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THE NUMBER OF LIMIT CYCLES BIFURCATING
FROM THE PERIOD ANNULUS OF

QUASI-HOMOGENEOUS HAMILTONIAN SYSTEMS AT
ANY ORDER

JEAN–PIERRE FRANÇOISE1, HONGJING HE2 AND DONGMEI XIAO2†

Abstract. A necessary and sufficient condition is given for quasi-
homogeneous polynomial Hamiltonian systems having a center.
Then it is shown that there exists a bound on the number of limit
cycles bifurcating from the period annulus of quasi-homogeneous
Hamiltonian systems at any order of Melnikov functions; and the
explicit expression of this bound is given in terms of (n, k, s1, s2),
where n is the degree of perturbation polynomials, k is the order
of the first nonzero higher order Melnikov function, and (s1, s2)
is the weight exponent of quasi-homogeneous Hamiltonian with
center. This extends some known results and solves the Arnol’d-
Hilbert’s 16th problem for the perturbations of homogeneous or
quasi-homogeneous polynomial Hamiltonian systems.

1. Introduction

In this article, we study the bifurcation problem of limit cycles of a
polynomial Hamiltonian system with center under a small polynomial
perturbation:

dx(t)

dt
= −∂H(x, y)

∂y
+ εp(x, y),

dy(t)

dt
=
∂H(x, y)

∂x
+ εq(x, y),

(1)

where |ε| << 1, H(x, y) is a polynomial of degree m and the associated
Hamiltonian system has a center at the origin O(0, 0) (note that Euler’s
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identity implies then that H(0, 0) = 0), p(x, y) and q(x, y) are real
polynomials with degree at most n.

Suppose γh is a closed orbit around the center O(0, 0) of the Hamil-
tonian system

dx(t)

dt
= −∂H(x, y)

∂y
,

dy(t)

dt
=
∂H(x, y)

∂x
.

(2)

Then γh is an oval of the level set

{(x, y) : H(x, y) = h, for a real number h}.

Without loss of generality, we assume that H(x, y) > 0 on the closed
orbit γh. Then there exists a positive number h1 such that the set
{(x, y) : H(x, y) = h, 0 < h < h1} is the maximum period annulus
which contains closed orbits γh of system (2), where h1 may be +∞.
Let

U =
⋃

0<h<h1

γh

be a period annulus of system (2). To study the bifurcation problem
of limit cycles at any order k from the period annulus U for system (1)
as ε 6= 0, a basic way is to discuss the Poincaré map defined on the
period annulus U (cf. [2–4,6]), which can be expressed on as

(3) P (h, ε) = h+ εkMk(h) + εk+1Mk+1(h) + . . . ,

where Mk(h) 6≡ 0 as 0 < h < h1, and Mk(h) is called kth order Melnikov
function or also the bifurcation function (cf. [4]). Poincaré-Pontryagin-
Melnikov theorem shows the relationship between the number of limit
cycles of system (1) and the number of isolated zeros of Mk(h) on
the interval (0, h1); that is, a simple zero of Mk(h) corresponds to a
limit cycle. The weaken Hilbert 16th problem proposed by Arnol’d is to
give a bound on the number of isolated zeros of the first order Melnikov
function. The Arnol’d-Hilbert’s 16th problem is to give a bound on the
number of limit cycles bifurcating at any order k Melnikov functions
from the period annulus U for system (1) as |ε| � 1 (cf. [4]).

A general perturbation theory and the computation of higher order
Melnikov functions were developed in [2–4, 6, 12, 13, 17] . However, it
is still challenging to give the explicit bound on the number of limit
cycles bifurcating from the period annulus U of polynomial Hamilton-
ian systems at any order k. To our knowledge, there are few results
on the explicit bound (cf. [6–8, 16]). We list some of them. Iliev in [9]
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considered the case of the perturbations of the harmonic oscillator,
H = 1

2
(x2 + y2), and Buica et al. in [1] considered the perturbations

of H = (x2 + y2)m with m ≥ 2, and they obtained the explicit bound
on the number of limit cycles bifurcating from the period annulus U
of the two classes of Hamiltonian systems at any order k. Note that
those Hamiltonian functions are homogeneous polynomials.

In this article, we first characterize the (s1, s2)-quasi-homogeneous
polynomial Hamiltonian systems having a center. Then we build ex-
plicitly the Gelfand-Leray derivative and the algorithm of the succes-
sive derivatives for system (1) with homogeneous polynomial Hamilton-
ian. This helps us to extend the perturbation theory to (s1, s2)-quasi-
homogeneous polynomial Hamiltonians; where the Euler’s identity for
homogeneous is replaced by a more general condition that there exists
a linear vector field C = s1x

∂
∂x

+s2y
∂
∂y

with positive integers s1, s2 such

that:

C.H = s1x
∂H

∂x
+ s2y

∂H

∂y
= mH.

Further, we provide an explicit bound (depending on k, n, s1 and s2)
on the number of limit cycles bifurcating at any order k from the period
annulus U of (s1, s2)-quasi-homogeneous polynomial Hamiltonian sys-
tems, which extends two theorems of Iliev and Buica et al. (cf. [9] [1]).
However, to our knowledge, this upper bounds are not the optimal ones,
see our example. Note that the existence of a bound for the maximal
order k of the bifurcation functionMk(h) (called Iliev number in [4]) im-
plies the existence of a bound for the number of limit cycles in the case
where the perturbation setting displays a Bautin ideal. The existence
of this bound was recently proved in the article [4]. Hence, our result
solves the Arnol’d-Hilbert’s 16th problem for these cases of perturba-
tions of homogeneous or quasi-homogeneous polynomial Hamiltonian
systems.

The rest of this article is organized as follows. In section 2, the
homogeneous or quasi-homogeneous polynomial Hamiltonian systems
having center are characterized. In section 3, we illustrate the con-
struction of higher-order Melnikov functions and give an upper bound
on the number of isolated zeros of Mk(h) in the interval (0, h1) for the
perturbation system (1) with homogeneous polynomial Hamiltonians.
In section 4, we improve the upper bound on the number of isolated
zeros of Mk(h) in the interval (0,+∞) by using the Liapunov (s1, s2)-
trigonometric functions for (s1, s2)- quasi-homogeneous systems, and
we give an example to show the upper bounds obtained in this paper
are not the optimal ones. A general discussion on our methods are
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given in the last section. It shows the method can deal with the more
general case, that is, there exists a polynomial m(H) explicitly known
and polynomials (f, g) ∈ K[x, y], so that m(H) = f ∂H

∂x
+ g ∂H

∂y
, where

K[x, y] is polynomial ring on the number field K, K = R,C.

