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cSorbonne Université, École Normale Supérieure, CNRS, Laboratoire de Physique (LPENS),

F-75005 Paris, France
dInstitut des Hautes Études Scientifiques, Université Paris Saclay, CNRS,
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Abstract: We investigate the action of discretized Virasoro generators, built out of gen-

erators of the lattice Temperley-Lieb algebra (“Koo-Saleur generators” [1]), in the critical

XXZ quantum spin chain. We explore the structure of the continuum-limit Virasoro mod-

ules at generic central charge for the XXZ vertex model, paralleling [2] for the loop model.

We find again indecomposable modules, but this time not logarithmic ones. The limit

of the Temperley-Lieb modules Wj,1 for j 6= 0 contains pairs of “conjugate states” with

conformal weights (hr,s, hr,−s) and (hr,−s, hr,s) that give rise to dual structures: Verma or

co-Verma modules. The limit of W0,q±2 contains diagonal fields (hr,1, hr,1) and gives rise

to either only Verma or only co-Verma modules, depending on the sign of the exponent in

q±2. In order to obtain matrix elements of Koo-Saleur generators at large system size N

we use Bethe ansatz and Quantum Inverse Scattering methods, computing the form factors

for relevant combinations of three neighbouring spin operators. Relations between form

factors ensure that the above duality exists already at the lattice level. We also study in

which sense Koo-Saleur generators converge to Virasoro generators. We consider conver-

gence in the weak sense, investigating whether the commutator of limits is the same as the

limit of the commutator? We find that it coincides only up to the central term. As a side

result we compute the ground-state expectation value of two neighbouring Temperley-Lieb

generators in the XXZ spin chain.
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1 Introduction

The mechanism responsible for the emergence of the rich structure of conformal field the-

ories (CFTs) in the continuum limit of discrete (not necessarily integrable) lattice models

has attracted growing interest in the last few years. There are several reasons for this.

On the one hand, this is part of the more general question of how one can approximate

field theories using discrete systems, with the ultimate goal of carrying out more efficient

(quantum) simulations [3–5]. On the other hand, the possibility of observing, on the lattice,

properties “analogous” to those of CFTs opens the door to the introduction of new discrete

mathematical tools with a smorgasbord of exciting potential applications [6, 7]. Finally,

the study of non-unitary CFTs — which play, in particular, a crucial role in our descrip-

tion of geometrical statistical models (such as percolation or polymers), or of transitions

between plateaux in the integer quantum Hall effect — is mired in the technical difficulties

that emerge when the representation theory of the Virasoro algebra is not semi-simple. In
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many cases, only a bottom-up approach, where things are studied starting at the level of

the lattice model, has made progress possible. An example of this was, at central charge

c = 0, the determination of the logarithmic coupling (also variantly known as indecompos-

ability parameter, beta-invariant, or b-number) between the stress-energy tensor and its

logarithmic partner in the bulk CFT [8–11].

Many aspects of CFTs can of course be approached using lattice-model discretizations.

In some cases, results for well-chosen finite systems are already directly relevant to the

continuum limit. This is the case, for instance, of modular transformations (studied as

early as [12]; see also [13] for more recent work on this) and fusion rules [14, 15]. In other

cases, the precise connection with CFT can only be made after the continuum limit is

taken. Examples of this include the determination of three-point functions [16, 17], and

more recently, of four-point functions [18–21].

Underlying the relationship between lattice discretization and CFT is the central ques-

tion of the role of conformal transformations (and thus the Virasoro algebra) in lattice

models. In an early work by Koo and Saleur [1], a very simple construction was proposed

where the Virasoro algebra Vir (or the product Vir⊗Vir of left and right Virasoro algebras)

could be obtained starting with Fourier modes of the local energy and momentum densities

in finite spin chains (such as XXZ), and taking the limit of large chains while restricting

to “scaling states”, which are states belonging to the continuum limit. The restriction to

scaling states is done through a double-limit procedure that we call the “scaling limit” and

denote by 7→. (See [1] and below for more detail on this). The evidence for the validity of

the construction in [1] came from exact results in the case of the Ising model combined with

rather elementary numerical checks. Quite recently, the construction was put on more seri-

ous mathematical footing (and further checked for symplectic fermions) in [22–24]. It was

also revisited extensively for the Ising case using the language of anyons in [25]. In [25], a

set of conditions for the construction to work more generally — together with more precise

definitions of the scaling limit — were also given.

The purpose of this paper is twofold. On the one hand, we wish to revisit the proposal

of [1] by carrying out much more sophisticated numerics than was possible at the time. This

involves in particular the techniques of lattice form factors, thanks to which matrix elements

of the discrete Virasoro generators can be expressed in closed form using Bethe-ansatz

roots. By contrast, in [1], only eigenstates were obtained with the Bethe ansatz, while

matrix elements were calculated by brute-force numerics. The quantitative improvement

is substantial. While in [1] only chains up to length ten or so were studied, we are easily

able in this paper to tackle lengths up to 80. Our results fully confirm the validity of

the proposal in [1], and shed some extra light on the nature of the scaling limit, and the

convergence of the lattice Virasoro algebra to Vir ⊗Vir.

On the other hand, the growing interest in logarithmic CFT has made it crucial to

understand in detail the nature of Vir ⊗ Vir modules appearing in the continuum limit of

specific lattice models when some of the parameters take on values such that the repre-

sentation theory of Vir ⊗ Vir becomes non-semi simple, and the detailed information how

irreducible modules are glued in a particular physical model of interest cannot be obtained

from general principles. This information is crucial to answer a variety of questions: chief
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among these is the nature of fields whose conformal weights are in the extended Kac table,

h = hr,s with r, s ∈ N∗. While in unitary CFTs the resulting degenerate behaviour implies

the existence of certain differential equations satisfied by the correlators of these fields, such

result does not necessarily hold in the non-unitary case, where Virasoro “norm-squares”

are not positive definite any longer (see more discussion of this below). The second purpose

of this paper is to find out specifically what kind of Virasoro modules occur in the XXZ

chain when the Virasoro representations are degenerate — that is, (some) fields belong

to the extended Kac table. We will do this straightforwardly, by exploring the action of

the lattice Virasoro generators, and checking directly whether the relevant combinations

vanish or not — in technical parlance, whether “null states” or “singular vectors” are zero

indeed. This is of course of utmost importance in practice, as this criterion determines the

applicability of the BPZ formalism [26] to the determination of correlation functions, such

as the four-point functions currently under investigation [19–21]. We shall find some unex-

pected results, that we hope to complete in a subsequent paper [27] by studying the cases

when the central charge is rational (e.g., the case c = 0 with applications to percolation).

A similar investigation in the cognate link-pattern representation of the XXZ chain

(relevant for the corresponding loop model) has already appeared in a companion paper [2].

We will remark on the important differences between the two representations throughout

the present paper.

The paper is organized as follows. Section 2 discusses general algebraic features. We

consider successively the affine Temperley-Lieb algebra and its representations, the issues

of indecomposability, and recall the basic Koo-Saleur conjecture which proposes lattice

regularizations for the generators of the Virasoro algebra. In section 3 we discuss expected

features of the continuum limit, based in part on the Dotsenko-Fateev or Feigin-Fuchs

free-boson construction. We also discuss partly the issue of scalar products — with more

remarks on this topic being given in appendix A. In section 4 we recall several aspects of

the Bethe-ansatz solution of the XXZ chain, in particular those concerning the form-factor

calculations and the definition of scaling states. Relations between the form factors show

that duality relations between certain expected continuum modules are already present

at finite size. In section 5 we discuss the continuum limit of the Koo-Saleur generators

in the non-degenerate case, where none of the conjectured conformal weights belong to

the extended Kac table. Following this, section 6 discusses their continuum limit in the

degenerate cases where the conjectured conformal weights take on values in the extended

Kac table. Section 7 discusses the nature of the convergence of the Koo-Saleur generators to

their Virasoro-algebra continuum limit. Finally, section 8 contains our concluding remarks.

Several technical aspects are addressed in the appendices. In appendix A we briefly

remind the reader of the physical meaning of the “conformal scalar product” for which

L‡n = L−n (we reserve the notation † for another scalar product). In appendix B we discuss

the form factors for the Koo-Saleur generators. In appendix C more details about numer-

ical results for the action of the Koo-Saleur generators are provided. A proof of (7.21),

an expression involving the ground-state expectation of two neighbouring Temperley-Lieb

generators that we initially conjectured based on our numerical results, is provided in ap-

pendix D. In appendix E we discuss in further detail the continuum limit of commutators of
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Koo-Saleur generators. Details about a particular commutation relation — which we call

the chiral-antichiral commutator — are given in appendix F. Finally, the last appendix G

discusses a natural variant of the Koo-Saleur construction in the case of the XXZ chain

considered as a system of central charge c = 1.

Main results. Our main results for relations between form factors and lattice duality are

given in equations (4.9) and (4.20). Our main results for the nature of the modules arising

in the continuum limit are given in equations (6.4) and (6.7). Our main results for the

nature of the convergence of the Koo-Saleur generators are given in (7.12), (7.21), (7.22)

and (7.23).

Notations and definitions. We gather here some general notations and definitions that

are used throughout the paper:

• Ta
N (m) — the affine Temperley-Lieb algebra on N = 2L sites with parameter m. We

shall later parametrize the loop weight as m = q + q−1, with q = eiγ and

γ =
π

x+ 1
. (1.1)

• Wj,eiφ — standard module of the affine Temperley-lieb algebra with 2j through-lines

and pseudomomentum φ/2. We define a corresponding electric charge as1

eφ ≡
φ

2π
. (1.2)

• Vr,s — Verma module for the conformal weight hr,s when r, s /∈ N∗.

• V
(d)
r,s — the (degenerate) Verma module for the conformal weight hr,s when r, s ∈ N∗.

• Ṽ
(d)
r,s — the (degenerate) co-Verma module for the conformal weight hr,s when r, s∈N∗.

• Xr,s — irreducible Virasoro module for the conformal weight hr,s.

• A conformal weight hr,s with r, s ∈ N∗ will be called degenerate. For such a weight,

there exists a descendent state that is also primary: this descendent is often called a

null or singular vector or state. We will denote by Ar,s the combination of Virasoro

generators producing the null state corresponding to the degenerate weight hr,s. Ar,s
is normalized so that the coefficient of Lrs−1 is equal to unity. Some examples are

A1,1 = L−1 , (1.3a)

A1,2 = L2
−1 −

2(2h1,2 + 1)

3
L−2 , (1.3b)

A2,1 = L2
−1 −

2(2h2,1 + 1)

3
L−2 . (1.3c)

1Note that the twist term in [12], which was denoted there q2t, reads in these notations as eiφ. It

corresponds to e2iK in many of our other papers [22–24, 28], to z2 in the Graham-Lehrer work [29], and to

the parameter x in the work of Martin-Saleur [30].
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• We will in part of this paper use the Dotsenko-Fateev construction [31]. For theories

with central charge c = 1 − 6
x(x+1) , this involves in particular screening charges

α+ =
√

(x+ 1)/x and α− = −
√
x/(x+ 1), and the set of vertex operator charges

α(e,m) = 1
2(eα+ −mα−) and ᾱ(e,m) = 1

2(eα+ + mα−). Instead of “Coulomb gas”

labels e,m we will use “Kac” labels r, s, with

αr,s =
1− r

2
α+ +

1− s
2

α− . (1.4)

Of course these labels are not independent in a free-field theory with charge at infinity,

and one has

α−e,m = α(e,m) + α0 . (1.5)

We define the background charge

α0 =
α+ + α−

2
=

1

2
√
x(x+ 1)

(1.6)

and introduce the notation

αc ≡ 2α0 − α (1.7)

for the conjugate charge to a charge α. Note that αc
r,s = α−r,−s. The conformal

weight corresponding to a charge α is h = α2 − 2αα0.

• Fα — Fock space generated from :eiαϕ:, where ϕ denotes a free bosonic field.

• We will in this paper restrict to generic values of the parameter q (i.e., q not a root

of unity), and thus to generic values of x (i.e., x irrational). Even in this case, we

will encounter situations where some of the modules of interest are not irreducible

anymore. We will refer to these situations as “non-generic” when applied to modules

of the affine Temperley-Lieb algebra, and “degenerate” when applied to modules of

the Virasoro algebra. In earlier papers, we have referred to such cases as “partly non-

generic” and “partly degenerate”, respectively, since having q a root of unity adds

considerably more structure to the modules. We will not do so here, the context

clearly excluding q a root of unity.

• We shall discuss two scalar products, denoted by 〈−,−〉 and (−,−), which are

defined such that for any two primary states V1, V2 we have 〈V1, LnV2〉 = 〈L†nV1, V2〉
and (V1, LnV2) = (L‡nV1, V2), where L†n is discussed below and L‡n = L−n is the usual

conformal conjugate [26]. The scalar product 〈−,−〉 is positive definite and will

be used for most parts of the paper. When using this scalar product we shall also

use the bra-ket notation: |V 〉 denotes a state V (primary or not) and 〈V | its dual,

〈V1|V2〉 ≡ 〈V1, V2〉 and 〈V1|O|V2〉 ≡ 〈V1,OV2〉 for an operator O acting on |V1〉 (with

V1, V2 being primary or not).

• We shall call states going over to well defined states in the continuum limit CFT

scaling states. The notion of scaling states is made more precise in terms of the

Bethe ansatz in section 4.1. We shall call the double limit procedure of restricting

– 5 –
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, ,

Figure 1. Three examples of affine diagrams for N = 4, with the left and right sides of the framing

rectangle identified. The first diagram represents e4, the second e2e4, and expressing the last one

is left as an exercise.

to a fixed number of scaling states, and allowing this number to become infinite only

after N →∞, the scaling limit, using the notation 7→. Weak convergence under the

condition that everything is restricted to scaling states will be called scaling-weak

convergence, and is discussed in more detail in section 7.1.

2 Discrete Virasoro algebra and the Koo-Saleur formulae

While the questions we investigate and the strategy we use are fully general in the context

of two-dimensional lattice models having a conformally invariant continuum limit, we focus

in this paper specifically on models based on the Temperley-Lieb algebra. As discussed

further below, we think of these models as providing some lattice analogue of the Virasoro

algebra — or more precisely, since we study systems with closed (i.e., periodic or twisted

periodic) boundary conditions, the product of the left and the right Virasoro algebras,

Vir ⊗ Vir — at central charge c ≤ 1. Other types of models could be considered in the

same fashion. For instance models based on the Birman-Wenzl-Murakami algebra would

naturally lead to a lattice analog of the N = 1 super-Virasoro algebra [32], while models

involving higher-rank quantum groups (e.g., Uqsl(3)) would lead to lattice analogs of W -

algebras [33].2

2.1 The Temperley-Lieb algebra in the periodic case

The following two subsections contain material discussed already in our earlier work on

the subject [22–24, 28], which we prefer to reproduce here for clarity, completeness and in

order to establish notations.

2.1.1 The algebra Ta
N (m)

The algebraic framework for this work is provided by the affine Temperley-Lieb algebra Ta
N .

A basis for this algebra is provided by particular diagrams, called affine diagrams, drawn

on an annulus with N sites on the inner and N on the outer boundary (we henceforth

assume N even), such that the sites are pairwise connected by simple curves inside the

annulus that do not cross. Some examples of affine diagrams are shown in figure 1; for

convenience we have here cut the annulus and transformed it into a rectangle, which we call

framing, with the sites labeled from left to right and periodic boundary conditions across.

We define a through-line as a simple curve connecting a site on the inner and a site on

the outer boundary of the annulus. Let the number of through-lines be 2j, and call the 2j

2We note in this respect that a lattice regularization of a W -algebra at c = −2 was proposed in [34].
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sites on the inner boundary attached to a through-line free or non-contractible. The inner

(resp. outer) boundary of the annulus corresponds to the bottom (resp. top) side of the

framing rectangle.

The multiplication of two affine diagrams, a and b, is defined by joining the inner

boundary of the annulus containing a to the outer boundary of the annulus containing b,

and removing the interior sites. In other words, the product ab is obtained by joining the

bottom side of a’s framing rectangle to the top side of b’s framing rectangle, and removing

the corresponding joined sites. Any closed contractible loop formed in this process is

replaced by its corresponding weight m.

In abstract terms, the algebra Ta
N is generated by the ej ’s together with the identity,

subject to the well-known Temperley-Lieb relations [35]

e2
j = mej , (2.1a)

ejej±1ej = ej , (2.1b)

ejek = ekej (for j 6= k, k ± 1) , (2.1c)

where j = 1, . . . , N and the indices are interpreted modulo N . In addition, Ta
N contains

the elements u and u−1 generating translations by one site to the right and to the left,

respectively. They obey the following additional defining relations

ueju
−1 = ej+1 , (2.2a)

u2eN−1 = e1 · · · eN−1 , (2.2b)

and we note that u±N is a central element. The affine Temperley-Lieb algebra Ta
N is then

defined abstractly as the algebra generated by the ei and u±1 together with these relations.

2.1.2 Standard modules

It is readily checked that for any finite N , the algebra Ta
N (m) obeying the defining rela-

tions (2.1)–(2.2) is in fact infinite-dimensional. We wish however to focus on lattice models

having a finite number of degrees of freedom per site. Their proper description involves cer-

tain finite-dimensional representations of Ta
N , the so-called standard modules Wj,eiφ , which

depend on two parameters. Diagrammatically, the first parameter defines the number of

through-lines 2j, with j = 0, 1, . . . , N2 . In addition to the action of the algebra described

in the previous subsection, we now require that the result of this action be zero in the

standard modules whenever the affine diagrams obtained have a number of through-lines

strictly less than 2j, i.e., whenever two or more free sites are contracted. Moreover, for any

j > 0 it is possible, the algebra action can cyclically permute the free sites. Such cyclic

permutations give rise to a pseudomomentum, which we parametrize by φ and define as

follows: whenever 2j through-lines wind counterclockwise around the annulus l times, we

can unwind them at the price of a factor eijlφ; and similarly, for clockwise winding, the

phase is e−ijlφ [30, 36]. In other words, there is a phase e±iφ/2 attributed to each winding

through-line.

To define the representation Wj,eiφ in more convenient diagrammatic terms, we now

make the following remark. As free sites cannot be contracted, the pairwise connections
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between non-free sites on the inner boundary is unchanged under the algebra action. This

part of the diagrammatic information is thus irrelevant and can be omitted. Therefore, it

is enough to concentrate on the upper halves of the affine diagrams, obtained by cutting a

diagram into two parts across its 2j through-lines. Each upper half diagram is then called a

link state. We still call through-lines the cut “upper half” through-lines attached to the free

sites on the outer boundary (or, equivalently, top side of the framing rectangle). A phase

eiφ/2 (resp. e−iφ/2) is attributed as before, namely each time one of these through-lines

moves through the periodic boundary condition of the framing rectangle in the rightward

(resp. leftward) direction. It is not difficult to see that the Temperley-Lieb algebra action

obtained by stacking the affine diagrams on top of the link states produces exactly the

same representations Wj,eiφ as defined above.

To identify the dimensions of these modules Wj,eiφ over Ta
N (m) we simply need to

count the link states. The result is

d̂j =

(
N

N
2 + j

)
(2.3)

for the j > 0 case, and we shall return to the j = 0 case below. Notice that these dimensions

are independent of φ (although representations with different eiφ are not isomorphic). The

standard modules Wj,eiφ are also called cell Ta
N (m)-modules [29].

Let us parametrize m = q + q−1. For generic values of q and φ the standard modules

Wj,eiφ are irreducible, but degeneracies appear when the following resonance criterion is

satisfied [29, 30]:3

eiφ = q2j+2k, for k > 0 integer . (2.4)

The representation Wj,q2j+2k then becomes reducible, and contains a submodule isomorphic

to Wj+k,q2j . The quotient of those two is generically irreducible, with dimension

d̄j := d̂j − d̂j+k , for j > 0 . (2.5)

For q a root of unity, there are infinitely many solutions to (2.4), leading to a complex

pattern of degeneracies whose discussion we defer for now.

As already mentioned, the case j = 0 is a bit different. There is no pseudomomen-

tum in this case, but representations are still characterized by a parameter other than j,

specifying now the weight of non-contractible loops. (For obvious topological reasons, non-

contractible loops are not possible for j > 0.) Upon parametrizing this weight as z + z−1,

the corresponding standard module of Ta
N (m) is denoted W0,z2 . Note that this module is

isomorphic to W0,z−2 . With the identification z = eiφ/2, the resonance criterion (2.4) still

applies to the case j = 0.

It is physically well-motivated to require that z + z−1 = m, meaning that contractible

and non-contractible loops get the same weight. Imposing this leads to the module W0,q2 .

Notice that this is reducible even for generic q, as (2.4) is satisfied with j=0, k=1. There-

fore W0,q2 contains a submodule isomorphic to W1,1, and taking the quotient W0,q2/W1,1

3In [29] a slightly different criterion is given, involving some extra liberty in the form of certain ± signs.

We shall however not need these signs here.
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leads to a simple module for generic q which we denote by W0,q2 . This module is isomorphic

to W0,q−2 . Its dimension is

d̄0 =

(
N
N
2

)
−
(

N
N
2 + 1

)
, (2.6)

which coincides with the general formula (2.5) for k = 1.

There is a geometrical significance of the difference between W0,q2 and W0,q2 . In the

latter case, we only register which sites are connected to which in the diagrams, while

in the former one also keeps information of how the connectivities wind around the peri-

odic direction of the annulus (this ambiguity does not arise when there are through-lines

propagating). The corresponding formal result is the existence of a surjection ψ between

different quotients of the Ta
N algebra:

ψ−−−−→ (2.7)

The previous definition of link states as the upper halves of the affine diagrams is also

meaningful for j = 0. As before, the representation W0,q2 requires keeping track of whether

each pairwise connection between the sites on the outer boundary (or top side of the

framing rectangle) goes through the periodic boundary condition, whereas the quotient

module W0,q2 omits this information. In either case, it is easy to see that the number of

link states coincides with the dimension d̂0 or d̄0, respectively.

2.2 Physical systems and the Temperley-Lieb Hamiltonian

Following the original work in [1] we now consider systems with Hamiltonians

H = − γ

π sin γ

N∑
j=1

(ej − e∞). (2.8)

Here, the prefactor is chosen to ensure relativistic invariance at low energy (see the next

section), and we recall that γ ∈ [0, π] is defined through q = eiγ , so m ∈ [−2, 2]. e∞ is a

constant energy density added to cancel out extensive contributions to the ground state.

Its value (as discussed below) is given by

e∞ = sin γ I0, (2.9)

with I0 being given by the integral

I0 =

∫ ∞
−∞

sinh(π − γ)t

sinh(πt) cosh(γt)
dt. (2.10)

In (2.8), the ej can be taken to act in different representations of the Ta
N (m) algebra.

We will consider in this paper the XXZ representation, in which the ej act on CN with

ej = −σ−j σ
+
j+1 − σ

+
j σ
−
j+1 −

cos γ

2
σzjσ

z
j+1 −

i sin γ

2
(σzj − σzj+1) +

cos γ

2
, (2.11)
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where the σj are the usual Pauli matrices, so the Hamiltonian is the familiar XXZ spin chain

H =
γ

2π sin γ

N∑
j=1

[
σxj σ

x
j+1 + σyj σ

y
j+1 + ∆(σzjσ

z
j+1 − 1) + 2e∞

]
(2.12)

with anisotropy parameter

∆ = cos γ . (2.13)

In the usual basis where [ 1
0 ] corresponds to spin up in the z-direction at a given site, the

Temperley-Lieb generator ej acts on spins j, j + 1 (with periodic boundary conditions) as

ej = · · · ⊗ 1⊗


0 0 0 0

0 q−1 −1 0

0 −1 q 0

0 0 0 0

⊗ 1⊗ · · · . (2.14)

It is also possible to introduce a twist in the spin chain without changing the expres-

sion (2.8), by modifying the expression of the Temperley-Lieb generator acting between

first and last spin with a twist parametrized by φ. In terms of the Pauli matrices, this

twist imposes the boundary conditions σzN+1 = σz1 and σ±N+1 = e∓iφσ±1 . For technical

reasons, we will later on “smear out” the twist by taking φ/N for each Temperley Lieb

generator:

ej = · · · ⊗ 1⊗


0 0 0 0

0 q−1 −eiφ/N 0

0 −e−iφ/N q 0

0 0 0 0

⊗ 1⊗ · · · . (2.15)

This is equivalent, and is done in order to preserve invariance under the usual translation

operator, which will be useful in the sections below. Note that the value of the energy

density e∞ is independent of φ and remains given by (2.9). In the generic case, the XXZ

model with magnetization Sz = j and twist eiφ provides a representation of the module

Wj,eiφ . This is not true in the non-generic case — see below.

Instead of the XXZ representation, one could also consider the so-called loop repre-

sentation, which is simply the representation in terms of affine diagrams introduced in

section 2.1, or equivalently in terms of the corresponding link states. This loop represen-

tation is useful for describing geometrical problems such as percolation or dense polymers.

It is also strictly equivalent to the cluster representation familiar from the study of the Q-

state Potts model with Q = m2 [19]. Other representations are possible — such as the one

involving alternating 3, 3̄ representations of sl(2|1) discussed in [28] to study percolation.

