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Abstract: Mitral valve prolapse (MVP) patients develop myocardial fibrosis that is not solely explained
by volume overload, but the pathophysiology has not been defined. Mineralocorticoid receptor
antagonists (MRAs) improve cardiac function by decreasing cardiac fibrosis in other heart diseases.
We examined the role of MRA in myocardial fibrosis associated with myxomatous degeneration
of the mitral valve. Myocardial fibrosis has been analyzed in a mouse model of mitral valve
myxomatous degeneration generated by pharmacological treatment with Nordexfenfluramine (NDF)
in the presence of the MRA spironolactone. In vitro, adult human cardiac fibroblasts were treated with
NDF and spironolactone. In an experimental mouse, MRA treatment reduced interstitial/perivascular
fibrosis and collagen type I deposition. MRA administration blunted NDF-induced cardiac expression
of vimentin and the profibrotic molecules galectin-3/cardiotrophin-1. In parallel, MRA blocked
the increase in cardiac non-fibrillar proteins such as fibronectin, aggrecan, decorin, lumican and
syndecan-4. The following effects are blocked by MRA: in vitro, in adult human cardiac fibroblasts,
NDF-treatment-induced myofibroblast activation, collagen type I and proteoglycans secretion.
Our findings demonstrate, for the first time, the contribution of the mineralocorticoid receptor (MR)
to the development of myocardial fibrosis associated with mitral valve myxomatous degeneration.
MRA could be a therapeutic approach to reduce myocardial fibrosis associated with MVP.

Keywords: myxomatous degeneration; cardiac fibrosis; mineralocorticoid receptor antagonist;
collagen; proteoglycans

1. Introduction

Mitral valve prolapse (MVP) affects up to 2–3% of the general population, accounting for over
144 million individuals worldwide [1]. Fibromyxomatous degeneration of the mitral valve is generally
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acknowledged as the main etiological factor leading to MVP. The result is a redundant and abnormal
thickening of the mitral valve leaflet that prolapses into the left atrium during systole. The most frequent
complication of MVP is mitral regurgitation which may progress and cause heart failure (HF) [1].
Patients with chronic mitral regurgitation experience persistent volume overload, dilatation and
enlargement of the left ventricle resulting in cardiac fibrosis [2–4]. Nevertheless, volume overload
reported in patients with MVP is not sufficient to justify LV eccentric hypertrophy. Indeed, MVP patients
show a higher degree of LV fibrosis not found in patients diagnosed with mitral regurgitation for other
causes, suggesting different underlying pathogenesis despite similar clinical outcomes [5]. The presence
of replacement fibrosis may lead to increased symptomatic ventricular arrhythmic events in patients
with MVP [5]. Despite decades of investigations, the cellular and molecular mechanisms triggering
myocardial fibrosis and mitral valve fibromyxomatous degeneration are yet to be fully understood.

Cardiac fibrosis refers to the accumulation of extracellular matrix (ECM) components in the
myocardium, the cardiac fibroblast being the principal source of the ECM components [6]. Basic studies
have shown that aberrant and perpetuated fibroblasts’ differentiation to myofibroblasts results in
the excess deposition of ECM proteins [7]. The myofibroblasts exhibit a secretory phenotype and
express activation markers such as α-smooth muscle actin (α-SMA) [8]. Therefore, the cardiac
fibroblast is not able to maintain the ECM homeostasis. Instead, a continuous synthesis and
degradation of ECM components are promoted and that is regulated by mechanical, electrical and
neurohormonal stimulation [6,9]. ECM is composed by fibrillar proteins (such as collagen), and other
non-fibrillar proteins (including fibronectin, proteoglycans, glycoproteins or glycosaminoglycans).
The accumulation of both fibrillar and non-fibrillar proteins contributes to cardiac fibrosis [10]. One of
the most studied fibrogenic axis is the Aldosterone/mineralocorticoid receptor (MR) pathway. Evidences
from animal experiments in addition to the large randomized controlled trials RALES, EPHESUS
and EMPHASIS studies in patients with HF suggest that chronic MR blockade consistently reduces
the biological markers of cardiac fibrosis, suggesting that MR is an important determinant of cardiac
collagen turnover [11–14].

