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Abstract: Focusing light into highly disordered biological tissue is a major challenge in optical
microscopy and biomedical imaging due to scattering. However, correlations in the scattering
matrix, known as “memory effects”, can be used to improve imaging capabilities. Here we
discuss theoretically and numerically the possibility to achieve three-dimensional ultrashort laser
focusing and scanning inside forward scattering media, beyond the scattering mean free path, by
simultaneously taking advantage of the angular and the chromato-axial memory effects. The
numerical model is presented in details, is validated within the state of the art theoretical and
experimental framework and is finally used to propose a scheme for focusing ultra-short laser
pulses in depth through forward scattering media.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Exploiting the optical properties of biological tissues [1] is of crucial interest for many biomedical
applications such as optical imaging. One critical challenge concerns focusing broadband
and ultrashort laser pulses into such complex media, especially for non-linear microscopy
[2–5]. However, light beam manipulation is hampered by inhomogeneities of the refractive
index map. Coherent light propagation through tissues results in random speckle patterns [6],
limiting the penetration depth of optical imaging techniques [7]. Light perturbation by refractive
index mismatch has historically been categorized into geometrical aberrations and scattering.
Geometrical aberrations typically includes phase-only perturbations described by low-order
Zernike modes, such as introduced by the tissue surface roughness. Scattering refers to phase
and intensity perturbations of higher spatial frequencies, such as introduced by micron-sized
organelles inside the tissue volume. Several approaches have been proposed to increase the
light penetration depth by improving the amount of focused ballistic photons by using longer
wavelength lasers [8], higher energy pulses [9] and also by optimizing collection of fluorescence
light [10]. Adaptive optics has proved to restore imaging capabilities, at least partially, by
compensating geometrical aberrations, especially in the case of non-linear optical microscopy
[11–13]. All these techniques are focusing on optimizing ballistic light. However, beyond
the scattering mean free path (ls ≃ 100µm in tissues), most of the energy is scattered, thus
limiting the efficiency of these methods, all the more in the presence of screw phase dislocations
involving 0 − 2π phase-steps which cannot be properly addressed by deformable mirrors [14].
Recent advances in the field of wavefront shaping [15,16] have overcome this problem by using
segmented phase actuators to precompensate the input wavefront. Such an optimization can
be achieved by using an iterative process [16], phase conjugation [17], or by measuring the
transmission matrix in advance [3,18,19]. These techniques have proven to be powerful tools for

#412640 https://doi.org/10.1364/OE.412640
Journal © 2021 Received 16 Oct 2020; revised 18 Dec 2020; accepted 18 Dec 2020; published 17 Feb 2021

https://doi.org/10.1364/OA_License_v1#VOR-OA
https://crossmark.crossref.org/dialog/?doi=10.1364/OE.412640&amp;domain=pdf&amp;date_stamp=2021-02-17


Research Article Vol. 29, No. 5 / 1 March 2021 / Optics Express 6564

optical imaging but they either decrease imaging speed or require access to the plane of interest
for characterizing the scattering medium.

Noteworthy, non-invasive [20–23] and high-speed imaging [24,25] could be achieved without
any active wavefront control by making use of correlation properties of speckles behind diffusers.
These correlations of the transmission matrix have been known as the “memory effect” and allow
deterministic transformations of speckles behind diffusers such as transverse [26–29] and axial
[30–32] translations as well as topological transforms of critical points [33,34]. The spatial
correlations of speckle patterns have been widely studied especially in the case of thin diffusers
[26,27] and forward scattering media [28,29,32] (See Fig. 1(a)). In this latter case, the angular
range of the ME scales as λ/(L sinΘ0), where L is the diffuser thickness and Θ0 the mean output
angular spread under plane wave illumination [28,32,35]. In tissues, scattering mostly occurs in
the forward direction, which is quantified by the anisotropy factor g = ⟨cos θ⟩, where θ is the
scattering angle at each scattering event. Consequently, energy propagates until the transport
mean free path ℓ∗ = ℓs/(1 − g), which is typically one order of magnitude larger than ℓs [1]. For
L ≪ ℓ∗, the mean angular spread after a slab of such material is then Θ2

0 = L/ℓ∗ [28] and the
rotation center of the angular memory effect lies at axial coordinate z = L/2, inside the slab (Fig.
1(a)). Noteworthy, for a material made of non-dispersive and smooth refractive index map, ℓ∗ is
achromatic and ℓs scales as λ2 [36], in contrast with the well-known λ4-scaling of the Rayleigh
scattering regime. Numerical fitting of experimental data can be obtained by using a combination
of these two regimes [1].

Fig. 1. Angular and χ-axial ME in forward-scattering diffusers. (a) The angular ME
designates the transmission of a tilt through a thin-enough scattering medium. The rotation
center is then located at one half of the diffuser thickness L. (b) The χ-axial ME designates the
axial homothetic dilation of the transmitted speckle upon a spectral shift when illuminating
with a plane wave. The homothety center in this case lies in a virtual plane located at 2L/3.