2. The homogeneous or quasi-Homogeneous polynomial
Hamiltonian systems with a center

In this section we characterize homogeneous or quasi-Homogeneous
Hamiltonian systems having a center. If the system has a center, then
the center is at the origin O(0, 0) and it is global, that is, R2 \ {O} is
filled by periodic orbits. Note that Gavrilov, Giné and Grau (cf. [8])
constructed families of non-Hamiltonian quasi-homogeneous centers.
Let us first recall definitions of quasi-Homogeneous polynomial Hamil-
tonian H(x, y) (cf. [14]).

A function H(x, y) is called (s1, s2)-quasi-homogeneous with weight
degree m if there exist positive integers s1, s2 and m such that

(4) H(λs1x, λs2y) = λmH(x, y), ∀λ > 0,

where (s1, s2) is called the weight exponent and m is called weight degree
of this quasi-homogeneous function H(x, y).

If s1 = s2 = 1, then the function H(x, y) is called mth homogeneous
or homogeneous with degree m. If s1 6= s2, without loss of generality
we can assume that s1 and s2 are coprime and s1 < s2. Indeed, if
s1 = ls′1 and s2 = ls′2 with coprime s′j, j = 1, 2 , then taking λ′ = λl

and m′ = lm in formula (4) above, one obtains formula (4′) with prime
over the parameters. Removing the prime in this “new” formula we
have that either s1 = s2 = 1 (the homogeneous case) or s1 < s2 are
co-prime (the quasi-homogeneous case).

The following lemma shows an equivalent definition of the quasi-
homogeneous functions.

Lemma 1. Assume that H(x, y) is C1 function. Then H(x, y) is a
(s1, s2)-quasi-homogeneous function of weight degree m if and only if
C.H = mH, where C = s1x

∂
∂x

+ s2y
∂
∂y

.

In the next theorem we characterize all quasi-homogeneous polyno-
mial Hamiltonian systems having centers.
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Theorem 2. Assume that H(x, y) is an (s1, s2)-quasi-homogeneous
polynomial of weight degree m. Then Hamiltonian system (2) has a
center at the origin O(0, 0) if and only if the following conditions hold:

(a) s1s2|m, that is, s1s2 divides m;

(b) H∗(x, y) = H(x
1
s2 , y

1
s1 ) is a homogenous polynomial of degree

m
s1s2

;

(c) the homogeneous polynomial H∗(x, y) has no real linear factors,
that is, H∗(x, y) = f1f2 . . . fs, where f1, f2, . . . , fs are irreducible
homogenous polynomials of degree even (fi, fj can be the same
with different i, j).

Moreover, the center is global if it exists. Hence, without loss of gen-
erality, we assume that the level set γh = {(x, y) : H(x, y) = h} is an
oval around O(0, 0) for any 0 < h < +∞.

When s1 = s2 = 1, from Theorem 2 we directly obtain the nec-
essary and sufficient conditions for the mth homogeneous polynomial
Hamiltonian system having center as follows.

Corollary 3. Assume that H(x, y) is an mth homogeneous polyno-
mial. Then system (2) has a center at the origin O(0, 0) if and only
if H(x, y) has no real linear factors. Moreover, the center is global if
it exists. Hence, without loss of generality, γh = {(x, y) : H(x, y) =
h, for a real h ∈ (0,+∞)} are ovals around the center.

To prove Theorem 2, we first show some basic properties of quasi-
homogenous polynomials.

Proposition 4. H(x, y) is an (s1, s2)-quasi-homogeneous polynomial
of weight degree m if and only if the power vector (m1,m2) of every
monomial xm1ym2 of H(x, y) satisfies s1m1 + s2m2 = m.

Proof. If H(x, y) is an (s1, s2)-quasi-homogeneous polynomial of weight
degree m, then by definition, we know that the power vector (m1,m2)
of every monomial xm1ym2 of H(x, y) satisfies

(λs1x)m1(λs2y)m2 = λmxm1ym2 .

Thus, s1m1 + s2m2 = m. So the necessity is proved.

We now prove the sufficiency. Assume that the power vector (m1,m2)
of every monomial xm1ym2 of H(x, y) satisfies s1m1 + s2m2 = m. Then
we have (λs1x)m1(λs2y)m2 = λmxm1ym2 for every monomial of H(x, y).
Therefore the polynomial H(x, y) satisfies (4). This completes the
proof. �
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A monomial xn1yn2 is called the monomial of the polynomial H(x, y)
with lowest degree if n1 + n2 ≤ m1 + m2 for all monomial xm1ym2 of
H(x, y), and

(5) n2 < m2 if n1 + n2 = m1 +m2.

Proposition 5. If the polynomial H(x, y) is (s1, s2)-quasi-homogeneous
with weight degree m, then for the power vector (m1,m2) of every mono-
mial xm1ym2 of the polynomial H(x, y), there exists an integer k ≥ 0
such that

m1 = n1 − ks2, m2 = n2 + ks1,

where (n1, n2) is the power vector of the monomial of the polynomial
H(x, y) with lowest degree.

Proof. Consider a monomial xm1ym2 of the quasi-homogenous polyno-
mial H(x, y), and define A and B through

(6) m1 = n1 + A, m2 = n2 +B.

From Proposition 4 we have

(7) s1m1 + s2m2 = m, s1n1 + s2n2 = m.

From (6) and (7), we obtain that s1A + s2B = 0. Since s1 and s2 are
coprime, so there exists an integer k such that

(8) A = −ks2, B = ks1.

Since xn1yn2 is the monomial of the polynomial H(x, y) with the lowest
degree, we have

m1 +m2 = n1 + n2 + k(s1 − s2) ≥ n1 + n2.

So k ≥ 0 when s1 > s2. If s1 = s2, by the definition of xn1yn2 ,
m2 = n2 + ks1 ≥ n2. It also shows k ≥ 0. Substituting (8) into (6) the
proposition follows. �

Proposition 6. Assume that an (s1, s2)-quasi-homogeneous polyno-
mial of degree m has no real linear factors, then

(a) s1s2|m, that is s1s2 divides m;

(b) H∗(x, y) = H(x
1
s2 , y

1
s1 ), which is a homogenous polynomial of

degree m
s1s2

;

Proof. Let xn1yn2 be the monomial of the quasi-homogeneous polyno-
mial H(x, y) with lowest degree. Since H(x, y) has no linear factors,
n2 = 0 by proposition 5.
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Thus, there exist a positive integer k∗ and a monomial xm1ym2 with
m1 = 0 such that m1 = n1 − k∗s2 = 0 and m2 = k∗s1. So n1 = k∗s2.

