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ARTICLE

BETs inhibition attenuates oxidative stress and
preserves muscle integrity in Duchenne muscular
dystrophy
Marco Segatto1,2,5, Roberta Szokoll1,5, Raffaella Fittipaldi1, Cinzia Bottino1, Lorenzo Nevi 1, Kamel Mamchaoui3,

Panagis Filippakopoulos4 & Giuseppina Caretti 1✉

Duchenne muscular dystrophy (DMD) affects 1 in 3500 live male births. To date, there is no

effective cure for DMD, and the identification of novel molecular targets involved in disease

progression is important to design more effective treatments and therapies to alleviate DMD

symptoms. Here, we show that protein levels of the Bromodomain and extra-terminal domain

(BET) protein BRD4 are significantly increased in the muscle of the mouse model of DMD,

the mdx mouse, and that pharmacological inhibition of the BET proteins has a beneficial

outcome, tempering oxidative stress and muscle damage. Alterations in reactive oxygen

species (ROS) metabolism are an early event in DMD onset and they are tightly linked to

inflammation, fibrosis, and necrosis in skeletal muscle. By restoring ROS metabolism, BET

inhibition ameliorates these hallmarks of the dystrophic muscle, translating to a beneficial

effect on muscle function. BRD4 direct association to chromatin regulatory regions of the

NADPH oxidase subunits increases in the mdx muscle and JQ1 administration reduces BRD4

and BRD2 recruitment at these regions. JQ1 treatment reduces NADPH subunit transcript

levels in mdx muscles, isolated myofibers and DMD immortalized myoblasts. Our data

highlight novel functions of the BET proteins in dystrophic skeletal muscle and suggest that

BET inhibitors may ameliorate the pathophysiology of DMD.
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Duchenne muscular dystrophy (DMD) is the most com-
mon form of muscular dystrophy. This X-linked recessive
disorder is caused by mutations in the dystrophin gene,

and it affects approximately 1 in 3500 male births worldwide1.
A decisive therapy for DMD treatment is not available yet.

Genome editing approaches hold extensive promise for a future
resolutive strategy to pursue2, but current clinical approaches are
still not effective in reversing the phenotype. Thus, pre-clinical
and clinical studies are focusing on pharmacological therapies
targeting downstream events of the genetic mutation, including
inflammation, fibrosis, adipocyte infiltration, and metabolism3.

Dystrophin is a large structural protein located at the sarco-
lemma that mechanically links the internal cytoskeleton to the
extracellular matrix, thus conferring membrane stability during
contraction4. Lack of dystrophin dramatically increases the sar-
colemma susceptibility to contraction-induced injury, leading to
myofiber necrosis and triggering secondary events, such as
inflammation and fibrosis5.

The direct molecular mechanisms for loss of muscle function in
mouse models and DMD patients are still under active investi-
gation. Several aberrant processes (e.g., intracellular calcium
homeostasis, inflammation and ROS metabolism) are indeed
implicated as early events in the disease pathophysiology6–8, since
they result in the activation of calcium-dependent degradative
pathways, myofibrils damage and necrosis, incomplete regenera-
tion cycles, autophagy impairment, increased fibrosis and adipose
tissue accumulation9–13. In particular, muscle biopsies from DMD
patients show increased oxidative stress compared to controls14,15

and increased NADPH oxidase (Nox2) activity as an early event in
the disease onset7,16, preceding immune cells infiltration and
necrosis7. Increased oxidative stress has been recently causally
linked to autophagy impairment in the mdx dystrophic muscle13

and the genetic elimination of Nox2-mediated ROS production
has been reported to reduce inflammation and fibrosis13,17.

Gene expression profiles of skeletal muscle are altered in
muscular dystrophies18–20 and the epigenetic regulation of
muscle stem cells plays a crucial role for their regenerative
potential in the mdx model21–25. In addition, dystrophin loss
leads to alteration in signaling pathways that eventually translate
in transcriptional reprogramming. For example, histone-
deacetylase (HDAC) activity is perturbed by dystrophin defi-
ciency and this contributes to transcriptional alteration in mdx
mice26,27. Furthermore, epigenetic drugs targeting HDACs are in
clinical trial for DMD and showed promising results in the his-
tological progression of the disease28–30.

We have recently shown that the BET protein BRD4 promotes
muscle atrophy in an in vitro model of glucocorticoid-induced
atrophy and in experimental models of cancer cachexia31,32.
Because of this evidence and the well-established role played by
BRD4 in inflammation33–35, we aimed to characterize BRD4
contribution in skeletal muscle pathophysiology of a mouse
model of DMD. In this study, we show that BRD4 influences ROS
metabolism by regulating the transcriptional activation of dif-
ferent subunits of the NADPH oxidase complex in the mdx
muscle. Furthermore, administration of the BET inhibitor JQ1
reduces oxidative stress and ameliorates skeletal muscle mor-
phology and muscle function. JQ1 treatment rescues autophagy
and dramatically restricts muscle damage, preventing muscle
inflammation and fibrosis, and tempering muscle regeneration.

Results
BRD4 levels increase in the muscle of DMD patients and of the
mdx mouse. The involvement of BET proteins in inflammatory
processes and in skeletal muscle homeostasis31–34 prompted us to
study their role in the mdx muscle. First, we examined their

protein levels in tibialis anterior (TA) of control and mdx mice.
BRD2 and BRD3 abundance was comparable in muscles from
control and mdx mice, whereas BRD4 protein levels were sig-
nificantly increased in the dystrophic muscle (Fig. 1a). Notably,
the BRD4 antibody specificity was ascertained by silencing
experiments (Supplementary Fig. 1A). Conversely, BRD2/3/4
transcripts were expressed at a similar rate both in control and
mdx TAs, suggesting that post-transcriptional events are involved
in BRD4 regulation (Fig. 1b). We next analyzed BRD4 levels in
DMD muscle samples, and found that BRD4 protein was higher
in muscles of DMD patients than in age-matched controls
(Fig. 1c). We, therefore, interrogated RNA-Seq results published
by Khairallah et al.36 and found that BET transcript levels do not
significantly change in DMD muscles (Fig. 1d).

Overall, these data show that BRD4 levels are higher in the
muscle of Duchenne patients and in the mdx skeletal muscle,
prompting us to further characterize BRD4 function in the mouse
model for DMD.

JQ1 treatment reduces muscle damage in the mdx mouse.
Based on our initial data (Fig. 1) and our previous observation
that BRD4 blockade ameliorates glucocorticoid-induced atrophy
in C2C12 myotubes, as well as taking into account the well-
documented anti-inflammatory effect of BET inhibitors33,35 we
hypothesized that JQ1 treatment may ameliorate the dystrophic
phenotype in the mdx mouse model of DMD.

