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ARTICLE

A spatial emergent constraint on the sensitivity of
soil carbon turnover to global warming
Rebecca M. Varney 1✉, Sarah E. Chadburn1, Pierre Friedlingstein 1,2, Eleanor J. Burke 3,

Charles D. Koven 4, Gustaf Hugelius 5 & Peter M. Cox 1

Carbon cycle feedbacks represent large uncertainties in climate change projections, and the

response of soil carbon to climate change contributes the greatest uncertainty to this. Future

changes in soil carbon depend on changes in litter and root inputs from plants and especially

on reductions in the turnover time of soil carbon (τs) with warming. An approximation to the

latter term for the top one metre of soil (ΔCs,τ) can be diagnosed from projections made with

the CMIP6 and CMIP5 Earth System Models (ESMs), and is found to span a large range even

at 2 °C of global warming (−196 ± 117 PgC). Here, we present a constraint on ΔCs,τ, which
makes use of current heterotrophic respiration and the spatial variability of τs inferred from

observations. This spatial emergent constraint allows us to halve the uncertainty in ΔCs,τ at
2 °C to −232 ± 52 PgC.
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C limate–carbon cycle feedbacks1 must be understood and
quantified if the Paris Agreement Targets are to be met2.
Changes in soil carbon represent a particularly large

uncertainty3–7, with the potential to significantly reduce the
carbon budget for climate stabilisation at 2 °C global warming8.
Previous studies have investigated the response of soil carbon to
climate change based on both observational studies9 and Earth
System Models (ESMs)10. ESMs are coupled models which
simulate both climate and carbon cycle processes. Projects such as
the Coupled Model Inter-comparison Project (CMIP)11,12, have
allowed for consistent comparison of the response of soil carbon
under climate change from existing state-of-the-art ESMs.
However, the uncertainty due to the soil carbon feedback did not
reduce significantly between the CMIP3 and CMIP5 model
generations6, or with the latest CMIP6 models (see Fig. 1
and Supplementary Fig. 1), such that the projected change in
global soil carbon still varies significantly amongst models13.

This study uses an alternative method to obtain a constraint on
the ESM projections of soil carbon change. In previous studies,
emergent constraints based on temporal trends and variations
have been used successfully to reduce uncertainty in climate
change projections14. Our approach follows the method used in
Chadburn et al.15, where a spatial temperature sensitivity is used
to constrain the future response to climate change—which we
term as a spatial emergent constraint. Our study combines the
Chadburn et al.15 method with the soil carbon turnover analysis
of Koven et al.16 to get a constraint on the sensitivity of soil
carbon turnover to global warming.

Soil carbon (Cs) is increased by the flux of organic carbon into
the soil from plant litter and roots, and decreased by the break-
down of that organic matter by soil microbes which releases CO2

to the atmosphere as the heterotrophic respiration flux (Rh). If the
vegetation carbon is at steady-state, litter-fall will equal the Net
Primary Production of plants (NPP). If the soil carbon is also
near to a steady-state—and in the absence of significant fire fluxes
and other non-respiratory carbon losses—the litter-fall, NPP, and
Rh will be approximately equal to one another. Even over the
historical period, when atmospheric CO2 has been increasing and
there has been a net land carbon sink, this approximation holds
well (see Supplementary Fig. 4).

In order to separate the effects of changes in NPP from the
effects of climate change on Rh, we define an effective turnover
time17 for soil carbon as τs= Cs/Rh. The turnover time of soil
carbon is known to be especially dependent on temperature3. A
common assumption is that τs decreases by about 7% per °C of
warming (equivalent to assuming that q10= 2)18. However, this
sensitivity differs between models, and also between models and
observations.