Nowadays, much efforts focus on improving imaging capabilities in the intermediate depth
range where light energy is propagating forward but with negligible amount of ballistic light
(ℓs ≪ L ≪ ℓ∗). In this regime, solutions have been explored to increase the spatial memory
effect, including combined angular and translational transforms [28] and time-gated detection
[37]. In addition, a strong spatio-spectral coupling has recently been observed [31] wherein a
spectral detuning over 200 nm-widths was experimentally demonstrated to result in a simple axial
translation of the focused laser beam through a 1 mm-thick brain slice. This effect has been shown
to be of interest for 3D imaging with thin diffusers [30,38]. The chromato-axial memory effect
(χ-axial ME) was further theoretically investigated and was shown to be especially important
in the case of forward scattering samples, with convincing confrontation with experiment
[32]: Under plane wave illumination, a spectral shift results in an axial homothetic dilation
of the output speckle pattern, with origin located at a virtual plane located at axial coordinate
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z = 2L/3 inside the diffuser where the speckle is achromatic both in phase and amplitude, at
second order approximation (Fig. 1(b)). The spectral correlation width of the medium is then
∆k = 3

√
2/(LΘ2

0), half-width-at-half-maximum (HWHM). The model developed in Ref. [32] is
based on a two dimensional random walk in the k-space and thus relies on the hypothesis of a
large number of scattering events, which in practice, accounts for physical samples exhibiting
typical phase-correlation dimensions much smaller than the slab thickness. Because studying
optical properties of biological tissues is so important, a numerical model accounting for memory
effects in thick scattering media is of high interest for achieving 3D imaging in the biomedical
imaging domain.

In this article, we first present our numerical tool consisting in modeling a thick forward
scattering diffuser by a stack of thin diffusers [39,40], in the intermediate range ℓs ≪ L ≪ ℓ∗.
Then this model is validated quantitatively based on theoretical expectations published in the
literature, both regarding the angular memory effect [28,32] and the χ-axial ME [32]. In Sec. 2.,
the model parameters are expressed as a function of the three main parameters characterizing a
slab of tissue: L, ℓs, ℓ∗ (or equivalently: g). Then, in Sec. 3., this model is first validated in the
case of a very large anisotropy factor (g = 0.999) which provides a correspondingly very large
thickness validity range from ℓs to ℓ∗. In Sec. 4., the model is also validated for an anisotropy
factor comparable with typical biological tissues (g = 0.975). Finally, making use of both χ-axial
and angular ME simultaneously, in Sec. 5 this study proposes a strategy for three-dimensional
ultra-short beam focusing and scanning inside a scattering tissue beyond the scattering mean free
path, from a single monochromatic characterization of the medium.

2. Description of the numerical model

Our numerical model is similar to those published in the literature [39,40] and the main programs
can be found online in Code 1 [41]. It consists in slicing a forward scattering slab of thickness L
into a stack of Ndiff thin diffusers separated by distance d as illustrated in Fig. 2(a). Backscattering
is neglected because the index contrasts are assumed to be low enough and because the slab
thickness L is assumed to be much smaller than the transport mean free path ℓ∗. Light propagation
through the stack is then achieved in the scalar approximation model and simply consists in
the succession of thin phase mask and Fresnel propagations. Thin diffusers are generated
by spatial filtering of a zero-meaned pixelated random thickness map thanks to a Gaussian
filter with spatial autocorrelation width w and yielding a mean squared optical path delay
δ =

√︂⟨︁
δ2

⟩︁
− ⟨δ⟩2 [40,42] (Fig. 2(b)). The spatial correlation function of the thin diffusers is

then C(r1, r2) = exp
[︁
−(r1 − r2)

2/(4w2)
]︁
. Noteworthy, the exact spatial spectrum profile of the

diffusers does not matter because the validity of the model relies on the approximation of large
number of scattering events, for which the central-limit theorem is valid. The spatial spectrum
must only be bound to low scattering angles for Fresnel approximation to be valid. Here, we
further assume that the scattering medium is made of non-dispersive materials. The phase
delay introduced by the nth thin diffuser is thus assumed to result in a product by the following
transmission coefficient:

Tn(x, y) = exp[iφn(x, y)] (1)

where φn(x, y) = kδ(x, y) is the phase delay introduced by diffuser number n, and δ(x, y) the
corresponding optical path delay.

The characteristics of the scattering medium L, ℓs and ℓ∗ can then be tailored solely by tuning
the geometrical parameters: the number of thin diffuser plates Ndiff, their separation distance d,
mean squared amplitude of optical path delays δ and spatial correlation width w. We thus dispose
of one more geometrical control parameter than the number of physical constraints, so enabling
to set one parameter arbitrarily. The relations between all these parameters is detailed below.

https://github.com/laboGigan/XCorrFSM
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Fig. 2. Thick scattering medium scheme. (a) A thick diffuser of thickness L is modeled
as a stack of Ndiff independent thin diffusers separated by distance d. Angular and χ-axial
ME are studied by sending monochromatic plane waves. (b) Each intermediate thin diffuser
consists of a smooth random phase pattern with Gaussian statistics characterized by the
spatial correlation width w and the mean squared amplitude δ of optical path delays.

They can be obtained by considering first the thickness of the thick diffuser L = (Ndiff − 1)d,
second the fraction of ballistic light after the diffuser and third the output scattering angle.

The fraction of ballistic light after a single thin phase mask n may be calculated by considering
that φn, for a single thin diffuser, is a zero-mean Gaussian random variable with spatial correlation

w and variance
⟨︁
φ2

n
⟩︁
=

(︂
kδ

)︂2
. Considering the central moments of a normal distribution, a

Taylor expansion of eiϕn provides the average intensity of the ballistic light as:

Ibal =
|︁|︁|︁⟨︂eiϕn(x,y)

⟩︂|︁|︁|︁2
= exp

[︃
−

(︂
kδ

)︂2
]︃ (2)

A numerical illustration of this expression is shown in Fig. 3(a) as a function of δ (λ = 0.8 µm
and w = 3 µm). After crossing Ndiff thin diffusers, the fraction of ballistic light is then