From (6) and (8), every monomial xm1ym2 of H(x, y) satisfies that
m1 = (k∗ − k)s2 and m2 = ks1 for some k ≥ 0. Therefore, we have
xm1ym2 = (xs2)k

∗−k(ys1)k and

s1m1 + s2m2 = s1s2(k∗ − k) + s2s1k = m

by H(x, y) being a (s1, s2)-quasi-homogeneous polynomial of degree m.
Hence, s1s2k

∗ = m, which implies the conclusion (a) and H∗(x, y) =

H(x
1
s2 , y

1
s1 ), which is a homogenous polynomial of degree k∗ = m

s1s2
,

that is the conclusion (b).

�

We are now in position to prove Theorem 2.

Proof of Theorem 2. LetH(x, y) be an (s1, s2)-quasi-homogeneous poly-
nomial of weight degree m. Assume that the Hamiltonian system (2)
with Hamiltonian H(x, y) has a center at O(0, 0). Then from the page
136 of [14], the polynomial H = H(x, y) cannot have real linear factors
because

mH = s1x
∂H

∂x
+ s2y

∂H

∂y
.

Therefore, conditions (a) and (b) follow from Proposition 6.

We now prove the conclusion (c) by contradiction.

Assume that the homogeneous polynomial H∗(x, y) has a real linear
factor ax + by, where a2 + b2 6= 0. Since H(x, y) = H∗(xs2 , ys1) from
Proposition 6, H(x, y) has a real factor axs2 + bys1 . If one of a and b
is zero, then H(x, y) has a real linear factor, which contradicts to the
fact H(x, y) has no real linear factors. Hence, the conclusion (c) holds.
Next we consider the case ab 6= 0. It can be checked that axs2 +bys1 is a
Darboux polynomial of system (2). Hence, axs2 + bys1 = 0 is invariant
for system (2). Note that s1 and s2 are coprime by Proposition ??.
Thus, one of s1 and s2 is odd. Without loss of generality, we assume

that s1 is odd. Then the curve y = (−a
b
)

1
s1 x

s2
s1 is an invariant curve of

system (2), which passes through the origin O(0, 0). This contradicts
with the fact that O(0, 0) is center.

Hence, the “if”part of the theorem is proved.

Now we prove the “only if” part. If the condition (c) holds, that is,
the homogeneous polynomial H∗(x, y) has no real linear factors, then
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the degree m
s1s2

of H∗(x, y) must be even denoted by 2l, H∗(1, z) = 0

has no real roots and H∗(0, 1) 6= 0. Without loss of generality, we
assume that H∗(0, 1) > 0. Then H∗(1, z) > 0, otherwise, H∗(x, y) has
real linear factors.

Therefore, H∗(0, y) = H∗(0, 1)y2l > 0 for any y 6= 0, and H∗(x, y) =
H∗(1, z)x2l > 0 for any x 6= 0. This implies that

H∗(x, y) > H∗(0, 0) = 0,

that is, O(0, 0) is the extreme minimum point of H∗(x, y) in R2.

Note that H∗(x, y) = H(x
1
s2 , y

1
s1 ). Hence, H(x, y) = H∗(xs2 , ys1).

It can be easily checked that O(0, 0) is the extreme minimum point of
H(x, y) in R2. Thus, system (2) has a first integral H(x, y) with an
isolated minimum at O(0, 0), which implies that O(0, 0) is a center of
system (2). We complete the proof of the “only if” part.

Finally we shall prove that the center is always global.

Following the method in [14], we consider the Liapunov (s1, s2)-
trigometric functions introduced by [11].

(9) x = rs1Csθ, y = rs2Snθ,

where Csθ and Snθ are periodic functions with period τ , where τ =

2s
− 1

2s2
1 s

− 1
2s1

2 B( 1
2s1
, 1

2s2
) and B is the β function

B(α, β) = 2

∫ π
2

0

sin2α−1 θ cos2β−1 θdθ.

And

r2s1s2 = s1x
2s2 + s2y

2s1 ,
Sns1θ

Css2θ
=
ys1

xs2
.

This transformation (9) is bi-analytic from (0,+∞) × S1 to R2 \ {0},
which transforms system (2) to

(10)
ṙ = −rm−s1−s2+1(Cs2s2−1θ ∂H

∂y
(Csθ, Snθ)− Sn2s1−1θ ∂H

∂x
(Csθ, Snθ)),

θ̇ = rm−s1−s2(s1Csθ
∂H
∂x

(Csθ, Snθ) + s2Snθ
∂H
∂y

(Csθ, Snθ)).

Note that H(x, y) is quasi-homogenous. Thus,

(11) s1Csθ
∂H

∂x
(Csθ, Snθ) + s2Snθ

∂H

∂y
(Csθ, Snθ) = mH(Csθ, Snθ),
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which is either positive, or negative, for all θ because H(x, y) has no
real linear factors. Therefore, system (10) can be written as

(12)
dr

dθ
= −r

Cs2s2−1θ ∂H
∂y

(Csθ, Snθ)− Sn2s1−1θ ∂H
∂x

(Csθ, Snθ)

s1Csθ
∂H
∂x

(Csθ, Snθ) + s2Snθ
∂H
∂y

(Csθ, Snθ)
.

Let

F (θ) =
Cs2s2−1θ ∂H

∂y
(Csθ, Snθ)− Sn2s1−1θ ∂H

∂x
(Csθ, Snθ)

s1Csθ
∂H
∂x

(Csθ, Snθ) + s2Snθ
∂H
∂y

(Csθ, Snθ)
.

The system (12) has a solution with the initial condition (0, r0) for any
r0 as follows

r(θ, 0, r0) = r0e
−

∫ θ
0 F (s)ds.

If O(0, 0) is a center, then for any given real number 0 < h � 1, the
level set H(x, y) = h, that is, H(rs1Csθ, rs2Snθ) = rmH(Csθ, Snθ) =

h, is a closed orbit. Thus, r0 =
(

h
H(Cs0,Sn0)

) 1
m

and r(2π, 0, r0) = r0.

This implies that the integral
∫ τ

0
F (s)ds ≡ 0. Thus, for any real number

h > 0, the orbit r

(
θ, 0,

(
h

H(Cs0,Sn0)

) 1
m

)
=
(

h
H(Cs0,Sn0)

) 1
m

of system

(12) is closed. This leads that the center O(0, 0) is global in R2.

