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Abstract

The research works carried out in this paper deal with the control of a fast

double-steering off-road mobile robot. Such kind of robots requires very high

stable and accurate controllers because their mobility is particularly influenced

by wheel-ground interactions. Hence, the vehicle dynamics should be incorpo-

rated in the control circuit to take into account these issues, which is developed

based on the road geometry parameters and the slippage-friction conditions at

the wheel-ground contacts. Relying on this dynamic model, we present in this

paper the design and application of a constrained Model Predictive Control

(MPC). It is based on the minimization of a cost function (optimizing the devi-

ation from the reference trajectory, and the variation of the control input) along

a finite prediction horizon, however, the prediction horizon is variable according

to the forward speed of the robot. On the other hand, this approach incor-

porates several constraints, essentially important for the stability and safety of

an off-road mobile robot moving at the high velocity, namely : saturation and

maximum variations of the vehicle’s actuators (i.e. steering joints and their

speeds limits) as well as the tire adhesion zone bounds (allowing to validate the

assumption of a linear tire model). The full optimization problem is formulated

as a Linearly Constrained Quadratic Programming (QP) to compute at each
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time-step the optimal and dynamically-consistent front and rear steering angles

that are required to reach the desired path, with respect to all these constraints.

The capabilities of our proposed controller are compared with another control

law which does not apply any physical or intrinsic constraints. The latter is sim-

ply a feedback controller based on the same dynamic model and LQR theory

(Linear Quadratic Regulator). Both of them have been investigated through

several tests on simulations via ROS/GAZEBO and experiments on a real off-

road vehicle for different kinds of trajectories and velocity levels.

Keywords: Dynamics, slippage, off-road robot, Model Predictive Control,

Quadratic Programming

1. Introduction

Agile autonomous off-road rovers have been used to explore and intervene

effectively and securely in large areas, where it is subjected to different phenom-

ena such as slippage and friction conditions as well as the ground roughness,

both can affect the feasibility and robustness of the path or trajectory tracking5

tasks. Therefore, such automatic systems require extremely accurate and ro-

bust controllers enabling them to preserve their stability and safety during the

executed task, in spite of the hazardous situations encountered. On the other

hand, in order to move easily in cluttered environments and/or achieve paths

with a small turning radius and with high flexibility, the mobile robot struc-10

ture is designed such that the front and rear wheels can be steered and driven

independently. This kind of four-wheel steering vehicles is demonstrated to be

interesting and promising for robotics applications, essentially for the lateral

dynamics control at high speeds and for the increment of the path curvature

[1][2].15

Even though, several approaches dedicated to indoor or on-road vehicles have

already been proposed (based on the vehicle kinematics [3] or the dynamics [4]),

they can not be extended to off-road vehicles which are intended to move on

uneven terrain at high speed. In fact, they assume that the vehicle dynamics
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cannot be affected in the considered context. In other words, these kinds of20

controllers cannot guarantee the system stability if the contact parameters are

not well-defined and when the properties between the tire/soil are expected to

change [5] [6]. Authors in [7] and [8] present the main challenges and control

strategies used in path following and trajectory tacking methods for autonomous

ground vehicles.25

To improve their safety and manoeuvrability, mainly at high speeds, many

strategies have been explored in robotics literature. At the hardware level, the

mechanical design can be optimized to reduce the apparent inertia of the robot

and make it lightweight [9]. In addition, compliant components can be added to

enable smoother inclinations of the vehicle and less severe impacts (e.g. during30

cornering). For instance in [10] and [11], an active anti-roll system was designed

and mounted on the vehicle’s chassis with independent suspensions to minimize

the lateral load transfer (LLT) during cornering, and minimize the consumed

energy by the actuators. However, the stability control via this kind of the

active anti-roll barre is sometimes very complex and is not easy to manage,35

thus the system performance can then be degraded.