There are many common features of the XXZ and the loop representations. In particu-

lar, they have the same ground-state energy and the same “velocity of sound” determining

the correct multiplicative normalization of the Hamiltonian in (2.8). This reason is that

the ground state is found in the same module Wj,eiφ for both models, or in closely related

modules for which the extensive part of the ground-state energy (and hence the constant

e∞) is identical. However, the XXZ and loop representations generally involve mostly dif-

ferent modules. The modules appearing in the XXZ chain depend on the twist angle φ,
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while for the loop model the modules depend on the rules one wishes to adopt to treat non-

contractible loops, or lines winding around the system. For a generic and non-degenerate

situation, studying the physics in each irreducible module Wj,eiφ would suffice to answer all

questions about all Ta
N (m) models as well as the related Virasoro modules obtained in the

scaling limit. But it turns out, importantly, that degenerate cases are always of relevance

to the problems at hand. In such cases, a crucial issue that we will be interested in is

how the modules “break up” or “get glued”. This issue is highly model-dependent, and is

central to the understanding of logarithmic CFT in particular.

The loop representation is studied in [2], with a main focus on the continuum limit of

the various standard modules and the build-up of indecomposable structures. Meanwhile,

this paper will focus instead on the XXZ spin chain representation. One goal will be to

again establish the continuum limit of standard modules — which will turn out different

than in the loop case — and another will be to investigate more closely the nature of

the convergence of Koo-Saleur generators towards the Virasoro generators. An important

point is that the difference between the loop and XXZ spin chain representations is manifest

already at the smallest possible finite size. To see this, we start by a detailed discussion of

the module W0,q±2 at N = 2 sites.

2.3 Indecomposability

Consider the standard module W0,q±2 for N = 2, i.e., the loop model for two sites, in the

sector with no through-lines and with non-contractible loops given the same weight m = q+

q−1 as contractible ones. We emphasize that since q only enters in the combination q+q−1,

the sign of the exponent (q2 versus q−2) does not matter, motivating the notation W0,q±2 .

In order to illustrate the differences between the XXZ and loop representations, let us

first recall from [2] how to write the two elements of the Temperley-Lieb algebra in the

basis of the two link states and :

e1 =

(
q + q−1 q + q−1

0 0

)
, e2 =

(
0 0

q + q−1 q + q−1

)
. (2.16)

It is apparent that e1( − ) = e2( − ) = 0. Meanwhile, the

action of e1 and e2 on the single state in W1,1 vanishes by definition of the standard

module, since the number of through-lines would decrease. By comparison we see that

W0,q±2 admits a submodule, generated by ( − ), that is isomorphic to W1,1.

In pictorial terms we thus have

W0,q±2 :

W0,q±2

◦

•
W1,1

, (2.17)

where • denotes the submodule and ◦ the quotient module. The meaning of the arrow is

that within the standard module W0,q±2 a state in W1,1 can be reached from a state in W0,q±2

through the action of the Temperley-Lieb algebra, whereas the opposite is impossible.
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We next consider instead the XXZ representation with Sz = 0 and twisted boundary

conditions eiφ = q−2, here without “smearing” of the twist. We chose the basis of this

sector as u = |↑↓〉 and v = |↓↑〉. We have then

e1 =

(
q−1 −1

−1 q

)
, e2 =

(
q −q2

−q−2 q−1

)
. (2.18)

We find that e1(u + q−1v) = e2(u + q−1v) = 0 while e1(u − qv) = (q + q−1)(u − qv) and

e2(u − qv) = (q + q−1)(u − qv) + (q3 − q−1)(u + q−1v). Considering instead the module

W1,1, which is the spin Sz = 1 sector with no twist and where e1 = e2 = 0, we see that

(u + q−1v) generates a module isomorphic to W1,1. Meanwhile, u − qv does not generate

a submodule, since e2 acting on this vector yields a component along u+ q−1v. However,

if we quotient by u + q−1v, we obtain a one-dimensional module where e1 and e2 act as

q + q−1, which is precisely the module W0,q±2 . We thus obtain the same result as for the

loop model, i.e., the structure (2.17) of the standard module.

Considering instead eiφ = q2, we have

e1 =

(
q−1 −1

−1 q

)
, e2 =

(
q −q−2

−q2 q−1

)
. (2.19)

We see that e1(u − qv) = e2(u − qv) = (q + q−1)(u − qv), while e1(u + q−1v) = 0 and

e2(u + q−1v) = (q− q−3)(u− qv). Hence this time we get a proper W0,q±2 module, while

we only get W1,1 as a quotient module. The corresponding structure can be represented as

W̃0,q±2 :

W0,q±2

•

◦
W1,1

. (2.20)

Observe that the shapes in (2.18) and (2.20) are related by inverting the (unique in this

case) arrows; the module in (2.20) is referred to as “co-standard”, and we indicate this

dual nature by placing a tilde on top of the usual W0,q±2 notation for the standard module.

To emphasize that in the XXZ chain the standard module W0,q±2 corresponds to the

twisted boundary condition eiφ = q−2, while the co-standard module W̃0,q±2 corresponds

to the twisted boundary condition eiφ = q2, we introduce the notations W0,q−2 ≡ W0,q±2

and W0,q2 ≡ W̃0,q±2 . Later on, we shall write diagrams of the type above as

W0,q−2 :
[0, q−2]

[1, 1]

, W0,q2 :
[0, q2]

[1, 1]

, (2.21)

where it is implicit that any relevant quotients have been taken.
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In summary, from this short exercise we see that while in the generic case the loop

and spin representations are isomorphic, this equivalence breaks down in the non-generic

case, where φ is such that the resonance criterion (2.4) is met. Only standard modules

are encountered in the loop model4 while in the XXZ spin chain both standard and co-

standard are encountered. This feature extends to larger N , according to a pattern we will

discuss below. We will also see what this means in the continuum limit when comparing

the XXZ spin chain results to the results in the loop representation seen in [2]. We note

that in the case where q is also a root of unity, the distinction between the two represen-

tations becomes even more pronounced: in this case the modules in the XXZ chain are no

longer isomorphic to standard or co-standard modules. This will be further explored in a

subsequent paper [27].

2.4 Discrete Virasoro algebra

Following (2.8) we define the Hamiltonian density as hj = − γ
π sin γ ej , from which we may

construct a lattice momentum density pj = i[hj ,hj−1] = −i
( γ
π sin γ

)2
[ej−1, ej ] by using

energy conservation [3]. We then define the corresponding momentum operator P as

P = −i
(

γ

π sin γ

)2 N∑
j=1

[ej , ej+1]. (2.22)

From the densities hj and pj we may build components of a discretized stress tensor as

Tj =
1

2
(hj + pj) , (2.23a)

T̄j =
1

2
(hj −pj) , (2.23b)

and use those to construct discretized versions of the Virasoro generators in the form of

Fourier modes [3]. This construction leads to the Koo-Saleur generators5

Ln[N ] =
N

4π

− γ

π sin γ

N∑
j=1

einj2π/N
(
ej − e∞ +

iγ

π sin γ
[ej , ej+1]

)+
c

24
δn,0 , (2.24a)

L̄n[N ] =
N

4π

− γ

π sin γ

N∑
j=1

e−inj2π/N
(
ej − e∞ −

iγ

π sin γ
[ej , ej+1]

)+
c

24
δn,0 . (2.24b)

4Of course, the co-standard module would be formally obtained by reversing the arrows, which corre-

sponds formally to propagating “towards the past”, or acting with the transpose of the transfer matrix to

build partition and correlation functions. It is not clear what this means physically.
5In the present paper we consistently use calligraphic fonts for the lattice analogs of some key quantities:

the Hamiltonian H, the momentum P — with their corresponding densities hj and pj — , the Virasoro

generators Ln, L̄n and the stress-energy tensor T, T̄. We denote the corresponding continuum quantities

by Roman fonts: H, P and Ln, L̄n, as well as T , T̄ . One of the paramount questions is of course whether

we have the convergence Ln, L̄n 7→ Ln, L̄n in the continuum limit N →∞ — and if we do, what precisely

is the nature of this convergence.
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first derived by other means in [1]. The crucial additional ingredient in these formulae is

the central charge, given by

c = 1− 6

x(x+ 1)
, (2.25)

where we remind of the parametrisation (1.1). This choice (2.25) is known to apply to

models with Hamiltonian (2.8), such as the ferromagnetic Q-state Potts model with Q =

m2. Note, however, that the identification (2.25) is actually a rather subtle question, since

it may be affected by boundary conditions. We discuss this aspect in details in the next

section, with some further discussion in appendix G.

3 Some features of the continuum limit

We recall once more that throughout this paper q is assumed to take generic values (not

a root of unity). Whenever φ is such that the resonance criterion (2.4) is not met we say

that φ is generic; and when (2.4) is satisfied φ is referred to as non-generic.

3.1 Modules in the continuum

Choosing Sz = j the XXZ representation for generic q and φ provides a faithful representa-

tion of the modules Wj,eiφ . The Hamiltonian acting on this module has a CFT low-energy

spectrum, encoding conformal weights h, h̄. These weights are known from a variety of

techniques like the Bethe-ansatz or Coulomb-gas mappings, combined with extensive nu-

merical studies [12, 37]. It is convenient to encode their values by using the trace

Tr e−βRHe−iβIP , (3.1)

where βR and βI are real, and βR > 0. Introducing the (modular) parameters

q = exp

[
−2π

N
(βR + iβI)

]
, (3.2a)

q̄ = exp

[
−2π

N
(βR − iβI)

]
(3.2b)

and the Kac-table parametrization of conformal weights

hr,s =
[(x+ 1)r − xs]2 − 1

4x(x+ 1)
(3.3)

we have, in the limit where N →∞, with βR, βI →∞ so that q and q̄ remain finite,

TrW
j,eiφ

e−βRHe−iβIP
N→∞−−−−→ Fj,eiφ , (3.4)

where [28]

Fj,eiφ =
q−c/24q̄−c/24

P (q)P (q̄)

∑
e∈Z

q
h(e−eφ),−j q̄

h(e−eφ),j (3.5)

and

P (q) =

∞∏
n=1

(1− qn) = q−1/24η(q) , (3.6)

where η(q) is the Dedekind eta function. We also recall that eφ = φ/2π.
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Since q is generic throughout, both c and its parametrization x from (2.25) takes

generic, irrational values. The conformal weights may be degenerate or not, depending on

the lattice parameters. In the non-degenerate case, which corresponds to generic lattice

parameters (the opposite does not always hold) it is natural to expect that the Temperley-

Lieb module decomposes accordingly into a direct sum of Verma modules,

Wj,eiφ 7→
⊕
e∈Z

Ve−eφ,−j ⊗ Ve−eφ,j . (3.7)

The symbol 7→ means that action of the lattice Virasoro generators restricted to scaling

states on Wj,eiφ corresponds to the decomposition on the right-hand side when N → ∞.

We will try to make this more precise below. Note that to make notation lighter, we are

not indicating explicitly that in V⊗V the right tensorand is for the Vir algebra: this should

always be obvious from the context.

Recall that a Verma module is a highest-weight representation of the Virasoro algebra

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δn+m,0 , (3.8)

generated by a highest-weight vector |h〉 satisfying Ln|h〉 = 0, n > 0, and for which all the

descendants

L−n1 . . . L−nk |h〉 , with 0 < n1 ≤ n2 ≤ · · · ≤ nk and k > 0 (3.9)

are considered as independent, subject only to the commutation relations (3.8). In the

non-degenerate case where the Verma module is irreducible, it is the only kind of module

that can occur, motivating the identification in (3.7).

Meanwhile, in the degenerate cases the conformal weights may take degenerate values

h = hr,s with r, s ∈ N∗, in which case a singular vector appears in the Verma module. By

definition, a singular vector is a vector that is both a descendent and a highest-weight state.

For instance, starting with |h1,1 = 0〉 we see, by using the commutation relations (3.8), that

L1(L−1|h1,1〉) = 2L0|h1,1〉 = 0 , (3.10)

while of course Ln|h = h1,1〉 = 0 for n > 1. Hence L−1|h = h1,1〉 is a singular vector. The

action of the Virasoro algebra on this vector generates a sub-module. For q generic, this

sub-module is irreducible, and thus we have the decomposition

V
(d)
1,1 :

X1,1

◦

•
V1,−1

, (3.11)

where we have introduced the notation V(d) to denote the degenerate Verma module, and

we also denote by Xr,s the irreducible Virasoro module (in this case, technically a “Kac

module”), with generating function of levels

Kr,s = qhrs−c/24 1− qrs

P (q)
. (3.12)
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The subtraction of the singular vector at level rs gives rise to a quotient module, and

corresponds to the use of an open circle in the diagram (3.11).

We stress that in cases of degenerate conformal weights there is more than one possible

module that could appear, and the identification in (3.7) may no longer hold. Furthermore

the identification is different in the XXZ spin-chain representation of the Temperley-Lieb

generators, as compared to the loop-model representation, since these are no longer iso-

morphic. In later sections we will discuss which identifications hold for the XXZ spin chain

representation. For this purpose let us introduce the notation Ṽ
(d)
r,s for the dual of the

(degenerate) Verma modules, or “co-Verma” modules. As an example, the dual of (3.11) is

Ṽ
(d)
1,1 :

X1,1

•

◦
V1,−1

(3.13)

3.2 Bosonization and expected results

Many algebraic aspects of the continuum limit of Temperley-Lieb based models can be

understood using bosonization of the underlying XXZ spin chain and its relation with the

free-field (Dotsenko-Fateev) description [31] of c < 1 CFTs. We start with some basic

results here, concerning in particular the identification of the stress-energy tensor and its

“twisted” version, the role of vertex operators, and the nature of corrections to scaling.

These results will be useful later to formulate conjectures about the continuum limit of

modules.

The free field (FF) representation starts with a pair of (chiral and anti-chiral) bosonic

fields ϕ, ϕ̄ with the stress-energy tensors

TFF = −1

4
:(∂ϕ)2: , (3.14a)

T̄FF = −1

4
:(∂̄ϕ̄)2: , (3.14b)

where :−: denotes normal order. The Hamiltonian is

HFF = −
∫
dσ

2π
(TFF + T̄FF) , (3.15)

and the propagators are

〈ϕ(z)ϕ(z′)〉 = −2 ln(z − z′) , (3.16a)

〈ϕ̄(z̄)ϕ̄(z̄′)〉 = −2 ln(z̄ − z̄′) . (3.16b)

Here z = σ + iτ, where σ is the space coordinate and τ the imaginary time coordinate.

To further analyse this free-field problem we define the vertex operators

Vα(e,m),ᾱ(e,m) = :exp
(
i
e

2
α+Φ− im

2
α−Θ

)
: , (3.17)
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expressed here in terms of the non-chiral components

Φ ≡ ϕ+ ϕ̄ , (3.18a)

Θ ≡ ϕ− ϕ̄ . (3.18b)

The integers e,m ∈ Z can be interpreted as electric and magnetic charges in the Coulomb

gas formalism [38, 39], and in terms of those we have

α(e,m) =
1

2
(eα+ −mα−) , (3.19a)

ᾱ(e,m) =
1

2
(eα+ +mα−) , (3.19b)

where α± are coupling constants related with the compactification radius of the boson.

The conformal weights of the vertex operators (3.17) are then

hFF = [α(e,m)]2 , (3.20a)

h̄FF = [ᾱ(e,m)]2 . (3.20b)

We consider specifically low-energy excitations over the ground state of the antiferro-

magnetic Hamiltonian (2.12), which are described by (3.15), with

α+ ≡
√
x+ 1

x
, (3.21a)

α− ≡ −
√

x

x+ 1
(3.21b)

in the parametrization (1.1).

Defining

fj = −σ−j σ
+
j+1 − σ

+
j σ
−
j+1 −

cos γ

2
σzjσ

z
j+1 +

cos γ

2
(3.22)

we note that we can equivalently write the Hamiltonian (2.12) as

H = − γ

π sin γ

N∑
j=1

(fj − f∞) , (3.23)

where f∞ = e∞. Let us now consider the scaling limit of each individual term. We use the

basic formulae from the literature (see, e.g., [40])

σzj = a
α+

2π

dΦ

dσ
+ (−1)jCz1a

d1,0 sin
α+Φ

2
(σ) + . . . , (3.24a)

σ±j = exp

(
± iα−

2
Θ

)
(σ)

[
ad0,1C±0 + ad1,1C±1 (−1)j cos

α+Φ

2
(σ) + . . .

]
, (3.24b)

where a is the cutoff (lattice spacing) and the physical coordinate σ = ja. The Cz1 , C
±
0 , C

±
1

are (known) constants that depend only on x. The numbers de,m are the physical dimen-

sions of the operators (3.17), namely de,m ≡ hFF + h̄FF.
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Using these formulae, one can write a similar expansion for the elementary Hamilto-

nians [40]

fj − f∞ = a2 sin γ

2γ
(TFF + T̄FF)(σ) + C1(−1)jad1,0 cos

α+Φ

2
(σ) + . . . . (3.25)

The important quantity is the dimension

d1,0 =
α2

+

2
=
x+ 1

2x
. (3.26)

In the regime we are interested in, γ ∈ [0, π], whence x ∈ [0,∞). The leading contribution

to (3.25) comes from the first term only when d1,0 > 2, that is 1 − γ
π < 1

4 , or γ ∈
]3
4 , π]. Equivalently, the anisotropy parameter ∆ ∈ [−1,−

√
2

2 ] from (2.13), or the conformal

parameter x < 1
3 from (1.1). For values inside this interval, we can thus safely write, as

a→ 0:

− γ

a2π sin γ
(fj − f∞) ≈ − 1

2π
(TFF + T̄FF) . (3.27)

Outside this interval — i.e. for x > 1
3 (including x integer)—the second term dominates.

A very important fact however is that the second term comes with a (−1)j alternating

prefactor, i.e., it only contributes to excitations at lattice momentum near π. As a result,

for all Virasoro generators Ln at finite n — and thus at momentum of order 1/N — the

alternating term is effectively scaling with a dimension d1,0+2. For instance, for L0 we have

fj−1 +fj+1 +2fj = 4a2 sin γ

2γ
(TFF + T̄FF)(σ)+C1(−1)jad1,0+2 d2

dσ2
cos

α+Φ

2
(σ)+ . . . , (3.28)

and we see that all corrections are irrelevant.

The same analysis can now be carried out for the Temperley-Lieb generators ej . Com-

paring (3.22) and (2.11) we see that

ej = fj − i
sin γ

2

(
σzj − σzj+1

)
, (3.29)

for which we get the continuum limit

− γ

a2π sin γ
(ej − e∞) = − 1

2π
(TFF + T̄FF)(σ) + i

γ

(2π)2
α+

d2Φ

dσ2
. (3.30)

Since in the models we study, the Temperley-Lieb generators are the fundamental Hamil-

tonian densities, we must interpret the right-hand side of this equation as a modified or

“improved” stress-energy tensor, which is the sum of its free field analog TFF + T̄FF and a

new “deformation” term. In terms of the parameter x, the “twist term” multipliying the

second derivative of Φ is

1

2π
× 1

2(x+ 1)

√
x+ 1

x
≡ 1

2π
α0 , (3.31)
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where we have introduced the so-called background charge α0, defined as in (1.6), familiar

from the Coulomb-gas analysis [31]. Using that ∂2
σΦ = ∂2ϕ + (∂̄)2ϕ̄, we finally get the

expressions for the modified stress-energy tensor

T = −1

4
:(∂ϕ)2: + iα0∂

2ϕ , (3.32a)

T̄ = −1

4
:(∂̄ϕ̄)2: + iα0∂̄

2ϕ̄ . (3.32b)

This is the well known “twisted” stress-energy tensor studied in [31, 41, 42]. It is this

modified stress-energy tensor — rather than the free-field version TFF, T̄FF of (3.14) —

that is relevant for a lattice discretization based on the Temperley-Lieb algebra. We shall

henceforth consider T, T̄ throughout almost all the paper, except in appendix G where we

shall give an alternative construction based on the untwisted stress-energy tensor.

With respect to this stress-energy tensor, the vertex operators Vα,ᾱ get the modified

conformal weights

h = α2 − 2αα0 , (3.33a)

h̄ = ᾱ2 − 2ᾱα0 , (3.33b)

to be compared to the previous free-field expressions (3.19).

The eigenvalues of H and P only allow one to determine the conformal weights, not

the value of the charges. For a given conformal weight, two values are possible in general,

α and 2α0 − α. Recalling the notation in (1.4) we now state the result, first shown in [1],

which we will justify in detail below:

In the XXZ spin chain with twisted boundary conditions parametrized by φ = 2πeφ,

the scaling states in the sector of magnetization Sz correspond in the scaling limit to

primary states Vα,ᾱ with charges on the form

α = α−(e−eφ),Sz =
1

2
(e− eφ)α+ + α0 −

1

2
Szα− (3.34a)

ᾱ = α−(e−eφ),−Sz =
1

2
(e− eφ)α+ + α0 +

1

2
Szα−, (3.34b)

where e is an integer, and their descendants. The conformal weights are given

by (3.33).

The precise correspondence, including the proper identification of the integers e, will be

discussed in section 4, as well as the exact meaning of the words scaling states and scal-

ing limit.

We conclude this section by some remarks about corrections to scaling. The leading

corrections to ej look a bit different from (3.25). We have

(ej − e∞) = a2 sin γ

2γ
(T + T̄ )(σ)− iα+a

2 sin γ

4π

d2Φ

dσ2

+ (−1)jad1,0
(
Cz1 sin

α+Φ

2
(σ) + 2iC1 cos

α+Φ

2
(σ)

)
+ . . . . (3.35)
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Meanwhile, it is expected that the leading correction should now be given by the operator

Φ2,1 with conformal weights h = h̄ = h2,1 = x+3
4x in the twisted theory. Under twisting, we

expect in general the field

:exp(niαΦ): with α =
α+

2
(3.36)

to get the weight

h = α2 − 2αα0 = h1−n,1 . (3.37)

This means the term exp(iα+Φ/2) should disappear from the combination in (3.35), leading

to a relationship between the two constants

Cz1 = 2C1 . (3.38)

While (3.38) can be checked to hold in some cases using results in [43, 44], we are not

aware of a general proof: more investigation of this question would be very interesting, but

it outside the scope of this paper.

3.3 The choices of metric

We have just recovered the well-known result that the continuum limit of the XXZ spin

chain is made up of sectors of a twisted free-boson theory. The space of states in the

continuum limit can be built out of vertex-operator states Vα =:eiαϕ: (in this section we

shall only consider the chiral part for notational brevity) and derivatives ∂ϕ, ∂2ϕ, (∂ϕ)2, . . ..

From the free-boson current J(z) = 1
4∂zϕ, we define an as its modes, such that we

have the Heisenberg algebra

[an, am] = nδn+m,0. (3.39)

We can then equivalently consider the state space to be built from states of the form

(a−n1)N1 · · · (a−nk)NkVα . (3.40)

The vertex operator Vα is a highest-weight state for the Heisenberg algebra, with

anVα = 0 , ∀n > 0 , (3.41a)

a0Vα =
√

2(α− α0)Vα . (3.41b)

In terms of an we have for the twisted boson theory

Ln =
∞∑
k=0

an−kak −
√

2α0nan , for n 6= 0 , (3.42a)

L0 =
∞∑
k=1

a−kak +
1

2
a2

0 − α2
0 (3.42b)

for which the Virasoro algebra relations (3.8) are readily shown to be satisfied with

c = 1− 24α2
0 . (3.43)

Two possible scalar products can be introduced in the CFT. The one for which a†n =

a−n, denoted in what follows by 〈−,−〉, is positive definite and corresponds to the usual
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positive definite scalar product for the spin chain, where the conjugation sending a ket

to a bra is anti-linear. A crucial observation is that for this scalar product L†n 6= L−n.

This means that norm squares of descendants cannot be obtained using Virasoro algebra

commutation relations. Also, this scalar product must be used with great care when

calculating correlation functions; this point is discussed more in appendix A. Instead of

using the Virasoro relations directly we shall use the Heisenberg relations (3.39).

We shall in the following sections, especially when comparing to the numerical results,

refer to the conjectured values of various norms. What we refer to is then the value we

obtain by considering the states to be given as Vα with α as in (3.34), writing any Virasoro

generator in terms of an using (3.42), using the Heisenberg commutation relations (3.39)

to move an with n > 0 to the right and finally applying the highest-weight relation (3.41).

The second scalar product is denoted (−,−) and corresponds to the conjugation ‡.
Compared to the conjugation †, where we write Ln in terms of an as in (3.42) and use a†n =

a−n to define the conjugate L†n, we instead define the conjugate L‡n as simply L‡n = L−n.

This “conformal scalar product” (−,−) is known to correspond [9–11], on the lattice, to the

“loop scalar product” defined through the Markov trace, or to a modified scalar product

in the XXZ spin chain where q is treated as a formal, self-conjugate parameter [45]. It is

not a positive definite scalar product, and we will not use it much here, as our main goal

is to establish whether various quantities are zero or not.

Of course, the relationship between the two scalar products is a question of great

interest: for some recent results about this, see [46].

3.4 Feigin-Fuchs modules and conjugate states

When the lattice parameters are such that the corresponding twisted free boson only in-

volves non-degenerate cases, the Verma modules are irreducible and coincide with the Fock

spaces of the bosonic theory. We now consider what happens in the degenerate case. As

a module over the Heisenberg algebra, the Fock space is irreducible. If we instead wish to

consider it as a module over the Virasoro algebra, it will be a Feigin-Fuchs module, which

is only irreducible (and then, a Verma module) if α 6= αr,s for any r, s ∈ N∗, with αr,s
defined as in (1.4).

To see how Feigin-Fuchs modules differ from Verma modules, it is helpful to introduce

the notion of conjugate states: we call states with the same conformal weight h but different

charges α conjugates of each other. From (3.33) we see that a state Vα with charge α has

a conjugate state Vαc with charge αc defined in (1.7). Note that this conjugation is an

involution: (αc)c = α.