�

3. A small perturbation of homogeneous Hamiltonian
systems with center

Consider system (1) with homogeneous polynomial HamiltonianH(x, y)
with degree m, m ∈ N. We calculate the higher-order Melnikov func-
tions Mk(h) of (1) and estimate an upper bound for the number of their
isolated zeros in the interval (0, h1). Let ω be a polynomial differential
1-form

(13) ω = p(x, y)dx+ q(x, y)dy,

where p(x, y) and q(x, y) are real polynomials with degree at most n,
n ∈ N. Then system (1) can be written as

(14) dH + εω = 0,

where ε is a small parameter and H = H(x, y).
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Denote C = x ∂
∂x

+ y ∂
∂y

the Euler vector field. The fact that H is

homogeneous of degree m is equivalent to

(15) C.H = x
∂H

∂x
+ y

∂H

∂y
= mH.

We follow the method introduced in [2] and improved in [6] which is
based on iterated path integral and the Gelfand-Leray derivative (see
also [3]).

Let furthermore introduce the polynomial D1(x, y) so that:

(16) dω = D1(x, y)dx ∧ dy,
and the Gelfand-Leray derivative of ω:

(17) ω1 =
1

mH
D1(x, y)ιCdx∧dy :=

dω

dH
,

where ιC means the interior product by the Euler vector field C. This
displays the relation:

(18) dω = ω1∧dH.
Conversely, if H has an isolated critical point at the origin O(0, 0),
then the above relation characterizes the Gelfand-Leray 1-form up to
a multiple of dH. Assume that H defines a regular fibration H :
U → (0, h1), where U is an annular-shaped open set on the plane
R2 and (0, h1) is an open interval of the real line R. For h ∈ (0, h1),
γh = H−1(h)∩U is an oval. Let σ be a transverse section of the flow of
(14), for example, taking an open interval (0, h1) in the x-axis. Given a
1-form ω, define the multivalued function f on the complement of the
section σ along the flow of Hamiltonian system (2), f : U \ σ ⊂ R2 →
R, M ∈ U \ σ 7→ f(M):

(19) f(M) =

∫
γ ̂S0(h)M

ω,

where γ ̂S0(h)M
is an orbit of (2) between the point S0(h) and the point

M , S0(h) = γh ∩ σ. The integral of 1-form ω is taken along γ ̂S0(h)M
. A

shorter notation for (19) can be conveniently used as:

(20) f =

∫ (x,y)

S0(h)

ω,

where (x, y) denotes the coordinates of the point M in U \ σ ⊂ R2.
The following lemma was proved in [3]:
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Lemma 7. Any analytic 1-form ω can be written in the form:

(21) ω = g1dH + df1,

with multi-valued analytic functions f1 and g1 defined outside of the
cross-section σ as follows:

(22) f1 =

∫ (x,y)

S0(h)

ω, g1 =

∫ (x,y)

S0(h)

ω1 +R1(H),

where R1(H) is a function of H alone.

Proof. By the definition of the Gelfand-Leray form ω1, we obtain that:

(23) dω = d(

∫ (x,y)

S0(h)

ω1)∧dH.

Hence there exists a function f1 such that:

(24) ω = (

∫ (x,y)

S0(h)

ω1)dH + df1.

Integrating from S0(h) to the point (x, y) along the level set γh =
{(x, y) : H(x, y) = h} of H yields:

(25)

∫ (x,y)

S0(h)

ω = f1(x, y)− f1(S0(h)).

The function f1(S0(h)) is constant along the level sets of H and

therefore is a function of H alone. Then we can choose f1 =
∫ (x,y)

S0(h)
ω

and write

(26) ω = [

∫ (x,y)

S0(h)

ω1 +R1(H)]dH + d(

∫ (x,y)

S0(h)

ω).

�

In [2], the algorithm of the successive derivatives was introduced to
obtain the first non-zero Melnikov function if the Hamiltonian satisfies
the ∗-property relatively to a fixed period annulus U . The ∗-property
is as follow.
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Definition 8. For any polynomial 1-form ω such that

(27)

∮
γh

ω = 0

for all h ∈ H(U), H(U) is an interval in R, then there exist analytic
functions g and R on U , such that

(28) ω = gdH + dR.

In [2], it was shown that H = 1
2
(x2 +y2) satisfies the ∗-property, with

polynomials g and R. An example of Hamiltonian system is given in
[13] to show that the ∗-property does not always hold with polynomials,
where Hamiltonian function is

(29) H(x, y) =
y2

2
+

(x2 − 1)2

4
.

There is a 1-form η = xydx such that
∮
γh
η = 0 for h > 1

4
, but∮

δ±(h)
η 6= 0, where δ±(h) is one γh’s component around singularity

(x, y) = (±1, 0) for 0 < h < 1
4
, respectively (for details refer to [12,13]).

In some sense, the lemma 8 tells that the ∗-property is always satisfied
for analytic functions on the complement of the cross-section (instead
of polynomials). It is remarkable that this is sufficient in general to
bound the number of zeroes of the first non-zero Melnikov function
(also called the bifurcation function in [4]).

3.1. The first Melnikov function. It is well known that the first
Melnikov function of (14) is M1(h) =

∮
γh
ω, where

(30) ω = Σ0≤i+j≤nλijx
iyjdx+ Σ0≤i+j≤nµijx

iyjdy,

where λij and µij are the functions of coefficients of polynomial per-
turbations p(x, y) and q(x, y).

Let consider the change of variables φ : (x, y) 7→ (h
1
mx, h

1
my) and

denote by φ∗ the corresponding image. Then, we obtain

φ∗(ω) = Σn
k=0{Σi+j=k[λijx

iyjdx+ µijx
iyjdy]h

k+1
m },

φ∗(γh) = γ1.
(31)
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This yields

M1(h) =

∮
γh

ω =

∮
γ1

φ∗(ω)

=

∮
γ1

Σn
k=0{Σi+j=k[λijx

iyjdx+ µijx
iyjdy]h

k+1
m }

= Σn
k=0αk(λ, µ)h

k+1
m

(32)

where

αk(λ, µ) =

∮
γ1

Σi+j=k[λijx
iyjdx+ µijx

iyjdy],

which are linear functions of the parameters λij, µij of the perturbation.
It is then easy to deduce:

Lemma 9. The number of isolated real zeros of the first Melnikov
function M1(h) is less or equal than n+ 1.

Remark 10. This is actually not optimal in general because in our
context, we are only concerned with the number of isolated and positive
zeros of M1(h).

3.2. The higher-order Melnikov functions. In this part, we show
inductively on the higher-order Melnikov functionsMk for the integer k,
k ≥ 2 if M1(h) ≡ 0. It shows that the bifurcation function hk−1Mk(h)

is a polynomial function in h
1
m . We begin with some lemmas.