At the control level, safe navigation on natural environment requires : i)

switching between different control modes (acceleration and braking) without

causing potentially harmful discontinuities in the movements of the robot ; ii)

the formulation of safety and stability indicators to reflect the amount of au-40

thorized admissible bounds on the dynamic behavior of the robot, to be easily

accounted for, the possibility to express these safety criteria as constraints re-

lated to the control inputs of the robot. By the way, this is done by introducing

the appropriate constraints characterizing the stability and safety conditions in

the trajectory planning and control. Authors in [12] present a 4-wheel steering45

controller to track a reference yaw rate and the side-slip signals while incorpo-

rating an anti-windup technique to reduce the effects of the saturation of the

rear steering actuators. [13] considers a stability domain such that the harsh

curvatures and the wide variation in the robot’s forward speed are prevented.

Moreover, authors in [14] and [15] present a control scheme for automatic path50
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tracking which subjects to wheel sleep constraint. In addition, [16] presents

an online path generator for a wheeled robot taking into account the contact

constraints and joints’ velocity and acceleration limits.

On the other hand, Model Predictive Control (MPC) technique has been

widely used in the automotive and industrial process because of its ability to55

simply handle system nonlinearities and constraints on inputs and states as

well as its capability to anticipate future changes in set-points, i.e. the future

reference trajectory. It has been shown to be much more interesting and so-

phisticated for solving linear or nonlinear path planning and control problems

[17]. Besides that, Nonlinear MPC (NMPC) is usually solved using a sequential60

quadratic programming method (SQP) [18] and/or the DynIbex library which

is based on Runge-Kutta schemes to solve the initial value problem of ordinary

differential equations and of differential-algebraic equations [19]. As an example,

authors in [20] introduced a NMPC controller implemented on a single steering

vehicle for path following, where the problem is solved at each sampling instant65

using SQP. Moreover, papers [21] and [22] make use of a spatial NMPC for path

planning and control problems, which are divided into the upper and lower lev-

els applying constraints on the vehicle’s position in the lane. Furthermore, [23]

and [24] introduce a reliable and guaranteed NMPC approach based on interval

analysis including the model uncertainties, where the problem is solved at each70

sampling instant using the DynIbex library. Nevertheless, it has been shown

that the fast convergence of this kind of solvers is not guaranteed over a finite

time (i.e. huge response time to get the solution of the problem), because of its

computational complexity. Therefore, they are generally limited to low vehicle

speeds and/or indoor applications (such as in the logistics and industry field).75

To overcome this issue and still decrease the computational complexity, the lin-

ear MPC seems much more attractive for various classes of fast applications,

such as in the mining and agriculture fields, because in general the optimization

problem is completely specified as a Quadratic Program (QP), which can be

easily handled by linear solvers. For example, in [25] and [26], a Linear Time80

Varying MPC technique is presented to tackle the same problem. It is based
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on the on-line exact linearization of the nonlinear vehicle model and the linear

MPC technique to control the front steering angle and stabilize the vehicle on

slippery roads (snow-covered) at higher speeds.

In order to properly account for the safety and stability constraints related85

to the sliding and steering parameters, the control problem is expressed as a

Linearly Constrained Quadratic Program (QP). The adequate front and rear

steering angles are calculated to perform a trajectory tracking in the opera-

tional space is subject to several linear inequality constraints accounting for

the physical limitations of the robot (steering joint limits and their variation90

bounds) as well as for the limit values on the sliding parameters (i.e. tire adhe-

sion area bounds to maintain the linear tire model hypothesis). To demonstrate

its efficiency, the proposed control framework is expected to be compared with

another controller described in [27]. This latter method is based on the LQR ap-

proach and the same dynamic model used for the constrained MPC. Although,95

no necessary constraint is taken into account by this LQR controller to compute

adequate steering angles, it is a beneficial point to emphasize the importance

of the constraints and the predictive strategy. Moreover, this paper presents,

simulation results from the high fidelity virtual platform using ROS/GAZEBO,

as well as, results from the field tests demonstrating the effectiveness of our100

proposed approach compared with the LQR controller via the experimental

platform, “SPIDO” robot, along different paths and different speeds.