While the conformal weights of a pair of conjugate states are the same, we shall see that

their behaviour under the action of the Virasoro algebra is in a sense dual. We illustrate

the precise meaning of this statement with the case of the identity state, which has α = 0,

and its conjugate state with α = 2α0. We obtain L−1Vα = ∂zVα =
√

2αa−1Vα, which is

zero for α = 0. Conversely, the action of L1 on a−1Vα (recall our state space (3.40)), yields

L1a−1Vα =
√

2(α − 2α0)Vα, which is instead zero for the conjugate charge αc = 2α0. We

thus obtain the following diagrams, where crossed out arrows indicate that the state at the
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end of the arrow would have zero norm:

1

a−11

h = 1

L−1 × L1

V2α0

a−1V2α0

h = 1

L−1 L1×

. (3.44)

We shall later on refrain from writing out such crossed-out arrows at all, using the

same type of notation as already seen above for the standard modules. Since we restrict

to the case where q is not a root of unity, there are no other degeneracies in the modules,

and we always get one of the two following diagrams:

•

◦

◦

•
. (3.45)

We note that these can be seen as a co-Verma module and a Verma module. More details

will be given in section 6.

4 Bethe ansatz picture

In the context of the XXZ spin chain the Bethe ansatz is a well-adapted tool to carry out

the analysis [47]. We present the general picture, and refer the reader to appendix B for

more detail.

4.1 Bethe-ansatz and the identification of scaling states

When q not a root of unity, and the resonance criterion (2.4) is not satisfied, the XXZ

Hamiltonian can be fully diagonalized using a basis of orthonormal Bethe states (see [48, 49]

and references therein). The corresponding Bethe equations are of the form

Nλj = 2πIj + φ−
∑
k 6=j

ΘXXZ(λj , λk), (4.1)

for j = 1, 2, . . . , N2 − Sz, and are obtained (after some rewriting) by taking the logarithm

of (B.3) as given in appendix B; this defines the scattering kernel ΘXXZ(λj , λk). The Bethe

integers Ij corresponding to a given solution shall play an important role in the discussion

below. (Note: they are sometimes half-integers, despite their name.) The states have

energies

E({Ij}) = − γ

π sin γ

2
∑
j

(cos γ + cos kj)−Ne∞

 , (4.2)

where kj is related to the Bethe root λj by tan(γ/2) tan(kj/2) = tanh(λj), and momenta

P({Ij}) = −2π

N

∑
j

Ij +
φ

N

(
N

2
− Sz

)
. (4.3)
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For future convenience we also define the rescaled lattice momentum p as

p =
N

2π
P (4.4)

such that when φ = 0, p takes integer values 0, 1, . . . , N − 1.

The ground state — i.e., the state of lowest energy — depends on the value of φ. It will

be convenient in what follows to identify states by their corresponding set of Bethe integers,

where the ground state is given by the symmetric, maximally packed set of integers [47].

The boundaries of this set of integers are referred to as “edges” (by analogy with the Fermi

edge in solid state physics).

The third component Sz of the spin is conserved by the Hamiltonian (2.12), and we can

split the problem of diagonalizing H into subsectors of fixed Sz. Within a given subsector,

we identify states using the difference between their set of Bethe integers and the one

of the lowest-energy state within the same subsector. As N increases, we focus only on

scaling states, that is, states for which this difference measured from the edge remains fixed

and finite. Representing the set of integers by filled circles, the edge simply refers to the

boundary between filled and empty circles in the ground state configuration, as shown here

marked by 99
9 for N = 10:

[−2,−1, 0, 1, 2] ←→ . . . ◦ ◦ ◦ 99
9• • • • • 99
9◦ ◦ ◦ . . .

For a scaling state there can only be finitely many empty circles between the edges and

only finitely many filled circles outside of the edges, and both must occur only at a finite

distance from one of the edges. Examples of scaling states are provided by the “electric

excitations” discussed below, where the set of integers from the ground state is shifted by

a finite amount e.

Of course, the ground states of every finite-Sz sector are scaling states, since their

integers coincide with those of the ground state but for Sz of them.6 A non-scaling state

would be, in contrast, a state whose magnetization increases with N , for instance the

“ferromagnetic ground state” will all spins up, Sz = N
2 . Another example of a non-scaling

state is obtained if we make a hole for some finite integer which remains fixed as N →∞.

In this case, the difference from the ground state configuration, measured from the edge,

increases linearly with N .

We now wish to give a brief motivation for the conjecture (3.34) given above. To

this purpose we first recall the Coulomb gas (CG) picture, where we consider a free field

compactified on a circle (see section 3.2). Our fundamental operators are vertex operators

(exponentials of the field) and their duals (discontinuities in the field), with conformal

weights parametrized by integers e,m called the electric and magnetic charges. The con-

formal weights corresponding to these electromagnetic excitations are shown in (3.3), with

−e,m corresponding to r, s as in (3.34).

In the context of the spin chain we can make a purely magnetic excitation by taking the

lowest-energy state within a sector of non-zero total magnetization Sz. This means adding

6Strictly speaking, changing the number of integers by an odd number means altering between Ij being

integers or half-integers. We expand our definition of scaling states to take this into account.
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to or subtracting from the number of Bethe integers, while still keeping them symmetrical

and maximally packed. An electric excitation can then be created within any sector of Sz
by shifting all Bethe integers e steps from the symmetric configuration. Examples of such

primary states are shown here. We mark the middle of each row of filled circles with a bar,

which will intersect the middle circle if their number is odd. This will be helpful for the

discussion of descendant states below.

. . . ◦ ◦ ◦ • • •| • • ◦ ◦ ◦ . . . ↔ ground state

. . . ◦ ◦ ◦ • •|• • ◦ ◦ ◦ . . . ↔ a magnetic excitation (m = 1)

. . . ◦ ◦ ◦ ◦ • • •| • • ◦ ◦ . . . ↔ an electric excitation (e = 1)

. . . ◦ ◦ • • •| • • ◦ ◦ ◦ ◦ . . . ↔ an electric excitation (e = −1)

. . . ◦ ◦ ◦ ◦ • •|• • ◦ ◦ . . . ↔ an electromagnetic excitation (e = 1,m = 1)

. . . ◦ ◦ • •|• • ◦ ◦ ◦ ◦ . . . ↔ an electromagnetic excitation (e = −1,m = 1)

Note that the magnetic excitation changes the number of filled circles; this corresponds

to alternating between having a set of integers or a set of half-integers.

From (4.3) we see that an electric excitation corresponds to a change in momentum.

Here we also see that if we introduce twisted boundary conditions, eφ = φ/2π enters on

the same footing as e. This mirrors how in the CG picture a twist can be implemented by

inserting electric charges at infinity.7 With the identification e ↔ −(e − eφ) and m ↔ Sz
we claim that the scaling states corresponding to electromagnetic excitations in the spin

chain can be written in the CG picture as vertex operators Vα,ᾱ =:eiαϕ+iᾱϕ̄: of charges α, ᾱ

as in (3.34). Indeed, we see that with these charges we reproduce the weights (3.3) for CG

electromagnetic excitations.

From any primary state obtained in this fashion, we must make further excitations to

reach its descendants. This is done by “creating holes” through shifting Bethe integers at

the left edge (chiral excitations) or right edge (anti-chiral excitations) of the set. Knowing

that the lattice momentum must shift in accordance with the change in conformal spin, we

can easily read off which level we reach. If the level has more than one state, we obtain an

orthonormal basis for these states. To better see which excitations are chiral and which are

anti-chiral we compare to the bar inserted in the middle of the filled circles. We find the

chiral level by first counting, for each filled circle on the left side of the bar, the number

of empty circles separating it from the bar, and then adding up these numbers. We find

the anti-chiral level in the same manner by considering the right side of the bar. Some

examples of descendants:

. . . ◦ ◦ • ◦ • •|• • • ◦ ◦ ◦ . . . ↔ chiral level 1

. . . ◦ ◦ ◦ • • •|• • ◦ • ◦ ◦ . . . ↔ anti-chiral level 1

. . . ◦ ◦ • ◦ • •|• • ◦ • ◦ ◦ . . . ↔ chiral and anti-chiral level 1

. . . ◦ ◦ • • ◦ •|• • • ◦ ◦ ◦ . . .

. . . ◦ • ◦ ◦ • •|• • • ◦ ◦ ◦ . . .

}
↔ chiral level 2

7Note: numerically, our momentum only depends on e, since we have smeared out the twist. eφ instead

modifies the Hamiltonian itself.
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In practice, the Bethe integers may come in configurations where some integers coin-

cide. We find (via the methods discussed in appendix C.3) the sets of Bethe integers for all

relevant scaling states based on the sets listed in [50], in which the possibility of coinciding

integers is also briefly discussed. As a concrete example, take N = 12, x = π, φ = 0 and con-

sider the primary state that corresponds to the electromagnetic excitation [−3,−2,−1, 0, 1].

In this case, the level-one chiral excitation does not correspond to [−4,−2,−1, 0, 1] but

rather to [−6,−1, 0, 0, 1], i.e., the integer 0 repeats. In such situations the simplified pic-

ture above fails to hold. The way to identify the states more generally will be to look at

their energy together with the sum of their Bethe integers. A scaling state then corresponds

to a state whose sum of Bethe integers is equal to the sum of a “valid” configuration, and

which is also one of the low-energy states within that sector of lattice momentum. The

latter criterion can be quantified by demanding the state to be the kth excitation for some

k < k0. We only take k0 → ∞ after N → ∞, a procedure that is called the double limit

in [1]. We can see from the picture above the importance of taking N → ∞ first: to

accommodate the shifts in momentum that we get from creating the holes and shifts, we

must keep N large enough.

4.1.1 Overlaps and mixing

Even when taking the possibility of repeating integers into account, the above picture of

scaling states and their conjectured limits is neater than reality. An important example of

a more complicated situation, which will be relevant for the numerical results below, is as

follows.

Consider two scaling states on the lattice with the same Sz 6= 0, φ = 0 but with opposite

electric excitations e,−e (with e 6= 0). By conjecture (3.34) these should correspond in the

double limit to two primary states with the conformal weights switched with respect to

one another, so that they both have the same energy. Following (4.3)–(4.4) and taking into

account that lattice momentum is defined modulo the system size, the sectors of lattice

momentum are only separated by ∆p = 2eSz. Making holes to create the descendant

states will shift p in integer steps, and it is clear that the momentum sectors of the left

descendants of one state will start overlapping with those of the right descendants of the

other state at level eSz, no matter how large we take N .

By chiral/anti-chiral symmetry there is in such cases no way to distinguish from which

primary a given state descends, and the symmetry may even force us to consider linear

combinations of the scaling states as candidates for the descendant states in the limit. We

then say that there is mixing of the scaling states. To make this issue more clear, let us

specialize this example. Let V1 be the primary state corresponding to Sz = 1, e = −1 and V2

the primary state corresponding to Sz = 1, e = 1. Let W1 be the level-1 chiral descendant

of V1, and let W2 denote the level-1 anti-chiral descendant of V2. The momentum sectors

of W1 and W2 are the same. Within this sector, the lowest-energy state (whose energy

comes with multiplicity one within this sector) can neither be identified with W1 nor with

W2. The reason is that the energies of W1,W2 in the limit are the same, and “favouring”

one over the other by assigning it a scaling state with lower energy would be incompatible

with the symmetry of the system, which demands that chiral and anti-chiral quantities
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play equal roles. Instead, we must create W1,W2 out of linear combinations of more than

one scaling state, such that each of them has the same contribution from the lowest-energy

state. This phenomenon will be further discussed in appendix C.1.

Since we wish to explore the indecomposable structure of the modules, the issue of

mixing will be particularly important. The reason is that a primary state with a degenerate

conformal weight given by the integers e and Sz, related to r, s as in (3.34), will have its null

state precisely at level |eSz|, in the sector of lattice momentum where mixing can occur.

4.2 Conjugate states and Bethe roots

In section 3.4 we saw that in the degenerate case there are two possible diagrams for the

structure of Virasoro modules, reproduced here for convenience (co-Verma module to the

left, Verma module to the right):
•

◦

◦

•
. (4.5)

Due to the sign in the conjecture (3.34), we see that degenerate chiral weights h (i.e.,

h = hr,s with r, s ∈ N∗) are obtained by charges α corresponding to states where (e− eφ)

and Sz are of opposite signs, while degenerate anti-chiral weights h̄ are obtained by charges

ᾱ corresponding to states where (e − eφ) and Sz are of the same sign. With the sign

conventions for magnetization and lattice momentum used in this paper, we have found

the co-Verma type for

α = αr,s ⇔ (e− eφ) < 0 and Sz > 0 , (chiral) (4.6a)

ᾱ = αr,s ⇔ (e− eφ) < 0 and Sz < 0 , (anti-chiral) , (4.6b)

while the Verma type was found for the conjugate charges

α = αc
r,s ⇔ (e− eφ) > 0 and Sz < 0 , (chiral) (4.7a)

ᾱ = αc
r,s ⇔ (e− eφ) > 0 and Sz > 0 , (anti-chiral) , (4.7b)

with r, s ∈ N∗ as given in (3.34). As an example, (e − eφ) = −1, Sz = 1 ⇒ α = α1,1 = 0

while (e−eφ) = 1, Sz = −1⇒ α = αc
1,1 = 2α0, which can be compared to (3.44). Of course

the choice of conventions holds no deeper meaning, and the important takeaway is that

within each sector of Sz we expect to find pairs of conjugate primary states such that one

has a chiral null state, the other a anti-chiral one, and the modules are of opposite types

(Verma or co-Verma).

We now show that such pairs of states, which differ by the sign of (e− eφ), correspond

to Bethe states that differ only by the sign of their Bethe integers and the sign of their

Bethe roots. This can be seen directly from the shape of the Bethe equations (B.3) in

appendix B, reproduced here for convenience:

d(λj)

a(λj)

∏
k 6=j

b(λk, λj)

b(λj , λk)
= 1 (4.8)

Leaving the definitions of the various terms to the appendix, we here need only know

that b(−λk,−λj) = b(λj , λk), a(λ) = 1 and that for φ = 0, d(−λ) = (d(λ))−1 in the
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homogeneous limit (our case of interest). When φ 6= 0, the only modification to the Bethe

equations is d(λ) → eiφd(λ), showing that one must take eφ → −eφ in order for the roots

with opposite signs to be a solution.

That the Bethe roots for these pairs of states differ only by their sign will be important

in section 4.3, where we show that a strong duality of the corresponding modules can be

seen directly on the lattice using Bethe ansatz techniques. To clarify the meaning of

“strong”, let us for comparison write out a weaker type of duality that is expected based

only on the conjecture (3.34) as discussed above. We shall need a more precise notation for

conjugate states than in section 3.4. We write Vᾱc,αc for a state whose anti-chiral charge is

the conjugate of the chiral charge of Vα,ᾱ, and whose chiral charge is the conjugate of the

anti-chiral charge of Vα,ᾱ. In this notation, we have the following result:

Weak duality: Whenever Vα,ᾱ has a degenerate chiral charge α = αr,s or α = αc
r,s

(with r, s ∈ N∗) we expect that

〈W |Ar,s|Vα,ᾱ〉 = 0 ⇔ 〈Vᾱc,αc |Ā‡r,s|W c〉 = 0 , (4.9a)

where W,W c are the corresponding null states at level rs, Ar,s the relevant combination

of lowering operators as in the examples (1.3) and A‡r,s the “conformal conjugate” for

which L‡n = L−n. The same type of statements hold when Vα,ᾱ has a degenerate

anti-chiral charge ᾱ = αr,s or ᾱ = αc
r,s:

〈W |Ār,s|Vα,ᾱ〉 = 0 ⇔ 〈Vᾱc,αc |A‡r,s|W
c〉 = 0 . (4.9b)

On the lattice, we expect that the corresponding matrix elements (with the Virasoro gen-

erators replaced by the Koo-Saleur generators, and primary/descendant states by their

corresponding scaling states) will approach either zero or non-zero values in the limit ac-

cording to this duality. Comparing to (4.9), the stronger duality that will be shown below

is the statement that two matrix elements have the same value already on the lattice.

Before turning to the stronger duality we note that even without the Bethe ansatz we

can, in fact, see the weaker duality already on the lattice for one particular case of interest:

the modules W0,q−2 and W0,q2 as described in section 2.3:

W0,q−2 :
[0, q−2]

[1, 1]

, W0,q2 :
[0, q2]

[1, 1]

. (4.10)

Within these diagrams, the pair of states corresponding to Sz = 0, |e| = 1, eϕ = ±α−/α+,8

can be found within [0, q±2] while their corresponding level-1 null states can be found within

[1, 1]. The duality under the action of the Koo-Saleur generators on the lattice then follows

8Note that within (3.34), a charge with a twist of eϕ = ±α−/α+ can be rewritten as a charge with eϕ = 0

where the magnetization Sz is shifted by one, which shows that these charges are on the form αr,s, r, s ∈ Z

leading to degenerate conformal weights. In particular, with |e| = 1 we obtain the degenerate weight h1,1.
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directly from the duality of the Temperley-Lieb modules, since the Koo-Saleur generators

are built out of Temperley-Lieb generators.

4.3 Some results about form factors

In appendix B we give a brief recapitulation of the Quantum Inverse Scattering Method,

in which local operators such as σzm are expressed in terms of entries of the monodromy

matrix T =
(
A B
C D

)
. For a general overview of this method see [51]. The eigenstates of

the XXZ Hamiltonian are given as |{λ}〉 =
∏n
k=1B(λk)|0〉 for a set of Bethe roots {λ},

their duals as 〈{λ}| = 〈0|
∏n
k=1C(λk) and we wish to find matrix elements on the form

〈{µ}|
∏
i σ

ai
mi |{λ}〉, where ai ∈ {z,+,−} and mi 6= mj for i 6= j. The resulting expressions

for these matrix elements in terms of functions of the Bethe roots are called form factors.

If we can find form factors for the Koo-Saleur generators Ln, the work of looking at

the action of the Virasoro algebra in the spin chain reduces to evaluating the expressions

of these form factors, rather explicitly diagonalizing the finite Hamiltonian and then acting

on the resulting eigenstates. For large system sizes N , this is a significant advantage: while

the size of the Hamiltonian to be diagonalized grows exponentially in N , the time needed to

evaluate form factors is only polynomial. A similar form-factor program has already been

carried out in [52] for the case of the SU(2)-invariant six-vertex model and its descendants,

which in the continuum correspond to SU(2)k WZW models. However, in this case the

program was carried out for the current Ja(z) rather than the Virasoro generators.

Finding form factors for Ln boils down to finding form factors for ei and [ei, ei+1]. A

priori this will involve form factors for all six permutations of three different neighbouring

operators, namely

σzmσ
−
m+1σ

+
m+2 , (4.11a)

σzmσ
+
m+1σ

−
m+2 , (4.11b)

σ+
mσ
−
m+1σ

z
m+2 , (4.11c)

σ−mσ
+
m+1σ

z
m+2 (4.11d)

and

σ−mσ
z
m+1σ

+
m+2 , (4.12a)

σ+
mσ

z
m+1σ

−
m+2 , (4.12b)

as well as σ−mσ
+
m+1, σ

+
mσ
−
m+1, σ

z
mσ

z
m+1 and σz. Luckily we can reduce the number of form

factors we need to compute by using various relations that follow from the Bethe ansatz.

These relations can also give us some general insight into how the lattice Virasoro generators

Ln, L̄n should act on Bethe states — in particular, we shall soon see how the duality for

conjugate states appears already at finite size.

4.3.1 Properties under conjugation and parity, implications for the modules

The site dependence of the form factors does not depend on the choice of operators and

can be factorized in the expressions. Following the notation in appendix B we let FO1···Oj
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denote the site-independent part of the form factor for j neighboring operators O1 · · ·Oj .
We wish to find relations between the site-independent part of the form factors of interest.

The first type of relations between the site-independent part of the form factors of

interest is due to conjugation. The dual states of on-shell Bethe states are, up to a possible

phase,9 their conjugates,

〈{λ}| = (phase)
(
|{λ}〉

)†
. (4.13)

Combining this relation with

(σ+)† = σ−, (σz)† = σz (4.14)

we obtain

〈{µ}|σ+
mσ

z
m+1σ

−
m+2|{λ}〉 = (phase)

(
〈{λ}|σ−mσzm+1σ

+
m+2|{µ}〉

)∗
, (4.15a)

〈{µ}|σzmσ+
m+1σ

−
m+2|{λ}〉 = (phase)

(
〈{λ}|σzmσ−m+1σ

+
m+2|{µ}〉

)∗
, (4.15b)

which relate Fσ+σzσ− to Fσ−σzσ+ and Fσzσ+σ− to Fσzσ−σ+ through the conjugation of each

of the operators. Similarly we can relate F
σ+σ−

to Fσ−σ+ .

The second type of relations between the site-independent part of the form factors of

interest is due to parity. Following [53] we denote by Π the parity operator. It acts on a

local operator Xm as

ΠXmΠ−1 = XN+1−m (4.16)

and on the B-operators as

ΠB(λ)Π−1 = (−1)N−1B(−λ). (4.17)

Thus, parity will act on Bethe states by taking |{λ}〉 into |{−λ}〉 (up to a possible sign)

and act on j neighboring operators by reversing their order and the sites they act on.

We obtain

〈{µ}|σ−mσ+
m+1σ

z
m+2|{λ}〉 = (sign)〈{−µ}|σzN−m−1σ

+
N−mσ

−
N−m+1|{−λ}〉 , (4.18a)

〈{µ}|σ+
mσ
−
m+1σ

z
m+2|{λ}〉 = (sign)〈{−µ}|σzN−m−1σ

−
N−mσ

+
N−m+1|{−λ}〉 , (4.18b)

which relate Fσ−σ+σz to Fσzσ+σ− and Fσ+σ−σz to Fσzσ−σ+ through reversing the order of

the operators. Altogether, the combined actions of conjugation and parity relate the four

form factors (4.11) among themselves, and similarly for the remaining two (4.12). Thus,

the only form factors involving three operators that we shall need to compute in appendix B

will be one of each group, here chosen to be Fσzσ−σ+ and Fσ−σzσ+ .

Combining the expression for the Koo-Saleur generators (2.24) with the parity relations

for the form factors yields relations for the matrix elements of Ln in the basis of Bethe

states. In particular, we note that the term [ej , ej+1] in (2.24) will pick up a sign when the

order of all operators is reversed, changing Ln into L̄−n. Thus we have

〈{µ}|Ln|{λ}〉 = 〈{−λ}|L̄−n|{−µ}〉. (4.19)

9In the numerics below, the phase is found for a given scaling state at small N , by explicitly comparing

its dual with its conjugate, and stays the same as N is increased.
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Meanwhile, the pairs of conjugate states in a given sector of Sz are, as discussed in sec-

tion 4.2, related through a change of signs for all the Bethe roots, which is precisely the

action of parity on states as seen in (4.17). Taken together, we find in particular that (4.9a)

and (4.9b) can be turned into a much stronger statement:

Strong duality. Let Vα,ᾱ, Vᾱc,αc and W,W c be a pair of conjugate primary states

and their respective null states, as defined in connection to (4.9a)–(4.9b), and Ar,s the

corresponding combination of Virasoro generators. We here denote the corresponding

scaling states and lattice operators by calligraphic letters, e.g. V[N ]α,ᾱ. At each finite

size N — large enough to accommodate the states of interest — we have the following

equality of the matrix elements:

〈W[N ]|Ar,s[N ]|Vα,ᾱ[N ]〉 = (phase)〈V̄αc,αc [N ]|Ā‡r,s[N ]|Wc[N ]〉 . (4.20a)

The same type of duality holds when Vα,ᾱ has a degenerate anti-chiral charge ᾱ = αr,s
or ᾱ = αc

r,s:

〈W[N ]|Ār,s[N ]|Vα,ᾱ[N ]〉 = (phase)〈V̄αc,αc [N ]|A‡r,s[N ]|Wc
[N ]〉 . (4.20b)

Examples of this situation are seen in the numerical results, in tables 3 and 10.

The considerations above hold for the matrix elements of single Temperley-Lieb gen-

erators as well, because of translational invariance (to be discussed in the next section):

〈{µ}|ej |{λ}〉 = (phase)〈{−λ}|ej |{−µ}〉. (4.21)

This is in agreement with the result for the modules W0,q−2 and W0,q2 discussed in the end

of section 4.2. Of the previous examples mentioned, table 10 has exact results at finite size

coming from the Temperley-Lieb structure.

5 Lattice Virasoro in the non-degenerate case

In this section we give a first example of the numerical results obtained in the XXZ spin-

chain representation by the Bethe ansatz. We consider matrix elements of the Koo-Saleur

generator L−1 in the basis of Bethe states, in the non-degenerate case where neither α nor

ᾱ leads to a degenerate conformal weight hr,s. We begin by some general considerations

with regard to lattice momentum, which also carry over to the degenerate case.