An analytical 1-form ω is called homogeneous 1-form of degree n if
ω = P (x, y)dx + Q(x, y)dy and P (x, y), Q(x, y) are homogenous func-
tions of degree n. And an analytical 1-form ω is called 1-form of degree
n (at most n) if the highest homogenous degree of homogenous com-
ponent of ω is n (at most n).

Lemma 11. If ω is a homogeneous 1-form of degree n and H(x, y)
is homogeneous of degree m, then the integral of ω along γh of Hamil-

tonian system (2) from S0(h) to point (x, y), F (x, y) =
∫ (x,y)

S0(h)
ω, is a

homogenous function of degree n+ 1.

Proof. Choosing a transverse section σ on a line passing by the origin,
we consider the level set γh of system (2) and let S0(h) = γh ∩ σ.
Then S0(λmh) = λS0(h) and H(λx, λy) = λmH(x, y) since H(x, y) is
homogeneous of degree m. Hence,

(33) F (λx, λy) =

∫ (λx,λy)

S0(λmh)

ω.
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Note that ω = P (x, y)dx + Q(x, y)dy, and P (x, y) and Q(x, y) are
homogenous functions of degree n. Let x = λX and y = λY . Then
this yields

F (λx, λy) =

∫ (λx,λy)

λS0(h)

P (x, y)dx+Q(x, y)dy

=

∫ (x,y)

S0(h)

λ(P (λX, λY )dX +Q(λX, λY )dY )

= λn+1

∫ (x,y)

S0(h)

(P (X, Y )dX +Q(X, Y )dY )

= λn+1F (x, y).

(34)

That means F (x, y) is a homogenous function of degree n + 1. The
proof is finished. �

Lemma 12. If the first Melnikov function M1(h) is identically zero,
then the number of zeroes of M2(h) is at most 2(n+1). More precisely,

hM2(h) is polynomial in h
1
m of degree at most 2(n+ 1).

Proof. If M1(h) ≡ 0, the higher order Melnikov function M2(h) should
be considered. To compute M2(h), we have first to consider ω1 =

1
mH

D1(x, y)ιCdx∧dy. Denote ω1 = 1
m
D1(x, y)ιCdx∧dy. The function

M2(h) is given by:

M2(h) =
1

h

∮
γh

[

∫ (x,y)

S0(h)

ω1]ω.

We proceed with the change of variables φ : (x, y) 7→ (h
1
mx, h

1
my) in

the integral:

M2(h) =
1

h

∮
γ1

φ∗[

∫ (x,y)

S0(h)

ω1]φ∗ω.

The equation (31) shows that the 1-form φ∗ω is polynomial in h
1
m of

degree at most n+1. Note that ω1 is a 1-form of degree at most n. The

lemma 11 shows that the 1-form φ∗[
∫ (x,y)

S0(h)
ω1] is then also polynomial

in h
1
m of degree at most n + 1. It is then clear that the product of

φ∗[
∫ (x,y)

S0(h)
ω1] and φ∗ω is polynomial in h

1
m of degree at most 2(n + 1).

This yields that the function hM2(h) is polynomial in h
1
m of degree at

most 2(n+ 1) and has at most 2(n+ 1) zeroes.
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�

It is now ready to prove the following theorem.

Theorem 13. The bifurcation function Mk(h) of (14) displays at most
k(n+ 1) isolated zeros for any natural number k.

Proof. The conclusion is true if k = 1 and k = 2 by Lemma 11 and
Lemma 12. Using the induction, we assume that up to order k,

(35) Mk(h) =
1

hk−1

∮
γh

gk−1ω,

where gk−1(x, y) =
∫ (x,y)

S0(h)
ωk−1 and ωk−1 is 1-form of degree at most

(n+ 1)(k − 1)− 1. Then by lemma 11, gk−1 is a function of degree at
most (n+ 1)(k − 1).

Let gk−1 =
gk−1

Hk−1 and ωk−1 = gk−1ω. Then assume that Mk(h) ≡ 0,
the algorithm of the successive derivatives implies that there exist gk
and Rk such that

gk−1ω = gkdH + dRk.

The function gk is given by

gk(x, y) =

∫ (x,y)

S0(h)

ωk,

where

ωk =
1

mH
ιCd(gk−1ω) =

1

mH
ιCd(

gk−1

Hk−1
ω)

=
1

mHk
ιCd(gk−1ω)− k − 1

mH
ιC(gk−1

dH

Hk
∧ ω).

This yields

gk =

∫ (x,y)

S0(h)

1

Hk
[

1

m
ιCd(gk−1ω)− (k − 1)gk−1ω]

=
1

Hk

∫ (x,y)

S0(h)

ωk,

where ωk = 1
m
ιCd(gk−1ω) − (k − 1)gk−1ω, which is a 1-form of degree

at most (n+ 1)k − 1. Hence,

(36) Mk+1(h) =
1

hk

∮
γh

gkω.

It is then obvious that hkMk+1(h) is a polynomial in h
1
m of degree

at most (n+ 1)(k + 1), and the theorem is proved.
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�

4. A small perturbation of quasi-homogeneous
Hamiltonian systems with (global) center

In this section, we consider the number of limit cycles bifurcating
from the finite plane R2 for system (1) in which Hamiltonian function
H(x, y) is an (s1, s2)-quasi-homogeneous polynomial of weight degree
m, and p(x, y) and q(x, y) are real polynomials of degree at most n.
Theorem 2 tells when this quasi-homogeneous polynomial Hamilton-
ian system (2) has a center. When system (2) has a center which is
global, we study the first nonzero kth order Melnikov functions Mk(h)
of system (1). Without loss of generality, let s1 ≥ s2 > 0 for quasi-
homogeneous polynomial H(x, y). For any given s1 and s2, the per-
turbation polynomials p(x, y) and q(x, y) of (1) can be decomposed
into the sum of the (s1, s2)-quasi-homogeneous polynomials of weight
degree i, that is,

p(λs1x, λs2y) =

ns1∑
i=0

pi(x, y)λi,

q(λs1x, λs2y) =

ns1∑
i=0

qi(x, y)λi,

(37)

where pi(x, y) and qi(x, y) are (s1, s2)-quasi-homogeneous polynomials
of weight degree i.

And this decomposition is obviously unique with respective to s1 and
s2. Especially, when s1 = s2 = 1, (37) is a homogeneous decomposition.
Therefore, the polynomial differential 1-form (13) becomes

(38) ω =

ns1∑
i=0

wi, wi = pi(x, y)dx+ qi(x, y)dy.