We can write a long-term change in soil carbon (ΔCs), as the
sum of a term arising from changes in litter-fall (ΔCs,L), and a
term arising from changes in the turnover time of soil carbon
(ΔCs,τ):

ΔCs ¼ ΔðRh τsÞ � ΔCs;LðtÞ þ ΔCs;τðtÞ ¼ τs;0 ΔRhðtÞ þ Rh;0 ΔτsðtÞ
ð1Þ

Model projections of the first term (ΔCs,L) differ primarily
because of differences in the extent of CO2-fertilisation of NPP,
and associated nutrient limitations. The second term (ΔCs,τ)
differs across models because of differences in the predicted
future warming, and because of differences in the sensitivity of
soil carbon decomposition to temperature (which includes an
influence from faster equilibration of fast-turnover compared to
slow-turnover carbon pools under changing inputs13). This study
provides an observational constraint on the latter uncertainty. As
the vast majority of the CMIP6 and CMIP5 models do not yet

represent vertically resolved deep soil carbon in permafrost or
peatlands, we focus our constraint on carbon change in the top 1
metre of soil. To ensure a fair like-for-like comparison we also
exclude the two CMIP6 models that do represent vertically-
resolved soil carbon (CESM2 and NorESM2), although this has a
negligible effect on our overall result. Our study therefore applies
to soil carbon loss in the top 1 metre of soil only. Below we show
that it is possible to significantly reduce the uncertainty in this key
feedback to climate change using current-day spatial data to
constrain the sensitivity to future warming.

Results and discussion
Proof of concept. For each ESM, we begin by calculating the
effective τs using time-averaged (1995–2005) values of Cs and Rh
at each grid-point, and applying our definition of τs= Cs/Rh. We
do likewise for observational datasets of soil carbon in the top 1
metre19,20 and time-averaged (2001–2010) heterotrophic
respiration21, as shown in Fig. 2. Figure 2c shows the map of
inferred values of τs from these observations, with a notable
increase from approximately 7 years in the warm tropics to over
100 years in the cooler high northern latitudes.

Similar maps can be diagnosed for each of year of data, for each
ESM, and for each future scenario, giving time and space varying
values of τs for each model run. This allows us to estimate ΔCs,τ,
via the last term on the right of Eq. (1). For each ESM, the Rh,0
value is taken as the mean over the decade 1995–2005, to overlap
with the time period of the observations and to maintain
consistency across CMIP generations. Individual grid-point τs
values are calculated for each year before calculating area-
weighted global totals of ΔCs,τ. The uncertainty of ΔCs,τ stems
from the uncertainty in soil carbon turnover (τs), and the
uncertainty due to differing climate sensitivities of the models. In
this study, we aim to quantify and constrain the uncertainty in τs.
To isolate the latter uncertainty, we consider ΔCs,τ for differing
levels of global mean warming in each model. The resulting
dependence of global total ΔCs,τ on global warming is shown in
Fig. 1a, for each of the ESMs considered in both CMIP6 and
CMIP5 (seven CMIP6 ESMs and nine CMIP5 ESMs), and for
three Shared Socioeconomic Pathways (SSP): SSP126, SSP245 and
SSP585 (CMIP6)22, or the equivalent Representative Concentra-
tion Pathways (RCP): RCP2.6, RCP4.5 and RCP8.5 (CMIP5)23. In
all cases ΔCs,τ is negative, which is consistent with the soil carbon
turnover time decreasing with warming. The more surprising
thing to note is the huge range in the projections, with a spread at
2 °C global mean warming of approximately 400 PgC, regardless
of future SSP/RCP scenario. Figure 1b plots the fractional change
in soil carbon ΔCs,τ/Cs,0, showing that there is a large range of
effective q10 sensitivities between the model projections.

Unfortunately, we do not have time-varying observational
datasets of Cs and Rh that might allow us to directly constrain this
projection uncertainty. Instead we explore whether the observed
spatial variability in τs (as shown in Fig. 2c) provides some
observational constraint on the sensitivity of τs to temperature. In
doing so, we are motivated by Chadburn et al.15 who used the
correlation between the observed geographical distributions of
permafrost and air temperature to constrain projections of future
permafrost area under global warming. Similarly, we use ESMs to
test whether the spatial variation in τs reveals the sensitivity of soil
carbon turnover to temperature. The spatial patterns of τs in
CMIP5 simulations and observations were previously shown in
Koven et al.16, and here we test whether such relationships can be
used to estimate the response of soil carbon to future climate
change, using a combination of CMIP6 and CMIP5 models.