5.1 Koo-Saleur generators and lattice momentum

Thanks to the smearing of the twist in (2.15) the Bethe states are invariant under the

usual translation operator, and we can sort them by their (rescaled) lattice momentum

p = 0, 1, . . . , N − 1 defined in (4.4). We define the matrix Ln[N ] so that (Ln[N ])ab is the

matrix element 〈a|Ln[N ]|b〉 of the Koo-Saleur generator Ln[N ] between two Bethe states

at system size N . Ln[N ] can then be written as a block-diagonal matrix, with the blocks
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indexed by values of p. We now show how, thanks to the relations of the affine Temperley-

Lieb algebra, only a few blocks of this matrix can have non-zero elements, namely the ones

where the lattice momentum is shifted by precisely n between |a〉 and |b〉.
Recall that by (2.2) the generator of lattice translation u, fulfils ueju

−1 = ej+1. Mean-

while, when acting on a Bethe state |v〉 belonging to the sector of lattice momentum p, the

result is a phase u|v〉 = ei2πp/N |v〉. Together these relations determine the behaviour of

Ln|v〉 under translation. Let us inspect the first part of the j’th term within the expression

for Ln (2.24):

u einj2π/Nej |v〉 = einj2π/Nej+1e
ip2π/N |v〉 = ei(p−n)2π/Nein(j+1)2π/Nej+1|v〉. (5.1)

Up to a phase this is the corresponding part of the (j + 1)’th term, which can be turned

into the j’th by a relabelling of the indices within the sum. Applying the same procedure

to the second part of the j’th term and summing over j yields in total

uLn|v〉 = ei(p−n)2π/NLn|v〉, (5.2)

i.e., we find that Ln|v〉 is also a momentum eigenstate, and will therefore be orthogonal to

any Bethe state with lattice momentum different than p − n. In other words: already at

finite size, the conformal spin must change by the proper integer value when we raise or

lower a state using a Koo-Saleur generator.

The relations of the affine Temperley-Lieb algebra can also be used to speed up the

numerics by computing only one term of the sum. Consider the blocks within which the

matrix elements (Ln[N ])ab may be non-zero, i.e., where the Bethe states fulfil u|b〉 =

eip2π/N |b〉 and u|a〉 = ei(p−n)2π/N |a〉, respectively. Let us write Ln[N ] as
∑

j f(ej , ej+1).

By (5.1) we can shift f(ej , ej+1)|b〉 to f(ej+1, ej+2)|b〉 by applying u, at the price of a phase.

Considering the matrix element of a single term and inserting 1 = u−1u, we can let u−1

act to the left. The phases cancel:

〈a|u−1u f(ej , ej+1)|b〉 = e−i(p−n)2π/Nei(p−n)2π/N 〈a|f(ej+1, ej+2)|b〉. (5.3)

We thus see that all terms give the same contributions to the matrix elements within non-

zero blocks of Ln[N ], and we can replace
∑

j f(ej , ej+1) by N f(ej , ej+1) in the numerical

evaluations, gaining a factor N in speed.

5.2 Numerical results for L−1

We now show the first non-zero matrix elements of the matrix L−1[N ] for increasingly large

system size N and compare with the values we would expect from CFT computations. In

this example we consider Sz = 1, e = 0 at φ = 1/10, x = π. (Recall (1.1): q = eiγ =

eiπ/(x+1), and (1.2): eφ = φ
2π ). For non-zero matrix elements, the lattice momentum must

shift by p→ p− n = p+ 1 between the two Bethe states.

We shall consider the block between states in the momentum sectors p = 0 (denoted

|u1〉, |u2〉, . . .) and p = 1 (denoted |v1〉, |v2〉, . . .). The set of Bethe integers for the lowest-

energy state in the p = 0 sector, which we denote by |u1〉, allows us to identify it with

a primary state Vα,ᾱ, which by (3.34) has a chiral charge α = − 1
40πα+ + α0 − 1

2α− =
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0.56495148. The other states we consider will be its descendants. At N = 10 we find the

three lowest states in each sector, sorted by energy, for the following Bethe integers:10

p = 0:

|u1〉 ↔
{
−3

2
,−1

2
,
1

2
,
3

2

}
↔ ◦ ◦ • •|• • ◦ ◦ ↔ primary state Vα,ᾱ

|u2〉 ↔
{
−5

2
,−1

2
,
1

2
,
5

2

}
↔ ◦ • ◦ •|• ◦ • ◦ ↔ chiral and anti-chiral level 1

|u3〉 ↔
{
−5

2
,−3

2
,
3

2
,
5

2

}
↔ ◦ • • ◦|◦ • • ◦ ↔ chiral and anti-chiral level 2

(5.4)

p = 1:

|v1〉 ↔
{
−5

2
,−1

2
,
1

2
,
3

2

}
↔ ◦ • ◦ •|• • ◦ ◦ ↔ chiral level 1

|v2〉 ↔
{
−5

2
,−3

2
,
1

2
,
5

2

}
↔ ◦ • • ◦|• ◦ • ◦

|v3〉 ↔
{
−7

2
,−1

2
,
1

2
,
5

2

}
↔ • ◦ ◦ •|• ◦ • ◦

 ↔ chiral level 2 and anti-chiral level 1

(5.5)

These patterns extend to larger N by padding with filled circles in the middle. Taking the

example of |u2〉 we find ◦ • ◦ •|• ◦ • ◦ → ◦ • ◦ • •| • ◦ • ◦ → ◦ • ◦ • •|• • ◦ • ◦ → . . ..

Recall the state space (3.40). Since there is only one state at level 1 we can immediately

identify |v1〉 with a−1Vα,ᾱ and |u2〉 with a−1ā−1Vα,ᾱ. Meanwhile at level 2 there are two

states, and the states |v2〉 and |v3〉 will correspond to an orthonormal basis for the two-

dimensional vector space of a2
−1ā−1Vα,ᾱ and a−2ā−1Vα,ᾱ. Finally |u3〉 corresponds to one

basis vector in an orthonormal basis for the four-dimensional vector space of states at

chiral and anti-chiral level 2, the other three basis vectors being found by considering

scaling states of higher energy.

Conjectures for the matrix elements:

• As in section 3.4 we have L−1Vα,ᾱ =
√

2αa−1Vα,ᾱ, leading to the conjectured value

〈a−1Vα,ᾱ|L−1|Vα,ᾱ〉 =
√

2α = 0.79896205 for the matrix element (L−1[N ])v1,u1
at N → ∞. We can also find this value by considering the norm squared

〈L−1Vα,ᾱ|L−1Vα,ᾱ〉 = 〈Vα,ᾱ|L†−1L−1Vα,ᾱ〉, where L†−1 = L1 + 2
√

2α0a1 by (3.42).

Using (3.39) and (3.41) we find L†−1L−1Vα,ᾱ = 2α2Vα,ᾱ.11

• The latter method carries over most easily to the next two matrix elements that

we wish to consider: (L−1[N ])v2,u2 and (L−1[N ])v3,u2 . We find the norm squared

10Here we see an example of half-integer “Bethe integers”, since this is the maximally packed symmetric

distribution around zero for four roots.
11In general, the calculations of this type that are seen in this paper have been performed by adapting

the Mathematica notebook “Virasoro” by M. Headrick, available at http://people.brandeis.edu/ head-

rick/Mathematica/index.html.
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〈L−1a−1Vα,ᾱ|L−1a−1Vα,ᾱ〉 = 2(1+2α2). Since |v2〉 and |v3〉 provide a basis, we expect

to recover the full norm
√

2(1 + 2α2) = 1.81016041 by combining the projections on

these states as
√

(L−1[N ])2
v2,u2 + (L−1[N ])2

v3,u2 at N →∞.

• All other matrix elements among the states in (5.4) and (5.5) are conjectured to be

zero in the limit, since the chiral levels do not match.

Using the form factors computed in appendix B we can obtain the matrix elements

(L−1[N ])viuj for increasingly large system size N . We then perform a polynomial extrapo-

lation in 1/N to approximate the value at N →∞. This is shown in table 1 for i = 1, j = 1

and i = 2, j = 1.

The other seven matrix elements between the Bethe states listed above are found in

the same fashion, and we do not write out the corresponding columns in table 1. The

results of the extrapolation p35 for all nine matrix elements are:

L−1[N ]
N→∞−−−−→
p35

p=0 p=1 . . .



0 0 . . . p=0
0.79896858 −3.49 · 10−6 −5.407 · 10−5 . . .

−4.558 · 10−5 1.80729191 −2.66 · 10−6

−1.722 · 10−5 0.1039298 2 · 10−8

...
. . .

 0 p=1

... . . .
...

(5.6)

We compare the extrapolation of (L−1)v1,u1 to the conjectured value of 0.79896205, and

we compare the total contribution of the extrapolations of (L−1)v2,u2 and (L−1)v3,u2 ,√
1.807291912 + 0.10392982 = 1.81027773, to the conjectured value of 1.81016041. All

other matrix elements are conjectured to be zero. We see that we overall obtain a precision

of at least around 10−4 by considering system sizes up to N = 80.

We conclude this section with a note on the six matrix elements that are conjectured

to be zero, whose values are small but non-zero at finite size. We shall call such matrix

elements “parasitic couplings”. They play an important role when considering products

and commutators of Koo-Saleur generators. Consider a matrix element of the product

of two Koo-Saleur generators, which can be decomposed into a sum over all Bethe states

as 〈a|LnLm|b〉 =
∑

x〈a|Ln|x〉〈x|Lm|b〉. Even if each parasitic coupling disappears in

the limit N → ∞, the number of parasitic couplings in the sum will grow rapidly, and

may yield a finite contribution. Until this is further explored, one cannot assume that

limits of products give the same results as products of limits. As a particular example,

this non-interchangeability of limits applies when the products under consideration form
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N 〈v1|L−1|u1〉 〈v2|L−1|u1〉
10 0.73934396 0.01866525

12 0.75628984 0.0178073

14 0.76689996 0.01621625

16 0.77397144 0.01457925

18 0.77891781 0.01309015

20 0.78251286 0.01178876

22 0.78520823 0.01066614

24 0.7872816 0.00969992

26 0.78891124 0.00886622

28 0.79021581 0.00814359

30 0.79127676 0.0075138

32 0.79215151 0.00696179

34 0.79288148 0.00647521...
...

...

...
...

...

36 0.79349714 0.00604396

38 0.79402136 0.00565977

40 0.79447152 0.00531584

42 0.79486106 0.00500654

44 0.79520048 0.0047272

46 0.79549811 0.0044739

48 0.79576061 0.00424336

50 0.79599334 0.00403281

52 0.7962007 0.00383989

54 0.79638628 0.00366257

56 0.79655307 0.00349914

58 0.79670354 0.00334811

60 0.79683979 0.00320817...
...

...

...
...

...

62 0.79696357 0.00307821

64 0.79707638 0.00295725

66 0.79717949 0.00284442

68 0.79727401 0.00273896

70 0.79736087 0.00264022

72 0.79744089 0.0025476

74 0.79751479 0.00246056

76 0.79758317 0.00237865

78 0.79764659 0.00230144

80 0.79770552 0.00222856

p25 0.79896913 -4.846 · 10−5

p30 0.79896944 -5.025 · 10−5

p35 0.79896858 -4.558 · 10−5

conj 0.79896205 0

Table 1. Matrix elements (L−1[N ])viuj
for i = 1, j = 1 and i = 2, j = 1, where the scaling states

|uj〉 and |vi〉 follow the patterns of Bethe integers shown in (5.4) and (5.5). The numerical values

are given for the case of Sz = 1, e = 0, x = π, φ = 1/10 for system size N up to 80, after which

polynomial extrapolations pn(1/N) of degrees n = 25, 30, 35 to all the data points are made in order

to approximate the value at N →∞.

a commutator of two generators. Indeed, the issue of limits and commutators was raised

already in [1], where it was shown that the limit of commutators must sometimes differ

from the commutators of limits. We shall return to this discussion in section 7.

6 Lattice Virasoro in the degenerate case

In this section we turn to one of our main goals of this paper: finding the precise nature

of modules occurring in the XXZ spin chain representation in degenerate cases, possibly

also with non-generic φ. Compared to the loop representation studied in [2], the XXZ spin

chain representation allows for both standard and co-standard Temperley-Lieb modules at

non-generic φ. The Virasoro modules in the limit may differ from those found in the loop

representation both at generic and non-generic φ. Note that only the detailed structure

of the representations is affected by the non-genericity and degeneracy: eigenvalues of the

Hamiltonian and momentum — and thus values of the conformal weights — are perfectly

regular at points where φ fulfils (2.4) or the conformal weights are degenerate (or, in fact,

even when q is a root of unity).

We here consider the modules where α (or ᾱ) is such that h (or h̄) is degenerate. In

this section we shall take x = π as our type-example of q generic, but we shall also show

convergence of the central charge for a range of values x /∈ Q. Cases where q is a root of

unity will be considered in a later paper [27].

We consider two types of situations where degenerate conformal weights appear: j 6= 0,

eiφ = 1 and j = 0, eiφ = q±2. Note that for the latter, the resonance criterion eiφ = q2j+2k

— see (2.4) — is met, but not for the former.
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6.1 Modules Wj,1 for j 6= 0

While the modules Wj,1 for j 6= 0 remain irreducible for generic q, the generating function

of levels (see (3.5)) reads

Fj,1 =
q−c/24q̄−c/24

P (q)P (q̄)

∑
e∈Z

qhe,−j q̄he,j (6.1)

and involves degenerate values of the conformal weights. Let us first consider Sz = j > 0.

As discussed in section 4.2, the chiral weight h will be degenerate for e < 0, and the

corresponding module is conjectured to have the co-Verma structure

Ṽ
(d)
e,−j :

Xe,−j
•

◦
Ve,j

. (6.2)

Meanwhile the anti-chiral weight h̄ will be degenerate for e > 0, and the corresponding

module is conjectured to have the Verma structure

V
(d)
e,j :

Xe,j
◦

•
Ve,−j

. (6.3)

For Sz = −j < 0 we find the same conjecture up to a switch of the chiral and anti-chiral

sectors.

In appendix C.1 we present the numerical results exploring the modules appearing in

the scaling limit of Wj,1 for j = 1, 2. The results are consistent with the conjectured corre-

spondence between the charges in the Coulomb gas and the lattice parameters; see (3.34).

Based on these results we claim that we have the general result:

XXZ spin-chain modules with non-zero magnetization. For j > 0 we have the

scaling limits

Sz = j; Wj,1 7→

(⊕
e>0

Ve,−j ⊗ V
(d)
e,j

)
⊕
(
V0,−j ⊗ V0,j

)
⊕

(⊕
e<0

Ṽ
(d)
e,−j ⊗ Ve,j

)
, (6.4a)

Sz =−j; Wj,1 7→

(⊕
e>0

V
(d)
e,j ⊗ Ve,−j

)
⊕
(
V0,j ⊗ V0,−j

)
⊕

(⊕
e<0

Ve,j ⊗ Ṽ
(d)
e,−j

)
. (6.4b)

The concise notation means that, for Sz = j > 0, the states with conformal weights

(he,−j , he,j) with e < 0 are annihilated by the combination of chiral Virasoro generators
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corresponding to the degenerate conformal weight he,j , while for e > 0 there appears a null

state for the antichiral Virasoro algebra at level ej. Acting with the lowering operators

Ae,−j , Āe,j on the primary state Vα,ᾱ(e, Sz) (with charges α(e, Sz), ᾱ(e, Sz) given by (3.34)

for eφ = 0 and Sz = ±j as specified) we find

Sz = j > 0 :

{
Āe,jVα,ᾱ(e, j) 6= 0 , for e > 0 (h̄ = he,j) ,

Ae,−jVα,ᾱ(e, j) = 0 , for e < 0 (h = he,−j = h−e,j) ,
(6.5a)

while for negative Sz we have instead:

Sz = −j < 0 :

{
Ae,jVα,ᾱ(e,−j) 6= 0 , for e > 0 (h = he,j) ,

Āe,−jVα,ᾱ(e,−j) = 0 , for e < 0 (h̄ = he,−j = h−e,j) .
(6.5b)

The converse holds when acting with the raising operators A‡e,−j , Ā
‡
e,j on the corresponding

level |ej| states, as in the example (3.44) shown in section 3.4 for |ej| = 1.

We observe that H given by (2.12) is invariant under q → q−1 and Sz → −Sz. It is

also invariant under q → q−1 and parity m → N + 1 − m (where m denotes the lattice

coordinate). Thus, we expect that the XXZ modules for Sz and −Sz give rise to modules

identical up to an exchange of the chiral and antichiral sectors, in agreement with this

discussion.

6.2 Modules W0,q±2

We now switch to the modules W0,q2 and W0,q−2 as defined in (2.21). There will be several

differences compared to the case of Wj,1. First, the resonance criterion (2.4) is fulfilled.

Second, due to having Sz = 0, the chiral and anti-chiral sectors will have same charges (3.34)

and play the same role. Third, with Sz = 0 the lattice momentum (4.3) will change by

∆p = N
2 whenever the Bethe integers are shifted one step. Since the lattice momentum

p is defined modulo the system size, as are the Bethe integers themselves, we cannot

distinguish an electric excitation e from −e and only the absolute value |e| matters.

For the module W0,q2 we have from (3.5)

F0,q2 =
q−c/24q̄−c/24

P (q)P (q̄)

∑
n∈Z

qhn+1/(x+1),0 q̄hn+1/(x+1),0

=
q−c/24q̄−c/24

P (q)P (q̄)

∑
n∈Z

qhn,1 q̄hn,1 . (6.6)

Note that the dual module W0,q−2 leads to the same generating function of levels in the

continuum limit. And yet, the nature of the Virasoro modules is profoundly different in

both cases, in accordance with the discussion made in section 4. We find the following

result:
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XXZ spin-chain modules with zero magnetization. We have the scaling limits

W0,q2 7→

(⊕
n>0

Ṽ
(d)
n,1 ⊗ Ṽ

(d)
n,1

)
⊕
(
V0,1 ⊗ V0,1

)
, (6.7a)

W0,q−2 7→

(⊕
n>0

V
(d)
n,1 ⊗ V

(d)
n,1

)
⊕
(
V0,1 ⊗ V0,1

)
. (6.7b)

Note that since we are in the Sz = 0 sector, we expect the problem to be symmetric under

the exchange of chiral and antichiral sectors, in agreement with this conjecture.

We discuss numerical checks of this statement below, but it is (partly) a simple con-

sequence of the structure of the Temperley-Lieb algebra modules themselves, since the Ln

are made out of ej . The numerical results in support of (6.7) are presented in appendix C.2.

Having shown that the identity state 1 belongs to the module W0,q2 , we can also

directly measure the central charge for various values of x /∈ Q, through a numerical study

of the matrix element

〈1|L2L−2|1〉 =
c

2
. (6.8)

While the discussion has so far focussed on matrix elements of a single generator Ln,

we encounter here for the first time an example of matrix elements of a product of two

generators. To follow up on the issue of “parasitic couplings” — briefly discussed at the

end of section 5.2 — we employ two different methods to evaluate this matrix element. In

the first (denoted “No cutoff” in the caption to figure 2), we simply compute the total norm

of (6.8), whereas in the second (denoted “Cutoff”) we insert a projector onto the scaling

states in-between the product of L2 and L−2 before computing the norm. We show in the

left panel of figure 2 how these finite-size estimates converge towards the conjectured CFT

value c = 1−24α2
0, for x ranging from 4π/10 to 21π/10. We also display, in the right panel,

the relative convergence, where we have divided through by the conjectured central charge.

It is seen that although both methods give results close to the conjectured result, only the

second one (“Cutoff”) leads to full agreement over the whole range of x-values. The reason

is that the first method (“No cutoff”) suffers from parasitic couplings to non-scaling states.

We defer the full discussion of this crucial phenomenon to section 7.

7 Anomalies, and the convergence of the Koo-Saleur generators

The restriction to scaling states is crucial if one hopes to recover the Virasoro algebra

relations (3.8) for the generators Ln, obtained from the Temperley-Lieb algebra by the

Koo-Saleur formulae (2.24). Otherwise — for instance — since the Ln act on a finite-

dimensional Hilbert space for N finite, we would necessarily have that Tr [Ln,L−n] = 0

(by cyclicity of the trace), preventing the appearance of the central-charge “anomalous”

term in (3.8). The procedure to correct this is well known [54] in free-field theory — e.g.,

for the Ising model or the free boson — and involves first restricting to excitations within
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Figure 2. Finite-size estimates for the central charge c, obtained from (6.8) for various N , plotted

against x
π . The left panel shows the actual estimates for c, and the right panel their ratio with

respect to the CFT result (“Conj”). We display the results for N = 10, 14, . . . , 22 obtained by two

methods, “No cutoff” and “Cutoff”, as explained in the main text. Also shown are extrapolations

“extr” of the two data sets, obtained from a 7th-order polynomial fit to an extended set of sizes

N = 8, 10, . . . , 22.

a certain energy window, then calculating commutators, and finally taking the limit where

the energy window goes to infinity.

In other words, the continuum limit of a commutator is not necessarily the commutator

of the continuum limit. The difference between these two objects arises because of what

we will call “parasitic couplings”, that is, couplings that converge to zero as N →∞, but

are non-zero at finite N . In computing, for instance, a matrix element such as (6.8) we

encounter, in principle, an infinity of “unwanted terms” where L−2 acting on |1〉 couples

weakly to, in particular, high-energy states, and L2 in turn couples these states back to

〈1|. While we expect each of these unwanted terms to vanish as N →∞, it is in principle

possible that their sum builds up to a finite quantity [54, 55].

This phenomenon was already observed by Koo and Saleur (KS12) [1], whose observa-

tions are reproduced and generalized in figure 2. We have already discussed the evaluation

of the corresponding matrix element (6.8), by computing either full norms or projections

(denoted “No cutoff” and “Cutoff” in the figure). Details about precisely how the projected

results were obtained will be given below, in section 7.1.

In KS (3.42) an analytical condition was given under which the central-charge term

in (3.8) would be correctly produced for the Ln generators, despite of the possibility

of parasitic couplings. This condition turns out to be satisfied precisely at the values

x = 1, 2, 3, corresponding respectively to dense polymers, percolation and the Ising model.

Close inspection of figure 2 indeed reveals the perfect agreement between full norms and

projections for x = 1, 2, 3 (note that c = 0 at x = 2)—however, the agreement is not exact

in-between these integers, e.g., at x = 2.5.

12We henceforth refer to equation (x.y) of Koo and Saleur [1] in the form KS (x.y).
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Although the non-generic cases of x integer are not within the scope of the present

paper, we here make an exception to briefly comment on the fact that the exact results

found in KS can be seen to match our knowledge about the affine TL modules W0,q±2 at

x = 1, 2, 3. For instance, at x = 3 we observe numerically that there is only one state V

at the correct lattice momentum such that both 〈V |ei|1〉 and 〈1|ei|V 〉 are non-zero, while

at, e.g., x = 4 there are several. At x generic, the number of such states is observed to be

equal to the dimension of the relevant momentum sector of W0,q±2 , as it should. A more

clear-cut example occurs at x = 2 (i.e., c = 0), where the identity |1〉 is the only state in

the [0, q2] module (in that case, a simple Jones-Temperley-Lieb module of dimension 1), so

there clearly is nothing at level 2 to couple to at all. As a consequence, the determination

of c by the study of the matrix element (6.8) is exactly zero for any finite size N . Clearly

there is much more to be said about these non-generic cases, and this will be the subject

of a separate publication [27].

7.1 “Scaling-weak” convergence

The precise mathematical status of the convergence of the Koo-Saleur generators to the

Virasoro generators is clearly a problem beyond the scope of this article. A very conserva-

tive statement, which we believe to hold true, is that 1) matrix elements of lattice Virasoro

generators converge, when evaluated between scaling states, to their expected continuum

limit and 2) matrix elements of products of lattice Virasoro generators converge, when

evaluated between scaling states, to their expected continuum limit when the products are

calculated using only such intermediate states which are scaling states, and using a double-

limit procedure. While the meaning of statement 1) is obvious, the meaning of 2) will be

explained in more detail below. We remind the reader that a sequence fn in a Hilbert space

is said to converge weakly to f , if the inner products 〈fn|g〉 converge to 〈f |g〉 for all states

g in the space. Accordingly we shall refer to the above phenomenon as scaling-weak con-

vergence.13 It is indeed a weak convergence, as the statement is only for matrix elements,

but it is weaker than what is usually called weak convergence because of the restriction to

scaling states, in particular in the intermediate states encountered when forming products

of operators. In practice, this scaling-weak convergence can be implemented by the double

limit procedure familiar to physicists, as discussed already in [1]. We can illustrate it more

technically by writing some simple equations.

As we saw in figure 2, computing 〈1|L2L−2|1〉 via the full norm (“No cutoff”) of the

matrix element does not quite give the conjectured result c
2 . We can write

〈1|L2L−2|1〉 =

S∑
j=1

〈1|L2|v(j)〉〈v(j)|L−2|1〉 , (7.1)

where S denotes the number of states (in the relevant momentum sector). We see that even

if matrix elements of single Koo-Saleur generators converge towards those of the Virasoro

generators, this does not guarantee weak convergence overall. As discussed at the end of

section 5.2, even if each parasitic matrix element 〈v(j)|L−2|1〉 in (7.1) converges to zero as

13This is an example of what is sometimes called “conditioned weak convergence”.
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N → ∞, the simultaneous rapid growth of S can destroy the convergence of the product

of generators. To deal with this issue we can consider some fixed cutoff,

Smax∑
j=1

〈1|L2|v(j)〉〈v(j)|L−2|1〉 (7.2)

(where the intermediate states are supposed to be conveniently ordered), sending the cutoff

Smax →∞ after taking the scaling limit N →∞. The right-hand side of figure 2 illustrates

the most extreme cutoff, where we do not include any parasitic matrix elements at all, that

is to say, “Cutoff” means that the intermediate states are just the Smax = 2 states existing

at chiral level 2.