This paper is structured as follows, in section 2, the linear tire model and

the wheeled dynamic modeling for double-steering vehicles are presented. In

Section 3, the controller is derived: tasks-related objectives are formulated and105

the inequality safety related constraints acting on the system are expressed as a

function of the control inputs of the system, i.e. front and rear steering angles.

In Section 4, the results of the simulations and the experiments are introduced

and discussed, on which the capabilities offered by the proposed controller are

illustrated and compared with those provided by the LQR controller. Finally,110

Section 5 summarizes the contribution and provides an overview of the future

work.
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2. Wheeled Mobile Robot Modeling

2.1. Linear Tire Model

The notations for the vehicle dynamics and the path tracking task are in-115

troduced in Table 1.

Since the sliding parameters and tire-ground forces have been incorporated

into the lateral vehicle dynamics, a contact model must be chosen to describe the

longitudinal and lateral tire forces. In the literature, several kinds of models

can be used to describe the slippage phenomenon (e.g., Pacejka model [28],120

Dugoff model [29] and Fiala tire model [30]). For on-road or off-road vehicles,

three zones can be distinguished even if these tire models are physically and

analytically different (cf. Figure 1), and they can be presented as,

1 At low slippage, the lateral force Fy(f,r) generated by the tire is almost

linear with the slip angle β(f,r) (i.e. angle between the wheel’s velocity125

vector and its longitudinal axis). The proportionality coefficient refers to

the lateral tire cornering stiffness C(f,r), which is particularly depending

on the grip conditions variations, the loaded normal forces and the friction

coefficient.

2 Since the slip angle increases, the transition area is achieved. The lateral130

force at the tire contact reaches the friction limit related to the normal

force and the friction coefficient (µFz).

3 When the slip angle exceeds a certain value due to the slippery condi-

tions and the centrifugal force (e.g., during cornering), the tire-ground

forces are extremely non-linear, in which the robot drifts and becomes135

uncontrollable.

To simplify the tire forces model, our robot is assumed to always run in the

pseudo-sliding area (zone 1 ) Therefore, the lateral force is proportional to the

slip angle with the cornering stiffness. This relationship can simply be expressed
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Figure 1: Illustration of a generic nonlinear tire curve for lateral slippage with different zones,
reduced to a pseudo-sliding area where the wheels offer the best grip conditions.

as follows,

Fyf = Cfβf , (1a)

Fyr = Crβr, (1b)

2.2. Vehicle dynamics modeling

Relying on the bicycle model representation shown in Figures 2 and 3, the

linear tire model given by the equation (1) and assuming that the longitudinal140

velocity Vx is constant and the longitudinal forces Fxi is neglected, the lateral

vehicle dynamics can be derived as the linear state-space representation by

applying the Newton’s law at the center of gravity (CoG) of the vehicle, ξ̇ = A(ξ − ξss) +B(u− uss)

y = C(ξ − ξss)
(2)

where ξ = [Vy, Vψ, ey, eψ]T is the state vector, u = [δf , δr]
T denotes the input

vector (steering angles) and y = [Vψ, ey, eψ]T represents the output vector (Vψ,
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Table 1: Notations for the lateral vehicle dynamics and path tracking task.

Symbol Meaning
Γr reference path to be followed
Ri = {O,X, Y, Z} absolute global frame(or inertial frame)
pG center of mass of the vehicle
pF closest point on the path
RG = {xG, yG, zG} frame attached to the vehicle body
Rwi = {xwi, ywi, zwi} frame attached to the wheel i
RF = {xF, yF, zF} Serret-Frenet that moves along the path
ey lateral error between pG and pF

eψ angular error
ρ curve curvature
θr road slope angle
φr road bank angle
φs suspension deflection angle
δf , δr front and rear steering angles, respectively
βf , βr front and rear side-slip angles, respectively
Cf , Cr front and rear tire cornering stiffnesses, respectively
Fxi longitudinal force at the wheel i ∈ {f, r}, expressed in RG