Figure 3a is a scatter plot of log τs against temperature, using
the τs values shown in Fig. 2c and mean temperatures from the
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Fig. 1 Uncertainty in future changes in soil carbon due to reduction in turnover time. ΔCs,τ vs. ΔT plot diagnosed from sixteen Earth System Models
(seven CMIP6 ESMs and nine CMIP5 ESMs), for three different future scenarios: SSP126, SSP245, SSP585, or RCP2.6, RCP4.5, RCP8.5, respectively. a The
change in soil carbon due to the change in soil carbon turnover time against change in global mean temperatures; b The fractional change in soil carbon due
to the change in soil carbon turnover time against change in global mean temperatures, and compared to different effective q10 sensitivities.
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Fig. 2 Spatial variability of soil carbon turnover time inferred from observations. Maps of a observed soil carbon (Cs) to a depth of 1 m (kg C m−2)19,20,
b observed heterotrophic respiration (Rh,0) (kg C m−2 yr−1)21, and c inferred soil carbon turnover time (log τs) (yr).
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WFDEI dataset over the period 2001–201024. The thick black-
dotted line is a quadratic fit through these points. Also shown for
comparison are equivalent quadratic fits for each model (coloured
lines), using the model log τs and mean near-surface air
temperature (T) values for each grid-point, over an overlapping
period with the observations (1995–2005). There is a spread in
the individual data points due to variation in soil moisture, soil
type, and other soil parameters25. The model specific spread in
the data can be seen for the CMIP6 and CMIP5 models in
Supplementary Figs. 2 and 3, respectively. Although models do
not account for every possible factor contributing to this spread,
the spread of points in the models is generally similar to the
observations. However, differences between the best-fit functions
relating τs to T are evident between the models, and between the
models and the observations16.

This suggests that we may be able to constrain ΔCs,τ using the
observed τs vs. T fit from the observations, but only if we can
show that such functions can be used to predict ΔCs,τ under
climate change. In order to test that premise, we attempt to
reconstruct the time-varying ΔCs,τ projection for each model
using the time-invariant τs vs. T fit across spatial points (Fig. 3a),
and the time-invariant Rh,0 field. The change in soil carbon
turnover time (Δτs(t)) for a given model run is estimated at each
point based-on the τs vs. T curve, and the time-varying
projection of T at that point. A local estimate of the subsequent
change in soil carbon can then be made based-on the farthest
right-hand term of Eq. (1) (Rh,0 Δτs), which can be integrated up
to provide an estimated change in global soil carbon in the top 1
metre (ΔCs,τ).

Figure 3b shows the result of this test for all models and all
respective SSP/RCP scenarios. The axes of this plot show
equivalent variables which represent the global ΔCs,τ between
the mean value for 2090–2100 and the mean value for 1995–2005.
The y-axis represents the actual values for each model as shown
in Fig. 1, and the x-axis represents our estimate derived from
spatial variability (as in Fig. 3a). As hoped, actual vs. estimated
values cluster tightly around a one-to-one line with an r2

correlation coefficient value of 0.90. Although some hot-climate
regions will inevitably experience temperatures beyond those
covered by current-day spatial variability, these tend to be regions
with low soil carbon, so this does not have a major impact on the
success of our method.

Spatial emergent constraint. This gives us confidence to use the
τs vs. T fit and Rh,0 from observations to constrain future pro-
jections of ΔCs,τ. To remove the uncertainty in future ΔCs,τ due to
the climate sensitivity of the models, we investigate a common
amount of global mean warming in each model. Figure 4a is
similar to Fig. 3b but instead for the more policy-relevant case of
2 °C of global warming. As before, the y-axis represents the
modelled ΔCs,τ, and the x-axis is our estimate derived from spatial
variability. Once again, the actual and estimated values of ΔCs,τ

cluster around the one-to-one line (with r2= 0.87). The model
range arises partly from differences in the initial field of hetero-
trophic respiration (Rh,0), and partly from differences in Δτs
(compare first row to penultimate row of Table 1).