7.2 A closer look at limits and commutators

A priori, it looks like any product of Koo-Saleur generators might be strongly affected

by parasitic couplings. We have, however, found serious evidence that only the central

charge can come out wrong in calculations. In particular we shall in this section consider

commutators, and our belief is that the scaling limit of Koo-Saleur commutators is the

commutator of the scaling limit, except for the anomalous central charge term. This is

probably expected on general grounds. After all, the Virasoro algebra is just a mode

reformulation of the general stress-energy tensor OPE

T (z)T (w) =
c

2(z − w)4
+

2T (w)

(z − w)2
+

∂T

z − w
+ reg. (7.3)

The second term is fixed by the dimension of T (z), which — like for all conserved currents

— is not renormalized, and the third one by consistency under the exchange z ↔ w. Only

the first term is anomalous. Going back to the original paper by Koo and Saleur [1], there

were some initial checks of how the limit of [H,P] behaves. In this section we return to

this question, exploring this kind of commutator in more detail. Our starting point is KS

(3.30), which leads to

[Lp+n + L̄−p−n,L−p − L̄p]

= 2

(
N

2π

)2( γ

π sin γ

)3
{
e2iπn/N sin

(
3πp+ 2πn

N

) N∑
j=1

e2iπnj/N [ej , [ej+1, ej+2]]

+ e2iπn(1/2)/N sin

(
πp+ πn

N

) N∑
j=1

e2iπnj/N
√
Q(ejej+1 + ej+1ej)

− 2 sin
(πp
N

) N∑
j=1

e2iπnj/Nej

}
.

(7.4)

If we could exchange freely limits and commutators, the fact that Ln 7→ Ln (resp. (L̄n 7→
L̄n) would imply that the left-hand side of (7.4) converges to[

Lp+n + L̄−p−n, L−p − L̄p
]

= (2p+ n)
(
Ln + L̄−n

)
, for n 6= 0 , (7.5a)[

Lp + L̄−p, L−p − L̄p
]

= 2p
(
L0 + L̄0 −

c

12

)
+ p3 c

6
, for n = 0 . (7.5b)
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It is in fact known that (7.4) 7→ (7.5) when x = 1 [22], or when x = 3 if one restricts to the

Ising subspace of the XXZ chain [1]. It is also known that (7.4) 67→ (7.5) for other values

of x than these and the x = 2 case (see KS (3.42)): our aim is to investigate in more detail

what, exactly, fails.

General considerations. When studying the behaviour of (7.4) when acting on eigen-

states of the lattice translation operator, it is convenient to first recall the discussion in

section 5.1, which yields two facts:

• Due to the relative phase e2iπnj/N , matrix elements of (7.4) between two states are

only non-zero when the lattice momentum p of the states differs by precisely n.

• For such non-zero matrix elements, it suffices to evaluate a single summand, say

at j = 0; the matrix element corresponding to the entire sum is then obtained by

multiplication with N .

We shall in the following use the word term to refer to the separate contributions for a

single, fixed value of j. We note that any term that is constant will only contribute when

considering matrix elements between a Bethe state and itself, since the Bethe states form

an orthonormal basis. In particular, this means that whenever n 6= 0 we can omit any

constant terms, which will allow us to drop normal ordering symbols in the next section.

We note that by the definition in (2.15) ej will act on only two sites in the spin chain,

and that the matrix elements are given by q and eiφ/N — neither of which increases in norm

as N →∞. As such, the matrix elements of a finite number of Temperley-Lieb generators

can at most go towards a constant value as N → ∞. We shall see that this occurs when

matrix elements are between a state and itself — relevant for the n = 0 case — while they

otherwise decrease with N . The numerical results for matrix elements between various

states will be shown for the generic example of x = π. Similar results were found for other

generic and non-generic values of x. We shall consider matrix elements where the various

operators act on either the ground state or one of six low-energy scaling states of vari-

ous types — electric excitation, magnetic excitation, creating a “hole”, twisted boundary

conditions, and combinations of these. (One of these six excited states is excluded from

certain figures, where the matrix elements are exactly zero due to the indecomposability

of W0,q±2 .)

7.2.1 The case of n 6= 0

We now turn back to the comparison between (7.4) and (7.5). The first observa-

tion is that the right-hand-side of (7.4) contains trigonometric functions of p/N, n/N

while the right-hand side of (7.5) is linear in p, n. While this discrepancy could, by

itself, explain why (7.4) 67→ (7.5), that is in fact not the case. Expanding the si-

nuses in powers of their arguments (at fixed p, n and with N large), it turns out that

whenever n 6= 0 the terms in (7.4) that are subleading in the expansion fall off fast

enough separately (this will not be the case at n = 0), compared to the leading term

(2p + n)
{

2[ej , [ej+1, ej+2]] +
√
Q(ejej+1 + ej+1ej)

}
. The leading term by itself goes as
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O(1/N2) since the whole right-hand side of (7.4) is a term of O(1). Since the subleading

terms come with prefactors 1/N2, 1/N4, . . . relative to this leading term, it is enough that

[ej , [ej+1, ej+2]], (ejej+1 + ej+1ej) and ej on their own have matrix elements that decay

with N (i.e., being of order O(1/N r) with r > 0). If they furthermore decay faster than

1/N (r > 1) we may also ignore the subleading terms in the expansion of exponentials in

n/N , so that we may put all phase factors on the same form. Numerical results indicate

that this indeed holds: the case of n = −1 is shown in figure 3, with slopes around r = 2,

while the case of n = −2 is shown in figure 8 in appendix E — here the finite size effects

are larger, but the results still indicate r > 1. Keeping terms of leading order only, we have

[Lp+n + L̄−p−n,L−p − L̄p]

=
N

2π

(
γ

π sin γ

)3
{

(3p+ 2n)

N∑
j=1

e2iπn(j+1)/N [ej , [ej+1, ej+2]]

+ (p+ n)
√
Q

2L∑
j=1

e2iπn(j+1)/N (ejej+1 + ej+1ej)− 2p

N∑
j=1

e2iπn(j+1)/Nej

}

+O

(
1

N r−1

)
. (7.6)

We can now analyze the right-hand side by using a family of operators introduced in [1] as

alternatives to the basic generators L, L̄.14 From the expression of what is denoted ĥ(3)

in KS (2.54) and using the result KS (2.58)15 we have that

N

2π

(
γ

π sin γ

)3 N∑
j=1

e2iπn(j+1)/N :2[ej , [ej+1, ej+2]] +
√
Q(ejej+1 + ej+1ej):

7→
(
Ln + L̄−n −

c

12
δn,0

)
, (7.7)

where normal-order notation here means that the average in the ground state has been

subtracted. As discussed at the beginning of this section, this normal ordering does not

change the matrix elements when n 6= 0, and we shall use the left-hand side of (7.7) without

normal ordering for the rest of this subsection.

Grouping by p and n and dividing through by N
2π

(
γ

π sin γ

)3
we have from (7.6) the terms

2p

[
3

2

N∑
j=1

e2iπn(j+1)/N [ej , [ej+1, ej+2]]

+

√
Q

2

N∑
j=1

e2iπn(j+1)/Nejej+1 + ej+1ej −
N∑
j=1

e2iπn(j+1)/Nej

]

+ n

[
2

N∑
j=1

e2iπn(j+1)/N [ej , [ej+1, ej+2]] +
√
Q

N∑
j=1

e2iπn(j+1)/Nejej+1 + ej+1ej

]
, (7.8)

14These alternatives were obtained by using the fact that all derivatives of the logarithm of the transfer

matrix with respect to the spectral parameter u at u = 0 produce terms converging, in the weak-scaling

sense, to the Hamiltonian and momentum of the associated CFT.
15Generalized to n 6= 0 in the same way as in KS (3.33).

– 42 –



J
H
E
P
0
2
(
2
0
2
1
)
1
3
0

Figure 3. Absolute value of matrix elements, plotted with logarithmically scaled axes for sizes

N = 10, 12, . . . , 24. A linear fit is performed, excluding the lowest two sizes. The fit indicates that

the matrix elements decay as O(1/Nr), where the estimated slope r is shown on each curve. The

ground state |gs〉 is given for the lattice parameters Sz = e = eφ = p = 0. For the other choices of

state |v〉 any non-zero lattice parameter is specified, with the others remaining zero. For each state

|v〉 the state |u〉 corresponds to the same choice of lattice parameters up to a change in momentum

sector, p → p + 1. The lowest energy state for each choice of lattice parameters is used. The

absolute values of the matrix elements are independent of j.

from which we subtract

2p

[
2

N∑
j=1

e2iπn(j+1)/N [ej , [ej+1, ej+2]] +
√
Q

N∑
j=1

e2iπn(j+1)/Nejej+1 + ej+1ej

]

+ n

[
2

N∑
j=1

e2iπn(j+1)/N [ej , [ej+1, ej+2]] +
√
Q

N∑
j=1

e2iπn(j+1)/Nejej+1 + ej+1ej

]
. (7.9)

We thus find, thanks to (7.7), that in the scaling limit [Lp+n + L̄−p−n,L−p− L̄p] behaves

as Ln + L̄−n (recall, n 6= 0 in this section) plus the following expression:

N

2π

(
γ

π sin γ

)3

2p

[
− 1

2

N∑
j=1

e2iπn(j+1)/N [ej , [ej+1, ej+2]]

−
√
Q

2

N∑
j=1

e2iπn(j+1)/Nejej+1 + ej+1ej −
N∑
j=1

e2iπn(j+1)/Nej

]
. (7.10)
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Figure 4. Absolute value of matrix elements of R as defined in (7.11), plotted using the same

conventions as in figure 3.

In order to have (7.4) 7→ (7.5) at n 6= 0, we need the matrix elements of (7.10) between

any two relevant scaling states (∆p = n) to tend to zero with N . As discussed in the

beginning of this section, it suffices to evaluate a single summand for a fixed value of j.

For this reason we define the remainder R at n 6= 0 to be

R = −[ej , [ej+1, ej+2]]−
√
Q(ejej+1 + ej+1ej)− 2ej . (7.11)

In order for the matrix elements of (7.10) between scaling states to tend to zero with N ,

we need that matrix elements of R be of O(1/N r) for r strictly larger than 2. Results for

n = −1 are shown in figure 4, while results for n = −2 are shown in figure 9 in appendix E.

These two cases seem to have r > 2 indeed, which would indicate that the limit of the

commutator is indeed the commutator of the limits for the states under consideration.

Therefore, we have evidence for the following materialization of (7.5a):

Exchange of commutators and limits. We have the conjecture

[Lp+n + L̄−p−n,L−p − L̄p] 7→ (2p+ n)(Ln + L̄−n) , for n 6= 0 . (7.12)

7.2.2 The case of n = 0

In the case of n = 0, however, we do not obtain the falloff for the individual terms seen

in figure 3. Indeed, to stand any chance of recovering the desired central-charge terms

in (7.5b) we must have constant contributions. In figure 5 we see that the matrix elements

of the individual terms between the ground state and itself indeed seem to stay constant as

N increases, while they decrease as before between the ground state and the first excited

state within the same momentum sector (see figure 10 in appendix E).

While we must now consider both linear and cubic terms in the expansion of the

sinuses, we can still ignore the quintic and higher terms. We also no longer need to expand

any exponentials. This means that most of the derivation of R above is still valid, as long

as we apply it to the linear term in n. There is only one modification we need to make,
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Figure 5. Absolute value of matrix elements, plotted using the same conventions as in figure 3

but with the choice of |u〉 = |v〉. The operators are here normal ordered: :O: ≡ O − O∞ with O∞
being the ground state expectation value as N → ∞. This value is given for ej in (2.9), and for

ejej+1 + ej+1ej and [ej , [ej+1, ej+2]] in (7.21).

compared to (7.11): when n = 0 the normal ordering of (7.7) becomes important, and we

need to subtract from 2[ej , [ej+1, ej+2]] +
√
Q(ejej+1 + ej+1ej) its ground-state expectation

value 4 sin3γ I1, where the constant I1 follows from the Bethe ansatz [1]

I1 =

∫ ∞
−∞

t2
sinh(π − γ)t

sinh(πt) cosh(γt)
dt . (7.13)

Taking this into account we define the remainder at n = 0 as

R = −[ej , [ej+1, ej+2]]−
√
Q(ejej+1 + ej+1ej)− 2ej + 8 sin3γ I1 . (7.14)

Including the cubic terms in the expansion of the trigonometric functions in (7.4) yields

[Lp + L̄−p,L−p − L̄p] (7.15)

=
N

2π

(
γ

π sin γ

)3

p

{
3

N∑
j=1

[ej , [ej+1, ej+2]] +

N∑
j=1

(√
Q(ejej+1 + ej+1ej)− 2ej

)}

− 1

12

π

N

(
γ

π sin γ

)3

p3

{
27

N∑
j=1

[ej , [ej+1, ej+2]] +
N∑
j=1

(√
Q(ejej+1 + ej+1ej)− 2ej

)}

+O

(
1

N2

)
.
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Figure 6. Absolute value of matrix elements of R as defined in (7.11), plotted using the same

conventions as in figure 3 but with the choice of |u〉 = |v〉.

To see whether the term linear in p converges to the desired value we consider matrix

elements of (7.14) numerically as shown in figure 6, which indicates a falloff O(1/N r) for

〈gs|R|gs〉 with an exponent r around 4. We show similar figures for the first few excitations

above the ground state in appendix E. There the value of the slope r in the limit is more

unclear due to larger finite-size effects, but the results still indicate r > 2 for these states.

We now turn our attention to the term ∝ p3 in (7.15), which reads

− 1

12

π

N

(
γ

π sin γ

)3

p3

{
27

N∑
j=1

[ej , [ej+1, ej+2]]+

N∑
j=1

(√
Q(ejej+1+ej+1ej)−2ej

)}
, (7.16)

and evaluate its average in the ground state. From our study of the ∝ p part of (7.15), we

know already that the contribution from the terms Ep ≡ 〈gs|3[ej , [ej+1, ej+2]]+
√
Q(ejej+1+

ej+1ej)− 2ej |gs〉 vanishes as N →∞. This leaves the contribution from 24[ej , [ej+1, ej+2]]

in (7.16) and therefore, in order for (7.4 7→ (7.5) also for n = 0, we would need the following

miraculous identity to hold

Ep3 ≡ [ej , [ej+1, ej+2]]∞ +
π2c

12

(
sin γ

γ

)3
?
= 0 , (7.17a)

where we use the notation [ej , [ej+1, ej+2]]∞ = limN→∞〈gs|[ej , [ej+1, ej+2]]|gs〉. Using re-

sults from the Bethe ansatz, it was shown in [1] (section KS 3.3) that (7.17a) is equivalent to

c
?
= c∗ , (7.17b)

where we have defined

c∗ = − 24γ3I0

π2 sin2γ
+

48γ3

π2
I1. (7.18)

It was furthermore shown in [1] (section KS 3.3) that (7.17) holds true indeed when x =

1, 2, 3, but not for general x. We conjecture that Ep3 will make up for the difference between

the left- and right-hand side of criterion (7.17), that is precisely

Ep3 =
π2

12

(
sin γ

γ

)3

(c− c∗) . (7.19)
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x = 1:

N Ep3

6 -0.09108037

8 -0.04173017

10 -0.02441356

12 -0.01616525

14 -0.01154442

16 -0.00867872

18 -0.00677235

20 -0.00543712

22 -0.00446415

24 -0.00373254

p8 0.0000006

conj 0

x = 1.5:

N Ep3

6 -0.18750921

8 -0.08790715

10 -0.05204436

12 -0.03471144

14 -0.0249148

16 -0.01880414

18 -0.01472315

20 -0.0118568

22 -0.00976384

24 -0.00818762

p8 -0.00011095

conj -0.00011266

x = 2:

N Ep3

6 -0.26295146

8 -0.12396495

10 -0.07352658

12 -0.04905309

14 -0.03519046

16 -0.02653245

18 -0.02074547

20 -0.0166787

22 -0.01370811

24 -0.01147035

p8 0.0000024

conj 0

x = 2.5:

N Ep3

6 -0.3182588

8 -0.15047958

10 -0.08932876

12 -0.05959601

14 -0.04273623

16 -0.03220009

18 -0.0251554

20 -0.02020382

22 -0.01658653

24 -0.01386144

p8 0.00010867

conj 0.00010568

x = 3 :

N Ep3

6 -0.3587194

8 -0.1700361

10 -0.10107585

12 -0.06750028

14 -0.04844759

16 -0.03653616

18 -0.02857005

20 -0.02297004

22 -0.01887873

24 -0.01579641

p8 0.00000334

conj 0

x = 4 :

N Ep3

6 -0.41165366

8 -0.19603869

10 -0.11698482

12 -0.07843206

14 -0.05653502

16 -0.04283788

18 -0.03367441

20 -0.0272313

22 -0.02252338

24 -0.01897619

p8 -0.00079389

conj -0.00079737

x = 6:

N Ep3

6 -0.46366442

8 -0.22244484

10 -0.13377148

12 -0.09046753

14 -0.06585191

16 -0.05044634

18 -0.04013642

20 -0.0328855

22 -0.02758643

24 -0.02359336

p8 -0.00312128

conj -0.00312477

x = 10π:

N Ep3

6 -0.52432884

8 -0.25560287

10 -0.15658134

12 -0.10816223

14 -0.08061811

16 -0.06337137

18 -0.05182545

20 -0.04370333

22 -0.03776655

24 -0.03329234

p8 -0.01034513

conj -0.01034891

Table 2. Comparison of the numerical measures for Ep3 , defined in (7.17a), and its conjectured

value which is the right-hand side of (7.19). The agreement between the extrapolated values and

the conjecture is seen to be excellent, with a precision of the order 10−6 for all values of x. The

same conventions as in table 1 are used for the extrapolated values p8.

The numerics indicate that this is true: the extrapolated values of Ep3 are shown for a

range of x in table 2. That is, the limit of (7.15) when applied to the ground state is

incorrect only for the p3 term, the one that contains the central charge.

Ep3 satisfying the conjecture (7.19) is equivalent to the ground-state expectation value

of [ej , [ej+1, ej+2]] being equal to 2 sin γI0 − 4 sin3 γI1. Combining this with the result

KS (3.41)

[ej , [ej+1, ej+2]]∞ +

√
Q

2
(ejej+1 + ej+1ej)∞ = 2 sin3γ I1 . (7.20)

we can improve (7.20) by conjecturing the values of each of its terms separately:
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Exchange of commutators and limits. We have the results

[ej , [ej+1, ej+2]]∞ = 2 sin γ I0 − 4 sin3γ I1 , (7.21a)

(ejej+1 + ej+1ej)∞ =
6 sin3γ I1 − 2 sin γ I0

cos γ
, (7.21b)

where the integral I0 is defined by (2.10) and I1 by (7.13).

In appendix D we prove these conjectures (so they are actually theorems), by using known

ground state expectation values of spin operators in the XXZ spin chain [56]. In ap-

pendix D.1 we consider the limit γ → 0 corresponding to x→∞, showing that the integrals

in (7.21) take the form of polylogarithms in agreement with the known results for ground

state expectation values of spin operators in the XXX spin chain [57]. We note that the

limit γ → 0 is where the theory is the most interacting, and where the anomaly is the largest

(c = 1). Solving the integrals within (7.19) numerically for increasingly large finite values

of x indicates that Ep3 converges towards its limit of Ep3(x)
∣∣
x→∞ = −0.011 114 954 · · · from

above, meaning that the magnitude of Ep3 is the largest in this limit. We also see that the

effect of parasitic couplings in figure 2 is the most pronounced at large x.

We next turn to the first few excited states. To have the same deviation for the central

term we would need the matrix elements 〈v|[ej , [ej+1, ej+2]]|v〉, for |v〉 any scaling state, to

go towards the same value as for the ground state — that is, we need 〈v| :[ej , [ej+1, ej+2]]:

|v〉 to go to zero. This matrix element is shown in figure 5, where the conjectured ground

state expectation value in (7.21) is used for the normal ordering. We see that it indeed

tends to zero as N → ∞ for all scaling states under consideration, which indicates that

the central term is wrong by a constant term, rather than by an operator. This constant

deviation corresponds precisely to replacing c, as given by (2.25), by the slightly different

value c∗ given in (7.18) in the cubic term ∝ p3. Altogether we have:

Exchange of commutators and limits. We have the conjecture

[Lp + L̄−p,L−p − L̄p] 7→ 2p
(
L0 + L̄0 −

c

12

)
+ p3 c

∗

6
(7.22)

with c given by (2.25) and c∗ given by (7.18).

Having shown by the combination of (7.12) and (7.22) that [Lp+n+L̄−p−n,L−p−L̄p]

is conjectured to have the correct limit up to the central term, it is natural to ask if we

can eliminate the chiral-antichiral “cross-terms” and write the relation for the limit of

[Lp+n,L−p] on its own. In other words: is the limit of the chiral-antichiral commutator

[Lp+n, L̄p] zero? In appendix F we explore this question using the same methodology as in

this section, and show that numerical evidence indeed indicates that the chiral-antichiral

commutator vanishes in the limit:
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Exchange of commutators and limits. We have the conjecture

[Lp+n, L̄p] 7→ 0. (7.23)

Combining the three conjectures (7.12), (7.22) and (7.23) we thus obtain in the scaling

limit a modification of the Virasoro commutation relations (3.8) on the form

[Lm,Ln] = (m− n)Lm+n + δm+n,0
1

12
(m3c∗ −mc) . (7.24)

We can remake figure 2 using this new conjecture. This is done in figure 7, where it is

shown that the effect of the “parasitic couplings” is in agreement with (7.24). We stress

that this conjecture applies for the commutator [L2,L−2] and not for the product L2L−2

alone, as is seen in the figure. We conclude that the limit of commutators is the same as

the commutator of limits up to a modification of the central term.

In figure 7 we also show the modification recently suggested by Shokrian-Zini and

Wang in [25] (Conjecture 5.5), which amounts to changing the phases within the Koo-

Saleur generators (2.24) to

Ln[N ] =
N

4π

− γ

π sin γ

N∑
j=1

ein(j+1/2)2π/N (ej − e∞) + ein(j+1)2π/N iγ

π sin γ
[ej , ej+1]


+
c

24
δn,0 , (7.25a)

L̄n[N ] =
N

4π

− γ

π sin γ

N∑
j=1

e−in(j+1/2)2π/N (ej − e∞)− e−in(j+1)2π/N iγ

π sin γ
[ej , ej+1]


+
c

24
δn,0 . (7.25b)

We find that while the numerical values show a faster convergence, the change of the

central term is the same as with the original Koo-Saleur generators. That the central term

must behave in the same way indeed follows directly from the calculations and numerical

evidence above, where we in particular find that we may shift the phase by a finite amount

without affecting the limit.

Although the relation in (7.24) is no longer the expected relation of the Virasoro algebra

at central charge c, the Jacobi identity would nevertheless be satisfied:

[Lm, [Ln,Lp]] + [Ln, [Lp,Lm]] + [Lp, [Lm,Ln]]

= (n− p)[Lm,Ln+p] + (p−m)[Ln,Lp+m] + (m− n)[Lp,Lm+n]

= δm+n+p,0
1

12

{
(n− p)(m3c∗ −mc) + (p−m)(n3c∗ − nc) + (m− n)(p3c∗ − pc)

}
= 0 . (7.26)

Here, the first equality follows from the fact that all Lm+n+p terms cancel; the second

equality is the application of (7.24); and to establish the third equality, note all terms
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Figure 7. Remake of figure 2. In this remake the commutator [L−2,L2] is used, rather than the

product L−2L2, and no cutoff is taken. This commutator is denoted “Original”. We also show the

result using a modified version of the Koo-Saleur generators given by (7.25), labelled “Modified”.

“Conj*” refers to the result found by applying (7.24), while “Conj” refers to the CFT result as in

figure 2. The same sizes N and method of extrapolation is used as in figure 2, and the extrapolated

values from figure 2 are shown for comparison (“No cutoff” and “Cutoff”).

proportional to c inside the parenthesis cancel out for any values of m,n, p, while those

proportional to c∗ cancel because of the constraint p = −m− n. We could indeed redefine

the generators L0, L̄0 to obtain from (7.24) the relation of the Virasoro algebra at central

charge c∗. This would, however, not resolve the underlying difference between limits of

commutators and commutators of limits.

8 Conclusions

We have first presented in this paper considerable numerical evidence of the validity of

the Koo-Saleur conjecture, namely that Ln 7→ Ln as N → ∞, in the scaling-weak sense.

Thanks to the systematic use of form factors in the numerical computations, we have been

able to increase significantly the size of the systems studied — and thus the accuracy of the

checks — as compared with the pioneering paper [1]. This has allowed us, in particular,

to analyse the structure of the Virasoro modules occurring in the continuum limit of the

XXZ spin chain.

In the degenerate case, where the conjectured conformal weights take values in the

extended Kac table, one crucial result is that for the XXZ spin chain both Verma and

co-Verma modules occur. The difference between Verma and co-Verma is related to the

existence of two conjugate values of the Coulomb-gas charges giving rise to the same scaling

dimension of the corresponding vertex operator. The notion of charge conjugation leads

also to the identity of certain matrix elements, exact in finite size, as expressed in the

result (4.20) about strong duality.

Our main results for the nature of the modules arising in the continuum limit for the

XXZ spin chain representation are given in equations (6.4) and (6.7), complementing the
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results found in [2] for the loop representation. In our next paper [27], we shall use these

techniques to investigate the structure of the Virasoro modules in the case where q is a root

of unity. This will be applied to the understanding of logarithmic CFTs, in particular the

determination of the full “identity module” for c = 0 theories like the sl(2|1) spin chain.

The main mathematical question raised by our results — the exact nature of the

convergence of the Koo-Saleur generators to their continuum limit, and the relation between

limits of commutators and commutators of limits — is outside the scope of this work, and

certainly deserves further study. As a first step in this direction, we have conjectured

that the limit of the commutators of the Koo-Saleur generators is correct only up to the

anomalous central charge term, a result for which we have given qualitative and numerical

evidence, but which we are not able to prove for now. Our results about the exchange of

commutators and limits are encompassed in the conjectures (7.12), (7.22) and (7.23) and

the result (7.21).