Ibal(L) = exp
[︃
−Ndiff

(︂
kδ

)︂2
]︃
, which can be identified to the definition of the scattering mean free

path: Ibal(L) = exp(−L/ℓs), so giving ℓs as a function of numerical and geometrical parameters.
Finally, the transport mean free path ℓ∗ is related to the output angular spread of an impinging

plane wave. Considering the Gaussian spatial correlation function of thin diffusers, a second
order Taylor expansion for small kδ values allows getting an analytical expression of the angular
variance of the intensity per transverse dimension:

Θ
2
0 =

Ndiff
2

(︄
δ

w

)︄2

(3)
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Fig. 3. Scattering properties of a single thin diffuser as a function of the mean squared
amplitude of its optical path delays δ : (a) the fraction of non-diffracted energy and (b) the
angular spread Θ0. Numerical data (cross) are compared to theoretical Eqs. (2) (a) and
(3) (b) (solid lines). Numerical data computed for a wavelength λ = 0.8 µm and a phase
correlation width w = 3 µm.

This expression may then be identified to Θ2
0 = L/ℓ∗ [28]. The validity of this expression is

illustrated in Fig. 3(b) for a single thin phase plate. A slight discrepancy is observed for δ values
approaching λ due to the limited validity of the Taylor expansion: for too large δ-values, the
power spectrum of the field deviates from a Gaussian-shape.

In a nutshell, the equations relating the geometrical parameters of the model to the physical
parameters of the diffuser are:

L = (Ndiff − 1)d (4)
L
ℓs
= Ndiff

(︂
kδ

)︂2
(5)

L
ℓ∗
=

Ndiff
2

(︄
δ

w

)︄2

(6)

Since the number of parameters in the model is 4 and the number of physical parameters
to set is only 3, one parameter can be set arbitrarily. Noteworthy, a thick scattering sample
characterized only by the three parameters ℓs, ℓ∗ (or g) and L (and satisfying ℓs ≪ L ≪ ℓ∗) can
be modeled by a stack of any number of thin diffusers, so long as Ndiff is large enough for the
central limit theorem to be considered as valid [32]. Regarding this constraint, we quantitatively
discuss the accurateness of results as a function of Ndiff in Sec. 3. Taking Ndiff>5 is typically
sufficient but for more accurate matching with the model, we took Ndiff larger than, or equal to,
10 in our simulations. Furthermore, it is also convenient to take Ndiff large enough so that the
mean squared phase delay

√︂⟨︁
φ2

n
⟩︁
= kδ remains smaller than 2π. This second requirement makes

former Taylor expansions valid and conveniently allows making use of analytical expression
given in Eqs. (3) and (6) to determine geometrical parameters. Interestingly, we point out that
that in the framework of this model, the scattering mean free path ℓs scales as λ2 (Eq. (5)) and
the transport mean free path ℓ∗ is achromatic (Eq. (6)).
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3. Angular and χ-axial memory effects: numerical vs. theoretical results

3.1. Angular memory effect

As a first step, we study the angular memory effect in a thick scattering slab. According to
this phenomenon a tilt of the incident wavefront results in a tilt of the output wavefront within
a limited angular range [28,32] (See Fig. 1(a)). Since the rotation coordinate of the angular
memory effect is at z = L/2, the correlation products between output fields are thus considered in
this plane for varying input tilt angles. The analytical expression of the cross-correlation product
between speckle intensity patterns when tilting the angle of incidence by Θ is:

Cα = exp
[︃
−

k2L3

12ℓ∗
Θ

2
]︃

(7)

The angular correlation width – or angular ME range – full width at half maximum (FWHM),
is then:

∆Θ = 4
√︁

3 ln(2)
√
ℓ∗

kL3/2 (8)

In Fig. 4(a) the results of simulations is compared to the analytical expression given in Eq.
(7), for a diffuser with ℓs = 100 µm, L = 10ℓs = 1 m m, ℓ∗ = 1000ℓs = 100 m m. The angular
correlation width (Eq. (8)) is plotted as the function of Ndiff in Fig. 4(b) and exhibits quick
convergence for a few thin diffuser plates. It is then plotted in Fig. 4(c) for Ndiff = 10 as the
function of thickness which varies from L = 5ℓs to L = 20ℓs and is also compared to the analytical
expression given in Eq. (8).

It is interesting to relate this model to results published in Ref. [39] wherein the authors
compare their experimental results obtained for forward scattering samples, with the angular
memory effect derived for media thicker than ℓ∗, in which case ∆Θ ≈ 3.0 (kL)−1 [27,43]. Fitting
experimental data with this expression for forward scattering samples, the authors define a
effective thickness Leff which turns out to be much thinner than the actual thickness of samples.
This smaller effective thickness is due to the larger angular memory effect of forward scattering
slabs than would be obtained for isotropically scattering samples of same thickness. In the frame
of our model, the effective thickness can be identified to Leff ≈ 0.52L3/2ℓ∗−1/2, in qualitative
agreement with experimental data published in Ref. [39].