The vertical green line in Fig. 4a represents the mean estimate
when the τs vs. T relationship and the Rh,0 field from the model are
replaced with the equivalents from the observations. The spread
shown by the shaded area represents the relatively small impact on
ΔCs,τ of differences in modelled spatial climate change patterns at 2
°C of global warming. In order to estimate the remaining
uncertainty in ΔCs,τ, we treat this spread as equivalent to an
observational uncertainty in an emergent constraint approach26.
We apply a standard statistical approach27,28 to estimate the
probability density function of the y-axis variable (model ΔCs,τ),
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Fig. 3 Using spatial variability of soil carbon turnover time to estimate ΔCs,τ. a Scatter-plot of the relationship between log τs and mean air temperature
from observations19–21,24 (black points), and a quadratic fit (black-dotted line) representing the observational temperature sensitivity of log τs. The
equivalent quadratic fits for the ESMs are shown by the coloured lines; b The proof of principle for our method, showing an actual vs. estimated
comparison, representing the modelled versus the relationship-derived values of the ΔCs,τ, where the change is considered between the start (1995–2005)
and the end (2090–2100) of 21st century and is assumed to relate to the top 1 metre of soil.

Table 1 Sensitivity study of spatial emergent constraint.

Constrained ΔCs,τ at 2 °C global mean warming

Combined CMIP6 CMIP5

CARDAMOM Rh −232 ± 52 −238 ± 62 −227 ± 48
MODIS NPP −201 ± 53 −206 ± 63 −196 ± 49
Raich 2002 Rs −243 ± 50 −249 ± 59 −238 ± 46
CARDAMOM Rh
(Observational τs v T
fit, model Rh,0)

−227 ± 95 −220 ± 75 −230 ± 109

Unconstrained ΔCs,τ −196 ± 117 −216 ± 109 −180 ± 121

The table presents the sensitivity of the emergent constraint on ΔCs,τ to model ensemble:
CMIP5, CMIP6 or CMIP5 and CMIP6 combined (columns), and to the observational dataset for
heterotrophic respiration (rows). The penultimate row presents the constraint using the
observational τs v T fit and model Rh,0, opposed to observational Rh,0, to isolate the uncertainty
reduction from these different components. For comparison, the last row shows the mean and
standard deviation of the unconstrained model ensemble.
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accounting for both this observational spread and the quality of the
emergent relationship. To test the robustness to the choice of
observations we have repeated the analysis with different datasets
that represent heterotrophic respiration, which produces strongly-
overlapping emergent constraints, and completing the analysis with
both CMIP6 and CMIP5 models shows that the result is also robust
to the choice of model ensemble (see Table 1).

Figure 4b shows the resulting emergent constraint (blue line),
and compares to the unweighted histogram of model values (grey
blocks), and a Gaussian fit to that prior distribution (black line).
The spatial emergent constraint reduces the uncertainty in ΔCs,τ at
2 °C of global warming from −196 ± 117 PgC to −232 ± 52 PgC
(where these are mean values plus and minus one standard
deviation for the top 1 metre). This same method can be applied to
find constrained values of ΔCs,τ for other values of global warming.
Figure 4c shows the constrained range of ΔCs,τ as a function of
global warming. This rules out the most extreme projections
but nonetheless suggests substantial soil carbon losses due to
climate change even in the absence of losses of deeper permafrost
carbon.

Methods
Obtaining spatial relationships. In this section we explain how the quadratic
relationships representing the spatial log τs-temperature sensitivity shown in
Fig. 3a (and Supplementary Figs. 2, 3 and 6) were derived, for both the Earth
System Models (ESMs) in CMIP6 and CMIP5, and using the observational data.
This is similar to the method used in Koven et al.16.