Another interesting question deserving more work is the possible relation between

the two scalar products we have introduced, and what they have to do with the natural

positive definite scalar product in the RSOS case. We also hope to get back to this point

in further work.
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Note added. Motivated by the results of the present paper, we have added a new Ap-

pendix C to the latest arXiv version of [2], in which we correct some of our reasoning about

the lattice evidence for the structure of the continuum modules. This correction does not

change the results in [2], and it also provides further confirmation of the corresponding

results about the structure in the current paper.

A Some remarks on scalar products

It is interesting to discuss in more detail why the conformal scalar product (the one corre-

sponding to the conjugation L‡n = L−n) is the one relevant for the calculation of correlation

functions in the operator formalism, and, in our case, is the one obtained by “treating q as

a formal variable”. Due to the exploratory nature of this appendix, we shall use here the

standard bra-ket notation 〈−|−〉, although the conformal scalar product will eventually be

denoted by (−,−) in the main text.

We start by discussing a simple example. Consider a very simple system of two spins

1/2 coupled via the Uqsl(2) invariant Hamiltonian, which reads (up to an irrelevant scalar

factor)

H = −e = −


0 0 0 0

0 q−1 −1 0

0 −1 q 0

0 0 0 0

 (A.1)
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in the basis {++,+−,−+,−−}. When q is real, the normalized ground state is given by

|Ω〉 =
1√

q + q−1
(q−1/2|+−〉 − q1/2| −+〉) . (A.2)

When q is a complex number of modulus one — the case we are considering here—H is

not hermitian. The ground state |Ω〉 as we have written here is not normalized any more,

since its norm square obtained with the usual scalar product is 2
q+q−1 .

However, since the eigenvalues (0, q + q−1) are real, we see that from

H†|EL〉 = E|EL〉 (A.3)

we get the left-eigenvalue problem

〈EL|H = E〈EL| (A.4)

to be compared with the right-eigenvalue problem initially considered

H|ER〉 = E|ER〉 . (A.5)

In our case we have (where the unprimed states correspond to the singlet, i.e., the ground

state, while the primed states correspond to the triplet)

|ER〉 =
1√

q + q−1

(
q−1/2|+−〉 − q1/2| −+〉

)
, (A.6a)

|E′R〉 =
1√

q + q−1

(
q1/2|+−〉+ q−1/2| −+〉

)
, (A.6b)

and

|EL〉 =
1√

q + q−1

(
q1/2|+−〉 − q−1/2| −+〉

)
, (A.7)

|E′L〉 =
1√

q + q−1

(
q−1/2|+−〉+ q1/2| −+〉

)
, (A.8)

where we chose normalizations such that left and right eigenstates are orthonormal,

〈EL|ER〉 = 〈E′L|E′R〉 = 1 , 〈EL|E′R〉 = 〈E′L|ER〉 = 0 , (A.9)

and 〈−|−〉 stands for the ordinary scalar product. We see now that |Ω〉 remains properly

normalized with these conventions. Moreover, conjugating and switching L for R amounts

to treating q as a formal parameter, by which we mean that it does not undergo any

complex conjugation in the process. We thus see that considering scalar products of the

form 〈EL|ER〉 (with left and right eigenstates properly distinguished), instead of 〈ER|ER〉
(with no such distinction), amounts to treating H as self-conjugate, i.e., q as a formal

parameter indeed.

The second point is to establish what this has to do with physics. We start by demand-

ing that calculations in our quantum (field theory or not) formalism describe well-defined
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objects in two-dimensional statistical physics. The mapping of the quantum system onto

a statistical mechanics one proceeds via an imaginary-time representation, which can be

depicted by taking the direction of imaginary time to be upwards. The density operator ρ

introduces a horizontal cut in this time evolution, in the sense that its matrix elements ρxy
are such that x (resp. y) refers to the degrees of freedom on the lower (resp. upper) lip of

this cut. We now argue that one may write the density operator as ρ = |0R〉〈0L|, that is,

in terms of the left and right ground states. Indeed, its matrix elements are of the form

ρxy ∝ 〈+∞|e−τH |y〉〈x|e−τH | −∞〉 ,

where 〈+∞| and | −∞〉 denote “generic states” (initial conditions that are not orthogonal

to the left and right ground states, respectively) introduced at imaginary times ±∞, that is,

at the bottom and top of the time evolution. Taking τ large projects onto the lowest-energy

eigenstates of H for the bottom part and H† for the top part, so

ρxy ∝ 〈0L|y〉〈x|0R〉 .

With proper normalizationsand it is therefore justified to write ρ = |0R〉〈0L|, as claimed.

Correlation functions in the quantum theory are then obtained by tracing ρ with various

insertions, and thus correspond to

〈0L| · · · |0R〉 , (A.10)

with 〈−|−〉 denoting the ordinary scalar product.

In CFT, we demand that

〈φ| = |φ〉† , (A.11)

which leads to (on the surface where z̄ = z∗, the complex conjugate)

[φ(z, z̄)]† ≡ z̄−2hz−2h̄φ(1/z̄, 1/z) , (A.12)

so that

〈φ|φ〉 = limz,z̄,w,w̄→0〈0|φ(z, z̄)†φ(w, w̄)|0〉
= limξ,ξ̄→∞ξ̄

2hξ2h̄〈0|φ(ξ̄, ξ)φ(0, 0)|0〉
= 1 , (A.13)

where in the last step we would generally obtain the residue of the two-point function, if the

latter were not normalized. Using this for T (z) leads immediately to L†n = L−n. In general,

we see that this dagger operation is the one that exchanges left and right eigenstates in

the non-Hermitian case.

This conformal scalar product is the continuum limit of the loop scalar product, or the

sl(2|1)-invariant scalar product as well. It is not, in general, positive definite. As already

mentioned, it will be denoted (−,−) in the main text.

B More on form factors

For a general overview of transfer matrix formalism, Bethe ansatz and the Quantum Inverse

Scattering Method (QISM), see [51].
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B.1 General framework, notations, conventions

We shall follow the work in [58]. We first fix our notation. The XXZ R-matrix is written as

R(λ, µ) =


1 0 0 0

0 b(λ, µ) c(λ, µ) 0

0 c(λ, µ) b(λ, µ) 0

0 0 0 1

 , (B.1)

with

b(λ, µ) =
sinh(λ− µ)

sinh(λ− µ+ η)
, (B.2a)

c(λ, µ) =
sinh(η)

sinh(λ− µ+ η)
(B.2b)

and η = iγ. Since R only depends on the difference λ − µ, we shall sometimes write it in

terms of only one variable, R(u) ≡ R(λ, µ) with u = λ − µ. We write the corresponding

monodromy matrix as T(u) =
(
A(u) B(u)
C(u) D(u)

)
, thereby defining the operators A,B,C,D that

will be used below. Let a(λ) and d(λ) be the eigenvalues of A(λ) and D(λ) when acting

on |0〉, where |0〉 denotes the pseudo-vacuum of all spins pointing up. The Bethe equations

take the form
d(λj)

a(λj)

∏
k 6=j

b(λk, λj)

b(λj , λk)
= 1 (B.3)

for j = 1, 2, . . . , N2 − Sz, and an on-shell Bethe state is written as
∏
j B(λj)|0〉 with the

Bethe roots λj solving (B.3). (If the roots do not solve the Bethe equations, the state is

called off-shell.)

The above holds for periodic boundary conditions, but we also wish to consider

boundary conditions parametrized by a twist φ. Let κ ∈ GL2(C). Then κT gives

us the monodromy matrix for the case of twisted boundary conditions on the form

σaN+1 = κσa1κ
−1. For the boundary conditions that we wish to implement (namely

σzN+1 =σz1 and σ±N+1 =e∓iφσ±1 ) the proper choice is the following diagonal twist matrix:

κ =

(
1 0

0 eiφ

)
. (B.4)

We obtain thus the twisted monodromy matrix

κT(u) =

(
1 0

0 eiφ

)(
A(u) B(u)

C(u) D(u)

)
=

(
A(u) B(u)

eiφC(u) eiφD(u)

)
. (B.5)

Twisting the monondromy matrix T(u)→ κT(u) in this fashion leads to a modified eigen-

value d(u)→ eiφd(u) that will enter into the Bethe equations, since the latter contain the

ratios d(λk)
a(λk) .

With a diagonal twist κ as above, any general Bethe considerations for the untwisted

case will also be valid for the twisted case. For instance, while (B.5) implies that B†(λ∗) =
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C(λ) for the untwisted case (up to a phase), this same property will still hold after the

twist (up to another phase).16 Notice however that this does not carry over to the general

case of non-diagonal κ, where the dual Bethe states (defined from C) might no longer be

given by the conjugate of the Bethe states (defined from B).

B.2 Quantum inverse scattering method

In the framework of the quantum inverse scattering method, we express local operators O in

terms of the operators A,B,C,D. Let t(η2 ) = A(η2 )+D(η2 ) denote the transfer matrix, that

is, the trace of T(u) in the homogeneous case u = η/2 = iγ/2 (which will sometimes have

to be taken as a limit, as we shall see below). We recall that the XXZ Hamiltonian (2.12)

is recovered from T−1(u)∂T∂u

∣∣∣
u=η/2

. Acting on a Bethe state, where n is the number of roots

characterizing the state, the transfer matrix has eigenvalues

t
(η

2

) n∏
k=1

B(λk)|0〉 =

[
a
(η

2

) n∏
k=1

b−1
(
λk,

η

2

)
+ d

(η
2

) n∏
k=1

b−1
(η

2
, λk

)] n∏
k=1

B(λk)|0〉.

(B.6)

With the conventions used in [58], a(λ) = 1, d(λ) =
∏N
m=1 b(λ, ξm), so that d(ξm) = 0

even before taking the homogeneous limit. We denote by φm{λ} =
∏N
k=1

(
b−1

(
λk,

η
2

))m
the factor produced by the action of tm

(η
2

)
, which appears in the computation of form

factors. We can then express the matrix elements of j neighbouring operators (acting on

consecutive sites m,m+ 1, . . . ,m+ j − 1) in the form

〈{µ}|
j∏
i=1

(Oi)m+i−1|{λ}〉 = φm−1({µ})φ−1
m+j−1({λ})FO1,...,Oj , (B.7)

where FO1,...,Oj depends on the combination of operators O whose matrix elements we wish

to obtain, while the pre-factors φm{λ} only depend on how many operators we consider

and at which sites. The expression for FO1,...,Oj is site-independent: all dependence on the

site m is in the phase coming from the φ pre-factors in (B.7). Below we use the shorthand

notation z ↔ σz, − ↔ σ−, + ↔ σ+ to denote the required operators O, and we wish to

compute expressions such as F−+.

Because of this site-independence, in numerical applications it is most efficient to

compute the relevant FO1,...,Oj only once for each size N , and then add up any site-dependent

phases (see section 4.3) in an independent step when using the form factors.17 Combined

with the parity and conjugation relations mentioned earlier, this significantly reduces the

computational load. Furthermore most scalar products Sn (see below) are used in several

form factors. This can be taken advantage of as well.

We wish to find FO1,...,Oj for the combinations of Pauli matrices shown in and be-

low (4.11)–(4.12). To this end, we shall need to consider the following operators (given

16Note that the Bethe roots come in conjugate pairs (or are real, or self-conjugate), so that in total we

do indeed get the expression for Bethe states as in eq (4.13).
17For the specific purpose of computing the Koo-Saleur generators, keeping track of phases actually turns

out to be unnecessary, because of the considerations about momentum conservation made in section 5.1.
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here with their shorthand abbreviation):

z : σzm ↔ A(ξm)−D(ξm) , or 2A(ξm)− 1 , or 1− 2D(ξm) , (B.8a)

+ : σ+
m ↔ C(ξm) , (B.8b)

− : σ−m ↔ B(ξm) (B.8c)

in the homogeneous limit ξm → η/2. For instance, to get Fz we can compute FD =

〈C|D(ξm)|B〉, where 〈C| = 〈0|
∏
j C(µj) and |B〉 =

∏
k B(λk) are Bethe states. We shall

always keep 〈C| untouched (and thus still on-shell), commuting the operators above past

the string of B-operators, so that the result will become expressed in terms of new, off-

shell states |B̃〉. (See the commutation relations below, where some B(λk) are swapped

into B (ξm) with ξm = η
2 .) When computing the final scalar products Sn = 〈C|B̃〉, we can

then still use relations that hold when one of the states is on-shell.

In order to commute all the operators past the B-operators we use the following com-

mutation relations, where ϕ(λ) = sinh(λ):

A(ξm)
n∏
k=1

B(λk)|0〉 =
n∏
k=1

ϕ(λk − ξm + η)

ϕ(λk − ξm)

n∏
k=1

B(λk)|0〉

−
n∑
a=1

ϕ(η)

ϕ(λa − ξm)

n∏
k=1,k 6=a

ϕ(λk − λa + η)

ϕ(λk − λa)
B(ξm)

n∏
k=1,k 6=a

B(λk)|0〉 ,

(B.9a)

C(ξm)

n∏
k=1

B(λk)|0〉 =

n∑
a=1

Ma(ξm)

n∏
k=1,k 6=a

B(λk)|0〉+
∑
a 6=b

Mab(ξm)B(ξm)

n∏
k=1,k 6=a,b

B(λk)|0〉 ,

(B.9b)

D(ξm)
n∏
k=1

B(λk)|0〉 = −
n∑
a=1

ϕ(η)

ϕ(ξm−λa)

n∏
k=1,k 6=a

ϕ(λa−λk + η)

ϕ(λa − λk)
d(λa)B(ξm)

n∏
k=1,k 6=a

B(λk)|0〉 ,

(B.9c)

with

Ma(ξm) =
ϕ(η)

ϕ(λa − ξm)

∏
k 6=a

ϕ(λk − ξm + η)

ϕ(λk − ξm)

ϕ(λk − λa + η)

ϕ(λk − λa)
, (B.10a)

Mab(ξm) =
ϕ(η)2

ϕ(λa − ξm)ϕ(λb − ξm)

∏
k 6=a

ϕ(λk − λa + η)

ϕ(λk − λa)
ϕ(λk − λb + η)

ϕ(λk − λb)
. (B.10b)

We have written out factors of b−1(µ, λ) explicitly to make it clearer later which terms

will need to be combined in the homogeneous limit. Note that the B-operators commute

among themselves.

Finally we need to divide through with the norms of the Bethe states after obtaining

the required form factors, as the states we use are otherwise not normalized. For roots {λ}
solving the Bethe equations, the corresponding state has the norm squared (written using
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the conventions of [58])

Nn({λ}) = ϕn(η)
∏
α 6=β

ϕ(λα − λβ + η)

ϕ(λα − λβ)
det(G({λ}) , (B.11)

with

Gab({λ}) = − ∂

∂λb
ln

r(λa) n∏
k=1,k 6=a

b(λa, λk)

b(λk, λa)

 . (B.12)

Here r(λ) = a(λ)/d(λ).

B.3 The expressions for the necessary FO1,...,Oj

In what follows we shall use the notation {λ} to refer to the set of Bethe roots λ1, . . . , λn,

while {λ}a denotes the set with the a’th root removed. We use Sn({µ}, {λ}) to refer to

scalar products 〈{µ}|{λ}〉; these scalar products are given explicitly below.

Note: as when finding the Bethe roots, we must again keep in mind the modified

eigenvalue d(λ)→ eiφd(λ). For the norm squared above any overall phase is ignored in the

final normalization. Below, however, the phases eiφ do matter. We obtain relative phases

between the different terms, and also overall phases that we must keep in mind when we

take conjugates as discussed in section 4.3.1.

B.3.1 Fz, Fzz, F−+

F−+ is taken directly from [58], up to minor changes in notation. For the other two we have

chosen to write in terms of D, as it has somewhat nicer commutation relations. Fz, Fzz are

given from FD, FDD in accordance with (B.8). We have:

FD =−
n∑
a=1

ϕ(η)

ϕ(ξm − λa)

n∏
k=1,k 6=a

ϕ(λa − λk + η)

ϕ(λa − λk)
eiφd(λa)Sn({µ}|ξm, {λ}a) , (B.13a)

FDD =

n∑
a,b=1,b 6=a

ϕ(η)2

ϕ(ξm+1 − λa)ϕ(ξm − λb)

n∏
k=1,k 6=a

ϕ(λa − λk + η)

ϕ(λa − λk)
eiφd(λa)

ϕ(λb − ξm+1 + η)

ϕ(λb − ξm+1)

×
n∏

k=1,k 6=a,b

ϕ(λb − λk + η)

ϕ(λb − λk)
eiφd(λb)Sn({µ}|ξm, ξm+1, {λ}a,b) . (B.13b)

For F−+ we need FBC :

FBC =

n∑
a=1

Ma(ξm+1)Sn({µ}|ξm, {λ}a) +

n∑
b=1,b 6=a

Mab(ξm+1)Sn({µ}|ξm, ξm+1, {λ}a,b) .

(B.14)

For all these we can safely let ξm, ξm+1 → η/2, as long as we write the scalar products

involving multiple η/2 as shown in section B.3.3.
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B.3.2 Fz−+, F−z+

For Fz−+ we will need FDBC :

FDBC =−
n∑
a=1

Ma(ξm+2)
n∑

b=1,b 6=a

ϕ(η)

ϕ(ξm − λb)
ϕ(λb − ξm+1 + η)

ϕ(λb − ξm+1)

×
n∏

k=1,k 6=a,b

ϕ(λb − λk + η)

ϕ(λb − λk)
eiφd(λb)Sn({µ}|ξm, ξm+1, {λ}a,b)

−
∑
a 6=b

Mab(ξm+2)

n∑
c=1,c 6=a,b

ϕ(η)

ϕ(ξm − λc)
ϕ(λc − ξm+1 + η)

ϕ(λc − ξm+1)

ϕ(λc − ξm+2 + η)

ϕ(λc − ξm+2)

×
n∏

k=1,k 6=a,b,c

ϕ(λc − λk + η)

ϕ(λc − λk)
eiφd(λc)Sn({µ}|ξm, ξm+1, ξm+2, {λ}a,b,c),

(B.15)

where we can again safely let ξm, ξm+1, ξm+2 → η/2.

For F−z+ we need both FBDC and FBAC :

FBDC = −
n∑
a=1

Ma(ξm+2)

n∑
b=1,b 6=a

ϕ(η)

ϕ(ξm+1 − λb)

×
n∏

k=1,k 6=a,b

ϕ(λb − λk + η)

ϕ(λb − λk)
eiφd(λb)Sn({µ}|ξm, ξm+1, {λ}a,b)

−
∑
a 6=b

Mab(ξm+2)
n∑

c=1,c 6=a,b

ϕ(η)

ϕ(ξm+1 − λc)
ϕ(λc − ξm+2 + η)

ϕ(λc − ξm+2)

×
n∏

k=1,k 6=a,b,c

ϕ(λc − λk + η)

ϕ(λc − λk)
eiφd(λc)Sn({µ}|ξm, ξm+1, ξm+2, {λ}a,b,c),

(B.16)

FBAC =
n∑
a=1

Ma(ξm+2)
n∏

k=1,k 6=a

ϕ(λk − ξm+1 + η)

ϕ(λk − ξm+1)
Sn({µ}|ξm, {λ}a)

−
n∑
a=1

Ma(ξm+2)
n∑

b=1,b 6=a

ϕ(η)

ϕ(λb−ξm+1)

n∏
k=1,k 6=a,b

ϕ(λk − λb + η)

ϕ(λk − λb)
Sn({µ}|ξm, ξm+1, {λ}a,b)

+
∑
a 6=b

Mab(ξm+2)
ϕ(ξm+2 − ξm+1+η)

ϕ(ξm+2 − ξm+1)

n∏
k=1,k 6=a,b

ϕ(λk − ξm+1 + η)

ϕ(λk − ξm+1)
Sn({µ}|ξm, ξm+2, {λ}a,b)

−
∑
a 6=b

Mab(ξm+2)
ϕ(η)

ϕ(ξm+2 − ξm+1)

n∏
k=1,k 6=a,b

ϕ(λk − ξm+2 + η)

ϕ(λk − ξm+2)
Sn({µ}|ξm, ξm+1, {λ}a,b)

−
∑
a 6=b

Mab(ξm+2)

n∑
c=1,c 6=a,b

ϕ(η)

ϕ(λc − ξm+1)

ϕ(ξm+2 − λc + η)

ϕ(ξm+2 − λc)

n∏
k=1,k 6=a,b,c

ϕ(λk − λc + η)

ϕ(λk − λc)
×

× Sn({µ}|ξm, ξm+1, ξm+2, {λ}a,b,c).
(B.17)

In the latter expression, the third and fourth terms are divergent on their own if we take

the homogeneous limit. They will, however, combine into a derivative. Let ξm+1 = η/2,
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ξm+2 = η/2 + x. We have a common factor Mab(ξm+2) that causes no problem, and for

the rest we can write

1

ϕ(x)
[third− fourth] −−−→

x→0
∂x

(
ϕ(η + x)Sn({µ}|η/2 + x, η/2, {λ}ab)

)∣∣∣∣∣
x=0

∏ ϕ(λk + η/2)

ϕ(λk − η/2)

−
(
ϕ(η)Sn({µ}|η/2, η/2, {λ}ab)

)
∂x
∏ ϕ(λk − x+ η/2)

ϕ(λk − x− η/2)

∣∣∣∣∣
x=0

.

(B.18)

B.3.3 Scalar products and the homogeneous limit

We give below the determinant representation for the scalar products Sn. Please note

than when compared to [58] we have taken the factors of r(λ) = a(λ)/d(λ) outside the

matrix. This leads to an overall phase e−inφ in front of the determinant from the modified

eigenvalue d(λ)→ eiφd(λ).

Sn({µ}, {λ}) ≡ 〈{µ}|{λ}〉 =
e−inφ det(H({µ}, {λ}))∏

j>k ϕ(µk − µj)
∏
α<β ϕ(λβ − λα)

, (B.19)

with

Hab({µ}, {λ}) =
ϕ(η)

ϕ(µa − λb)

(∏
k 6=a

ϕ(µk − λb + η)− eiφd(λb)
∏
k 6=a

ϕ(µk − λb − η)
)
. (B.20)

We shall need the scalar products Sn(η/2, η/2, . . .), Sn(η/2, η/2, η/2, . . .), and the derivative

∂xSn({µ}|η/2+x, η/2, {λ}ab)
)∣∣∣
x=0

in the homogeneous limit, which must be taken carefully

due to the denominator.

Subtracting the relevant columns of H from each other before taking the limit, and

taking factors of the type 1/ϕ(ξm − ξm+1) inside, we arrive at the replacement of the first

columns by their first and second derivatives. The second term in (B.20) disappears in

these columns, thanks to d(ξm) = 0. Starting with Sn(η/2, η/2, . . .), we simply find the

first column replaced by its derivative:

H ′a1({µ}, {λ}) = −∂x
ϕ(η)

ϕ(µa − η/2− x)

∏
k 6=a

ϕ(µk − x+ η/2)

∣∣∣∣∣
0

, (B.21)

and the product in the denominator of Sn is now taken for β > 2. For Sn(η/2, η/2, η/2, . . .)

we arrive at the following replacements for column 1 and 2:

H ′a2({µ}, {λ}) = −∂x
ϕ(η)

ϕ(µa − η/2− x)

∏
k 6=a

ϕ(µk − x+ η/2)

∣∣∣∣∣
0

, (B.22a)

H ′′a1({µ}, {λ}) =
1

2
∂2
x

ϕ(η)

ϕ(µa − η/2− x)

∏
k 6=a

ϕ(µk − x+ η/2)

∣∣∣∣∣
0

. (B.22b)

The product in the denominator of Sn is now taken for β > 3. Finally for ∂xSn({µ}|η/2 +

x, η/2, {λ}) we can take the derivative inside det(H) and let it act on the relevant column.
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Taking the homogeneous limit then leads to further derivatives, so that in total we obtain

∂xSn({µ}|η/2 + x, η/2, {λ})

∣∣∣∣∣
0

= −1

2

e−inφ det(H̃ ′′({µ}|η/2, η/2, {λ}))∏
j>k ϕ(µk − µj)

∏
α<β,β>2 ϕ(λβ − λα)

+
∑
2<β

ϕ′(λβ − η/2)

ϕ(λβ − η/2)
Sn({µ}|η/2, η/2, {λ}) , (B.23)

where H̃ ′′ is obtained from H by differentiating the first column twice:

H̃ ′′a0 = ∂2
x

ϕ(η)

ϕ(µa − η/2− x)

∏
k 6=a

ϕ(µk − x+ η/2)

∣∣∣∣∣
x=0

. (B.24)

C Numerical results for the degenerate case

Within this appendix we provide numerical evidence for the results (6.4) and (6.7) given

in section 6. Throughout this appendix we take x = π, so that q is not a root of unity.

We consider states with degenerate conformal weights h = hr,s and/or h̄ = hr,s. We shall

use the same notation |u〉, |v〉, |w〉 . . . for scaling states and the corresponding states in the

continuum.

C.1 The case of Wj,1

The main goal of this section is to provide numerical support for the conjecture (6.4) and

the concept of strong duality (4.20). We start by showing explicitly in table 3 the duality

for conjugate states for the first few sizes, giving an example of how matrix elements for

raising operators will follow from those for the lowering operators. In this example we

consider Sz = 1, e = ±1. We here also see the issue of mixing discussed in section 4.1.1.