3.2. χ-axial Me

Another important correlation property of forward scattering media is a χ-axial ME, observed
and studied in Refs. [31,32]. We now aim at validating this effect with our multi phase-plates
model. In a nutshell, under plane wave illumination condition, a chromatic shift of the beam
results in an axial dilation of the speckle pattern over large spectral bandwidths. The analytic
expression quantifying this effect could be derived in Ref. [32] thanks to a model based on a
two-dimensional random walk in the k-space. The two-wavelength mutual coherence function
at two different axial positions z and z′ for two copropagating impinging plane waves with
wavenumbers k and k′, respectively, was calculated to be [32]:

Cχ =
1

1 + (k0L2)2

18ℓ∗2
+

(︂
Lk
ℓ∗k′

)︂2 [︂
k
(︂
z′ − 2L

3

)︂
− k′

(︂
z − 2L

3

)︂]︂2 (9)

where k0 is a function of the spectral detuning defined as:

k0 =
k
k′
(k − k′) (10)

The correlation product Cχ in Eq. (9) is then a double Lorentzian function both along spectral
detuning parameter k0 and along the axial z-coordinate. As pointed out in Ref. [32], along the
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Fig. 4. Characterization of the angular ME. (a) The cross-correlation product Cα is
computed numerically and plotted as a function of incident beam angle and the results are
compared to the theoretical expression in Eq. (7). The diffuser thickness is L = 1 mm and
number of thin diffuser plates is Ndiff=10. (b) The magnitude of the angular memory effect
∆Θ, defined as the angular width (FWHM) of the cross-correlation product Cα, is computed
for a fixed value of diffuser thickness L = 1 mm, as a function of number of thin diffusers
Ndiff and fitted by a hyperbolic function with a1 = 7.7 · 10−3, a2 = 6.8 · 10−3, a3 = 25.
(c) The magnitude of angular ME is then computed for a fixed value of Ndiff = 10 as the
function of the diffuser thickness L and compared to theory given by Eq. (8). Data are
computed at λref = 0.8 µm, with parameters ℓs = 100 µm and ℓ∗ = 100 mm (g = 0.999).

propagation z-coordinate, the two-wavelength correlation function Cχ in Eq. (9) is maximum for:

k
(︃
z′ −

2L
3

)︃
= k′

(︃
z −

2L
3

)︃
(11)

A spectral shift of the incident beam thus results in an axial homothetic dilation of the speckle
with origin at z = 2L/3, as illustrated in Fig. 1(b). The Lorentzian evolution of Cχ (Eq. (9)) as a
function of z = z′ is plotted in Fig. 5(a) and compared with numerical data. In this example,
the zero-mean cross-correlation product of two speckles (λ = 800 nm and λ′ = 820 nm) is
computed for a scattering slab of thickness L = 1 mm. At plane z = z′ = 2L/3, the speckles
are achromatic at second order approximation in k0. The location of the achromatic plane was
computed numerically from thicknesses ranging from L = ℓs to L = 20ℓs and compared to the
2L/3 value (Fig. 5(c)).

At the achromatic plane (z = z′ = 2L/3), the zero-mean cross-correlation product is given by:

Cχ(max) =

[︃
1 +

(k0L2)2

18ℓ∗2

]︃−1

(12)

yielding the spectral correlation width (FWHM) at first order in ∆k = k − k′:

∆k = 6
√

2
ℓ∗

L2 (13)

or equivalently for ∆λ:

∆λ =
3
√

2
π

λ2ℓ∗

L2 (14)

The analytical Lorentzian profile as a function of λ (given in Eq. (12)) is compared with the
numerical computation of the spectral correlation width in Fig. 6(a). For L = 1 mm, numerical
data exhibit excellent agreement with theory. However, for L = 0.5 mm, a significant discrepancy
appears for longer wavelengths. This discrepancy can be understood by plotting the spectral
dependence of the ballistic intensity Ibal = exp(−z/ls) in Fig. 6(b). Since the scattering mean free
path ℓs scales as λ2 in the frame of this model (Eq. (5)), the approximation L ≫ ℓs becomes wrong
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Fig. 5. Achromatic plane location under plane wave illumination of a forward scattering
slab. (a) Cross-correlation product between two speckles at λ = 0.8 µm and λ′ = 0.82 µm as
a function of the axial coordinate z for a L = 1 mm-thick diffuser. The correlation maximum
appears at a virtual image plane located inside the diffuser at z = 2L/3. The gray-shaded
grey materializes the scattering medium. The yellow line is set at z = 2L/3 and coincide
with the maximum of the cross-correlation product. Computed data are compared with the
model given in Eq. (9). (b) The maximum correlation plane over diffuser thickness (fixed at
L = 1 mm) is calculated for different Ndiff values and fitted by a hyperbolic function with
a1 = 0.64, a2 = 0.17, a3 = 0.14. As we can see it converges toward 2/3 for Ndiff>5. (c) For
a fixed value of Ndiff greater than five (here Ndiff = 10), the axial location of the correlation
maximum is shown to be z = 2L/3 whatever L in the range from L=ℓs to L=20ℓs. In (b)
and (c), data were computed for ∆λ = 1 nm. The diffuser parameters are ℓs = 100 µm and
ℓ∗ = 100 mm (g = 0.999).

for longer wavelengths: the model prerequisites are thus not satisfied for longer wavelengths. In
this case L ∼ ls, not only some ballistic light remains but also, the scattered light does not exhibit
Gaussian statistics. The observed remaining correlations at long wavelengths is due to both of
these consequences. Equations (13) and (14) are finally compared to numerical results in Fig.

Fig. 6. (a) Spectral correlation of a L-thick diffuser at the achromatic plane. The reference
wavelength is set as λref = 0.8 µm and two different thickness are considered: L = 500 µm
(blue and cyan curves) and L = 1000 µm (pink and orange curves). The discrepancy between
theory (solid lines) given by Eq. (12) and numerical computation (crosses) in (a) can be
accounted for by considering the remaining amount of ballistic energy as plotted in (b). The
model leading to Eq. (12) assumes no remaining ballistic light, which is obviously not true
for long wavelengths due to the λ2 scaling of the scattering mean free path ℓs. The diffuser
parameters are ℓs = 100 µm and ℓ∗ = 100 mm (g = 0.999). The number of thin diffuser
plates is fixed at Ndiff = 10.
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7(b) and 7(c) showing again good agreement for thick enough scattering samples. The spectral
correlation width is shown to scale as 1/L2, in agreement with Eqs. (13) and (14).