Obtaining spatial relationships for CMIP models. The CMIP6 models used in
this study are shown in the Table 2, and the CMIP5 models used in this study are
shown in Table 3.

To obtain model specific spatial log τs-temperature relationships, the following
method was used. A reference time period was considered (1995–2005), this was
taken as the end of the CMIP5 historical simulation to be consistent across CMIP
generations and to best match the observational data time frame considered. Then,
monthly model output data was time averaged over this period, for the output
variables ‘soil carbon content’ (Cs) in kg m−2, ‘heterotrophic respiration carbon
flux’ (Rh) in kg m−2s−1, and ‘air temperature’ in K. The variables Cs and Rh were
used to obtain values for soil carbon turnover time (τs) in years, using the equation
τs= Cs/(Rh × 86400 × 365). The model temperature variable units were converted
from K to °C.

For each model, these values of log τs were plotted against the corresponding
spatial temperature data to obtain the spatial log τs-temperature plot. Then,
quadratic fits (using the python package numpy polyfit) are calculated for each
model, which represent the spatial log τs relationship and sensitivity to
temperature. These model specific relationships are shown by the coloured lines in
Fig. 3a in the main manuscript, and in Supplementary Fig. 2 for CMIP6 and in
Supplementary Fig. 3 for CMIP5.

Obtaining spatial relationships for observations. Following Koven et al.16, we
estimated observational soil carbon data (to a depth of 1 m) by combining the
Harmonized World Soils Database (HWSD)19 and Northern Circumpolar Soil
Carbon Database (NCSCD)20 soil carbon datasets, where NCSCD was used where
overlap occurs. To calculate soil carbon turnover time, τs, using the following
equation: τs= Cs/Rh, we require a global observational dataset for heterotrophic
respiration. In the main manuscript, CARDAMOM (2001–2010) heterotrophic
respiration (Rh) is used21. We completed a sensitivity study on the choice of
observational heterotrophic respiration dataset, see below. The WFDEI dataset is
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Fig. 4 Emergent constraint on ΔCs,τ as a function of global warming. a Actual vs. estimated scatter plot for ΔCs,τ for 2 °C of global warming. The vertical
green line defines the observational constraint which is derived using observational data and the future spatial temperature field of each model (decadal
average), and the shaded region represents the corresponding uncertainty (±1 standard deviation). The horizontal blue line represents our emergent
constraint, with the shaded region showing the corresponding uncertainty (±1 standard deviation) which results from the differing future spatial warming
patterns seen in the future spatial temperature fields across the ESMs, and the emergent relationship between the model data points (black line).
b Probability density function showing the Gaussian distribution of ΔCs,τ values from the unweighted prior model ensemble (black line) and the emergent
constraint (blue line). c Constrained ΔCs,τ values at different levels of global warming (blue), including the likely (±1 standard deviation) uncertainty bounds
(shaded blue). Different effective global q10 values shown for comparison; our emergent constraint is consistent with an effective q10≈ 2.5 ± 0.6.

Table 2 CMIP6 models.

Model Institute

ACCESS-ESM1-5 Australian Community Climate and Earth
Systems Simulator, Australia

BCC-CSM2-MR The Beijing Climate Center, China
CanESM5 Canadian Centre for Climate Modelling and

Analysis, Canada
CNRM-ESM2-1 CNRM/CERFACS, French Centre National

de la Recherche Scientifique, France
IPSL-CM6A-LR Institut Pierre-Simon Laplace, France
MIROC-ES2L Atmosphere and Ocean Research Institute

and Japan Agency for Marine-Earth Science
and Technology, Japan

UKESM1-0-LL NERC and Met Office Hadley Centre, UK

Table 3 CMIP5 models.