Call the Sz = 1, e = −1 primary state |u−〉 and the Sz = 1, e = 1 primary state |u+〉.
The sector of relevant lattice momentum for the chiral level 1 state |a−1u−〉 is then the same

as that of the anti-chiral level 1 state |ā−1u+〉. Within this sector, the two lowest-energy

Bethe states have close but not identical energies. We call these two states |v1〉 and |v2〉.
Since nothing in our theory favours chiral over anti-chiral, or vice versa, we must assume

that we cannot identify one of |v1〉, |v2〉 to |a−1u−〉 and the other to |ā−1u+〉. Instead, to

keep their energy on the lattice identical, we must consider them as linear combinations,

containing equal parts of the two states. We identify |ā−1u+〉 = 1√
2
(|v1〉 + |v2〉) and

|a−1u−〉 = 1√
2
(|v1〉 − |v2〉) (with the phases of the eigenvectors |v1〉, |v2〉 fixed to give the

same phase for the relevant matrix elements.) We then obtain the results in table 4, which

are in line with our conjectures.

With this result in mind we then restrict our attention to only considering lowering

operators in tables 6–9. In these four tables we look at the null states at level 1 and

2 for W1,1 and W2,1; the use of form factors here enables us to access higher sizes. For

comparison we show in each table both the action of Ar,s and Ār,s, even though only one

of the conformal weights of the primary state is degenerate.
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〈v1|L−1|u−〉 〈v2|L−1|u−〉 〈ā−1u−|L̄−1|u−〉
N 〈u+|L̄1|v1〉 〈u+|L̄1|v2〉 〈u+|L1|a−1u+〉
8 0.0526552 0.08033931 0.71811371

10 0.04744019 0.07094947 0.87777283

12 0.04357369 0.06336333 0.9762023

14 0.04048884 0.0573236 1.03974472

16 0.03793402 0.05245015 1.08270653

18 0.03576776 0.04844714 1.11294418

20 0.03389957 0.04510245 1.13495942

22 0.03226707 0.04226491 1.15145137

p7 0.00580449 0.00549332 1.23163297

conj 0 0 1.23170369

〈v1|L̄−1|u+〉 〈v2|L̄−1|u+〉 〈a−1u+|L−1|u+〉
N 〈u−|L1|v1〉 〈u−|L1|v2〉 〈u−|L̄1|ā−1u−〉
8 0.19977481 0.30480884 0.99943154

10 0.20854526 0.31189113 1.19506516

12 0.21572193 0.31369525 1.31480472

14 0.22148634 0.31357761 1.39180979

16 0.22616506 0.31271118 1.44376243

18 0.23002327 0.3115647 1.48028264

20 0.23325554 0.31034011 1.50685293

22 0.23600264 0.30912729 1.52674922

p7 0.27168088 0.2829496 1.62371173

conj 0.27723073 0.27723073 1.62376715

Table 3. Matrix elements of L±1 and L̄±1 in the sector of Sz = 1, at x = π. We call |u−〉 the

primary state at e = −1 and |u+〉 the primary state at e = 1 (both in the N → ∞ limit), with

charges given by (3.34). |v1〉 and |v2〉 are linear combinations of |a−1u−〉 and |ā−1u+〉 containing

equal parts of both states, as discussed in section 4.1.1. We here denote the corresponding scaling

states on the lattice by the same labels as the states in the limits. The matrix elements are computed

at increasing lattice size N , after which polynomial extrapolations pn(1/N) of degree n = 7 to all

the data points is made in order to approximate the value at N → ∞. The CFT value (“conj”)

〈a−1u|L−1u〉 for a primary state u with charge α is
√

2α, as described in section 5.2. Due to

|v1〉, |v2〉 being mixed states, the nonzero matrix elements involving these states are conjectured to

come with a factor of 1√
2
: while the full value is 0.39206346 (α = 2α0) we here instead conjecture

a value of 0.27723073 each.

We also restrict our attention to |v1〉 in the case of mixing at level 1, having already

seen in tables 3–4 that we recover the full norm when taking both |v1〉 and |v2〉 into ac-

count. The reason for this restriction is technical: when using form factors instead of exact

diagonalization, |v2〉 corresponds to a singular Bethe state and would require regularization

that in turn would perturb the numerical results. We note that when excluding singular

states in this way in the cases of overlap, the results at both level 1 and 2 do not match

the conjecture as well as in the cases of no overlap. Meanwhile we see in table 4 that the

agreement when including all singular states and taking the proper linear combinations is

comparable to the cases of no overlap.

C.1.1 Considerations at level 2

At level 2 we typically expect two orthogonal states, which we call |w1〉 and |w2〉. To get

the total projection onto level 2 we consider

|χ|2 ≡
√
|〈w1|χ〉|2 + |〈w2|χ〉|2 (C.1)

and same for the anti-chiral quantities. In the case of degenerate conformal weights we

furthermore again have the issue of overlap, so that we once again must take into account

twice as many states. However, the fourth state is a singular Bethe state, so we do not

include it in our form-factor computations to avoid regularization. We label the norms
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H
E
P
0
2
(
2
0
2
1
)
1
3
0

N 〈ā−1u+|L−1|u−〉 〈a−1u−|L−1|u−〉
8 0.09388641 0.02030561

10 0.08364162 0.01698464

12 0.07557809 0.01419611

14 0.06914237 0.01202808

16 0.0638982 0.01034544

18 0.05954055 0.00902118

20 0.05585724 0.00796118

22 0.05269816 0.00709863

p7 0.00798875 -0.00022102

conj 0 0

N 〈ā−1u+|L̄−1|u+〉 〈a−1u−|L̄−1|u+〉
8 0.35679453 0.07427027

10 0.3680041 0.07307657

12 0.37435448 0.0692776

14 0.37834734 0.06511836

16 0.38104305 0.06119735

18 0.38296053 0.0576585

20 0.38438017 0.05450702

22 0.38546507 0.05170693

p7 0.39218298 0.00796819

conj 0.39206346 0

N 〈u+|L̄1|ā−1u+〉 〈u+|L̄1|a−1u−〉
8 0.01957562 0.09404132

10 0.01662357 0.08371413

12 0.01399339 0.07561589

14 0.01190397 0.06916384

16 0.01026446 0.06391126

18 0.00896568 0.05954893

20 0.00792163 0.05586287

22 0.00706954 0.05270207

p7 -0.00022003 0.00798876

conj 0 0

N 〈u−|L1|ā−1u+〉 〈u−|L1|a−1u−〉
8 0.07703985 0.35620678

10 0.07466382 0.36768535

12 0.07028121 0.37416736

14 0.06579726 0.37822987

16 0.06168015 0.38096519

18 0.0580154 0.38290662

20 0.05477911 0.38434149

22 0.05191965 0.38543648

p7 0.00796872 0.39218313

conj 0 0.39206346

Table 4. Matrix elements of L±1 and L̄±1 in the sector of Sz = 1, at x = π, with the same

conventions as in table 3. Having separated |ā−1u+〉 and |a−1u−〉 from each other we here obtain

the full conjectured norm. We note that strong duality does not apply to this table, since we no

longer deal with single Bethe states but rather linear combinations thereof.

with and without this fourth state as

|χ|∗2 ≡
√
|〈w1|χ〉|2 + |〈w2|χ〉|2 + |〈w3|χ〉|2 + |〈w4|χ〉|2 , (C.2a)

|χ|∗∗2 ≡
√
|〈w1|χ〉|2 + |〈w2|χ〉|2 + |〈w3|χ〉|2 . (C.2b)

We show the result for |χ|∗2 obtained from exact diagonalization in table 5 at Sz = 2, e = 1,

before restricting to |χ|∗∗2 when going to higher sizes with form factors.

When using form factors, we need to know what conjecture to consider when we exclude

the fourth, singular Bethe state. It turns out that the second and third Bethe states, which

are found in a degenerate eigenspace of the Hamiltonian, have an almost zero contribution

to the norm (or order O(10−3), respectively O(10−5), when extrapolating the form-factor

results). Meanwhile the first and fourth states are at different energies, and so by the same

argument as for level 1 (i.e., that we cannot favour chiral over anti-chiral, and so their energy

must be the same) we expect that the two Bethe states contribute equally. Excluding the

fourth state will thus roughly remove half the norm squared at Sz = 2, e = 1, up to the
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3
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N |χ|∗2 Full norm

10 0.45377412 0.45904775

12 0.47363006 0.47883132

14 0.48751301 0.49234698

16 0.4976002 0.50267043

18 0.50516327 0.51126303

20 0.51098601 0.51895827

22 0.51557136 0.52628211

p5 0.54746072 0.84670007

p6 0.54780548 1.02083064

conj 0.54675127

Table 5. Norm at level 2 in the case of overlap. Shown is projection onto the four relevant states.

In the right column is the full norm for comparison. The presence of parasitic couplings in the latter

case leads to a different result, which moreover cannot be reliably extrapolated. The conventions

used for the extrapolations p5 and p6 are the same as in table 1.

O(10−3) contribution from the second and third states. Meanwhile, when we consider the

chiral side at Sz = 2, e = −1 the conjecture simply remains zero.

C.1.2 Form factor results for Wj,1

For all form factor results we take the most extreme cutoff in any product of Koo-Saleur

generators. (See further the discussion in section 7.1.)

C.2 The case of W0,q±2

We here wish to provide, in particular, support for the conjecture (6.7). The results are

shown in table 10. We here show how the indecomposability appears already at finite size

in this particular case. We also again see the duality of conjugate states. While our focus

here is on small system sizes and the indecomposability of the Temperley-Lieb modules,

we still show the extrapolation as well — we see that already for these sizes it is quite close

to the conjectured value.

C.3 Relevant Bethe roots

In this section we list the Bethe roots used in the numerical results at x = π,N = 10 and

with the twist φ as specified in each case. The roots for other values of x and the twist

φ can be reached numerically by gradually modifying x, φ, using the previous roots as the

starting guess of the numerical solver in each step. The roots at larger system sizes N

are found in the same fashion. These roots can be inserted into the form factors listed in

appendix B in order to reproduce our numerical results. To find these sets of roots and

integers we have used the values listed in [50] at ∆ = 0.7 as starting guesses. We remind

the reader that as discussed in [50] it is expected that some Bethe integers may coincide.
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N 〈v1|L−1|u−〉 〈ā−1u−|L̄−1|u−〉
10 0.04744019 0.87777283

12 0.04357369 0.9762023

14 0.04048884 1.03974472

16 0.03793402 1.08270653

18 0.03576776 1.11294418

20 0.03389957 1.13495942

22 0.03226707 1.15145137

24 0.0308251 1.16410715

26 0.02953989 1.17402095

28 0.02838551 1.18192562

30 0.02734164 1.18832605

32 0.02639211 1.19357881

34 0.02552386 1.19794122

36 0.02472619 1.20160266

38 0.02399028 1.20470491

40 0.02330873 1.20735576

42 0.02267536 1.20963831

44 0.02208487 1.21161746

46 0.02153276 1.21334445

48 0.02101516 1.21486018
...

...
...

N 〈v1|L−1|u−〉 〈ā−1u−|L̄−1|u−〉
...

...
...

50 0.02052871 1.21619761

52 0.02007049 1.21738353

54 0.01963794 1.21843989

56 0.01922881 1.21938481

58 0.01884112 1.22023337

60 0.0184731 1.22099819

62 0.0181232 1.22168988

64 0.01779002 1.22231744

66 0.01747229 1.22288852

68 0.0171689 1.22340967

70 0.01687882 1.22388653

72 0.01660114 1.22432395

74 0.01633502 1.22472614

76 0.0160797 1.22509676

78 0.01583449 1.22543904

80 0.01559876 1.22575576

p25 0.00214322 1.23169818

p30 0.00218049 1.23169693

p35 0.00208063 1.23170322

conj 0 1.23170369

Table 6. Matrix elements of L±1 and L̄±1 in the sector of Sz = 1, at x = π, with the same

conventions as in table 3. In this table e = −1 is considered again. Polynomial extrapolations

pn(1/N) of degrees n = 25, 30, 35 to all the data points are made in order to approximate the value

at N →∞.

We first show Bethe roots corresponding to the non-degenerate example in section 5,

in which φ = 1/10, Sz = 1. The roots corresponding to the states in (5.4) are given by

|u1〉 ↔ {−0.26458064,−0.07736986, 0.0733926, 0.25830959} ,
|u2〉 ↔ {−0.6743697,−0.07413158, 0.07080173, 0.65194697} ,
|u3〉 ↔ {−0.66175052,−0.24704638, 0.24235079, 0.64024589} ,

(C.3)

while the roots corresponding to the states in (5.5) are given by

|v1〉 ↔ {−0.65697428,−0.06400932, 0.08388252, 0.26957264} ,
|v2〉 ↔ {−0.6485393,−0.23998851, 0.07699763, 0.66517052} ,
|v3〉 ↔ {−0.29843157 + iπ/2,−0.04047671, 0.0969293, 0.69411263} .

(C.4)

These are also used for table 11 in appendix G.

Meanwhile for the degenerate examples the roots used to produce the results in ap-

pendix C.1.2 are given as follows.
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N 〈a−1u+|L−1|u+〉 〈v1|L̄−1|u+〉
10 1.19506516 0.20854526

12 1.31480472 0.21572193

14 1.39180979 0.22148634

16 1.44376243 0.22616506

18 1.48028264 0.23002327

20 1.50685293 0.23325554

22 1.52674922 0.23600264

24 1.5420146 0.23836731

26 1.55397203 0.24042566

28 1.56350664 0.24223501

30 1.57122775 0.24383928

32 1.57756543 0.2452726

34 1.58282995 0.2465619

36 1.58724958 0.24772868

38 1.59099515 0.24879034

40 1.59419657 0.24976108

42 1.59695398 0.25065264

44 1.59934555 0.25147477

46 1.60143303 0.25223568

48 1.60326571 0.25294229
...

...
...

N 〈a−1u+|L−1|u+〉 〈v1|L̄−1|u+〉
...

...
...

50 1.60488329 0.25360052

52 1.60631806 0.25421543

54 1.60759648 0.25479138

56 1.60874039 0.25533217

58 1.60976797 0.25584109

60 1.61069443 0.25632105

62 1.61153256 0.25677457

64 1.61229323 0.25720392

66 1.61298565 0.25761109

68 1.61361774 0.25799785

70 1.61419627 0.25836579

72 1.61472713 0.25871633

74 1.61521538 0.25905076

76 1.61566545 0.25937022

78 1.61608122 0.25967576

80 1.61646607 0.25996833

p25 1.6237699 0.27512229

p30 1.62376682 0.27508581

p35 1.62378719 0.27518577

conj 1.62376715 0.27723073

Table 7. Matrix elements of L±1 and L̄±1 in the sector of Sz = 1, at x = π, with the same

conventions as in table 3. In this table e = 1 is considered again. Polynomial extrapolations

pn(1/N) of degrees n = 25, 30, 35 to all the data points are made in order to approximate the value

at N →∞. As discussed in section C.1, the state |v2〉 is not included here. The resulting additional

factor of 1√
2

has been taken into account in the conjecture.

At Sz = 1, e = −1, the Bethe roots necessary to reproduce table 6 are

|u−〉 ↔ {−0.59190986,−0.2125926, 0.10678414,−0.04262483}

with integers

{
−5

2
,−3

2
,

1

2
,−1

2

}
,

|ā−1u−〉 ↔ {−0.60569326,−0.22013419, 0.28934619,−0.0495778}

with integers

{
−5

2
,−3

2
,

3

2
,−1

2

}
,

|v1〉 ↔ {−0.1439582, 0.1439582, iπ/2, 0} with integers

{
−1

2
,

1

2
,
9

2
,−1

2

}
.

(C.5)

The states |u+〉, |a−1u+〉 relevant for table 7 are found by taking the opposite signs of the

Bethe roots above. (State |v1〉 remains the same under this action — recall that the root

iπ/2 is self-conjugate.)

At Sz = 2, e = −1 let us denote the primary state by |u(2)
− 〉. In the context of
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N |χ|∗∗2 |χ̄|2
10 0.24726801 1.20983864

12 0.20066837 1.56533417

14 0.16972038 1.9115293

16 0.14727663 2.23720271

18 0.13029595 2.52679885

20 0.11707361 2.77534399

22 0.10653922 2.98500127

24 0.09798136 3.16074314

26 0.09090996 3.30802769

28 0.08497837 3.43184718

30 0.07993595 3.53644327

32 0.07559799 3.62530048

34 0.07182607 3.70123804

36 0.06851485 3.76652378

38 0.06558299 3.82298088

40 0.06296693 3.8720785

42 0.06061633 3.91500532

44 0.05849094 3.95272782

46 0.0565582 3.98603608

48 0.05479155 4.01557964
...

...
...

N |χ|∗∗2 |χ̄|2
...

...
...

50 0.0531691 4.04189553

52 0.05167268 4.06543021

54 0.05028709 4.08655693

56 0.0489995 4.10558933

58 0.04779905 4.12279235

60 0.04667642 4.13839083

62 0.04562364 4.15257652

64 0.0446338 4.16551368

66 0.04370091 4.17734357

68 0.04281975 4.18818823

70 0.04198571 4.19815347

72 0.04119475 4.20733135

74 0.04044331 4.21580231

76 0.03972819 4.22363682

78 0.03904658 4.23089684

80 0.03839593 4.237637

p25 0.00508552 4.37283102

p30 0.0051748 4.37283425

p35 0.00493341 4.37283415

conj 0 4.37266058

Table 8. Values of |χ|2, |χ|∗∗2 as defined in (C.1), (C.2b), in the sector of Sz = 2 at x = π.

The state χ in (C.2) is here taken to be the result of acting upon the primary state obtained for

Sz = 2, e = −1 with the lowering operator A1,2 defined from (1.3).The same conventions as table 3

are used for the extrapolation, and the CFT values (“conj”) are computed using the general method

described in section 5.2. Note that on the chiral side we do not project on the fourth relevant state,

as discussed in section C.1.1.

forming the norms (C.1) and (C.2b) we now distinguish descendants on the chiral resp.

anti-chiral sides by superscripts: |wl1〉, |wl2〉, |wl3〉 resp. |wr1〉, |wr2〉. The Bethe roots necessary

to reproduce table 8 are

|u(2)
− 〉 ↔ {0.0199709,−0.12746759,−0.33759576} with integers {0,−1,−2}

|a−1u
(2)
− 〉 ↔ {0.03251715,−0.10949347,−0.9283113} with integers {0,−1,−3}

|ā−1u
(2)
− 〉 ↔ {0.16535175,−0.13383418,−0.34635301} with integers {1,−1,−2}
|wl1〉 ↔ {−0.06631605, 0.06631605, iπ/2} with integers {0, 0,−5} ,
|wl2〉 ↔ {−0.03902337, 0.28513457, 0.88928688} with integers {0, 2, 3} ,
|wl3〉 ↔ {0.03902337,−0.28513457,−0.88928688} with integers {0,−2,−3} ,
|wr1〉 ↔ {0.15878868, 0.00783529,−0.35707322} with integers {1, 0,−2} ,
|wr2〉 ↔ {0.37558835,−0.14134827,−0.35581938} with integers {2,−1,−2} .

(C.6)
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0
2
1
)
1
3
0

N |χ|2 |χ̄|∗∗2
10 2.31045896 0.26408829

12 2.87163371 0.27340469

14 3.37941892 0.28280413

16 3.83197544 0.29119674

18 4.22184772 0.29847485

20 4.5502387 0.30475163

22 4.82397901 0.31017865

24 5.0515897 0.31489717

26 5.24122863 0.31902686

28 5.39994176 0.3226658

30 5.53353594 0.32589353

32 5.64669381 0.32877441

34 5.74315732 0.3313607

36 5.82591007 0.33369509

38 5.89733494 0.33581262

40 5.95934224 0.33774227

42 6.01347121 0.33950818

44 6.06096911 0.34113058

46 6.10285264 0.34262654

48 6.13995559 0.34401053
...

...
...

N |χ|2 |χ̄|∗∗2
...

...
...

50 6.17296586 0.34529493

52 6.20245427 0.34649035

54 6.2288972 0.34760596

56 6.25269438 0.34864969

58 6.27418296 0.34962847

60 6.29364876 0.35054836

62 6.31133522 0.35141469

64 6.32745061 0.35223215

66 6.34217393 0.3530049

68 6.35565962 0.35373665

70 6.36804149 0.35443068

72 6.37943587 0.35508996

74 6.38994429 0.35571713

76 6.39965564 0.35631456

78 6.40864803 0.35688442

80 6.41699028 0.35742864

p25 6.58058318 0.38348308

p30 6.580578 0.38343063

p35 6.58061875 0.38357299

conj 6.5805709 0.387+O(10−3)

Table 9. Values of |χ|2, |χ|∗∗2 as defined in (C.1), (C.2b), in the sector of Sz = 2 at x = π.

The state χ in (C.2) is here taken to be the result of acting upon the primary state obtained for

Sz = 2, e = 1 with the lowering operator A1,2 defined from (1.3).The same conventions as table 3

are used for the extrapolation, and the CFT values (“conj”) are computed using the general method

described in section 5.2. Note that on the anti-chiral side we do not project on the fourth relevant

state. The effect of this on our conjecture is explained in section C.1.1.

Once more the states relevant for table 9 are found by taking the opposite signs of

these Bethe roots. (The set of states |wl1〉, |wl2〉, |wl3〉 is invariant under this action — the

first has real roots symmetric around zero and a self-conjugate imaginary root iπ/2, while

the other two have roots with opposite signs to one another.)

D Proof of (7.21)

We wish to prove (7.21b), from which (7.21a) then also follows thanks to the known re-

sult (7.20). Within this appendix, we let 〈O〉 refer to the ground-state expectation value

of an operator O in the limit N → ∞. Using the parity of the ground state we can

restate (7.21b) as

〈ejej+1〉 =
3 sin3γ I1 − sin γ I0

cos γ
. (D.1)
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〈a−1uq2 |L−1|uq2〉 〈ā−1uq2 |L̄−1|uq2〉
N 〈uq−2 |L̄1|ā−1uq−2〉 〈uq−2 |L1|a−1uq−2〉

8-22 O(10−15) O(10−15)

conj 0 0

〈a−1uq−2 |L−1|uq−2〉 〈ā−1uq−2 |L̄−1|uq−2〉
N 〈uq2 |L̄1|ā−1uq2〉 〈uq2 |L1|a−1uq2〉
8 0.37384355 0.37384355

10 0.38058992 0.38058992

12 0.3842338 0.3842338

14 0.38641194 0.38641194

16 0.38781199 0.38781199

18 0.38876228 0.38876228

20 0.38943519 0.38943519

22 0.3899281 0.3899281

p7 0.39204719 0.39204719

conj 0.39206346 0.39206346

Table 10. Matrix elements of L±1 and L̄±1 in the sector of Sz = 0, at x = π, |e| = 1 and twisted

boundary conditions, with the same conventions as in table 3. We call |uq2〉 the primary state

at twisted boundary conditions eφ = α−/α+, corresponding to the module W0,q2 , and |uq−2〉 the

primary state at twisted boundary conditions eφ = −α−/α+, corresponding to the module W0,q−2 .

In [56] the following ground-state expectation values are given for spin operators Sa =

σa/2, a = x, y, z:

〈Sxj Sxj+2〉 = − 1

2π sin 2γ
I(0) − 3 cos 2γ tan γ

4π3
I(2) +

cos 2γ

4π2
I(1) +

sin2γ

4π4
I(3), (D.2a)

〈SzjSzj+2〉 =
1

4
+

cot 2γ

π
I(0) +

3 tan γ

2π3
I(2) − 1

2π2
I(1) − sin2γ

2π4
I(3), (D.2b)

〈Sxj Sxj+1〉 = − 1

4π sin γ
I(0) +

cos γ

4π2
I(1), (D.2c)

〈SzjSzj+1〉 =
1

4
+

cot γ

2π
I(0) − 1

2π2
I(1), (D.2d)

where we have introduced the short-hand notations

I(0) =

∫ ∞
−∞

sinh(1− ν)t

cosh νt sinh t
dt, (D.3a)

I(1) =

∫ ∞
−∞

t
cosh t

cosh2νt sinh t
dt, (D.3b)

I(2) =

∫ ∞
−∞

t2
sinh(1− ν)t

cosh νt sinh t
dt, (D.3c)

I(3) =

∫ ∞
−∞

t3
cosh t

cosh2νt sinh t
dt, (D.3d)

with γ = πν. By comparison with (2.10) and (7.13) we see that I0 = I(0)/π and I1 =

I(2)/π3.

Using the expression (2.11) of the Temperley-Lieb generators in terms of Pauli matrices

we now rewrite 〈ejej+1〉 in terms of spin operators. We use σaσb = δab1+iεabcσ
c to simplify

the products, and by symmetry we may discard any resulting term that involves an odd
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number of any given spin operator. We obtain

4〈ejej+1〉 =
〈(
σxσxj+1 + σyj σ

y
j+1 + cos γ

(
σzjσ

z
j+1 − 1

)
+ i sin γ

(
σzj − σzj+1

) )(
σxj+1σ

x
j+2 + σyj+1σ

y
j+2 + cos γ

(
σzj+1σ

z
j+2 − 1

)
+ i sin γ

(
σzj+1 − σzj+2

) )〉
= 〈σxj σxj+2〉+ 〈σyj σ

y
j+2〉+ cos2γ

(
〈σzjσzj+2〉+ 1

)
− cos γ

(
〈σxj σxj+1〉+ 〈σxj+1σ

x
j+2〉

)
− cos γ

(
〈σyj σ

y
j+1〉+ 〈σyj+1σ

y
j+2〉

)
− cos2γ

(
〈σzjσzj+1〉+ 〈σzj+1σ

z
j+2〉

)
+ sin2γ

(
〈σzjσzj+2〉+ 1

)
− sin2γ

(
〈σzjσzj+1〉+ 〈σzj+1σ

z
j+2〉

)
.