Fig. 7. (a) Spectral correlation width ratio fixed at L = 1 mm for different Ndiff values fitted
by a hyperbolic function with a1 = 0.91, a2 = 1.01, a3 = 0.60. The comparison between the
numerical and theoretical (Eq. (13)) spectral correlation width as a function of its thickness
L, is shown in (b,c) using two different vertical coordinates for the sake of clarity. According
to Eq. (13), the product ∆kL2 is expected not to depend on L as observed in (c). Data shown
for a central wavelength λref = 0.8 µm, ℓs = 100 µm and ℓ∗ = 100 mm (g = 0.999). The
number of thin diffuser plates is fixed at Ndiff = 10 for (b,c).

3.3. Combined angular and χ-axial MEs

In a final step, we study the simultaneous effect of both angular and χ-axial ME in the perspective
to perform three-dimensional intensity scanning inside or through forward scattering diffusers.
We thus considered numerically a simultaneous angular tilt and chromatic shift of the impinging
beam. Numerical simulations were achieved by computing speckle intensities in the achromatic
plane (z = 2L/3). For a Θ angular tilt, speckles were checked to be translated by an amount
ΘL/6 since the tilt rotation origin is at z = L/2. Making use of Eqs. (7) and (9), the combined
angular-spectral memory effect is shown, in Fig. 8 to behave as:

Cα,χ = Cα × Cχ (15)

Fig. 8. The combined angular and χ-axial ME for λref = 0.8 µm, L = 1 mm, ℓs = 100 µm,
ℓ∗ = 100 mm (g = 0.999) and Ndiff = 30. The zero-mean cross correlation product of
speckles for our (a) simulations, (b) the theoretical model given in Eq. (15) and (c) the
difference between theory and simulations.

4. χ-Axial and Angular ME for a Realistic Anisotropy Factor

So far, we used a large anisotropy factor (g = 0.999) in order to check our model over a large
range of slab thickness from ℓs to ℓ∗. In particular, we could demonstrate that in this regime,
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spectral correlation widths are so large that the amount of ballistic light becomes significant
within the spectral correlation range of the medium. However, such g-values are not really typical
for biological tissues. We thus now illustrate the validity of our model for g = 0.975 in Fig. 9.

Fig. 9. (a) Cross-correlation product between two speckles at a reference wavelength
λ = 0.8 µm and three different wavelengths taken at λ = 0.802 µm (plotted in blue crosses),
λ = 0.805 µm (plotted in red crosses) and λ = 0.810 nm (plotted in yellow crosses). (b)
Cross-correlation product for angular memory effect Cα computed numerically and plotted
as a function of incident beam angle and compared to the theoretical expression given by
(7). In both (a,b), the diffuser thickness is L = 500 µm. (c) Spectral correlation at the
achromatic plane (z = 2L/3) around λ = 0.8 µm for two different thicknesses L = 500 µm
and L = 1 mm. (d) Spectral correlation width as a function of thickness is then deduced
from (c) and compared to the analytical expression given in (14). For all these calculations
we have taken ℓs = 100 µm, g = 0.975 and Ndiff = 30.

5. Spectral cophasing plane & pulse broadening

In section 3.2, the speckles at different wavelengths were shown to exhibit a correlation maximum
in the virtual plane z = 2L/3, meaning that if sending a broadband light beam, a “white” speckle
is obtained in this plane. However this result does not presume anything about the spectral
phase of the beam or about ultra-short pulse broadening. Pulse broadening in scattering media
reduces non-linear optical processes, especially those based on electronic virtual quantum states
(two-photon absorption, second harmonic generation · · · ). Although usually considered as
detrimental for imaging, Oron et al. considered turning the pulse-broadening effect to the
experimentalist advantage for achieving spatio-temporal focusing in non-linear microscopy
applications [44–47].
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Here, we thus derive the analytical expression of the pulse beam broadening after the scattering
sample, based on the analytical expression of the spectro-axial correlation properties of forward
scattering diffusers (Eq. (9)). The temporal profile of a pulse can be obtained by considering the
corresponding broadband electric field:

Eω = e
−

(ω−ω0)
2

2σ2
ω (16)

yielding, after the diffuser, the time-dependent intensity (averaged over transverse spatial
coordinates):

I(t) =
1

2π

∬
ω,ω′

Cχ(Ω)EωE∗
ω′eiΩtdωdω′ (17)

where Ω = ω′ − ω is the spectral detuning and where Cχ(Ω) is given by Eq. (9) (taken with
z′ = z):

Cχ(Ω) =
1

1 +
(︂
ΩL
cℓ∗

)︂2
[︃

L2

18 +
(︂
z − 2L

3

)︂2
]︃ (18)

The former expression was derived by performing a first order Taylor expansion to simplify
k0 =

k
k′ (k − k′) ≃ Ω/c. The temporal variance of the intensity can be calculated as:

⟨︁
t2
⟩︁
=

∫
t2I(t)dt∫
I(t)dt

(19)

Simple integral manipulation leads to:⟨︁
t2
⟩︁
=

{︃
−
∂2

∂Ω2

[︃
Cχ(Ω) exp

(︃
−
Ω2

4σ2
ω

)︃]︃}︃
Ω=0

(20)