Fyi lateral force at the wheel i ∈ {f, r}, expressed in RG

Fzi vertical force at the wheel i ∈ {f, r}, expressed in RG

a, d front and rear half-wheelbases and track width
ψ, ψd vehicle and reference yaw angles, respectively
Vx, Vy, Vψ longitudinal and lateral velocities and yaw rate, respectively
µ tire/road friction coefficient
m, Iz vehicle mass and yaw-inertia moment, respectively
g acceleration due to gravity
ay lateral acceleration

ey and eψ are measured with the embedded sensors and Vy is observed by a

Kalman-Bucy filter reminded in Appendix B). ξss and uss describe the steady-

state vectors of the linear model with drift, which depend mainly on the gravity

parameters (sloping grounds).

A =


a11 a12 0 0

a21 a22 0 0

1 0 0 Vx

0 1 ρ2Vx 0

 =



−2
Cf + Cr
mVx

−2
aCf − aCr

mVx
− Vx 0 0

−2
aCf − aCr

IzVx
−2

a2Cf + a2Cr
IzVx

0 0

1 0 0 Vx

0 1 ρ2Vx 0


,
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Figure 2: (a) Dynamic bicycle model with sliding parameters in yaw frame. (b) Path following
notation.

Figure 3: Road grade angle [Left] and bank angle [Right].

B =


b11 b12

b21 b22

0 0

0 0

 =



2Cf
m

−2Cr
m

2aCf
Iz

2aCr
Iz

0 0

0 0


C =


0 1 0 0

0 0 1 0

0 0 0 1

 ,

uss =


ρVx(a11a22 − a21a12)− a21g cosφr sin θr

a21(b11 − b12)− a11(b21 − b22)

−ρVx(a11a22 − a21a12) + a21g cosφr sin θr
a21(b11 − b12)− a11(b21 − b22)

 ,
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ξss =



ρVx[a22(b11 − b12)− a12(b21 − b22)]− g cosφr sin θr(b21 − b22)

a11(b21 − b22)− a21(b11 − b12)

ρVx

0

−ρVx[a22(b11 − b12)− a12(b21 − b22)] + g cosφr sin θr(b21 − b22)

Vx(a11(b21 − b22)− a21(b11 − b12))


The continuous-time state space model (2) can be discretized following the

zero-order-hold method (ZOH). It is therefore relatively easy to calculate an145

approximate discrete-time model for a small sampling time denoted Td by using

the forward differences, Xk+1 = ΦXk + ΓUk,

yk = CXk,

(3)

where Φ = I4×4 + TdA and Γ = TdB are respectively the state and command

matrices of the discrete-time state-space model, I denotes the identity matrix,

Xk = ξk − ξss and Uk = uk − uss are respectively the state and input vectors.150

3. Constrained Model Predictive Controller

In this section a dynamic control strategy based on a constrained model

predictive controller (MPC) that ensures the safety and stability of the off-road

mobile robot. The main purpose is to compute the optimal steering angles

required to perform a trajectory tracking task while respecting a number of155

constraints at each sampling instant. These constraints are summarized as

below :

• Conform with the tire pseudo-sliding area by maintaining the slip angles

between two given values (cf. Figure 1).

• Respect the limits of steering actuators (i.e., the front and rear steering160

angles must be limited according to the articulated stops);

• Avoid large steering variations to ensure the vehicle stability and safety.

In order to do this, the steering velocity must also be saturated.
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3.1. Path tracking task formulation

The main contribution of this paper lies on the application of the proposed165

constrained MPC to the fast off-road rover. This controller is based on the

minimization of a quadratic objective function that is composed by the error

between the desired path and the predicted output. The main advantage of the

MPC is indeed the ability to anticipate future changes in setpoints and handle

constraints that are critical and necessary for the safety and stability of the170

vehicle. Otherwise, MPC is based on the principal of the output y prediction

at each time-step k over a finite time interval [kTd, (k + Np)Td], where the

prediction horizon Np is usually tuned according to the forward vehicle velocity.