Recently, our group has demonstrated for the first time that the MR pathway regulates mitral
valve remodeling associated with mitral valve fibromyxomatous degeneration. Indeed, MR antagonist
(MRA) treatment appears to be a promising option to reduce valve fibromyxomatous alterations
associated to the development of MVP in animal models. Now we aim to investigate if MR signaling is
also involved in the development of myocardial fibrosis associated with mitral valve fibromyxomatous
degeneration and MVP progression by using in vivo and in vitro approaches.

2. Results

2.1. Effects of Spironolactone on Cardiac Fibrillar Proteins and Fibrotic Markers in a Murine Experimental
Model of Fibromyxomatous Degeneration of the Mitral Valve

Nordexfenfluramine (NDF)-treated mice presented a significant increment (p < 0.05) in LV
interstitial fibrosis (Figure 1A,B) and perivascular fibrosis (Figure 1C,D) as compared to controls.
NDF effect on both LV interstitial and perivascular fibrosis was blunted by spironolactone treatment
(Figure 1B,D). The protein expression of collagen type I significantly increased (p < 0.05) in mice treated
with NDF as compared to controls (Figure 1E). These effects were blocked by spironolactone treatment
(p < 0.05) (Figure 1A–E).

The expression of the fibrotic markers Gal-3 and ST-2 was also enhanced (p < 0.05) by NDF
treatment, although only Gal-3 synthesis induced by NDF was blocked (p < 0.05) by spironolactone
(Figure 2A). Regarding other profibrotic markers, NDF-treated mice presented similar mRNA levels of
TGF-β and increased (p < 0.05) levels of cardiotrophin-1 (CT-1) (Figure 2B). MRA blocked (p < 0.05)
the elevated levels of CT-1 mRNA (Figure 2B). The increases in β-SMA immunostaining and in
vimentin protein expression (p < 0.05) in NDF mice were fully prevented by spironolactone treatment
(Figure 2C,D). See the original Western blot images in Supplemental Figure S1.
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Figure 1. Effects of Spironolactone on cardiac fibrosis in a mouse model of myxomatous valve disease. 
Representative microphotographs of mouse myocardial sections with Sirius red staining for 
interstitial (A) and perivascular (C) fibrosis. Individual datapoints show the quantification of 
interstitial fibrosis (* p = 0.0452 Nordexfenfluramine (NDF) vs. control; $ p = 0.0001; * p = 0.0166 NDF 
+ Spiro vs. control) (B) and perivascular fibrosis (* p = 0.0307; $ p = 0.035) (D). Quantification of collagen 
type I (* p = 0.0329; $ p = 0.0007) (E). The box plots show the individual datapoints and the horizontal 
bars indicate the mean and SEM in arbitrary units versus the control group. Magnifications 40× (Scale 
bar 50 µm). The results were analyzed using one-way analysis of variance (ANOVA), followed by 
Tukey’s multiple comparisons tests. * vs. control, $ vs. NDF. 

Figure 1. Effects of Spironolactone on cardiac fibrosis in a mouse model of myxomatous valve disease.
Representative microphotographs of mouse myocardial sections with Sirius red staining for interstitial
(A) and perivascular (C) fibrosis. Individual datapoints show the quantification of interstitial fibrosis
(* p =0.0452 Nordexfenfluramine (NDF) vs. control; $ p = 0.0001; * p = 0.0166 NDF + Spiro vs. control)
(B) and perivascular fibrosis (* p = 0.0307; $ p = 0.035) (D). Quantification of collagen type I (* p = 0.0329;
$ p = 0.0007) (E). The box plots show the individual datapoints and the horizontal bars indicate the
mean and SEM in arbitrary units versus the control group. Magnifications 40× (Scale bar 50 µm).
The results were analyzed using one-way analysis of variance (ANOVA), followed by Tukey’s multiple
comparisons tests. * vs. control, $ vs. NDF.