Model Institute

BNU-ESM College of Global Change and Earth System
Science, China

CanESM2 Canadian Centre for Climate Modelling and
Analysis, Canada

CESM1-CAM5 National Science Foundation, Department of Energy,
NCAR, USA

GFDL-ESM2G NOAA Geophysical Fluid Dynamics Laboratory, USA
GISS-ES-R NASA Goddard Institute for Space Studies, USA
HadGEM2-ES Met Office Hadley Centre, UK
IPSL-CM5A-LR Institut Pierre-Simon Laplace, France
MIROC-ESM Atmosphere and Ocean Research Institute and

Japan Agency for Marine-Earth Science and
Technology, Japan

NorESM-M Norwegian Climate Centre, Norway
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used for our observational air temperatures (2001–2010)24. Then, these datasets
can be used to obtain the observational log τs-temperature relationship, using the
same quadratic fitting as with the models. This represents the ‘real world’ spatial
temperature sensitivity of log τs, and is shown by the thick-dotted-black line in
Fig. 3a of the main manuscript. A comparison of the derived observational rela-
tionships can be seen in Supplementary Fig. 6.

Observational sensitivity study. We completed a sensitivity study to investigate
our constraint dependence on the choice of observational heterotrophic respira-
tion dataset (CARDAMOM (2001–2010)21). The other observational datasets
considered are as follows: NDP-08 ‘Interannual Variability in Global Soil
Respiration on a 0.5 Degree Grid Cell Basis’ dataset (1980–1994)29, ‘Global spa-
tiotemporal distribution of soil respiration modelled using a global database’30, and
MODIS net primary productivity (NPP) (2000–2014)31. Supplementary Fig. 4
shows scatter plots showing one-to-one comparisons of these observational data-
sets against one another, and Supplementary Fig. 5 shows the corresponding
comparisons of the equivalent log τs values calculated from each dataset.

The CARDAMOM Rh dataset is used in the main manuscript for the following
two main reasons: firstly, we calculate τs using heterotrophic respiration which
allows for consistency between models and observations, and secondly, the dataset
does not use a prescribed q10 sensitivity21. Instead, the CARDAMOM Rh dataset
was derived by explicitly assimilating observations into a process-based diagnostic
land-surface model. To test the robustness of our results, we also repeated our
analysis with MODIS NPP and Raich 2002, for both CMIP6 and CMIP5 together,
and as separate model ensembles. Supplementary Fig. 6 shows the observational
log τs-temperature relationships, derived using each of these observational datasets.
The results are presented in Table 1 which shows the constrained values of ΔCs,τ at
2 °C global mean warming.

We decided not to complete the paper analysis using the Hashimoto dataset
since not only is it inconsistent with the three other datasets considered, it also
shows an arbitrary maximum respiration level (Supplementary Fig. 4), which likely
results from the assumed temperature-dependence of soil respiration in this dataset
which takes a quadratic form30. The quadratic form is justified based on a site-level
study in which it is used to fit temporal dynamics. However, the parameters for the
quadratic function that are fitted in the Hashimoto study are very different from
those in the site-level study, which therefore suggests that the same relationship
does not apply to the global distribution of mean annual soil respiration.

Equation for the soil carbon turnover time component of soil carbon change.
The equation used in this study for the component of the change in soil carbon (ΔCs)
due to the change in soil carbon turnover time (Δτs) was derived in the following way.
Starting with the equation for soil carbon (based on the definition of τs):

Cs ¼ Rh τs ð2Þ
As discussed in the main manuscript, we can write this change in soil carbon

(ΔCs), as the sum of a term arising from changes in litter-fall (ΔCs,L), and a term
arising from changes in the turnover time of soil carbon (ΔCs,τ):

ΔCs ¼ ΔðRh τsÞ � ΔCs;LðtÞ þ ΔCs;τðtÞ ¼ τs;0 ΔRhðtÞ þ Rh;0 ΔτsðtÞ ð3Þ
Hence, the equation for the component of soil carbon change due to the change

in τs is:

ΔCs;τ ¼ Rh;0 Δτs ð4Þ
In this study we use Rh from the reference period (‘present day’), which we call Rh,0,
to allow us to investigate the response of ΔCs,τ as a result of the response of τs to
climate change.