We daily treated 10-week-old mdx mice with JQ1 (20 mg/kg
per day) by intraperitoneal injection for two weeks and
performed morphological studies on TA muscle sections to
examine the effects of BET inhibition on the histopathology of
dystrophic mdx muscle fibers. Hematoxylin/eosin staining
confirmed the presence of a distinctive pattern of dystrophic
muscle pathology in vehicle-treated mdx mice, evidenced by
mononuclear cell infiltration and centrally located nuclei.
Conversely, the number of infiltrating inflammatory cells was
reduced in muscles of JQ1-treated mdx mice (Fig. 2a). In
addition, cellular membrane permeability and subsequent fiber
necrosis was reduced by JQ1 treatment, as revealed by the
decreased number of Evans blue positive fluorescent cells (Fig. 2c).
While the total number of fibers per area was identical in the mdx
and JQ1-treated mdx muscles (Supplementary Fig. 2A), JQ1
administration significantly increased the number of peripherally
nucleated fibers and decreased the centrally nucleated fibers
(Fig. 2b), further suggesting that muscles from JQ1-treated mdx
mice were less vulnerable to mechanical stress. The increased
resistance to the dystrophic phenotype was also associated with
reduced cell death, as revealed by the decreased levels of cleaved
caspase-3 (Fig. 2d). As previously reported37, succinate dehy-
drogenase (SDH) staining decreased in the mdx muscle compared
to WT; however the staining intensity was recovered to that of the
WT in JQ1-treated mdx mice (Fig. 2e and Supplementary
Fig. 2B), indicating an improved energy metabolism following
JQ1 administration, in the mdx TA muscle. Overall these data
hint for a beneficial effect of JQ1 treatment in skeletal muscle of
mdx mice.

JQ1 restores autophagy in the mdx muscle. To elucidate the
molecular mechanisms underlying JQ1 beneficial effects in the
mdx skeletal muscle, we investigated JQ1 impact on key meta-
bolic processes, which are affected by the mdx physiopathology.
Recent reports revealed that autophagy suppression contributes
to the symptomatology of different forms of muscular dystrophies
and is detrimental for the maintenance of muscle home-
ostasis12,38. To test whether autophagy recovery was, at least in
part, responsible for JQ1-mediated amelioration in muscle
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morphology, we examined the abundance of proteins involved in
autophagy/lysosomal pathways and tested whether they were
influenced by JQ1 treatment. As demonstrated by other
reports11,12,39, we found that the ratio between LC3II (the active
lipidated LC3 form) and LC3I (the cytosolic inactive LC3 form)
was reduced in TA muscles from vehicle-treated mdx mice. JQ1
treatment restored LC3II/LC3I ratios to levels comparable to the
ones observed in control animals. Concurrently, p62 levels, which
were upregulated in the mdx muscle, were comparable to those of
control mice in TAs of JQ1-treated mdx mice (Fig. 3a). We
concluded that JQ1 treatment promotes restoration of autophagy
in the mdx mouse model. The rescue in autophagy could not be
explained by a JQ1-mediated effect on transcriptional regulation
of autophagy genes, because mRNA levels of a group of key
autophagy genes did not increase following JQ1 treatment
(Supplementary Fig. 3A). We, therefore, interrogated the activa-
tion state of different signaling pathways known to regulate
autophagy. The metabolic sensor AMPK is a potent inducer of
autophagy and its activation is known to decrease in mdx muscles
when compared to control animals39–41. We observed that JQ1
administration was able to fully restore p-AMPK (Ser172)
phosphorylation in mdx TAs. Likewise, AMPK-dependent
phosphorylation of Ulk1 (Ser555), which plays a crucial role in
autophagy initiation, was also upregulated in TAs from JQ1-
treated mdx mice (Fig. 3b). In agreement with previous reports,
AMPK phosphorylation correlated with Sirt1 protein levels42,43,
which were dramatically decreased in muscles from mdx mice.
Sirt1 protein levels were recovered following JQ1 treatment.
Consistent with this evidence, acetylation on histone H3 lysine 9
(H3-K9Ac) was upregulated in muscles from mdx mice and
decreased following JQ1 administration (Fig. 3c).

Consistent with a rescue in autophagy, JQ1 treatment also
mitigated the upregulation of Akt/mTOR/p70S6k pathway in the

mdx muscle, and it led to activation levels for these kinases
comparable to the ones observed in control animals (Fig. 3d).

Oxidative stress-dependent activation of the Src kinase has
been causally linked to Akt activation and subsequent autophagy
flux impairment, in the mdx mouse13. Immunoblot analysis
revealed that JQ1 treatment reduced Src phosphorylation in TAs
from mdx mice (Fig. 3e), suggesting that autophagy rescue may
be related to an upstream decrease in oxidative stress. Taken
together these data suggest that JQ1 treatment restores autophagy
in the mdx skeletal muscles.

JQ1 restrains oxidative stress. To further investigate JQ1 impact
on ROS metabolism in the mdx muscle, we asked whether ROS
levels were affected by JQ1 treatment in C2C12 cells, in which
previously published RNA-seq datasets show that BRD2/3/4 are
highly expressed, with BRD2 transcript being the most abundant
followed by BRD4 and then BRD323,44–46. We first performed
immunofluorescence experiments with anti-8-OHdG antibody,
which confirmed increased oxidative stress in the mdx muscle,
when compared to control muscles47. JQ1 treatment significantly
reduced 8-OHdG immunoreactivity, in TAs (Fig. 4a).

To investigate whether JQ1 was able to protect cells from a
second source of ROS, we also employed an in vitro model in
which oxidative stress was induced by hydrogen peroxide (H2O2)
treatment in C2C12 cells. In agreement with our in vivo findings,
JQ1 treatment prevented H2O2-induced oxidative stress, as
revealed by 8-OHdG staining (Fig. 4b). Moreover, H2O2 treatment
was able to impair autophagy in C2C12 myotubes in which the
autophagic flux was blocked by chloroquine, as indicated by the
pattern of LC3II and p62. Nevertheless, co-administration of JQ1
to H2O2-treated cells restored LC3II abundance and reduced p62
levels, as observed for mdx muscles in Fig. 4c.
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In several cultured cell lines, defined doses of H2O2 were able to
induce a reduction in p-AMPK levels48–51. Similarly, in C2C12
myotubes, oxidative stress generated by H2O2 administration led to a
decrease in AMPK and AMPK-dependent Ulk1 phosphorylation,
and was associated with an increase in Akt phosphorylation (Ser473);
however, all these events were prevented by JQ1 co-treatment
(Fig. 4d).