Fig. 10. Pulse width broadening after a diffuser as a function of the axial coordinate. A
plane wave (λ0 = 0.8 µm, δλ = 10 nm-FWHM) with mean squared temporal spread of
40 fs (i.e. 94 fs-FWHM) (cyan curve) keeps this width until the diffuser entrance and in
virtual object planes after (dashed). After the diffuser, the pulse width broadens as a function
of the propagation axis. The pulse width is found to be minimum in the virtual image
plane (dashed part of the curve) located at z = 2L/3. Numerical simulations (red curve)
and our theoretical model (black curve) show good agreement. Curves plotted for diffuser
characteristics: L = 500 µ m, ls = 100 µ m, g = 0.975 (ℓ∗ = 4 mm).
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so giving for the mean squared pulse width:

δt =
√︂⟨︁

t2
⟩︁
=

⌜⃓⎷
1

2σ2
ω

+ 2
(︃

L
cℓ∗

)︃2
[︄
L2

18
+

(︃
z −

2L
3

)︃2
]︄

(21)

Eq. (21) is plotted in Fig. 10 together with the result of numerical simulations and demonstrate
a very good agreement for a L = 500 µ m scattering sample whose scattering properties are
consistent with biological tissues’ (ls = 100 µ m, g = 0.975). Interestingly, the minimum pulse
width is obtained in the virtual plane z = 2L/3 wherein speckles are achromatic. Away from this
plane, the difference in homothetic axial dilation for the different spectral components leads to a
linear increase of the pulse width. As a final remark, Eq. (21) has been derived for a impinging
plane wave but exhibit a similar form as the expression calculated for a focused beam [47].

6. Broadband spot imaging and focusing

Until now, we only considered collimated beam illumination of the diffuser at normal incidence.
Noteworthy, the former conclusions are also trivially valid for tilted plane wave illumination.
In this section, we study the implications of the χ-axial ME in the case of spherical wave
illumination. This problem is of interest for a wide range of applications like broadband (e.g.
fluorescent) point source imaging and broadband beam focusing through or inside scattering
media. Imaging broadband point source through a scattering medium demands special care for
collecting light [10]. Furthermore, recent blind speckle imaging [20–22] and focusing [23,48]
approaches typically require maximizing the speckle contrast because of the limited dynamic of
detectors.

The different cases studied in this sections are illustrated in Fig. 11. First, in Sec. 6.1, we
study the speckle-wavefield generated in the achromatic plane z′ = −2L/3 by a single broadband
point source located behind a forward scattering medium (Fig. 11). Then, in Sec. 6.2, based on
field conjugation of the wavefield generated by a monochromatic point source (located at axial
coordinate z), we consider scanning this spot axially by two different means: by shifting the
wavelength of the impinging beam (Fig. 11(b)), making use of the χ-axial ME, or by imprinting
a parabolic wavefront modulation to the impinging beam (Fig. 11(c)), so taking advantage of the
angular ME of the medium. Finally, in Sec. 6.3, a strategy is proposed to achieve ultra-short,
broadband, pulse focusing based on the wavefield generated by a monochromatic point source
(Fig. 11(d)): dispersive parabolic wavefront modulation is applied to a broadband light beam to
compensate the χ-axial ME.

6.1. Broadband point source imaging

We study here the wavefield generated by a broadband point source located behind a diffuser
(Fig. 11(a)). We assume a Gaussian point source with numerical aperture NA = 0.1 to remain in
the validity domain of small angles approximation. Although the angular memory effect is a
factor five below the NA-value (∆Θ = 2.10−2), the speckle intensity is achromatic in the plane
z′ = −2L/3 as illustrated in Fig. 12(a) where two speckles are shown for wavelengths exhibiting a
spectral shift of 220 nm (smaller than the spectral correlation width of the diffuser ∆λ = 345 nm,
FWHM). The phase difference ∆φ between these two random waves is shown in Fig. 12(b)
where it appears as mostly parabolic. This result may be understood by considering that pencil
beams arising from the point source are mostly scattered in the forward direction. The resulting
phase delay is thus dominated by a spherical component (as shown in Fig. 12(d)): φ = kr2/(2R),
with R = z + 2L/3. As a result, the different wavelengths of the outgoing beam share a same
wavefront, resulting in parabolic relative phase difference between two different wavelengths:
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Fig. 11. Strategies analyzed in this section for imaging, focusing and axial shifting of a
broadband light spots based on the wavefield located in the virtual plane at z′ = −2L/3. First,
the speckle generated by a broadband point source through a diffuser is studied (a). Second,
we compare the possibilities to scan axially a monochromatic laser beam focused behind
a diffuser by either shifting the wavelength (b) or by imprinting an additional parabolic
wavefront (WF) (c). Third, a simple broadband beam focusing strategy is proposed to
achieve achromatic beam focusing through the diffuser by combining achromatic wavefront
shaping with dispersive defocusing (d), in which case the χ-axial ME can be compensated
by parabolic wavefront modulation exploiting the angular ME.

∆φ = kr2/(2Rδλ), where Rδλ may be expressed at first order approximation as:

Rδλ =

(︃
z +

2L
3

)︃
λ0
δλ

(22)

The difference between this model (Fig. 12(c)) and numerical results (Fig. 12(b)) is shown in
Fig. 12(e) where the phase difference appears as mostly flat.

In a nutshell, when considering plane wave illumination, the speckle through the diffuser is
achromatic both in phase and amplitude in the virtual plane located at 2L/3 inside the diffuser.
In contrast, for point source illumination, the speckle is still achromatic in amplitude in this plane
but the achromatic spherical wavefront results in a relative wavelength-dependent parabolic term.

6.2. Axial spot scanning by chromatic shift vs. parabolic wavefront shaping

In the former section, we observed that the χ-axial ME for a spherical wave results in a parabolic
relative-phase-delay between two wavelengths, in the plane z′ = −2L/3. This result strongly
recall the possibility to axially shift a spot through a thin diffuser by exploiting the angular
memory effect by simply adding a parabolic phase delay.