Int. J. Mol. Sci. 2020, 21, 5372 4 of 13

Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 4 of 13 

 

The expression of the fibrotic markers Gal-3 and ST-2 was also enhanced (p < 0.05) by NDF 
treatment, although only Gal-3 synthesis induced by NDF was blocked (p < 0.05) by spironolactone 
(Figure 2A). Regarding other profibrotic markers, NDF-treated mice presented similar mRNA levels 
of TGF-β and increased (p < 0.05) levels of cardiotrophin-1 (CT-1) (Figure 2B). MRA blocked (p < 0.05) 
the elevated levels of CT-1 mRNA (Figure 2B). The increases in β-SMA immunostaining and in 
vimentin protein expression (p < 0.05) in NDF mice were fully prevented by spironolactone treatment 
(Figure 2C,D). See the original Western blot images in Supplemental Figure S1. 

 
Figure 2. Effect of Spironolactone on profibrotic molecules and myofibroblast activation markers in a 
mouse model of myxomatous mitral valve disease. Quantification of Gal-3 (* p = 0.0338; $ p = 0.0217) 
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(Cardiotrophin-1) (* p = 0.0014; $ p = 0.0016) (B) mRNA levels from controls, NDF-treated mice and 
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immunostaining in myocardium from controls, NDF-treated mice and NDF + Spiro-treated mice (C). 
Quantification of vimentin (* p = 0.0033; $ p = 0.0051) and α-SMA protein levels in myocardium from 
controls, NDF-treated mice and NDF +Spiro-treated mice (D). The box plots show the individual 
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Figure 2. Effect of Spironolactone on profibrotic molecules and myofibroblast activation markers
in a mouse model of myxomatous mitral valve disease. Quantification of Gal-3 (* p = 0.0338;
$ p = 0.0217) and ST2 (* p = 0.0289) (A) protein levels in myocardium from controls, NDF-treated
mice and NDF + Spiro-treated mice. Quantification of TGF-β (Transforming growth factor beta) and
CT-1 (Cardiotrophin-1) (* p = 0.0014; $ p = 0.0016) (B) mRNA levels from controls, NDF-treated mice
and NDF + Spiro-treated mice. Representative microphotographs of α-smooth muscle actin (α-SMA)
immunostaining in myocardium from controls, NDF-treated mice and NDF + Spiro-treated mice (C).
Quantification of vimentin (* p = 0.0033; $ p = 0.0051) and α-SMA protein levels in myocardium from
controls, NDF-treated mice and NDF +Spiro-treated mice (D). The box plots show the individual
datapoints and the horizontal bars indicate the mean and SEM in arbitrary units versus the control
group. Magnifications 40× (Scale bar 50 µm). The results were analyzed using one-way ANOVA,
followed by Tukey’s multiple comparisons tests. * vs. control, $ vs. NDF.

2.2. Effects of Spironolactone on Cardiac Non-Fibrillar Proteins in A Murine Experimental Model of the
Fibromyxomatous Degeneration of the Mitral Valve