The main result in this section is as follows:

Theorem 14. Assume that H(x, y) is an (s1, s2)-quasi-homogeneous
polynomial of weight degree m, and p(x, y) and q(x, y) are polynomials
of degree at most n. If Hamiltonian system (2) has a global center at
O(0, 0), then



LIMIT CYCLES BIFURCATING FROM THE PERIOD ANNULUS 17

(I) the first nonzero kth order Melnikov functions Mk(h) of system
(1) can be expressed as

Mk(h) =

((n+1)s1−m)(k−1)+(n+1)s1∑
i=(s2−m)(k−1)+s2

aih
i
m , 0 < h < +∞,

where ai is constant and ai = 0 if both i is even and (s1 + s2)
is odd; or all i, s1 and s2 are odd.

(II) Mk(h) have at most K zeros on (0,+∞), where

K =



k((n+ 1)s1 − s2)

2
− 1,

n is even, and all k, s1, s2 are odd;

k is even, and s1 + s2 is odd;

s2 is even, and all k, s1, n is odd.

k((n+ 1)s1 − s2)

2
, k is even, and both s1 and s2 are odd;

k((n+ 1)s1 − s2)− 1

2
, others.

When s1 = s2 = 1, the quasi-homogeneous polynomial H(x, y) be-
comes homogeneous polynomial of degree m. Then Theorem 14 im-
proves Theorem 13 in section 2. Hence, we directly obtain the following
conclusion by Corollary 3 and Theorem 14.

Theorem 15. Assume that H(x, y) is a homogeneous polynomial of
degree m and H(x, y) has no real linear factors. Then

(A) the bifurcation function Mk(h) of system (1) can be expressed
as

Mk(h) =


h

(1−m)(k−1)+2
m

[ kn−1
2

]∑
i=0

ãi(h
2
m )i, k is odd,

h
(1−m)(k−1)+1

m

kn
2∑
i=0

ãi(h
2
m )i, k is even,

where ãi is constant.
(B) Mk(h) has at most [kn−1

2
] zeros on (0,+∞) if k is odd, and

Mk(h) has at most kn
2

zeros on (0,+∞) if k is even, where [x]
means the maximum integer not more than x.

Theorem 15 extends the results of Iliev in [9] and Buica et al. in [1].

To prove Theorem 14, we first state some propositions and lemmas.
The following proposition is easily checked.
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Proposition 16. Assume that F (x, y) is an (s1, s2)-quasi-homogeneous
function of weight degree m. Then

(i) ∂F
∂x

(∂F
∂y

) is an (s1, s2)-quasi-homogeneous function of weight

degree m− s1 (m− s2, resp.);
(ii) xF ( yF ) is an (s1, s2)-quasi-homogeneous function of weight

degree m+ s1 (m+ s2, resp.);

(iii)
∫ (x,y)

S0(h)
Fdx (

∫ (x,y)

S0(h)
Fdy) is an (s1, s2)-quasi-homogeneous func-

tion of weight degree m+ s1 (m+ s2, resp.).

Lemma 17. If Mk(h) =
∮
γh

Ωk, then

(39) Ωk =

((n+1)s1−m)(k−1)+ns1∑
i=(s2−m)(k−1)

Ωk,i,

where Ωk,i is the (s1, s2)-quasi-homogeneous items with weight degree i
of Ωk.

Proof. Using the induction, we consider k = 1,

Ω1 = ω =

ns1∑
i=0

Ω1,i,

where Ω1,i = wi, wi is the (s1, s2)-quasi-homogenous item with weight
degree i of ω by (38).

Assume that (39) holds when k = l. We claim that (39) holds for
k = l + 1.

Indeed, let ∆Ωl be the divergence of Ωl and let

η =
1

mH
∆ΩlιCdx∧dy =

∆Ωl(s2ydx− s1xdy)

mH
.

Then

dΩl = ∆Ωldx ∧ dy = η ∧ dH.
By proposition 16, the lowest weight degree of quasi-homogenous item
of ∆Ωl is (s2 −m)(l − 1) − s1 and the highest weight degree is ((n +
1)s1 −m)(l − 1) + ns1 − s2. Thus,

η =

((n+1)s1−m)(l−1)+ns1−s2∑
i=(s2−m)(l−1)−s1

η1,idx+

((n+1)s1−m)(l−1)+ns1−s2∑
i=(s2−m)(l−1)−s1

η2,idy,

where η1,i = s2(∆Ωl)iy
mH

is the quasi-homogenous with weight degree i +

s2 −m, η2,i = − s1(∆Ωl)ix
mH

is the quasi-homogenous with weight degree
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i + s1 − m, and (∆Ωl)i is the quasi-homogenous items with weight
degree i of ∆Ωl. So we have

Ωl+1 = ω

∫ (x,y)

S0(h)

η =

((n+1)s1−m)(l−1)+ns1−s2∑
i=(s2−m)(l−1)−s1

ns1∑
j=0

wj

∫ (x,y)

S0(h)

η1,idx+ η2,idy,

By proposition 16,
∫ (x,y)

S0(h)
η1,idx+ η2,idy is an (s1, s2)-quasi-homogenous

function of weight degree i+ s1 + s2 −m.

So the items of Ωl+1 with lowest weight degree are

w0

∫ (x,y)

S0(h)

η1,(s2−m)(l−1)−s1dx+ η2,(s2−m)(l−1)−s1dy,

and its weight degree is (s2−m)(l− 1)− s1 + s1 + s2−m = (s2−m)l.
The items of Ωl+1 with the highest weight degree are

wns1

∫ (x,y)

S0(h)

η1,((n+1)s1−m)(l−1)+ns1−s2dx+ η2,((n+1)s1−m)(l−1)+ns1−s2dy,

whose weight degree is

ns1+((n+1)s1−m)(l−1)+ns1−s2+s1+s2−m = ((n+1)s1−m)l+ns1.

This leads that (39) holds for k = l + 1. �

Now we are in the position to prove Theorem 14.

Proof of Theorem 14. By Lemma 17, using the transformation of vari-
ables

(x, y) 7→ (h
s1
m x, h

s2
m y),

we have

Mk(h) =

((n+1)s1−m)(k−1)+(n+1)s1∑
i=(s2−m)(k−1)+s2

aih
i
m , 0 < h < +∞.

where

(40) ai =



∮
γ1

Ω2,k,i−s2dy, i < L1,∮
γ1

Ω1,k,i−s1dx+

∮
γ1

Ω2,k,i−s2dy, L1 ≤ i ≤ L2,∮
γ1

Ω1,k,i−s1dx, i > L2,

here L1 = (s2−m)(k− 1) + s1, L2 = ((n+ 1)s1−m)(k− 1) +ns1 + s2,
and Ωk,i = Ω1,k,idx+ Ω2,k,idy. Thus, ai is constant for any i.
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Furthermore, we claim that ai = 0 as both i is even and (s1 + s2) is
odd; or as all i, s1 and s2 are odd.

