z +

β′

β
; v

)

and this leads (see (76)) to relationships between the 〈Yk1,k′1;...kp,k′p〉(
k1β + k′1β

′ − βc
)
〈Yk1,k′1;...kp,k′p〉 = (k1 + · · · kp)β 〈Yk1+1,k′1;...kp,k′p〉

+ (k′1 + · · · k′p)β′ 〈Yk1,k′1+1;...kp,k′p〉
(82)

and similar identities for the pairs k2, k′2, . . . kp, k′p.

Remark A.5. In the replica approach, one is usually interested in the limit where the number
of replicas n → 0. It is however often easier to first think in terms of a non-zero number of
replicas and to take the n → 0 limit afterwards. In this spirit, it is possible to generalize the
above formulae (75) and (76) following a very similar calculation.

Defining the weighted overlaps for non-zero numbers n and n′ of replicas (n and n′ are a
priori arbitrary real numbers) by

〈Yk,k′ 〉n,n′ =

〈∑
νyν e−(βk+β′k′)Eν Z(β)n−kZ(β′)n′−k′

〉
〈Z(β)n Z(β′)n′ 〉 .
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It turns out that the expressions have somewhat simpler forms when the numbers n and n′

take negative values and one gets

〈Yk,k′ 〉n,n′ =
(−r) Γ(−n) Γ(−n′)
Γ(k − n) Γ(k′ − n′)

×

∫∞
0 dv vk′−n′−1Ψ

(
k + k′ β

′
β

; v
)

(−ψ(v))r−1∫∞
0 dv v−n′−1 (−ψ(v))r

,

(83)

where

r =
nβ + n′β′

βc
. (84)

Remark A.6. Using the following asymptotics of ψ(v) which can be derived from expres-
sion (77)

ψ(v) �

⎧⎪⎪⎨
⎪⎪⎩
Γ

(
−βc

β

)
as v → 0

β

β′Γ

(
−βc

β′

)
v

βc
β′ as v →∞

(85)

one can show that (83) reduces to (75) in the limit n → 0− and n′ → 0−.

Appendix B. Integer moments of the partition function at multiple
temperatures

The replica method starts usually with the calculation of integer moments of the partition func-
tion. In a two or a multiple temperature case, these are of the form 〈Z(β1)n1Z(β2)n2Z(β3)n3 · ··〉
where n1, n2, n3 . . . are positive integers and β1, β2, β3, . . . are inverse temperatures. In this
appendix we obtain the expressions (29) and (47) using a generating function defined for p
temperatures as

G(t1, t2, . . . tp) =

〈
exp

(
−

p∑
i=1

tiZ(βi)

)〉
. (86)

For the REM (see section 2) the partition function is given by

Z(β) =
2N∑
C=1

e−βE(C),

where the 2N energies E(C) take random values distributed according to P(E) given in (18).
Then, because the E(C) are independent,

G(t1, . . . tp) =

[∫
P(E)dE exp

(
−
∑

i

tie
−βiE

)]2N

= exp

{
2N log

(∫
P(E)dE exp

(
−
∑

i

tie−βiE

))}

which for large N becomes
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G(t1, . . . tp) � exp

{∫ ∞

−∞
ρ(E)

[
exp

(
−

p∑
i=1

tie
−βiE

)
− 1

]
dE

}
. (87)

(By this approximation, we in fact replace the REM by a Poisson REM of density (see (18))

ρ(E) = 2NP(E) = 2N 1√
NπJ2

exp

[
− E2

NJ2

]
. (88)

Doing so the error is exponentially small in the system size N as shown in the appendix of
[24]). The exponentials on the right-hand side of (87) can be expanded to obtain

G(t1, . . . tp) =
∞∑

r=0

1
r!

⎡
⎢⎢⎢⎣

∞∑
μ1=0

· · ·
∞∑

μp=0

(μ1+···+μp�1)

(−t1)μ1

μ1!
· · · (−tp)μp

μp!

× 〈Z(β1μ1 + · · ·+ βpμp)〉

⎤
⎥⎥⎥⎦

r

, (89)

where we use the fact that for the REM (as well as for the Poisson REM)

〈Z(β)〉 =
∫ ∞

−∞
ρ(E)e−βE dE. (90)

The general expression for integer moments at p temperatures is obtained by equating pow-
ers of ti in the expansion of the right-hand side of equation (86) with the right-hand side of
equation (89). Here we give the three moments that are used in the main text.

The single temperature moments are then given by

〈Z(β)n〉 =
∑
r�1

1
r!

∑
{μi�1}

Cn,r
(
{μi}

)
〈Z(βμ1)〉 〈Z(βμ2)〉 · · · 〈Z(βμr)〉 , (91)

where we have defined∑
{μi�1}

=
∑
μ1�1

∑
μ2�1

· · ·
∑
μr�1

(92)

and

Cn,r
(
{μi}

)
=

n!
μ1!μ2! · · · μr!

δ

[
r∑

i=1

μi = n

]
. (93)

The Kronecker delta δ
[∑r

i=1 μi = n
]

ensures that the μi always sum to n.
Similarly the two temperature moments are given by〈

Z(β)nZ(β′)n′
〉
=
∑
r�1

1
r!

∑
{μi�0}

∑
{μ′i�0}

θ
[
μi + μ′

i � 1
]

Cn,r

(
{μi}

)
Cn′ ,r

(
{μ′

i}
)

×
〈
Z(βμ1 + β′μ′

1)
〉 〈

Z(βμ2 + β′μ′
2)
〉
· · ·

〈
Z(βμr + β′μ′

r)
〉

,

(94)
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where θ
[
μi + μ′

i � 1
]

is unity if the inequality is satisfied for every i = 1, 2, . . . , r and zero
otherwise. The three temperature moments are given by〈

Z(β)nZ(β′)n′Z(β′′)n′′
〉
=
∑
r�1

1
r!

∑
{μi�0}

∑
{μ′i�0}

∑
{μ′′i �0}

θ
[
μi + μ′

i + μ′′
i � 1

]

× Cn,r

(
{μi}

)
Cn′ ,r

(
{μ′

i}
)

Cn′′,r
(
{μ′′

i }
) 〈

Z(βμ1 + β′μ′
1 + β′′μ′′

1)
〉

×
〈
Z(βμ2 + β′μ′

2 + β′′μ′′
2)
〉
· · ·
〈
Z(βμr + β′μ′

r + β′′μ′′
r )
〉
. (95)

As a special case of (94) one has

〈
Z(β)n−kZ(kβ)

〉
=
∑
r�1

1
r!

∑
{μi�0}

∑
{μ′i�0}

θ
[
μi + μ′

i � 1
]

Cn−k,r

(
{μi}

)
C1,r

(
{μ′

i}
)

×
〈
Z(βμ1 + kβμ′

1)
〉 〈

Z(βμ2 + kβμ′
2)
〉
· · ·

〈
Z(βμr + kβμ′

r)
〉
.

(96)

In this case n′ = 1, therefore there is a single μ′
i = 1 all the others being 0. Because of the

symmetry between the indices i in the previous formula, one can choose μ′
1 = 1 and one gets

〈
Z(β)n−kZ(kβ)

〉
=
∑
r�1

1
(r − 1)!

∑
{μi�1}

Cn,r

(
{μi}

) (n − k)!
n!

μ1!

(μ1 − k)!

× 〈Z(βμ1)〉 〈Z(βμ2)〉 · · · 〈Z(βμr)〉 , (97)

where we take 1
(μ1−k)! = 0 when μ1 < k.
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