NDF-treated mice exhibited higher levels (p < 0.05) of other non-fibrillar proteins, such as
fibronectin (Figure 3A,B), aggrecan (Figure 3C,D), decorin (Figure 3E,F), and lumican (Figure 3G,H)
as compared to controls (p < 0.05). In spironolactone-treated mice, proteoglycans expression and
immunostainings were normalized as compared with NDF-treated mice (p < 0.05) (Figure 3A–H).
Fibronectin secretion was increased in spironolactone-treated mice as compared with the control
group (p < 0.05) (Figure 3B). Concerning the expression of the surface membrane proteoglycans,
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NDF treatment did not modify syndecan-1 levels but increased (p < 0.05) syndecan-4 expression
(Figure 3I,J), this effect being prevented by Spironolactone treatment (p < 0.05) (Figure 3J).
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Figure 3. Effect of spironolactone treatment on the expression of non-fibrillar proteins in a mouse
model of mitral valve fibromyxomatous degeneration. Representative microphotographs of fibronectin,
aggrecan, decorin and lumican immunostainings are shown (A,C,E,G). The protein expressions of
fibronectin (* p = 0.0005 Control vs. NDF; * p = 0.0013 Control vs. NDF+Spiro), aggrecan (* p = 0.0008;
$ p = 0.0072), decorin (* p = 0.0209; $ p = 0.0459), lumican (* p = 0.0017; $ p = 0.0072), syndecan-1 and
syndecan-4 (* p = 0.032; $ p = 0.0009) were measured by ELISA (Enzyme-Linked Immuno Sorbent
Assay) in myocardium from controls, NDF-treated mice and NDF +Spiro-treated mice (B,D,F,H–J).
The box plots show the individual datapoints and the horizontal bars indicate the mean and SEM
in arbitrary units versus the control group. Magnifications 40× (Scale bar 50 µm). The results were
analyzed one-way ANOVA, followed by Tukey’s multiple comparisons tests. * vs. control, $ vs. NDF.

2.3. Mineralocorticoid Receptor Mediates the Profibrotic Response of Human Cardiac Fibroblasts to NDF

NDF-treated human cardiac fibroblasts presented an increment (p < 0.05) in the activation marker
α-SMA (Figure 4A). This expression was mitigated (p < 0.05) when the fibroblasts were treated with
the MR inhibitor spironolactone (Figure 4A). Collagen type I and fibronectin secretion were increased
by NDF treatment (p < 0.05) (Figure 4B,C). NDF treatment augmented aggrecan and hyaluronan
secretions (p < 0.05) (Figure 4D,E) without modifying decorin, glypican, syndecan-1 or syndecan-4
levels (Figure 4F–I). NDF-dependent upregulation of aggrecan was prevented by spironolactone
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(p < 0.05) (Figure 4D) reaching levels close to those for controls. Hyaluronan was upregulated by NDF
treatment (p < 0.05) (Figure 4E). See the original Western blot images in Supplemental Figure S1.
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Figure 4. NDF induces the expression of activation and fibrosis markers in adult human cardiac
fibroblast. NDF effects on the activation marker α-SMA protein expression in adult human cardiac
fibroblasts (* p = 1.0 × 10−7; $ p = 1.6 × 10−5 Control + NDF vs. NDF + Spiro) (A). Quantification of
collagen type I (* p = 0.0410; $ p = 0.0208 (B) and the non-fibrillar protein fibronectin (* p = 0.0172)) (C) in
human cardiac fibroblasts treated with NDF and NDF+Spiro. Quantification of proteoglycans (aggrecan
(* p = 6 × 10−6; $ p = 1.25 × 10−4 Control+NDF vs. NDF+Spiro) (D), hyaluronan (E), decorin (F),
glypican (G), syndecan-1 (H) and syndecan-4 (I) in human cardiac fibroblasts treated with NDF and
NDF + Spiro. The box plots show the individual datapoints and the horizontal bars indicate the mean
and SEM in arbitrary units versus the control group. The results were analyzed using one-way ANOVA,
followed by Tukey’s multiple comparisons tests. * vs. control, $ vs. control +NDF.
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3. Discussion

The goal of this study was to investigate myocardial ECM changes associated with the development
of fibromyxomatous mitral valve alterations. Our results demonstrate that the experimental model of
mitral valve fibromyxomatous disease presents myocardial fibrosis. The latter was demonstrated by
increased fibrillar ECM, mainly collagen type I, as well as nonfibrillar proteins, including fibronectin,
extracellular proteoglycans, small leucine-rich proteoglycans and surface membrane proteoglycans.
MR blockade exerts beneficial effects by preventing cardiac ECM alterations associated with mitral
valve fibromyxomatous degeneration that could ultimately lead to MVP. Moreover, the following
effects are partially blocked by an MR antagonist: in vitro, NDF treatment induces myofibroblast
activation, collagen secretion and increases the expression of some non-fibrillar ECM proteins.