Indeed, by theorem 2, m must be even and there are two cases:

(1) s1 + s2 is odd;
(2) s1 is odd and s2 is odd.

If the case (1) holds, that is, s1 + s2 is odd, then let

x 7→ (−1)s1x, y 7→ (−1)s2y,

and ∮
γ1

Ω1,k,i−s2dy = (−1)1+i

∮
γ1

Ω1,k,i−s2dy,∮
γ1

Ω2,k,i−s1dx = (−1)1+i

∮
γ1

Ω2,k,i−s1dx.

So we have ai = −ai if i is even. Hence, ai = 0. This implies that
ai = 0 if i is even and s1 + s2 is odd. Similar arguments to the case (2)
shows that ai = 0 if i is odd, and both s1 and s2 are odd.

By expression Mk(h) in conclusion (I), it follows that Mk(h) have at
most K zeros on (0,+∞), where

K =



k((n+ 1)s1 − s2)

2
− 1,

n is even, and all k, s1, s2 are odd;

k is even, and s1 + s2 is odd;

s2 is even, and all k, s1, n is odd.

k((n+ 1)s1 − s2)

2
, k is even, s1, s2 are odd,

k((n+ 1)s1 − s2)− 1

2
, others.

�

Remark The upper bound K for isolated zeros of the k-order Mel-
nikov function Mk(h) in Theorem 14 usually is not the optimal one.
Let us see the following examples.

Example: consider system

dx(t)

dt
= −4y3 + ε

∑
0≤i+j≤2

aijx
iyj,

dy(t)

dt
= 4x+

∑
0≤i+j≤2

bijx
iyj,

(41)

where |ε| << 1, aij and bij are real parameters. Then
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(i) M1(h) has no zeros on (0,+∞);
(ii) M2(h) has at most 3 zeros on (0,+∞) if M1(h) ≡ 0. And the

three is the optimal upper bound of M2(h);
(iii) M3(h) has at most 2 zeros on (0,+∞) if M1(h) = M2(h) ≡ 0.

And the two zeros of M3(h) can be reached.

It is clear that the actual upper bounds of zeros of M1(h), M2(h)
and M3(h) in this example are strictly less than the corresponding
upper bounds K in Theorem 14. In the following we give proof of the
conclusion.

Proof. From Theorem 2, we can check that system (41) is a Hamilton-
ian system with a global center if |ε| = 0. AndH(x, y) = 2x2+y4, which
is (2, 1)-quasi-homogeneous with weight degree 4 and ω = p(x, y)dx +
q(x, y)dy, where

p(x, y) =
∑

0≤i+j≤2

aijx
iyj, q(x, y) =

∑
0≤i+j≤2

bijx
iyj.

Let x = r2Csθ, y = rSnθ, system (41) is transformed to

d(r4)− ε
6∑
i=1

(ri−1Pi(θ)dr + riQi(θ)dθ) = 0,

where

P1 = b00Snθ, Q1 = b00Csθ,

P2 = 2a00Csθ + b01Sn
2θ, Q2 = b01CsθSnθ − a00Sn

3θ,

P3 = (2a01+b10)CsθSnθ+b02Sn
3θ,Q3 = −a01Sn

4θ+b10Cs
2θ+b02CsθSn

2θ,

P4 = (b11 + 2a02)CsθSn2θ + 2a10Cs
2θ,

Q4 = b11Cs
2θSnθ − a10CsθSn

3θ − a02Sn
5θ,

P5 = (2a11 + b20)Cs2θSnθ, Q5 = b20Cs
3θ − a11CsθSn

4θ,

P6 = 2a20Cs
3θ, Q6 = −a20Cs

2θSn3θ.

It is easily calculated

M1(h) =
6∑
i=1

h
i
4

∫ τ

0

Qi(θ)dθ = m1,3h
3
4 ,

where m1,3 = b10−a01
3

τ .

Thus, M1(h) has no zeros on (0, +∞). However, the upper bound
K of zeros of M1(h) in Theorem 14 is 2.
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We now calculate Melnikov functions Mk(h)(k ≥ 2) by the algorithm
in [2]. Let

a1(r, θ) = a1,0(θ) + a1,1(θ)r,

where

a1,0(θ) =
2a02 − b11

4

∫ θ

0

Snt dt, a1,1(θ) =
a11 − 2b20

4
Snθ.

It is easily checked dω = da1

∧
dH when M1(h) ≡ 0, so

M2(h) =
7∑
i=1

h
i
4

∑
i=m+n

∫ τ

0

a1,m(θ)Qn(θ)dθ = m2,1h
1
4 +m2,3h

3
4 +m2,5h

5
4 +m2,7h

7
4 ,

where

m2,1 = −(2a02 − b11)b00

4

∫ τ

0

Sn2θdθ,

m2,3 = −3a00(a11 − 2b20) + b02(2a02 − b11)

36
τ,

m2,5 =
5(a11 − 2b20)(b11 − 3a02) + (2a02 − b11)(3a11 − 11b20)

100

∫ τ

0

Sn2θdθ,

m2,7 = −(a11 − 2b20)a20

84
τ.

Therefore, M2(h) has at most 3 zeros on (0, +∞) and there exist
parameters values such that M2(h) has exactly 3 zeros, which is strictly
less than the upper bound K = 4 of zeros of M2(h) in Theorem 14.

If M1(h) = M2(h) ≡ 0, then we can obtain the four irreducible
algebraic components of parameters space R12 as follows.

(C1): b10 = a01, b11 = 2a02, b20 = 1
2
a11;

(C2): b10 = a01, a00 = a20 = a02 = b11 = 0;
(C3): b10 = a01, a11 = b00 = b20 = b02 = 0;
(C4): b10 = a01, a20 = b00 = 0, 3a00(a11 − 2b20) + b02(2a02 − b11) = 0,

5(a11 − 2b20)(b11 − 3a02) + (2a02 − b11)(3a11 − 11b20) = 0.

If parameters are in the irreducible algebraic component C1, then
system (41) is a Hamiltonian system with Hamiltonian

H(x, y) = 2x2+y4−ε(a00x+b00y+
a01

2
x2+a01xy+

b01

2
y2+

a20

3
x3+

a11

2
x2y+a02xy

2+
b02

3
y3).

It follows that Mk(h) ≡ 0 on (0, +∞) for any k ≥ 3.