Oxidative stress was previously shown to induce Sirt1
carbonylation and proteasomal degradation52. H2O2 treatment
reduced Sirt1 abundance in C2C12 myotubes, as reported53

(Fig. 4d). However, JQ1 co-treatment prevented H2O2-induced
Sirt1 protein reduction, as revealed by a degradation assay
(Fig. 4d, Supplementary Fig. 4A). Moreover, to link Sirt1 activity
with p-AMPK levels, we challenged Sirt1 function with
nicotinamide (NAM) and we observed that JQ1-mediated
recovery in AMPK phosphorylation was dependent on Sirt1

activity, in H2O2-treated myotubes. Coherently, AMPK-
dependent phosphorylation of Ulk1 was also influenced by Sirt1
inhibition (Supplementary Fig. 4B). To test whether JQ1 is
effective when oxidative stress is already established, we
administered JQ1 after treating C2C12 myotubes with H2O2 for
2 hours, a sufficient time to induce oxidative stress in C2C12 cells
(Supplementary Fig. 5A). The modulation of Sirt1, p62, LC3 as
well as of phosphorylated AKT, AMPK and Ulk1 were similar to
the one obtained when cells were pretreated with JQ1, followed by
H2O2 stimulation (Supplementary Fig. 5B, C). In addition, JQ1
treatment alone did not affect p-AKT and p62 levels, but it
increased Sirt1, lipidated LC3 levels, AMPK and Ulk1 phosphor-
ylation (Supplementary Fig. 5B–D). In this experimental setting,
we confirmed that NAM treatment prevented AMPK activation
and Ulk1 phosphorylation (Supplementary Fig. 5C). Moreover,
Sirt1 pharmacological blockade hindered LC3 accumulation and
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p62 downregulation in cells in which oxidative stress was induced
by H2O2 followed by JQ1 treatment (Supplementary Fig. 5D),
further supporting the idea that Sirt1 plays a key role in AMPK
activation and autophagy regulation.

Collectively, these data suggest that JQ1 treatment prevented
and tempered perturbation in ROS metabolism both in the
dystrophic muscle and in an in vitro model of oxidative stress,
thus restoring Sirt1 levels, AMPK and Akt phosphorylation state,
and autophagy.

BETs pharmacological blockade prevents NADPH subunit
transcription upregulation. NADPH oxidase subunits are over-
expressed in the adult mdx muscle and they represent a major
source of ROS production in the mdx muscle7,54,55. Accordingly,
we observed that mRNA levels of the Nox2, Nox4, p67-phox, and
p47-phox subunits were higher in TAs from mdx mice, when
compared to those of control mice. JQ1 treatment in mdx mice
restored the transcripts of NADPH oxidase subunits to the level
of control mice (Fig. 5a). Similarly, Nox2 and p67-phox protein

levels were higher in TAs from mdx mice when compared to
control mice, but their levels decreased in muscles from JQ1-
treated mdx mice (Fig. 5b and Supplementary Fig. 6A). Likewise,
when we treated isolated mdx myofibers with JQ1, we observed a
downregulation in transcript levels of the NADPH oxidase sub-
units, suggesting that JQ1-mediated transcriptional regulation can
occur in myofibers, once depleted of infiltrating mononuclear
cells (Fig. 5c).

We also analyzed transcripts of the NADPH oxidase subunits
in immortalized myoblasts from young DMD donors and
observed that their levels significantly decreased following JQ1
treatment (Fig. 5d). Likewise, interrogation of RNA-seq datasets,
revealed that Nox2, p47-phox, and p67-phox transcript levels
increased in skeletal muscles from DMD patients36, extending the
relevance of our findings to the human pathology (Fig. 5e).

In the mdx muscle, JQ1 administration did not affect mRNA
and protein levels of Nrf2, a transcription factor that plays a key
role in the antioxidant response pathway (Supplementary Fig. 7A,
B). Likewise, JQ1 treatment did not alter the transcriptional
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H3K9Ac in TA extracts of control and vehicle-and JQ1-treated mice. GAPDH and Vinculin serve as loading controls. Lower panel: quantification of
normalized band intensity. Data represent means ± SD. n= 3 animals per group. d Representative western blot for Akt and p-Akt (Ser473) (WT, n= 4;
mdx, n= 7; mdx+JQ1, n= 7), mTOR and p-mTOR (Ser2448) (n= 5 for each experimental group), p70S6K and p-70SK6 (Thr389) (n= 3 for each
experimental group) in TA extracts of control and vehicle-and JQ1-treated mice Right panel: quantification of normalized band intensity. Data represent
means ± SD. Vinculin serves as a loading control. e Representative western blot for Src and p-Src in TA extracts of control and vehicle-and JQ1-treated mice
Lower panel: quantification of normalized band intensity. GAPDH serves as a loading control. Data represent means ± SD. n= 3 per experimental group. In
all panels, statistical analysis was performed by using one-way ANOVA followed by Tukey’s post hoc test. In all relevant panels, *P < 0.05; **P < 0.01;
***P < 0.001. a indicates statistical significance compared to control; b indicates statistical significance compared to mdx.
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regulation of Nrf2 targets, Hmox1, Gclm and Gclc (Supplementary
Fig. 7C), suggesting that restoration of ROS metabolism was not
ascribed to the transcriptional activation of anti-oxidant genes.

Next, we mimicked ROS induction in C2C12 myotubes, by
treating the cells with 250 μM H2O2 for 24 h. H2O2 is a pro-
oxidant that contributes to the generation of a vicious cycle of
ROS production by upregulating NADPH oxidase subunits
through the activation of redox-sensitive transcription fac-
tors50,56. H2O2 treatment promoted p67-phox, p47-phox, Nox2
and Nox4 transcription in C2C12 myotubes, whereas JQ1 co-
treatment prevented their transcriptional activation (Fig. 5f).
H2O2-induced upregulation of Nox2 and p67-phox proteins was
also detectable and it was abrogated by JQ1 pre-treatment (Fig. 5g
and Supplementary Fig. 6B). Similarly, NADPH oxidase subunits

transcriptional upregulation was hindered when JQ1 administra-
tion followed H2O2 treatment (Supplementary Fig. 8A).