Here, we thus compare the two approaches to axially scan a spot focused behind a forward
scattering diffuser. The field originating from a point source with NA = 0.1 was then computed
in the virtual plane located at z′ = −2L/3, as represented in Fig. 11(a). Refocusing through
the diffuser was then obtained by performing field conjugation. Prior to propagation through
the diffuser, the field was modified in two different ways: propagation was achieved either for
a shifted wavelength (scheme proposed in Fig. 11(b)), exploiting the χ-axial ME, or after
impinging a parabolic phase modulation (scheme illustrated in Fig. 11(c)), exploiting the angular
ME. In both cases, these changes result in a axial shift of the focused spot. For a chromatic shift
δk, the axial shift of the spot is

δz =
δk
k

(︃
z +

2L
3

)︃
(23)

A same amount of defocus can also be obtained by imprinting a parabolic phase modulation:

δφ =
k(x2 + y2)

2
(︂
z + 2L

3

)︂ (24)
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Fig. 12. Wavefield at the virtual image plane at z′ = −2L/3 generated by a polychromatic
point source located at z = 0 (as illustrated in Fig. 11(a)). In this plane, the speckle intensity
and wavefront are achromatic (a) and the phase difference between two different wavelengths
∆φ is thus mostly parabolic (b). This parabolic phase difference may be simply modeled (c)
by considering the achromatic spherical impinging wavefront originating from the point
source (Eq. (22)). The phase pattern at λ = 800 nm is shown in (d). The difference between
∆φ in (b) and the spherical model (c) is mostly flat (e). Data computed for a point source
with NA = 0.1, and scattering medium with L = 500µ m, ℓs = 100 µ m, ℓ∗ = 100mm.

The resulting focused spot intensities are plotted in Fig. 13 for three values of the initial focus
location z: 0, L, and 2L; showing that the two approaches are almost perfectly equivalent. This
result suggest that the ability to shift axially a beam arise from a single intrinsic invariant property
of the scattering medium.

Fig. 13. Axial scanning of a monochromatic spot originally focused at coordinates
z ∈ {0, L, 2L} behind a diffuser (see Figs. 11(b) and 11(c)). Numerical beam refocusing is
achieved by field conjugation in the virtual plane located at z′ = −2L/3. Axial scanning can
then be obtained either by shifting the wavelength (Fig. 11(b)) or by imprinting a parabolic
wavefront modulation (Fig. 11(c)). The two approaches yields almost exactly the same
scanning ranges whatever the distance z of the initial spot from the diffuser. Data computed
using the same numerical parameters as for Fig. 12.
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6.3. Broadband beam focusing: parabolic wavefront compensation of the chromatic
shift

Because of the χ-axial ME, achromatic spatial phase-shaping results in an axially spread focus
[31] (as illustrated in Fig. 11(b)). For a spot located at a distance z behind the diffuser, the axial
shift resulting from a spectral shift δk is given by Eq. (23). In order to superimposes focii of all
the spectral components, an achromatic wavefront – corresponding to a wavelength-dependent
parabolic phase modulation – must then be applied (opposite of Eq. (24)) to compensate for this
axial shift (Fig. 11(c)).

In practical implementations, achromatic parabolic wavefront modulation can be obtained
thanks to an achromatic lens [31,49]. In contrast, phase only spatial light modulators introduce
little dispersion so inducing almost achromatic phase modulation. Moreover dispersive spectral
defocus can be simply achieved by using regular lenses made of dispersive materials. In our
numerical simulations, we simulated the pulse refocused behind the diffuser when achieving
(quasi-)phase conjugation by only considering the wavefield required for focusing at the central
wavelength λ0 of the illumination source. This required wavefield Eλ0 is obtained by simulating
a “guide star” located at z = 0, at the central wavelength λ0 only, in the virtual plane z′ = −2L/3.
Like in previous sections, the considered “guide star” was actually a Gaussian spot with numerical
aperture NA = 0.1. Then the quasi-conjugate impinging beam defined as

Aλ = E∗
λ0

exp
(︃
i

k0r2

2Rδλ

)︃
(25)

was propagated back through the diffuser. Such a beam could be generated by combining a spatial
light modulator achieving achromatic phase conjugation together with a focusing lens achieving
achromatic spherical wavefront modulation. As a result, the spectrum at the focus is observed

Fig. 14. Broadband beam focusing by field-conjugation, based only on the speckle field at
the central wavelength λ0 = 800 nm (as illustrated in Fig. 11(d)). Achromatic wavefield
shaping of a broadband light source results in an axial spread of the spot according to Eq.
(23) (illustrated in Fig. 11(b)) which may be efficiently compensated by simply applying the
proper dispersive spherical wavefront: opposite of Eq. (24). The spectrum of the light source
is shown as a dashed line in (a) (λ0 = 0.8 µ m and δλ = 110 nm-FWHM) and is compared
to the spectrum of the spot when achieving achromatic wavefront shaping (pink curves)
and when properly compensating for the axial shift (blue curves). Achromatic wavefront
shaping yields worse characteristics both spatially (right inset of (c), right) and temporally
(c, right). Pulse width is degraded both due to a narrowed spectrum (a) and non-flat spectral
phase (b). In contrast, when adding the compensating spherical wavefront to this achromatic
conjugated field, a much better focus is obtained, exhibiting a better spatial focusing (insets
of (c), left), a broader spectrum close to the original one (a) and a flatter spectral phase (b).
Numerical data obtained for z = 0, L = 500 µ m, ℓs = 100 µ m and ℓ∗ = 100 mm.
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to be slightly filtered (blue curve in Fig. 14(a)) as compared to the initial spectrum (dashed
black curve in Fig. 14(a)) due to imperfect phase conjugation. However, such a priori chromatic
defocus yields a much broader spectrum than when performing achromatic phase conjugation
only (pink curve in Fig. 14(a)) – as would be obtained using a spatial light modulator only – in
which case the focii at different wavelengths are axially spread. In addition, it can be seen in
Fig. 14(a) that not only the spectrum is wider in the case of a priori chromatic defocusing phase
conjugation but also that the spectral phase is much flatter. As a consequence, the pulse width at
focus is three times as short as compared to achromatic phase conjugation (Fig. 14(c)). The peak
intensity was measured to be decreased by 70% when achieving achromatic phase modulation
and by only 11% when combining achromatic phase modulation with dispersive refocusing. In
Fig. 14(c) most of the energy is focused but interestingly, away from the focus, the pulse width of
residual unfocused energy exhibits a temporal broadening similar to so called X-waves studied in
Ref. [46].