(D.4)

Using translation invariance of the ground state and U(1) symmetry we rewrite this as

〈ejej+1〉 = 2〈Sxj Sxj+2〉+ 〈SzjSzj+2〉+
1

4
− 4 cos γ〈Sxj Sxj+1〉 − 2〈SzjSzj+1〉. (D.5)

Inserting the results from (D.2) we see immediately that the terms with I(3) cancel, as well

as the terms involving no integrals at all, leaving

〈ejej+1〉 =

(
−2

1

2π sin 2γ
+

cot 2γ

π
+ 4 cos γ

1

4π sin γ
− 2

cot γ

2π

)
I(0)

+

(
2

cos 2γ

4π2
− 1

2π2
− 4 cos γ

cos γ

4π2
+ 2

1

2π2

)
I(1)

+

(
−2

3 cos 2γ tan γ

4π3
+

3 tan γ

2π3

)
I(2).

(D.6)

By trigonometric identities we then see that the terms involving I(1) cancel as well, and

that we finally obtain

〈ejej+1〉 =
sin γ

π cos γ
I(0) +

3 sin3γ

π3 cos γ
I(2) =

3 sin3γ I1 − sin γ I0

cos γ
, (D.7)

proving (7.21).

D.1 The limit γ → 0

In the limit x→∞, γ → 0 we expect that the integrals in (7.21) can be expressed in terms

of the polylogarithms Li2n+1(−1), following the result for the XXX spin chain [57]

〈SzjSzj+1〉 =
1

12
− 1

3
ζa(1) , (D.8a)

〈SzjSzj+2〉 =
1

12
− 4

3
ζa(1) + ζa(3) , (D.8b)

here written in terms of the alternating zeta function

ζa(s) =
∑
n>0

(−1)n−1

ns
= −Lis(−1) . (D.9)
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More precisely, as γ → 0 (D.5) simplifies to

〈ejej+1〉 = 3〈SzjSzj+2〉+
1

4
− 6〈SzjSzj+1〉 , (D.10)

such that by inserting (D.8) we expect that (7.21b) can be written as

〈ejej+1 + ej+1ej〉 =
1

2

(
1− 2 + 8ζa(1) + 1− 16ζa(1) + 12ζa(3)

)
= 6ζa(3)− 4ζa(1). (D.11)

Comparing the rescaled integrals sin2n−1 γ In in the limit of x→∞ to the integral repre-

sentation

− Lis(−1) =
1

Γ(s)

∫ ∞
0

ts−1

et + 1
dt (D.12)

we find

sin2n−1 γ In = 2
sinn−1(γ)

γn−1

∫ ∞
0

t2n
sinh(xt)

sinh((x+ 1)t) cosh(t)
dt

= 4
sin2n−1(γ)

γ2n−1

∫ ∞
0

t2n

e2t + 1

(
1− e−2xt

1− e−2(x+1)t
dt

)

−−−−→
x→∞

4

22n+1

∫ ∞
0

t2n

et + 1
dt = − 4

22n+1
Γ(2n+ 1)Li2n+1(−1) . (D.13)

In particular sin γ I0 → −2Li1(−1) = 2ζa(1) and sin3γ I1 → −Li3(−1) = ζa(3), such that

〈ejej+1 + ej+1ej〉 =
6 sin3γ I1 − 2 sin γ I0

cos γ
−−−→
γ→0

6ζa(3)− 4ζa(1) (D.14)

indeed.

E Further numerical results for section 7.2

Within this appendix we collect figures providing further numerical evidence for the

results (7.12) and (7.22) given in section 7.2 regarding the limit of the commutator

[Lp+n + L̄−p−n,L−p − L̄p]. Throughout this appendix we consider x = π, so that q

is not a root of unity. In figures 8 and 9 we show results for n = −2, while in figure 10 we

show results for n = 0 in the case where we do not project back on the original state, but

rather on the first excited state corresponding to the same choices of lattice parameters.

The figures indicate that the slope r obeys r > 1 for matrix elements of ej , ejej+1 + ej+1ej
and [ej , [ej+1, ej+2]], while it obeys r > 2 for the remainder R. We note that in some

figures there are large finite size effects making it harder to discern the tendency of the

curves, in particular those involving [ej , [ej+1, ej+2]] in which we have chosen to exclude

the first data points entirely. These effects are larger for the states |Sz = 1, e = 1〉 and

|p = 1〉, which have momenta p /∈ {0, N/2} making results involving these states more

sensitive to finite size effects.

It is the case for all figures, including those in section 7.2, that the estimated slope will

vary slightly when data points for larger sizes are included. We note that if one follows and

extrapolates the estimation of the slope as a function of the sizes used for the estimate, the

bounds r > 1 and r > 2 are still expected to hold in the continuum limit, indicating that

the finite size effects have not influenced the overall conclusions regarding convergence.
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Figure 8. Absolute value of matrix elements, plotted using the same conventions as in figure 3

up to the choice of |u〉: for each state |v〉 the state |u〉 corresponds to the same choice of lattice

parameters up to a change in momentum sector, p→ p+2. To the left, the lowest energy state for

each choice of lattice parameters is used for |u〉. To the right, the first excited energy state is used

for |u〉 instead. In case of choices of |v〉 showing particularly strong finite size effects (|Sz = 1, e = 1〉
and |p = 1〉 in the lower left plot, |p = 1〉 in the lower right plot) the linear fit is performed using

only the two leftmost points.

Figure 9. Absolute value of matrix elements of R as defined in (7.11), plotted using the same

conventions as in figure 3 up to the choice of |u〉: for each state |v〉 the state |u〉 corresponds to the

same choice of lattice parameters up to a change in momentum sector, p → p + 2. To the left,

the lowest energy state for each choice of lattice parameters is used for |u〉. To the right, the first

excited energy state is used for |u〉 instead.
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Figure 10. Absolute value of matrix elements, plotted using the same conventions as in figure 3

up to the choice of |u〉: for each state |v〉 the state |u〉 is taken to be the first excited energy state

corresponding to the same choice of lattice parameters that were used for |v〉. (We recall that |v〉
is taken to be the lowest-energy state). In the lowest plot R is as defined in (7.11).

F The chiral-antichiral commutator

In [1] the limit of [Lp+n + L̄−p−n,L−p + L̄p] was checked, and was found to be correct.

Meanwhile in section 7 and appendix E we found strong evidence for [Lp+n+L̄−p−n,L−p−
L̄p] having the correct limit up to the central term. In order to isolate the chiral-antichiral

commutator [Lp+n, L̄−p] it remains to find the behaviour of [Lp+n−L̄−p−n,L−p−L̄p]. We

shall proceed in the same manner as in section 7 and appendix E. However, while we there

showed figures for two different cases at n = 0, once case at n = −1 and two at n = −2,

we shall here only reproduce the figures corresponding to one of the cases at n = 0 and

the case at n = −1. This is partly to save space, and partly (for the n = −2 cases) due to

increasingly disruptive finite size effects — as was already noted in appendix E, such effects

become generally more pronounced for products of several Temperley-Lieb generators.

Similarly to (7.4) we first expand the commutator under investigation. We obtain the

expression

[Lp+n − L̄−p−n,L−p − L̄p]

= −2i

(
N

2π

)2( γ

π sin γ

)4{
sin

(
4πp+ 2πn

N

) N∑
j=1

e2iπn(j+3/2)/N [[ej , ej+1], [ej+2, ej+3]]

+ e−iπn/N sin

(
2πp+ πn

N

) N∑
j=1

e2iπn(j+3/2)/N

×
(
−[ej , ej+1]− [ej+1, ej+2] +

√
Q(ejej+1ej+2 − ej+2ej+1ej)

)}
. (F.1)
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Provided that the matrix elements of the combinations of Temperley-Lieb operators ap-

pearing above are of order O(1/N r) with r > 0 for the first row and r > 1 for the second

row, we may restrict our attention to leading order terms the trigonometric functions as

well as the exponential in the second row. To be concise, let us denote

r1 = [[ej , ej+1], [ej+2, ej+3]]

r2 = −[ej , ej+1]− [ej+1, ej+2] +
√
Q(ejej+1ej+2 − ej+2ej+1ej).

(F.2)

We plot the matrix elements of r1 and r2 for n = 0,−1 in figures 11, 12.We find that r > 1

in both cases. With this in mind we keep only leading terms in the expansion:

[Lp+n − L̄−p−n,L−p − L̄p]

= (2p+ n)(−i)N
2π

(
γ

π sin γ

)4 N∑
j=1

e2iπn(j+3/2)/N (2r1 + r2) +O

(
1

N r−1

)
.

(F.3)

We now compare (F.3) to what is denoted ĥ(4) in [1], using this time the result

KS (2.59)18

− i N
2π

(
γ

π sin γ

)4 N∑
j=1

e2iπn(j+3/2)/N6 [[ej , ej+1], [ej+2, ej+3]]

+ 6
√
Q[ej(ej+1ej+2 + ej+2ej+1)] + (Q+ 2)[ej , ej+1] 7→

(
Ln − L̄−n

)
.

(F.4)

We note that as is the case for P in (2.22), also denoted by ĥ(2) in [1], the ground state

expectation value of ĥ(4) is zero. For this reason we do not need to introduce normal

ordering in (F.4). It turns out that the ground state expectation values of r1, r2 are

also zero, as are some other matrix elements that are for this reason excluded from the

figures below.

As before we define a remainder, here given by the difference between the summand

in (F.3) and (F.4):

R(4) =− 4 [[ej , ej+1], [ej+2, ej+3]]− 6
√
Q[ej(ej+1ej+2 + ej+2ej+1)]− (Q+ 2)[ej , ej+1]

− [ej , ej+1]− [ej+1, ej+2] +
√
Q(ejej+1ej+2 − ej+2ej+1ej).

(F.5)

For the limit of (F.1) to be correct we need the remainder to decay as O(1/N r) with r > 2.

We see in figures 11, 12 that the numerical results support this. Together with the previous

results for [Lp+n + L̄−p−n,L−p+L̄p] and [Lp+n+L̄−p−n,L−p−L̄p] we can conclude that

the numerical results strongly indicate that [Lp+n, L̄−p] 7→ 0. Again we show the figures

only for n = 0,−1 in the interest of saving space, but we note that at n = −2 the finite

size effects are significantly smaller for R(4) than they are for r1 and r2, and the numerical

results for R(4) show a clear r > 2 slope for n = −2 already at the sizes we can access.

18Generalized to n 6= 0 in the same way as in KS (3.33).
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Figure 11. Absolute value of matrix elements, plotted using the same conventions as in figure 3

but with the choice of |u〉 = |v〉.

Figure 12. Absolute value of matrix elements, plotted using the same conventions as in figure 3.

In case of choices of |v〉 showing particularly strong finite size effects (|Sz = 1, e = 1〉 and |p = 1〉
in upper two plots) the linear fit is performed using only the two leftmost points.
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G The ordinary XXZ case

Going back to the bosonization in section 3.2, we can note that if we defined more general

local interactions, replacing the factor i sin γ
2 by iλ in (2.11), we would obtain the twist

T λ = −1

4
: (∂ϕ)2 : +i

2λ

sin γ
α0∂

2ϕ (G.1)

and the central charge

cλ = 1− 96α2
0

λ2

sin γ2
. (G.2)

We can use this additional freedom to explore the “ordinary” XXZ case, which we shall

define shortly, in terms of a unitary c = 1 CFT, and to interpolate between this CFT and

the c = 1− 6
x(x+1) CFT described above.

We now describe what we mean by the “ordinary” XXZ case. In this setting we

forget for a moment the Temperley-Lieb algebra, and remove the telescoping terms in the

definition of the Hamiltonian density. We consider instead the XXZ Hamiltonian as a sum

of different local, Hermitian interactions. Based on (3.23) we define

hXXZj = − γ

π sin γ
fj , (G.3)

where we recall that

fj = −σ−j σ
+
j+1 − σ

+
j σ
−
j+1 −

cos γ

2
σzjσ

z
j+1 +

cos γ

2
. (G.4)

We can once more consider twisted boundary conditions parametrized by φ, “smeared out”

over all N sites for numerical convenience. Written out explicitly we find

fj = . . .⊗ 1⊗


0 0 0 0

0 q+q−1

2 −eiφ/N 0

0 −e−iφ/N q+q−1

2 0

0 0 0 0

⊗ 1⊗ . . . . (G.5)

By the same reasoning as in section 2.4 we next introduce a momentum operator

PXXZ = −i
(

γ

π sin γ

)2 N∑
j=1

[fj , fj+1] (G.6)

with a lattice momentum density pXXZ
j = i[hXXZj ,hXXZj−1 ] = −i

( γ
π sin γ

)2
[fj−1, fj ]. This

leads to the following alternative discretization of the Virasoro generators:

LXXZ
n =

L

4π

− γ

π sin γ

L∑
j=1

einj2π/L
(
fj − e∞ +

iγ

π sin γ
[fj , fj+1]

)+
1

24
δn0 , (G.7a)

L̄XXZ
n =

L

4π

− γ

π sin γ

L∑
j=1

e−inj2π/L
(
fj − e∞ −

iγ

π sin γ
[fj , fj+1]

)+
1

24
δn0 . (G.7b)

Notice that in these expressions we have used the value c = 1 for the central charge,

irrespective of x.
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G.1 Algebraic description of the ordinary XXZ case

To find the algebra relevant to the new Hamiltonian densities fj we compare to the R-

matrix defined in [59]19 as R(u) = 1 + f(u)Q+ g(u)E, where

f(u) =
sin γ − sinu

2 sin(γ − u)
− 1

2
, (G.8a)

g(u) =
sin γ + sinu

2 sin(γ − u)
− 1

2
(G.8b)

contain the dependence on u, γ and the operators Qj = · · · ⊗ 1 ⊗ Q ⊗ 1 ⊗ · · · and Ej =

· · · ⊗ 1⊗ E ⊗ 1⊗ · · · , with

Q =


0 0 0 0

0 1 1 0

0 1 1 0

0 0 0 0

 , (G.9a)

E =


0 0 0 0

0 1 −1 0

0 −1 1 0

0 0 0 0

 , (G.9b)

both separately fulfil the Temperley-Lieb relations for m = 2 corresponding to q = 1.

Together with relations between operators Qj and Ek they generate an algebra VN that is

further discussed in [59].

As before the Hamiltonian is found from the derivative of the transfer matrix, and we

obtain from the above R-matrix the desired Hamiltonian density

hXXZj = −γ
π

(f ′(0)Q+ g′(0)E)

= −γ
π

1

2 sin γ

[(
q + q−1

2
− 1

)
Q+

(
q + q−1

2
+ 1

)
E

]
= − γ

π sin γ


0 0 0 0

0 q+q−1

2 −1 0

0 −1 q+q−1

2 0

0 0 0 0

 .

(G.10)

Twisted boundary conditions correspond to modifying the off-diagonal elements in Q and

E as in (2.15) and (G.5).

Small-size computations (N = 4, 6) indicate that the state space of the XXZ Hamil-

tonian at Sz = 0, φ = 0 decomposes into a direct sum of at least two submodules under

the action of the algebra VN . We shall further see in table 12 that at all sizes, the ma-

trix elements 〈a−11|LXXZ
−1 |1〉 and 〈1|LXXZ

1 |a−11〉 are both zero, in accordance with what

would be expected from a unitary theory. Thus the structure of the scaling limit Virasoro

modules seems to be found to at least some degree at the level of the lattice for the case

of c = 1 too, and not only for c = 1− 6
x(x+1) .

19Section 4.2. O(2) spin model. Note that the sign convention for the off-diagonal elements in E and Q

is here the opposite to that of [59], to be consistent with the rest of this paper.
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G.2 Central charge and conformal weights for the ordinary XXZ case

We can consider the same kind of trace as in (3.4) in the twisted XXZ chain, this time

considered as a c = 1 theory. Calling HSz the subspace with third component of the spin

fixed to Sz we have

TrHSz e
−βRHXXZ

φ e−iβiP
XXZ
φ

N→∞−−−−→ GSz ,φ (G.11)

with

GSz ,φ =
q−1/24q̄−1/24

P (q)P (q̄)

∑
e∈Z

q
hXXZ
(e−eφ),−Sz q̄

hXXZ
(e−eφ),Sz , (G.12)

and we have introduced the notation

hXXZr,s =
[(x+ 1)r − xs]2

4x(x+ 1)
=

1

4

[√
x+ 1

x
r −

√
x

x+ 1
s

]2

. (G.13)

Recalling F from (3.5), of course we have algebraically that F = G. The objects are

however thought of quite differently. In particular, we expect now that, “generically”

G(Sz, φ) 7→
⊕
e∈Z

Ve−eφ,−Sz ⊗ Ve−eφ,Sz , (G.14)

where the Verma modules are now modules at central charge c = 1. What “generically”

means in this case is not so clear unless one delves into representation theory of the relevant

lattice algebra: for the time being, we will consider q and φ generic to be defined through

what is considered generic for Temperley-Lieb models.

It is well expected that the fields associated with the conformal weights hXXZ in the

sum (G.12) are vertex operators with charges α, ᾱ given as in (3.34) with α0 replaced

by zero:

αXXZ =
1

2
(e− eφ)α+ −

1

2
Szα− (G.15a)

ᾱXXZ =
1

2
(e− eφ)α+ +

1

2
Szα−. (G.15b)

When the weights hXXZ are non-degenerate the corresponding Verma modules are irre-

ducible. Since we are dealing with central charge c = 1, the only degenerate values are

hXXZ = n2

4 . Even for generic q, these occur when φ = 0, Sz = 0. We will discuss below

what happens in both the non-degenerate and the degenerate case.

G.3 Numerical results for the ordinary XXZ case

Building the Koo-Saleur generators out of fj rather than ej we expect to obtain the theory

with the previous background charge α0 replaced by zero. As a first numerical example we

consider the generic case Sz, φ = 1/10 explored in table 1. We denote by (LXXZ
−1 [N ])ab the

matrix elements of the generators LXXZ
n defined by (G.7), and choose the scaling states

|u1〉 and |v1〉 as described in (5.4) and (5.5). The conjectured value is
√

2α as before, where

the charge α = αXXZ is now however given by (G.15) rather than (3.34). The result is

shown in table 11.
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N 〈v1|LXXZ
−1 |u1〉

10 0.55059214

12 0.56499765

14 0.57410237

16 0.58022239

18 0.58453691

20 0.58769572

22 0.59008035

24 0.59192667

26 0.59338687

28 0.59456275
...

...

...
...

30 0.59552449

32 0.59632179

34 0.59699064

36 0.59755764

38 0.59804281

40 0.59846143

42 0.59882537

44 0.59914391

46 0.59942447

48 0.59967297
...

...

...
...

50 0.59989421

52 0.60009214

54 0.60026998

56 0.60043043

58 0.60057574

60 0.60070781

62 0.60082822

64 0.60093836

66 0.60103938

68 0.6011323
...

...

...
...

70 0.60121798

72 0.60129718

74 0.60137054

76 0.60143866

78 0.60150202

80 0.60156108

p25 0.60294403

p30 0.60294453

p35 0.60294326

conj 0.60293032

Table 11. Matrix element (LXXZ
−1 [N ])v1u1

, where the scaling states |u1〉 and |v1〉 follow the

patterns of Bethe integers shown in (5.4) and (5.5). The numerical values are given for the case of

Sz = 1, e = 0, x = π, φ = 1/10. For comparison, the matrix elements (L−1[N ])v1u1 were given in

table 1. The same conventions regarding extrapolation are used in this table.

Next we make the same comparison in the sector of Sz = 0, considering both a primary

state |u〉 corresponding to e = eφ = 0 and a primary state |uq±2〉 corresponding to |e| =

1, |eφ| = −α−/α+. For the twisted boson we expect to obtain a non-zero value when

lowering |u〉, since this state is not the identity state but rather has α = α0. For the c = 1

case we expect to obtain zero. The opposite scenario holds for |uq±2〉 up to having two

possibilities within the twisted boson theory, depending on the sign of eφ. The results are

shown in table 12 and in the earlier table 10, where we in both tables focus on smaller

sizes to show how we obtain exact results at finite size. At c = 1 the matrix elements at

e = eφ = 0 are not only zero for L±1, but for each fj individually. This can be compared

to how the matrix elements were zero for individual ej within indecomposable modules of

the affine Temperley-Lieb algebra. The difference is here that both 〈a|fj |b〉 and 〈b|fj |a〉
are zero, while for ej only one of these matrix elements is zero. Thus the results at c = 1

would indicate a reducible module replacing the indecomposable module at c = 6
x(x+1) in

this sector.

G.4 Interpolation between c = 1 and c = 1− 6
x(x+1)

We have seen that the “ordinary” XXZ chain corresponds to λ = 0 in (G.1)–(G.2). Here

we instead consider λ = t sin γ
2 , varying t between 0 and 1 to obtain values of the central

charge between c = 1 and c = 1− 6
x(x+1) .20 On the lattice we define

Mj(t) = −σ−j σ
+
j+1 − σ

+
j σ
−
j+1 −

cos γ

2
σzjσ

z
j+1 − t

i sin γ

2
(σzj − σzj+1) +

cos γ

2
, (G.16)

20With α0 6= 0 it is necessary for conformal charges to be quantized in terms of the screening charges

α± in order to obtain a nonzero four-point function of the corresponding field [31]. For this reason the

interpolation may not be physical, since it breaks the relation between α0 and α±.
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〈a−1u|L−1|u〉 〈ā−1u|L̄−1|u〉
N 〈u|L1|a−1u〉 〈u|L̄1|ā−1u〉
8 0.18927529 0.18927529

10 0.19199126 0.19199126

12 0.19341304 0.19341304

14 0.1942385 0.1942385

16 0.19475441 0.19475441

18 0.19509508 0.19509508

20 0.19532981 0.19532981

22 0.1954971 0.1954971

p7 0.19601147 0.19601147

conj 0.19603173 0.19603173

〈a−1u|LXXZ
−1 |u〉 〈ā−1u|L̄XXZ

−1 |u〉
N 〈u|LXXZ

1 |a−1u〉 〈u|L̄XXZ
1 |ā−1u〉

8-22 O(10−15) O(10−15)

conj 0 0

〈a−1uq2 |LXXZ
−1 |uq±2〉 〈ā−1uq2 |L̄XXZ

−1 |uq±2〉
N 〈uq±2 |LXXZ

1 |a−1uq2〉 〈uq±2 |L̄XXZ
1 |ā−1uq2〉

8 0.18692177 0.18692177

10 0.19029496 0.19029496

12 0.1921169 0.1921169

14 0.19320597 0.19320597

16 0.193906 0.193906

18 0.19438114 0.19438114

20 0.1947176 0.1947176

22 0.19496405 0.19496405

p7 0.19602359 0.19602359

conj 0.19603173 0.19603173

Table 12. Matrix elements of L±1, L̄±1, LXXZ
±1 and L̄XXZ

±1 with the same conventions as in

table 3, in the sector of Sz = 0 at x = π. We call |u〉 the primary state at e = 0 and periodic

boundary conditions eφ = 0 corresponding to the module W0,1 (top), and |uq±2〉 the primary state

at |e| = 1 and twisted boundary conditions |eφ| = −α−/α+ corresponding to the modules W0,q2

and W0,q−2(bottom) for which the results are the same. In the latter case, the results for L±1 and

L̄±1 are given in table 10.

such that

Mj(t) =


0 0 0 0

0 q−1 + (1− t) q−q
−1

2 −1 0

0 −1 q− (1− t) q−q
−1

2 0

0 0 0 0

 =

{
fj if t = 0 ,

ej if t = 1 .
(G.17)

Again, twisted boundary conditions correspond to modifying the off-diagonal elements of

Mj(t) as in (2.15) and (G.5). We call the corresponding Koo-Saleur generators Lt
n and L̄t

n.

As seen from G.2, we expect the central charge to be quadratic as a function of t,

c(t) = 1− 24(tα0)2. (G.18)
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Figure 13. Finite-size estimate for the central charge c as a function of interpolation parameter t

at x = π, using the same conventions as in figure 2. The generators Lt
n are defined below (G.17).

To explore this numerically we consider matrix elements

〈1|Lt
2L

t
−2|1〉. (G.19)

We thus need to interpolate the identity state 1 continuously as we vary t. Both Sz and

e taking integer values only, we are left with varying the twist φ. We may start the

interpolation either from the known identity state Sz = 0, e = 0, eφ = 0 at t = 0, c = 1 or

from the known identity state Sz = 0, |e| = 1, eφ = α−/α+ at t = 1, c = 1 − 6
x(x+1) . In

these cases the result of applying LXXZ
−1 or L−1, respectively, yields identically zero on the

lattice thanks to the structure of the modules of the respective algebras. It turns out that

these two approaches yield identical results: the “unsmeared” twist φ = 2πeφ being defined

modulo 2π, combined with the conjecture (3.34) depending only on the combination e−eφ,

means that shifting e from 0 to 1 is equivalent to choosing a different representative in the

equivalence class for φ.21 We choose here to start from the identity state at t = 0, with

e = eφ = Sz = 0. Within the conjecture (3.34) the background charge α0 is replaced by

tα0, meaning that as t increases we must increase the twist as eφ = 2tα0/α+ to keep α = 0.

Following this procedure we obtain the values of the central charge at a function of t shown

in figure 13. We note that the effects of “parasitic couplings” seem to be more pronounced

for the case of the “ordinary” XXZ chain at t = 0. That is, we find once more that these

effects are the strongest for the largest value of c.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

21We note that while all representatives are equivalent on the level of the “unsmeared” twist, one does

need to be careful with the choice of representative when numerically “smearing out” the twist.
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