JQ1 binds the BET proteins (BRD2, BRD3, BRD4, BRDT) with
different affinity and it is potentially capable of displacing BRD2/
BRD3/BRD4 from chromatin57. To define which BET protein
plays a major role in NADPH oxidase subunits modulation, we
employed a siRNA approach in C2C12 myoblasts. BRD2
knockdown reduced the transcript levels of Nox2, Nox4, p47-
phox, and p67-phox, while BRD4 depletion did not affect Nox4
mRNA but decreased Nox2, p47-phox, and p67-phox expression.
BRD3 did not influence NADPH subunits expression levels
(Fig. 5h and Supplementary Fig. 9A, B). Because of BRD2 and
BRD4 ability to modulate NADPH oxidase subunits, we
performed ChIP assays for these two BET proteins in skeletal
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Fig. 4 JQ1 decreases oxidative stress in the mdx muscle and in H2O2-treated cells. a Representative images of 8-OHdG staining of muscle cross-sections
in control, vehicle- and JQ1-treated TAs (n= 6 sections examined from n= 3 animals for each experimental group). Scale bar: 50 µm. Right panel:
quantification of the staining. Data are expressed as a mean ± SD. a indicates statistical significance compared to Control group; b indicates statistical
significance compared to the mdx mice animal group. b Representative images of 8-OHdG staining of C2C12 cells. Cells were pretreated with JQ1
(200 nM) for 24 h and then stimulated with H2O2 for 24 h. Scale bar: 50 µm. Right panel: quantification of the staining derived from three independent
experiments. n= 6 fields examined from n= 3 independent experiments. Data are expressed as a mean ± SD. a indicates statistical significance compared
to Control cells; b indicates statistical significance compared to the H2O2-treated C2C12. c Representative western blot for LC3 (c, n= 4; H2O2, n= 3;
H2O2+ JQ1, n= 4) and p62 (n= 3 independent experiments) in C2C12 myotube extracts of control and H2O2- and H2O2/JQ1-treated cells for 24 h.
Myotubes were pretreated with JQ1 (200 nM) for 24 h and then stimulated with H2O2 for 24 h. In order to study the autophagy flux, the experiment was
performed by pre-treating cells with 30 µM of the lysosomotropic agent chloroquine. Vinculin serves as a loading control. Right panel: quantification of
normalized band intensity derived from three different experiments. Data represent means ± SD. a indicates statistical significance compared to Control
cells; b indicates statistical significance compared to the H2O2-treated C2C12. d Representative western blot for Sirt1, p-AMPK, AMPK, Ulk1, p-Ulk1
(Ser555), Akt, p-Akt (Ser473) in C2C12 myoblast extracts of control and H2O2- and H2O2/JQ1-treated cells. Myotubes were pretreated with JQ1 (200 nM)
for 24 h and then stimulated with H2O2 for 24 h. Vinculin serves as a loading control. Right panel: quantification of normalized band intensity derived from
at least four different experiments. Data represent means ± SD, n= 4 independent experiments. a indicates statistical significance compared to Control
cells; b indicates statistical significance compared to the H2O2-treated C2C12. In all panels, statistical analysis was assessed by using one-way ANOVA
followed by Tukey’s post hoc test. *P < 0.05; **P < 0.01; ***P < 0.001.
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muscles of control, vehicle- and JQ1-treated mdx mice. We
amplified chromatin regulatory regions that we previously found
to be occupied by BRD4 in TA of control mice by ChIP-seq
assays32, which were shown to include previously described
regulatory regions58–63. These experiments disclosed that BRD2
occupies regulatory regions of Nox2, p47-phox, and p67-phox at
a comparable level in control and mdx mice, while BRD2
occupancy at the Nox4 promoter and BRD4 recruitment at the
regulatory regions of Nox2, Nox4, p47-phox, p67-phox subunits

significantly increased in mdx skeletal muscles. In JQ1-treated
mdx mice, BRD4 and BRD2 occupancy was lost in all loci
analyzed (Fig. 5i). Overall, these findings revealed that BRD4 and
BRD2 occupy the NADPH oxidase subunits regulatory regions in
the mdx muscle and modulate their transcription. Conversely,
BETs pharmacological blockade prevents NADPH oxidase
subunits transcriptional upregulation in the mdx muscles, in
isolated mdx myofibers, in an in vitro model of oxidative stress,
and in DMD immortalized myoblasts.
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Fig. 5 JQ1 reduces the transcriptional upregulation of NADPH oxidase subunits. a qRT-PCR analysis of Nox2 (WT, n= 4; mdx, n= 6; mdx+JQ1, n= 8),
Nox4 (WT, n= 4; mdx, n= 7; mdx+JQ1, n= 8), p47-phox (WT, n= 3; mdx, n= 6; mdx+JQ1, n= 8) and p67-phox (WT, n= 4; mdx, n= 5; mdx+JQ1, n=
8) mRNAs in TAs from control, vehicle-, and JQ1-treated mice. Data are normalized against HPRT and expressed as the mean ± SD. b Representative
images of immunoblot analysis for Nox2 and p67-phox in TAs from control, vehicle-, JQ1-treated mice. GAPDH serves as a loading control. WT animals:
n= 3 for each experimental group. c qRT-PCR analysis of NADPH oxidase subunit mRNAs in myofibers isolated from mdx EDL muscles and treated with
200 nM JQ1 for 16 h. Data are normalized against HPRT and expressed as the mean ± SD, n= 3 animals. d qRT-PCR analysis of NADPH oxidase subunit
mRNAs in immortalized DMD myoblast cells treated with 200 nMJQ1 for 24 h. Data are normalized against GAPDH and expressed as the mean ± SD, n=
3 immortalized cell lines. e RPKM expression levels of NADPH subunit transcripts in published RNA-Seq dataset for DMD (n= 6) and healthy donors (n=
6). Data are expressed as a mean ± SD. f qRT-PCR analysis of Nox2, Nox4, p47 phox (n= 4 for each experimental group) and p67-phox (n= 3 for each
experimental group) mRNAs in C2C12 myotubes cells were pretreated with 200 nM JQ1 and then co-treated with 250 μM H2O2 for 8 h. Data are
normalized against GAPDH and expressed as the mean ± SD. g Representative images of immunoblot analysis for Nox2, p67-phox and BRD4 in C2C12
myoblasts treated as in (e). GAPDH serves as a loading control. h qRT-PCR analysis of Nox2 (Ctrl, n= 5; siBrd2, n= 4; siBrd3, n= 3; siBrd4, n= 3), Nox4
(Ctrl, n= 5; siBrd2, n= 3; siBrd3, n= 5; siBrd4, n= 5), p47-phox (Ctrl, n= 5; siBrd2, n= 6; siBrd3, n= 4; siBrd4, n= 4) and p67-phox (Ctrl, n= 5; siBrd2,
n= 5; siBrd3, n= 4; siBrd4, n= 3) subunit mRNAs in C2C12 cells in which BRD2, BRD3, BRD4 levels were decreased by siRNAs transfection. Data are
normalized against GAPDH and expressed as the mean ± SD. i ChIP assay with BRD2 and BRD4 antibodies in control, vehicle- and JQ1-treated muscles
showing recruitment at regulatory regions of Nox2, Nox4, p47-phox and p67-phox genes. Data represent mean ± SD, n= 3 animals A schematic
representation below the diagrams shows the region amplified in ChIP. In all panels, statistical significance was determined by using one-way ANOVA
followed by Tukey’s post hoc test. a indicates statistical significance compared to the group presented in the first column; b indicates statistical significance
compared to the group presented in the second column. *P < 0.05; **P < 0.01; ***P < 0.001.
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JQ1 treatment improves muscle physiopathology in the mdx
muscle. We further tested whether JQ1 treatment was accom-
panied by an overall improvement of the pathological abnorm-
alities of the mdx skeletal muscle. In mdx mice, the p65 subunit of
NFkB is activated by phosphorylation at Ser536 (Fig. 6a), as a
consequence of increased intracellular Ca2+64 and altered ROS
production64. NFkB activation, in turn, promotes the transcrip-
tion of pro-inflammatory cytokines. Remarkably, 2 weeks of JQ1
treatment resulted in a significant reduction in p65 phosphor-
ylation (Fig. 6a). Inflammation was mitigated by JQ1 treatment,
as shown by immunostainings for the leukocyte antigen CD45
and the macrophage marker F4/80, which signals were attenuated
following BET blockade (Fig. 6b). These findings were supported
by the JQ1-dependent decrease in F4/80 and CD45 protein levels