NDF belongs to a group of anorectic compounds that have been associated with the remodeling
of mitral and aortic valves [15]. These drugs interact with the serotonergic system by targeting
the Serotonin (5-HT) receptor subtypes [16,17]. Besides, several studies demonstrated that these
drugs and the activation of the 5-HT pathway not only induce valve remodeling but also cardiac
fibrosis altering the myocardial ECM composition [18–20]. The effect of these drugs induces a loss of
cardiac ECM homeostasis, accumulation of interstitial fibroblasts and collagen deposition [19,21–23].
Our results in vitro, in human cardiac fibroblasts, and in vivo, in NDF-treated mice, are in line with
these pieces of evidence. In a mitral valve, a fibromyxomatous degeneration mice model previously
characterized [24,25] cardiac interstitial and perivascular fibrosis were enhanced. Furthermore,
NDF treatment induced cardiac fibroblasts’ activation and an increase in fibrillar and non-fibrillar ECM
proteins, as well as the fibrosis markers Gal-3, ST2 and CT-1. Interestingly, the use of MRA prevented
interstitial and perivascular fibrosis as well as the increase in fibrillar and non-fibrillar ECM proteins.
However, in vitro spironolactone did not block the increase in all the fibrosis markers induced by
NDF, including fibronectin synthesis. Of interest, only one dose of spironolactone has been used,
and we cannot exclude the possibility that other doses could exert an effect on these markers. MR has
a well-established pathophysiological role in cardiovascular diseases [26]. Although this is the first
time that an MRA has been tested in the context of cardiac ECM changes associated with mitral valve
fibromyxomatous alterations, the use of MRA as anti-fibrotic has been tested in other cardiovascular
diseases [11,27–29].

Our study provides information about the role of the non-fibrillar proteins in myocardial
fibrosis. The extracellular proteoglycans such as aggrecan, the small leucine-rich proteoglycans,
including decorin and lumican, and the cell surface proteoglycan syndecan-4 [10,30] were the principal
proteoglycans altered in cardiac fibrosis associated with mitral valve fibromyxomatous degeneration
that could lead to MVP. The extracellular proteoglycans are the main proteoglycans involved in
the stabilization of the ECM and collagen synthesis [10]. Decorin and lumican are increased in
myocardial fibrosis following pressure overload or myocardial infarction [31], while syndecan-4
contributes to myofibroblast differentiation in these settings [32]. Interestingly, the MR pathway is
involved in the upregulation of all these proteoglycans in vitro and in vivo in an experimental model of
NDF-induced mitral valve fibromyxomatous alterations. It has been shown that aldosterone, via MR,
induces ADAMTS1, the enzyme that degrade aggrecan [33]. Moreover, MRA also blunted the increase
in proteoglycans and showed in the mitral valves of NDF-treated mice [25]. However, this is the first
time that the expression of cardiac proteoglycans is analyzed in an experimental model of fibrosis
associated with myxomatous mitral valve disease. Further studies are warranted to unravel the specific
role of non-fibrillar proteins in myocardial fibrosis as well as the benefits of an MRA therapy.