Modelled future temperature. The proof of principle figure (Fig. 3b) con-
siders ΔCs,τ between the end of the 21st century (2090–2100), for each future SSP
scenario (SSP126, SSP245, SSP585)22 or equivalent future RCP scenario (RCP2.6,
RCP4.5 and RCP8.5)23, and our reference period from the historical simulation
(1995–2005), for each CMIP6 ESM and CMIP5 ESM, respectively.

To consider specific °C of global warming (Fig. 4), the future spatial
temperature profiles at these specific global mean warming levels, for example:
1 °C, 2 °C and 3 °C global mean warming, were calculated as follows. The
temperature change is calculated from our reference period (1995–2005), and then
a 5-year rolling mean of global mean temperature is taken to remove some of the
interannual variability. Once the year that the given temperature increase has been
reached is obtained, a time average including −5 and +5 years is taken, and the
spatial temperature distribution of that model averaged over the deduced time
period is used for the calculations of future τs.

Anomaly correction for future temperature projections. To remove uncertainty
due to errors in the models’ historical simulation, a spatial future temperature
anomaly was projected using each model and each respective future SSP/RCP
scenario separately. To calculate this, the temperature at the reference time frame
(1995–2005), which overlaps the WFDEI observational temperature data time
frame (2001–2010), is subtracted from the future temperature profile for each

model (as calculated above), to calculate the temperature change. Then, this
temperature anomaly is added onto the observational temperature dataset to give a
model-derived future ‘observational’ temperature for each model.

Proof of concept for our method. Our method relies on the idea that the spatial
temperature sensitivity can be used to project and constrain the temporal sensi-
tivity of τs to temperature, and subsequently global warming. To test the robustness
of this method, ΔCs,τ calculated using model Δτs, and temperature sensitivity
relationship-derived Δτs, are compared.

The change in soil carbon turnover time (Δτs) was either calculated using model
output data to obtain model-derived Δτs as follows:

Δτs ¼ τfs � τhs ð5Þ
where,

τs ¼ Cs=Rh ð6Þ
Or calculated using the derived quadratic log τs-temperature relationships to

obtain relationship-derived Δτs, which is based on the following equation:

Δτs ¼ expðpðT f ÞÞ � expðpðThÞÞ ð7Þ
where, T is near surface air temperature, and Tf represents a future temperature,
and Th represents historical (present day) temperature from our reference period
(1995–2005). The exponentials (exp) are taken to turn log τs values to τs values.
p(T) represents the quadratic log τs-temperature relationship as a function of
temperature to obtain our estimated log τs .

These Δτs values are then put back into the Eq. (4) (with model-specific Rh,0) to
obtain the corresponding ΔCs,τ values. The proof of principle figure (Fig. 3b)
investigates the robustness of our method, where projections of model and
relationship-derived values of ΔCs,τ are compared, and an r2 value of 0.90 is
obtained. The correlation of the data was also tested when investigating different
levels of global mean warming to obtain the constrained values (Fig. 4). The r2

values for were as follows: 1 °C is 0.84, 2 °C is 0.87 and 3 °C is 0.87.

Calculating constrained values. To obtain the constrained values of ΔCs,τ, the
model-derived future ‘observational’ temperature for each model is used together
with the observational derived log τs-temperature relationship, to project values for
future τs. Then this together with relationship-derived historical τs deduced using
the observational temperature dataset, can be used to calculate Δτs. Finally global
ΔCs,τ can be obtained by multiplying Δτs by the observational dataset for Rh,0
(using Eq. (4)), and then calculating a weighted-global total. As each model-derived
future ‘observational’ temperature is considered separately, we obtain a range of
projected observational-constrained ΔCs,τ values.