in TAs of mdx mice (Fig. 6c). The reduction of inflammatory
infiltrate in TA muscles of JQ1-treated animals was coupled to the
suppression of TNFα (Supplementary Fig. 10A) and of IL6
pathways (Supplementary Fig. 10B–D), two crucial pro-
inflammatory signaling events involved in the pathogenesis of
DMD. Reduction in Fibronectin transcript levels and decreased
collagen fibers deposition in TAs, revealed by Sirius red staining,
indicated that reduced inflammation was accompanied by a
decrease in fibrosis following JQ1 administration (Fig. 6d, e). To
evaluate the impact of JQ1 treatment in older animals, we daily
treated 11 months old mdx mice with JQ1 (20 mg/day) by
intraperitoneal injection, for 4 weeks. At this stage of the disease
progression, JQ1 administration led to a reduction in the
transcript levels of inflammatory markers TNFα and IL6
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Fig. 6 JQ1 treatment ameliorates pathological phenotypes in dystrophic muscle. a JQ1 administration decreases NFkB p65-Ser536 phosphorylation in TA
muscles from mdx mice (n= 5 for each experimental group). Lower panel: quantification of signals was performed with ImageJ. Data are expressed as the
mean ± SD. ***P < 0.001. Statistical significance was determined by using one-way ANOVA followed by Tukey’s post hoc test. b Immunohistochemical
evaluation of F4/80 and CD45 (n= 3 for each experimental group). Scale bar: 50 µm. c Immunoblot analysis of F4/80 (WT, n= 6; mdx, n= 7; mdx+JQ1,
n= 7) and CD45 (WT, n= 6; mdx, n= 8; mdx+JQ1, n= 8) in muscles from control, vehicle- and mdx-treated mice. Vinculin serves as a loading control.
Lower panel: quantification of signals was performed with ImageJ. Data are expressed as the mean ± SD. **P < 0.01, ***P < 0.001. Statistical significance
was determined by using one-way ANOVA followed by Tukey’s post hoc test. d Sirius red staining shows attenuation of fibrosis in JQ1-treated mice (n=
2 sections examined from n= 3 WT animals; mdx mice, n= 5 sections examined from n= 3 mdx-veh and mdx-JQ1 animals). Scale bar: 50 µm. Right panel:
quantification of staining. **P < 0.01, ***P < 0.001. Statistical significance was determined by using one-way ANOVA followed by Tukey’s post hoc test.
e qRT-PCR analysis of Fibronectin mRNA in TA muscles from control (n= 4), vehicle- (n= 3) and mdx-treated (n= 3) mice. Data are normalized against
HPRT and expressed as the mean ± SD. *P < 0.05, ***P < 0.001. Statistical significance was determined by using one-way ANOVA followed by Tukey’s post
hoc test. f Immunofluorescence analysis with an antibody raised against the regeneration marker Pax7 in TA cross-sectional section of WT and vehicle- or
JQ1-treated mdx mice. n= 3 animals for each experimental group. Scale bar: 25 µm. g Immunoblot analysis of Pax7 (WT, n= 7; mdx, n= 6; mdx+JQ1, n=
7) and eMyHC (WT, n= 3; mdx, n= 3; mdx+JQ1, n= 3) levels in TA of WT, vehicle- and JQ1-treated mdx mice. h Immunoblot analysis of alpha tubulin
(WT, n= 4; mdx, n= 5; mdx+JQ1, n= 5), dY tubulin (WT, n= 6; mdx, n= 5; mdx+JQ1, n= 5) and tubulin6 (WT, n= 4; mdx, n= 4; mdx+JQ1, n= 3)
levels in TA of WT, vehicle- and JQ1-treated mdx mice. Right panel: quantification of signals was performed with ImageJ. Data represent mean ± SD.
*P < 0.05, **P < 0.01, ***P < 0.001. Statistical significance was determined by using one-way ANOVA followed by Tukey’s post hoc test.
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(Supplementary Fig. 11A), which was paralleled by a decrease in
the levels of CD45 and F4/80 proteins (Supplementary Fig. 11B),
as well as of inflammatory infiltrate (Supplementary Fig. 11C).
BET blockade led to a trend towards increasing the number of
peripheral nucleated fibers and reducing the centrally nucleated
fibers, although not significantly (Supplementary Fig. 11D).
Fibrosis was reduced in 12-month-old JQ1-treated mdx TAs, as
shown by Sirius red staining (Supplementary Fig. 11E). Tran-
script levels of NADPH oxidase subunits and collagen 1α1 were
also reduced following JQ1 administration (Supplementary
Fig. 11F, G). Overall, these results show that, in the mdx mouse
model, JQ1 treatment has a beneficial impact also when the
disease phenotype is aggravated.

Furthermore, in 12-week-old mdx mice, reduced muscle
damage and inflammation correlated with a more modest
increase in markers of regeneration (eMyHC, Pax7, MyoD, and
Myogenin) in TAs of JQ1 versus vehicle-treated mdx mice, as
observed by protein (Fig. 6f, g and Supplementary Fig. 12A, C)
and RNA levels (Supplementary Fig. 12B). These data are in
agreement with the observed decrease in centrally nucleated fibers
(Fig. 2b). Since a reduction in central nucleated fibers is a
hallmark of improved muscle histology in the dystrophic muscle,
our data suggest that reduced muscle damage was accompanied
by decreased regeneration. In vitro, JQ1 (200 nM) treatment of
satellite cells did not prevent their ability to differentiate, nor
significantly decreased their proliferation rate (Supplementary
Fig. 12D, E).