Cardiac fibrosis in MVP has been classically considered secondary to volume overload [34,35].
However, recent studies have shown higher degree of myocardial fibrosis in MVP patients compared
to patients with mitral regurgitation due to other etiologies, regardless of the severity of mitral
regurgitation or cardiac remodeling [5,36–38]. On the other hand, MVP is associated with an increased
rate of ventricular arrhythmias and sudden cardiac death [5,39], which, in turn, has been associated with
the presence of myocardial fibrosis in these patients [5,40]. It has been suggested that myocardial fibrosis
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in this scenario may occur as a consequence and a response to recurring mechanical stretching [41].
Thus, therapies targeting LV fibrosis in the context of MVP are needed. Future clinical studies are
needed to analyze the influence of antifibrotic therapies such as MRA in MVP.

4. Materials and Methods

4.1. In Vivo Studies

Ten-week old male wild-type 129S2/Sv mice (Charles River Laboratories) were used in order to
reproduce the model used by Monassier and co-workers [24]. Osmotic minipumps (Alzet) delivering
Nordexfenfluramine (NDF) (1 mg/kg/day; Sigma-Aldrich, Sigma/Merck Life Sciences S.L.U., Madrid,
Spain) were implanted subcutaneously. The MRA Spironolactone (1 mg/kg per day) was administered
as an additive in the food for 28 days. Animals were housed in a climate-controlled facility with a
12 h/12 h light/dark cycle. The experiments were approved (1 June 2017) by the Darwin ethics committee
of Pierre et Marie Curie University and conducted according to the INSERM (Institut national de
la santé et de la recherche médicale) animal care and use committee guidelines (APAFIS#4488-20 1
6010614517136 v3).

4.2. Cell Culture

Human cardiac fibroblasts were obtained from Promocell and maintained in medium Fibroblasts
Media 3. The cells were cultured according to the manufacturer’s instructions. The cells were used
between passages 4 and 6. The cells were stimulated with NDF (10−5 M, Sigma-Aldrich) for 24 h
(the concentration was chosen based on the literature) [21]. The MR antagonist spironolactone (Spiro,
10−6 M, Sigma-Aldrich) was added for 30 min prior to the stimulation with NDF.

4.3. Real-Time Reverse Transcription PCR

Total RNA was extracted with Trizol Reagent (Qiagen), according to the manufacturer’s
instructions. First-strand cDNA was synthesized according to the manufacturer’s instructions (Bio-Rad,
Hercules, CA, USA). Quantitative PCR analysis was performed with SYBR green PCR technology
(Bio-Rad) (Supplemental Table S1) according to the following PCR conditions: Initial Denaturation; the
reaction temperature is increased to 95 ◦C and incubated for 2 min to ensure that all complex,
double-stranded DNA (dsDNA) molecules are separated into single strands for amplification.
Cycling: (1) Denaturation: The reaction temperature is increased to 95 ◦C, which melts (disrupts the
hydrogen bonds between complementary bases) all dsDNA into single-stranded DNA (ssDNA) (10 s);
(2) Annealing: The temperature is lowered to approximately 5 ◦C below the melting temperature (Tm)
of the primers (60 ◦C) to promote primer binding to the template (30 s); (3) Extension: The temperature
is increased to 72 ◦C, which is the optimum for DNA polymerase activity to allow the hybridized
primers to be extended (30 s); Repeat: Steps 1–3 are performed in a cyclical manner, resulting in the
exponential amplification of the amplicon. Relative quantification was achieved with MyiQ software.
The data were normalized by HPRT, GADPH and β-actin levels and expressed as percentage relative
to controls. All PCRs were performed at least in triplicate for each experimental condition.

4.4. Western Blot Analysis

Aliquots of 20 µg of total proteins were prepared from cell extracts or cardiac homogenates
and electrophoresed on SDS polyacrylamide gels and transferred to Hybond-c Extra nitrocellulose
membranes (Bio-Rad). Membranes were incubated with primary antibodies for: vimentin (Sigma),
α-Smooth Muscle Actin (α-SMA; Sigma), galectin-3 (Gal-3; Santa Cruz, CA, USA), ST2 (Novus
Biologicals, Centennial, CO, USA). Stain-free detection was used as a loading control. After washing,
detection was made through incubation with peroxidase-conjugated secondary antibody and developed
using an ECL (enhanced luminol-based chemiluminescent) chemiluminescence kit (Amersham,
GE healthcare, Thermo Fisher Scientific, UK). After densitometric analyses, optical density values
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were expressed as arbitrary units. All Western blots were performed at least in triplicate for each
experimental condition.