7. Conclusion and perspectives

In this paper, we have demonstrated that the memory effects induced by angular tilt, defocusing
and spectral shift can be used to focus an ultrashort laser beam with achromatic wavefront shaping
in order to achieve a three-dimensional scanning of the beam through the scattering tissue. First,
we proposed a numerical model for a forward-scattering anisotropic medium based on a stack
of Ndiff thin diffusers as shown in Code 1 [41]. Our diffuser model assumes that the material is
fully characterized by three parameters: ℓs, ℓ∗ and L. Furthermore, our model is based on the
approximation ℓs ≪ L ≪ ℓ∗. It thus assumes a large number of scattering events, and neglects
backscattering. Noteworthy, for non-linear microscopy applications, wherein a non-linear optical
response is induced by an ultrashort focused spot, backscattering can be neglected even if the
medium is semi-infinite. In this case, the length L is to be interpreted as the considered depth of
focus.

Broadband beam focusing through forward scattering media results in an axial dilation of
spectral components, in agreement with the χ-axial ME described in Ref. [32]. The origin of the
homothety, where the speckle is "achromatic" lies in a virtual plane located at a distance L/3
before the considered focal plane. Here we further demonstrate numerically that the spectral
phase of the beam is flat in this same plane, resulting in a minimum pulse duration. For broadband
light beams with achromatic impinging wavefronts the achromatic (and spectrally flat) plane
does not coincide with the focal plane, which is a problem for microscopy applications. The
achromatic plane is indeed inaccessible since in a virtual plane.

Here, we thus suggest a strategy to move forward this achromatic (and spectrally flat) plane to
the focal plane. The possibility to get the achromatic plane and the focal plane to coincide in the
medium is provided by the ability to achieve an axial displacement of the beam either by spectral
detuning or parabolic modulation of the impinging wavefront. As a consequence a priori quasi
phase-conjugation can be achieved based on the field at a single wavelength only. For a slightly
detuned beam, a simple additional wavefront curvature Rδλ = (z + 2L/3)λ0/δλ at the virtual
plane located at L/3 from the diffuser input surface, allows almost perfect refocusing behind
(or inside) the diffuser. The key role of the virtual plane L/3 from the diffuser input surface is
in perfect agreement with the result derived in Ref. [28] wherein wavefront manipulation for
optimized transverse-scanning-range is achieved in this same virtual plane. Here, we get that this
plane is also the best to compensate the axial chromatic drift of the focused spot by parabolic
wavefront modulation. This result is of high interest for non-linear microscopy applications
requiring focusing multiple wavelengths, in which case using a single spatial light modulator is
much easier. Comparison between this approach and using the broadband transmission matrix
would also be of high interest [49].

https://github.com/laboGigan/XCorrFSM
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Interestingly, for a non-dispersive and non-absorbing diffuser, our model results in an achromatic
transport mean free path. The scattering mean free path is also shown to scale as λ2. This
behavior results from the model we considered for intermediate thin diffusers which are all
assumed to be non-dispersive, smooth and continuous, so yielding phase function mostly pointing
towards forward directions. In practice, typical phase biological objects exhibit sharp boundaries
mitigating the validity of this approximation: a small fraction of light energy is thus scattered at
large angles. Even though the contribution of this scattered light is negligible in the forward
direction, it results in a energy-loss and in reduced memory effects. One solution to complete
tissue modeling may consist in adding a Rayleigh scattering case, in which case scattering scales
as λ4 [1]. Our results showed that the spectral correlation width scales at ℓ∗/L2 and that the
angular memory effect range scales as ℓ∗ 1/2/(kL3/2).

Finally, we presented results for non-dispersive and non-absorbing media for the sake of
simplicity of physical interpretation but both dispersion and absorption can be trivially introduced
into the presented numerical model as we show in Code 1 [41]. Achromatic bulk absorption in the
medium is mostly expected to just result in an energy decrease at the diffuser output but should
also attenuate the contribution of the longest optical path lengths which are both responsible for
the largest outgoing angles and for dispersion in the optical-path-lengths distribution. Achromatic
bulk absorption is thus expected to increase the forward-scattering nature of the medium and
should thus increase its spectral correlation width. The presence of localized achromatic
absorbers should also increase the achromatic nature of the medium as compared to phase
masks. Conversely, chromatic-dependent absorption will result in reduced correlation widths
both in the bulk or for localized absorbers. Dispersion is not expected to change significantly the
random-walk nature of light propagation. The analytical formula derived in Ref. [32] have been
derived whatever the refractive index. Numerical results (not shown) confirm this expectation
and introducing either bulk or localized dispersion mostly results in a mere wavelength rescaling
of plots.
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