In DMD muscles, dystrophin absence alters the cytoskeleton,
which results as a disorganized net of denser microtubules. Since

the microtubules network conveys mechanotransduction signals
to Nox2-dependent enhancement of ROS17,36,65–67 in adult mdx
muscles, we asked whether JQ1 treatment was able to correct
microtubules anomalies that contribute to the DMD pathology.
We confirmed that total and de-tyrosinated alpha-tubulin is
increased in adult mdx muscles, and we found that JQ1 treatment
decreased both alpha-tubulin and de-tyrosinated tubulin (Fig. 6h).
Tubulin6 protein significantly increased in adult mdx TAs when
compared to control animals66,67, and JQ1 reduced its levels to
the ones of control mice (Fig. 6h).

Amelioration of muscle functional performance following JQ1
treatment in mdx mice. In agreement with the overall reduced
muscle damage, JQ1-treated mdx mice significantly increased
resistance to fatigue in the treadmill test, and they showed a
substantial amelioration in endurance. In addition, overall eva-
luation of muscle force employing the inverted screen and the
wire tests also showed improvements in muscle performance and
in vivo force, as early as 2 and 1 week of treatment, respectively
(Fig. 7a). Significant amelioration was maintained for one week in
the treadmill, wire and inverted screen tests after JQ1 treatment
withdrawal and overall motor function of JQ1-treated mdx mice
returned to levels comparable to vehicle mdx-mice only three
weeks after JQ1 withdrawal (Fig. 7b).

Taken together, our findings demonstrate that BET inhibition
ameliorates the physiopathological defects of dystrophic skeletal
muscle, suggesting that BET targeting may be beneficial for
patients with muscular dystrophies.
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Fig. 7 Functional amelioration mediated by JQ1 persists following withdrawal. a Treadmill (WT: n= 3; mdx veh: n≥ 7; mdx JQ1: n≥ 8), inverted screen
(n= 9 for each experimental group) and wire (wt animals: n= 9; mdx mice: n= 18 for each group) tests were performed on control, vehicle- and mdx-
treated mice. Data are expressed as the mean ± SEM). *P < 0.05, **P < 0.01 and ***P < 0.001 were determined by one-way ANOVA followed by Tukey’s
post hoc test for the treadmill test and with Kruskal–Wallis test followed by Dunns post hoc for wire and inverted screen tests. a indicates statistical
significance compared to Control group; b indicates statistical significance compared to the mdx mice animal group. b Mice were treated with JQ1 or
vehicle for 3 weeks and treadmill (n= 3 for each experimental group), inverted screen (n= 9 for each group) and wire (n≥ 10 for each group) tests were
performed once a week, and for additional 3 weeks after JQ1 withdrawal. Data are expressed as the mean ± SEM. *P < 0.05 and **P < 0.01 indicate
statistical significance versus mdx-vehicle group, and were determined by one-way ANOVA followed by Tukey’s post hoc test.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19839-x ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:6108 | https://doi.org/10.1038/s41467-020-19839-x | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Discussion
Alteration in ROS metabolism has been identified as an early
event in Duchenne muscular dystrophy, leading to myonecrosis,
muscle damage and inflammatory cell infiltration7. Increased
oxidative stress results from an unbalance between increased
production of reactive oxygen/nitrogen species and an insufficient
antioxidant response, leading to myofiber damage and tissue
degeneration. Muscle biopsies from DMD patients show
increased oxidative stress compared to controls14,15; in mdx
muscles, increased NADPH oxidase Nox2 activity and Src kinase
activation cause an increase in oxidative stress7,16. Here we show
that BRD4 is involved in transcriptional activation of different
subunits of the NADPH oxidase complex in the mdx muscle and
that BETs pharmacological inhibition dramatically reduces oxi-
dative stress and ameliorates skeletal muscle homeostasis and
muscle function. Increased Nox2 activity and oxidative stress has
been recently causally linked to autophagy impairment in the
mdx muscle. Furthermore, Nox2 genetic ablation ameliorates
pathological and functional phenotypes in dystrophic muscle13.
Accordingly, we show that JQ1 administration rescues autophagy
and restricts muscle damage, preventing muscle inflammation
and fibrosis (Fig. 8). In Duchenne muscular dystrophy several
processes are deregulated and concur to exacerbate the dystrophic
phenotype. Moreover, phagocytic inflammatory cells are a sig-
nificant source of ROS and the reciprocal stimulation between
oxidative stress and inflammation rapidly amplifies the axis
leading to muscle degeneration, throughout disease progression.
In this scenario, the transcription factor p65 plays a pivotal role,
since it is a redox-sensing transcription factor, activated by ROS
increase68 and it concurrently regulates activation of inflamma-
tory transcripts. BRD4 has been shown to play a key role as a
cofactor in promoting transcriptional activation of inflammatory
genes, in sepsis as well as atherogenesis33–35. Therefore, BRD4
may not only regulate p65-regulated genes indirectly through p65
ROS-mediated activation, but also directly tempering p65 medi-
ated transcriptional activation at certain target genes such as
inflammatory cytokines. BET inhibitors ability to concurrently

counteract different processes, such as oxidative stress and
inflammatory pathways (Fig. 8), may be a key advantage to
pharmacologically target different aspects of the DMD pathology,
through an epigenetic approach. For instance, IL6 transcript
levels may be influenced both by p65 activation and by direct
BRD4 regulation. Restoration of SIRT1 levels by JQ1 treatment
may also potentially contribute to NFkB inactivation via
p65 subunit deacetylation69.

As shown by our in vitro model of oxidative stress induced by
H2O2 treatment, Sirt1 protein levels are also vulnerable to ROS,
which lead to Sirt1 post-translational modifications and protein
degradation69. Notably, Sirt1 protein degradation is prevented by
JQ1 treatment. Modulation of ROS metabolism by JQ1 admin-
istration also leads to Sirt1-dependent AMPK activation (Sup-
plementary Figs. S4 and S5), which is consistent with data
observed in the mdx skeletal muscle (Fig. 4d) and may provide a
link to autophagy restoration, together with changes observed in
Src/Akt axis activation.

Experiments in C2C12 myoblasts, in which oxidative stress was
induced by H2O2 treatment, suggest that JQ1 ability to decrease
ROS levels represents a more general capability, which can be
extended to different sources of ROS production. Similar results
were also recently reported in chondrocytes70.