If parameters are in the irreducible algebraic component C2, then we
consider

a2(r, θ) = a2,0(θ) + a2,1(θ)r + a2,2(θ)r2,
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where

a2,0 =
(a11 − 2b20)a01

16

∫ θ

0

Snt dt,

a2,1 =
(a11 − 2b20)a10

16
Snθ,

a2,2 =
(a11 − 2b20)(a11 − b20)

16
Sn2θ.

It is easily checked d(a1ω) = da2

∧
dH. Then

M3(h) =
9∑
i=1

h
i
4

∑
i=m+n

∫ τ

0

a2,m(θ)Qn(θ)dθ = m3,1h
1
4 +m3,3h

3
4 +m3,5h

5
4 .

where

m3,1 = −(a11 − 2b20)a01b00

16

∫ τ

0

Sn2θdθ,

m3,3 = −(a11 − 2b20)a01b02

144
τ,

m3,5 = −(a11 − 2b20)(7a11 + b20)a01

400

∫ τ

0

Sn2θdθ,

That shows M3(h) in C2 has at most 2 zeros on (0, +∞), which is
strictly less than the upper bound K = 7 of zeros of M3(h) in Theorem
14.

Using the similar arguments, we can calculate M3(h) in the compo-
nent C3 .

M3(h) = m3,1h
1
4 +m3,3h

3
4 +m3,5h

5
4 ,

where

m3,1 = −(2a02 − b11)a00a01

16

∫ τ

0

Sn2θdθ,

m3,3 = −(2a02 − b11)(a02 + b11)a01

144
τ,

m3,5 = −(2a02 − b11)a01a20

80

∫ τ

0

Sn2θdθ.

And M3(h) in the component C4,

M3(h) = m3,1h
1
4 +m3,3h

3
4 +m3,5h

5
4 ,
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where

m3,1 =− (2a02 − b11)(3a00a01 + b01b02)

48

∫ τ

0

Sn2θdθ,

m3,3 =
1

1296
((a11 − 2b20)(−9a01b02 + 2b01b11)+

(2a02 − b11)(−9a01a02 + 9a10b02 − 9a01b11 + 4b01b20))τ,

m3,5 =− (a11 − 2b20)(7a11 + b20)a01

400

∫ τ

0

Sn2θdθ.

So M3(h) has at most 2 zeros on (0, +∞) if parameters are in the
irreducible algebraic components C3 and C4. We complete the proof.

�

5. General Discussion and the Bogdanov-Takens
Hamiltonian

We explain how our method can be used in principle for any polyno-
mial Hamiltonian which displays an isolated singularity of center type.
We can assume that this center is O = (0, 0). Let recall an impor-
tant theorem of singularity theory due to K. Saito (cf. [15]). Let H
be a germ of analytic function in (KN , 0), K = R,C which displays
an isolated singularity at the origin (0, 0). Let J be its Jacobian ideal
(generated by the partial derivatives of H). Assume that H belongs
to its Jacobian ideal. Then there exists an analytic coordinate system
(x1, ..., xN), x(0) = 0 so that H is quasi-homogeneous in the coordi-
nates x in the sense there exist rational positive numbers (m1, ...,mN)
so that the linear vector field C = ΣN

i=1mixi
∂
∂xi
, satisfies C.H = H.

In this article we restrict to dimension N = 2 and write coordinates
(x, y).

In case H has an isolated singularity at (0, 0), one can show (cf.
[3, 6]) that it always exists a polynomial m(H) which belongs to the
Jacobian ideal generated by (∂f

∂x
, ∂f
∂y

). More precisely, the quotient of the

ring K(x, y)/J is a finite dimensional vector space of dimension equal
to the Milnor number µ. The multiplication by H induces a linear
endomorphism of K(x, y)/J → K(x, y)/J . The polynomial m(H) can
be choosen as the minimal polynomial of this endomorphism.

This means that there exists a polynomial vector field C so that
for any polynomial 1-form ω with dω = D(x, y)dx∧dy, the 1-form
ω1 = 1

m(H)
D(x, y)ιCdx∧dy defines a Gelfand-Leray form for ω (meaning

dω = ω1∧dH). Then we can, in principle, proceed with the algorithm
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of the successive derivatives of [2,3,6] as we have explicit representation
of the Gelfand-Leray derivative. In particular, this covers the case of
the elliptic Bogdanov-Takens Hamiltonian:

(42) H =
1

2
y2 +

1

2
x2 − 1

3
x3,

which was considered by Iliev ( [10]). This Hamiltonian displays a
center at (0, 0) contained in a periodic annulus bounded by a homoclinic
loop passing by the saddle (0, 1). We consider a perturbation of this
Hamiltonian by a polynomial form of degree n ≥ 3.

For instance, in the case of the elliptic Bogdanov-Takens Hamilton-
ian, there are two distinct critical values 0 and 1

6
; we can check that

m(H) = H(H − 1
6
). The Jacobian ideal is generated by (y, x− x2). It

can be checked that there exists a polynomial vector field

C = f(x)
∂

∂x
+ g(x, y)

∂

∂y
,

of degree equal to 4 such that C.H = m(H). Indeed, this displays:

H(H − 1

6
) = (

1

2
y2 +

1

2
x2 − 1

3
x3)(

1

2
y2 +

1

2
x2 − 1

3
x3 − 1

6
)

m(H) =
1

4
y4 +

1

2
y2[x2 − 2

3
x3 − 1

6
] + (

1

2
x2 − 1

3
x3)(

1

2
x2 − 1

3
x3 − 1

6
)

m(H) = g(x, y)
∂H

∂y
+ (

1

2
x2 − 1

3
x3)(

1

2
x2 − 1

3
x3 − 1

6
),

with g(x, y) = 1
4
y3 + 1

2
y[x2 − 2

3
x3 − 1

6
] then,

(
1

2
x2 − 1

3
x3)(

1

2
x2 − 1

3
x3 − 1

6
) = f(x)

∂H

∂x
,

with f(x) = x(1
2
− 1

3
x)(1

3
x2− 1

6
x+ 1

6
). So if we use this vector field C to

compute the Gelfand-Leray derivative ω1, we see that if ω is polynomial
of degree less or equal than n, then ω1 is of the form 1

m(H)
ω1, with ω1

polynomial of degree less or equal than n+ 3.

Remark 18. Another example where the Gelfand-Leray derivative can
be explicited after a global linearization is given in [5].

Finally, we observe that if we can obtain a bound on the number
of isolated zeros of the bifurcation function Mk(h) at any order k and
if there is a Bautin ideal associated to the perturbation scheme, the
theorem 5 of the article [4] implies that the order k is bounded. This



26 J.-P. FRANÇOISE, H. HE, D. XIAO

solves the Arnol’d-Hilbert’s 16th problem to any order for this class of
perturbations.
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