4.5. Immunohistological Evaluation

Histological determinations in mouse cardiac tissue were performed in 5-µm-thick sections.
The immunochemistry was performed following the protocol of Leica BOND-Polymer Refine Detection
automatic immunostainer (Leica). All solutions were filled into the bottle-Bond Open Container (Leica)
and registered on computer using the Leica Biosystem program. The immunostaining program protocol
include: fixative solution, bond wash solution, blocking with common immunohistochemistry blocker
and incubated with the primary antibody for α-SMA (Sigma), fibronectin (Santa Cruz), decorin (Santa
Cruz), lumican (Abcam, Cambridge, UK), aggrecan (Abcam). After primary antibody incubation,
the slides were incubated with post primary poly-HRP-IgG. The signal was revealed by using DAB
(3,3′-Diaminobenzidine) Substrate. As negative controls, samples followed the same procedure
described above but were used in the absence of primary antibodies. For Sirius red staining, slides were
hydrated and incubated with 1% Sirius red in picric acid for and 30 min. For each immunochemistry
and staining, serial sections were done and quantified. In the figures, the most representative image of
each experimental condition is shown.

4.6. ELISA

Collagen type I, fibronectin, decorin, lumican, aggrecan, hyaluronan, syndecan-1, syndecan-4
and glypican were measured in cardiac homogenates and cell supernatants by ELISA according to the
manufacturer’s instructions (R&D Systems).

4.7. Statistical Analyses

For the in vivo study, the data were expressed as mean ± SD. The normality of distributions was
verified by means of the Lilliefors-corrected Kolmogorov–Smirnov test. The data were analyzed using
a one-way analysis of variance (ANOVA) followed by a Tukey’s tests to assess specific differences
among groups or conditions using GraphPad Software Inc. For animal studies, the sample size
calculation software G Power (http://www.gpower.hhu.de/, last access date: 1st February 2020) was
used. The sample size of each experiment was determined by power analyses based on data from
previous studies and preliminary experiments with alpha of 0.05 and 85% power.

For the in vitro experiments, data were expressed as mean ± SD. The normality of distributions
was verified by means of the Lilliefors-corrected Kolmogorov–Smirnov test. The data were analyzed
using Student’s test. A p value of < 0.05 was considered significant.

5. Conclusions

In conclusion, in an experimental model of myxomatous mitral valve disease, myocardial ECM
remodeling and fibrosis are mediated by MR. Our results suggest that MRA could be a therapeutic
approach to reduce myocardial fibrosis associated with MVP (Figure 5).

http://www.gpower.hhu.de/
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to treat myocardial fibrosis associated with myxomatous mitral valve disease.

5.1. Translational Perspective

Patients with mitral valve prolapse develop myocardial fibrosis, although the cellular and
molecular mechanisms are not known. We have characterized myocardial fibrosis in an experimental
model of fibromyxomatous degeneration of the mitral valve. Moreover, our results suggest that
mineralocorticoid receptor antagonism could exert beneficial effects by reducing myocardial fibrosis
associated to mitral valve fibromyxomatous disease.

5.2. Limitations

This study had several limitations. First, all animal studies were done in males. Second, cardiac and
valvular function was not evaluated in the animal models.
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Abbreviations

MVP Mitral valve prolapse
NDF Nordexfenfluramine
MR Mineralocorticoid receptor
MRA Mineralocorticoid receptor antagonist
ECM Extracellular matrix
HF Heart failure
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