BRD4 level is enhanced in skeletal muscle of DMD patients and
of mdx mice. Other changes in epigenetic factors have been
observed in dystrophic muscle, such as augmented HDAC2 levels26

and increased histone acetylation marks27. BRD4 stabilization may
lead to altered transcription at specific chromatin domain char-
acterized by acetylated histones, thus taking part to the altered
genome-wide transcriptional program observed in the mdx muscle.
Several factors, such as SPOP71,72, DUB373, PIN174, and BRD4
post-translational modifications75 have been involved in BRD4
protein stabilization in cancer models, and further investigation is
warranted to understand the dynamics of BRD4 stabilization in the
DMD and mdx muscle.

BET inhibitors appear to have different effects on C2C12 dif-
ferentiation, according to dosage, selected chemical compound
and timing of treatment31,45,76. The evidence indicating that in
certain experimental conditions BET inhibitors can block differ-
entiation has to be taken into careful account, particularly when
considering potential translational applications with human
experienced BET inhibitors. Nevertheless, our data suggest that
decreased regeneration is associated to reduced damage and
necrosis in the mdx muscle, and precedes the repeated cycles of
degeneration and regeneration triggered by muscle necrosis.
Thus, the positive effects observed in vivo are ascribed to a
beneficial effect on myofiber integrity, which may delay satellite
cell activation and the need for regeneration. In addition, we
employed a relatively low dose of the BET inhibitor, which may
preserve satellite cell proliferation and regeneration potential, as
suggested by our in vitro data on isolated satellite cells.

Overall, our data demonstrate that BET inhibition holds the
potential to counterbalance alterations of ROS metabolism in the
dystrophic skeletal muscle, ameliorating myofibers physiology
and muscle function. Preserving muscle integrity and improving
performance by tuning ROS metabolism may also represent a
promising approach in other conditions in which oxidative stress
plays a pivotal role in skeletal muscle, such as in sarcopenia.

Methods
Animal study experimental design. All procedures involving animal care or
treatments were approved by the Italian Ministry of Health and performed in
compliance with the guidelines of the Italian Ministry of Health (according to
Legislative Decree 116/92), the Directive 2010/63/EU of the European Parliament
and the Council on the protection of animals used for scientific purposes (Pro-
tocols 3/2014 and 791/2018). C57BL/10ScSn-Dmdmdx/J and control C57BL/
10ScSnJ mice (Charles River, Italy) were housed in groups of five and maintained

Dystrophin loss

BET inhibitor

Muscle damage and impaired muscle
function

NAPDH oxidase

ROS

Membrane permeability Autophagy

Fibrosis
Inflammation

Fig. 8 BET treatment and DMD physiopathology. Working model for BET
inhibitors effects on functional impairment in dystrophic muscle.
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under controlled temperature (20 ± 1 °C), humidity (55 ± 10%), and illumination
(12/12 h light cycle with lights on at 07:30 am). Food and water were provided ad
libitum. Tubes for tunneling and nesting materials (paper towels) were routinely
placed in cages as environmental enrichment. Treatment was performed as in
Segatto et al.32. For each litter, half of the mice were randomly allocated in the
control group and half to the treatment group.

Muscle morphological analysis and immunofluorescence. In vivo morpholo-
gical evaluation was performed on OCT frozen TA muscles. Transverse, 10-μm
thick sections were cut by a cryostat and collected on Superfrost Plus slides
(BioOptica). For each TA muscle (n= 3 per experimental group), a minimum of
20 sections were processed for hematoxylin-eosin (H&E) staining or Sirius red and
dehydrated and mounted with Eukitt (Kindler GmbH & Co., Germany). Peripheral
and centrally nucleated fibers imaging and analysis was not performed blinded to
the treatment group.

For immunofluorescence analysis of TA muscles, 10-μm frozen sections were
blocked with 10% Normal Goat Serum (NGS, Vector Laboratories) in PBS with
2,5% Triton-X 100, incubated with HCl for 20 min at RT and then incubated
overnight at 4 °C with 8-OHdG antibodies.

Negative controls were performed omitting the primary antibodies. Sections
were rinsed with PBS, incubated for 1 h at room temperature with Alexa 488
conjugated goat anti-rabbit IgG in 5% NGS PBS (1:500, Invitrogen Life
Technologies, Carlsbad, CA, USA). Slides were mounted with Fluoroshield
mounting medium with DAPI (Sigma Aldrich, Italy). Muscle slices were analyzed
with a Leica CTR6000 microscope (Leica, Germany) equipped with Leica DFC360
camera (immunofluorescence visualization) and Leica DFC480 (bright field
visualization). Images were captured using Leica Application Suite System and files
were converted in Adobe photoshop CS5 format.

Evans blue. Evans blue dye (EBD) incorporation into necrotic/damaged fibers was
assessed as previously reported77. Briefly, EBD (10 mg/ml in PBS) was dissolved
and sterilized by using a 0.2-μm pore size filter. Subsequently, 0.05 ml/10 g body
weight of dye solution was intraperitoneally administered to WT, vehicle- and JQ1-
treated animals. The mice were then sacrificed 24 h after injection, and TA muscles
were collected and immediately frozen in liquid nitrogen-cooled isopentane.
Muscles were cut with a cryostat and analysis of EBD uptake was performed on 10-
μm muscle cryosections. Muscle sections were fixed in cold acetone at −20 °C for
10 min, washed three times with PBS, coverslipped with aqueous mounting med-
ium and evaluated by fluorescence microscopy. Imaging and analysis was not
performed blinded to the treatment group.

Treadmill test. Mice were acclimatized to treadmill running with a 10-min run at
a constant speed of 6 m/min. During the test sessions, mice were run at an initial
speed of 6 m/min, and every 2 min speed was increased by 2 m/min until
exhaustion. The first exercise test was used to set the baseline of each experimental
group. JQ1 administration was started at the end of the training phase and was
continued for the entire period of the exercise test (four weeks).

Wire and inverted screen tests. For wire test (or wire grip test) mice were tested
at 1, 2, 3, and 4 weeks from the beginning of JQ1 administration. The animals were
allowed to grasp by their four paws a 2-mm diameter metal wire, which was
horizontally positioned 35 cm above a padded surface. The observers recorded the
time spent on the wire, until the mice fell on the soft bedding. After each fall, the
mice were allowed to rest for 1 minute. Each test consisted of three trials, and
values derived from each trial were then averaged78.

For the inverted screen test, the animals were tested at 1, 2, 3, and 4 weeks
starting from the first day of treatment. Mice were placed in the center of a wire
mesh screen, which was subsequently rotated to an inverted position over 2 s. The
screen was held steadily 40 cm above thick soft bedding. The length of time until
the animal fell on the padded surface was recorded. 60 s was considered the cut-off
time in each trial79.