We have now obtained a set of x and y values, corresponding to the
relationship-derived and modelled values of ΔCs,τ, respectively, for each ESM.
Where we have an x and y value for each model, representing the modelled ΔCs,τ

(y values), and the model specific relationship-derived ΔCs,τ (x values). We also
have an xobs value representing the mean observational-constrained ΔCs,τ value,
and a corresponding standard deviation due to the uncertainty in the modelled
spatial profiles of future temperatures. We follow the method used in Cox et al.
2018, which can be seen in the ‘Least-squares linear regression’ section and the
‘Calculation of the PDF for ECS’ section of the methods from this study32. Using
this method, we obtain an emergent relationship between our x and y data points,
which we can use together with our xobs and corresponding standard deviation to
produce a constraint on our y-axis. This is shown in Fig. 4a. From this we obtain a
constrained probability density function on ΔCs,τ, with a corresponding
uncertainty bounds which we consider at the 68% confidence limits (±1 standard
deviation). Figure 4b show the probability density functions representing the
distribution of the range of projections, before and after the constraint.

This method allows us to calculate a constrained probability density function on
ΔCs,τ at each °C of global mean warming, using the data seen in Fig. 4a for 2 °C
warming, and our corresponding constrained values for 1 °C and 3 °C warming.
Figure 4c shows the resultant constrained mean value of ΔCs,τ obtained for each °C
of global mean warming, and the corresponding uncertainty bounds at the 68%
confidence limits (±1 standard deviation).

Calculating effective q10 for change in soil carbon. Simple models of soil carbon
turnover are often based on just a q10 function, which means that τs depends on
temperature as follows:

τs ¼ τs;0 exp ðð�0:1 log q10ÞΔTÞ ð8Þ
We compared the results for ΔCs,τ that would be derived from a simple q10

function with our emergent constraint results for ΔCs,τ, to estimate an effective q10
sensitivity of heterotrophic respiration.

To do this, we can obtain an equation for Δτs derived from Eq. (8). This is done by
considering the following, where τs,0 is an initial τs, we can substitute in τs in temperature
sensitivity form to obtain an equation for Δτs in temperature sensitivity form:

Δτs ¼ τs � τs;0 ð9Þ
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Δτs ¼ τs;0 exp ðð�0:1 log q10ÞΔTÞ � τs;0 ð10Þ
Then, we can substitute this Δτs into Eq. (4) and simplify to obtain an equation

relating ΔCs,τ and ΔT:

ΔCs;τ ¼ Rh;0τs;0½expðð�0:1 log q10ÞΔTÞ � 1� ð11Þ

ΔCs;τ ¼ Cs;0½expðð�0:1 log q10ÞΔTÞ � 1� ð12Þ
This equation was used to calculate different ΔCs,τ–ΔT sensitivity curves based on

different values on q10, for example q10= 2, with different amounts of global mean
warming to represent ΔT, and initial observational soil carbon stocks Cs,0. These curves
can be seen on Figs. 1b and 4c. Note that there is no direct relationship between the
effective q10 for soil carbon change shown in Figs. 1b and 4c, and the spatial τs–T
relationships in Fig. 3a. Our q10 value is an effective q10 value that indicates the
sensitivity of global soil carbon (in the top 1 metre) to global mean temperature.

Data availability
The datasets analysed during this study are available online: CMIP5 model output
[https://esgf-node.llnl.gov/search/CMIP5/], CMIP6 model output [https://esgf-node.llnl.
gov/search/cmip6/], The WFDEI Meteorological Forcing Data [https://rda.ucar.edu/
datasets/ds314.2/], CARDAMOM Heterotrophic Respiration [https://datashare.is.ed.ac.
uk/handle/10283/875], MODIS Net Primary Production [https://lpdaac.usgs.gov/
products/mod17a3v055/], Raich et al. 2002 Soil Respiration [https://cdiac.ess-dive.lbl.
gov/epubs/ndp/ndp081/ndp081.html], Hashimoto et al. 2015 Heterotrophic Respiration
[http://cse.ffpri.affrc.go.jp/shojih/data/index.html], and the datasets for observational Soil
Carbon [https://github.com/rebeccamayvarney/soiltau_ec].

Code availability
The Python code used to complete the analysis and produce the figures in this study is
available in the following online repository [https://github.com/rebeccamayvarney/
soiltau_ec].
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