Results derived from inverted screen tests were then analyzed by assigning the
following scores: Falling between 1 and 10 s= 1; Falling between 11 and 25 s= 2;
Falling between 26 and 60 s= 3; Falling after 60 s= 4.

Isolation of EDL fibers and treatment. EDL muscles were surgically isolated and
incubated in DMEM containing 0.4% Collagenase type I at 37 °C for 1 h to release
single fibers80. After 1 h in DMEM with 1% penicillin/streptomycin, fibers were
transferred to a new dish in DMEM with 20% FBS, 1% chicken embryo extract and
1% penicillin/streptomycin and treated with JQ1 (200 nM) overnight and Trizol
was added for RNA extraction.

C2C12 treatments and immunofluorescence. C2C12 cells (ATCC) were grown in
DMEM high glucose with 20%FBS. Cells were pretreated with JQ1 (0.2 μM) for
24 h and H2O2 (250 μM) was added for 8 h or 24 h. For Sirt1 blockade, C2C12
myotubes were co-treated with JQ1 (0.2 μM) and Nicotinamide (NAM, 10 mM),
24 h prior to H2O2 stimulation. 24 h after H2O2 administration, C2C12 myotubes
were harvested and processed for subsequent Western blot analysis. For 8OHdG

staining, immunofluorescence was performed as in Fenizia et al.81, with one
additional step of incubation with 2 N HCl for 20 min at RT, after cell fixation. The
samples were examined with a Leica CTR6000 microscope (Leica, Germany)
equipped with Leica DFC360 camera (immunofluorescence visualization) and
Leica DFC480 (bright field visualization). Images were captured using Leica
Application Suite System and files were converted in Adobe Photoshop CS5
format. DAPI was used for nuclear staining.

Degradation assay. Protein degradation assay was performed as in Segatto et al.,
201482. Briefly, C2C12 myotubes were treated with vehicle, H2O2 (250 µM) or co-
treated with H2O2 (250 µM) and JQ1 (0.2 µM) as already reported. 24 h after H2O2

stimulation, cells were lysed in ice cold 0.01M Tris-HCl (pH 7.4), 0.150 M sucrose.
30 µg of protein extraction was employed for each reaction. Samples were incu-
bated at 37 °C, and the reaction was stopped by the addition of an equal volume of
sample buffer (0.125M Tris-HCl containing 10% SDS, protease inhibitor cocktail,
pH 6.8), at different time points (2 h, 4 h, and 8 h). Samples were then boiled for
3 min and used for western blot analysis.

siRNA C2C12 transfection. C2C12 myoblasts were transfected in suspension with
siBrd2 (0.1 μM), siBrd3 (0.1 μM), siBrd4 (0.1 μM) e siScramble (0.1 μM) (Supple-
mentary Table 4), with Lipofectamine 2000 (Thermoscientific), according to
manufacturer’s instruction. After 24 h, cells were transfected again and after 24 h
RNA was extracted.

Western blot and qRT-PCR. Muscle and protein extracts, immunoblot and RNA
analysis was performed as in Segatto et al.32. Antibody and oligonucleotide lists are
in Supplementary Tables 1 and 2, respectively. BRD4 antibody specificity was
tested in C2C12 myoblasts silenced for BRD4 (Supplementary Fig. 1A). Quanti-
tative Real Time PCR was performed using SYBR green IQ reagent (Bio-Rad
Laboratories, Italy) with CFX Connect detection system (Bio-Rad Laboratories,
Italy).

Satellite cells isolation. Satellite cells were isolated as in Proserpio et al.31 and
growth curve was performed as in Fenizia et al.81.

Analysis of intracellular ROS levels in C2C12 cells. Cells were incubated with 5-
(and-6)-chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate acetyl ester
(CMH2DCFDA) (Thermofisher) for 30 min at 37 °C and washed with PBS4. The
green fluorescence intensity of the oxidized DCF probe per cell was quantified by
Image J software and compared at the different time points.

ChIP assay. Chromatin isolated from muscles was subjected to ChIP assay as in
Segatto et al.32. 100 mg of starting tissue was used for each antibody. Chromatin
was sonicated to fragments length of approximately 0.5 Kb and immunoprecipi-
tated with 3.5 µg of rabbit IgG or antibodies listed in Supplementary Table 1. ChIP
primers are listed in Supplementary Table 3. Quantitative Real Time PCR was
performed using SYBR green IQ reagent (Bio-Rad Laboratories, Italy) with CFX
Connect detection system (Bio-Rad Laboratories, Italy).

DMD immortalized cells and human tissues. Approval from Ethics committee
was obtained by the University of Milan. Human myoblast cells were immortalized
by the Institut de Myologie (Pitié-Salpétrière Hospital, Paris, France) (Supple-
mentary Table 5). Cells were expanded in Skeletal muscle cell growth medium
(Promocell C-23060) with Supplement mix (Promocell C-39365), 15% FBS, 1% L-
glutammine, 1% gentamicine (Sigma G-1272) and 1% penicillin/streptomycin.
Myoblast cells were treated with JQ1 (200 nM) for 24 h. DMD and control tissues
were obtained from the AFM-Myobank (Paris) and tissues were processed as
described for mouse muscles (Supplementary Table 6). The study design and
conduct complied with all relevant regulations regarding the use of human study
participants and was conducted in accordance to the criteria set by the Declaration
of Helsinki. The participants, or their legal guardians, provided written informed
consent.

Statistics and reproducibility. Data obtained from functional, morphological,
western blot, and mRNA analysis are expressed as means ± SD (standard devia-
tion). Measurements were taken from distinct samples, except for morphological
analysis. All the biological replicates were checked for their normal distribution by
using Shapiro–Wilk Test. When we compared 2 experimental groups we used
unpaired t test and when we compared 3 or more experimental groups we used
one-way analysis of variance (ANOVA) followed by the Tukey’s post hoc test.
Statistical analysis for non-normal distributed data (inverted screen test, wire test)
was performed by Kruskal–Wallis test followed by Dunns post hoc. Values of
p < 0.05 were considered to indicate a significant difference. Experiments in Fig. 5g
and Supplementary Fig. 1 were independently repeated 3 times; experiments shown
in Supplementary Figs. 9B and 12E were independently repeated 2 times. Statistical
analysis was performed using GRAPHPAD INSTAT3 (GraphPad, La Jolla, CA,
USA) for Windows.
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Data availability
The data supporting the findings of this study are available from the corresponding
author upon reasonable request. RNA-seq dataset for DMD and control muscles can be
found as Supplementary Table in ref. 36 (https://stke.sciencemag.org/content/suppl/2012/
08/03/5.236.ra56.DC1). Source data are provided with this paper.
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