At the next time-step, k + 1, a new optimal control problem based on new

measurements of the updated state is solved over the shifted horizon (see [31]175

for an overview of the basics of MPC theory).

To introduce the design of the constrained MPC, the vehicle dynamic model

(3) can be derived in the recursive augmented form, by iterating this model Np

times in order to relate the predicted output yk+i|k and input Uk+i|k at step

time k + i, which are both computed from the instant k. The dynamic model180

can be simply written in the augmented presentation as follows :

Y = PxXk + PuU, (4)

where Y =


yk+1|k

yk+2|k
...

yk+Np|k

 , Px =


CΦ

CΦ2

...

CΦNp

 , U =


Uk

Uk+1

...

Uk+Np−1

 ,

Pu =


CΓ 0 . . . 0

CΦΓ CΓ . . . 0
...

. . .
...

CΦNp−1Γ · · · CΦΓ CΓ

 ,
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The proposed controller computes at each sampling time the optimal steering

angles U defined as a sequence of control inputs over the prediction horizon Np

by minimizing the norm of the inputs and the error between the predicted

outputs Y and the reference Yd. From (4), the cost function can be expressed

in the following quadratic form :

J(U) = ‖Y − Yd‖2Qn
+ ‖U‖2Rn

, (5a)

= ‖PxXk + PuU − Yd‖2Qn
+ ‖U‖2Rn

, (5b)

where ‖a‖Q denotes the Q−weighted euclidean norm of a. To simplify the

notation, we denote q = 3 × Np and r = 2 × Np (i.e, the dynamic model (3)

is a multi-input multi-output system (MIMO) with 2 inputs and 3 outputs).

Therefore, Qn ∈ Rq×q and Rn ∈ Rr×r are both positive semi-definite weighting185

matrices. Yd is the reference vector projected along the horizon prediction Np

that can be written as follows:

Yd =


yd k+1|k

yd k+2|k
...

yd k+Np|k

 , (6)

The objective function (5b) then takes the form,

J(U) =
1

2
UTHU + fTU + ETQnE, (7a)

H = 2(PTu QnPu +Rn),

E = PxXk − Yd,

f = 2PTu QnE,

where U is the optimization vector. H is the Hessian matrix, and which has to

be positive-definite in order to ensure the existence of a unique optimal solution

U minimizing J(U). The vector f describes the linear part of the quadratic190
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function, whereas the term ETQnE is not related to the optimization vector U

and does not affect its computation.

3.2. Constraints formulation

3.2.1. Pseudo-sliding area bounds and tire adhesion

The MPC controller is based on a linear tire model assuming that the lateral

force Fy(f,r) varies linearly with the slip angle β(f,r) (see Figure 1). This assump-

tion characterizes the pseudo-sliding zone where the grip conditions are the best

at the tire-ground contact. Nevertheless, when the contact force exceeds some

certain values, the skidding zone is reached, and the vehicle becomes uncontrol-

lable over short time horizon. Moreover, the bad grip conditions can generate

perturbations influencing the accuracy of tracking task and vehicle drifts, espe-

cially at high speeds and during sudden turn. To prevent this case, a constraint

describing pseudo-sliding area bounds must be accounted. These constraints for

the front and rear slippage angles β(f,r) can be derived as following (cf. Figure

1),

βminf ≤ βf,k ≤ βmaxf , (8a)

βminr ≤ βr,k ≤ βmaxr , (8b)

where βmin(f,r) and βmaxf,r are the limits of the tire adhesion area computed taking

into account the friction limit (µFz). We define the side-slip angle βf,r as

the angle between the wheel velocity vwi and its longitudinal axis xwi. These

angles can be derived as a linear function with steering angles δ(f,r) and vehicle

velocities Vy, Vx and Vψ. These relationships are expressed thus:

βf,k =
Vy,k + aVψ,k

Vx
− δf,k, (9a)

βr,k =
Vy,k − aVψ,k

Vx
− δr,k, (9b)

As it has been highlighted, this paper focuses on controlling the vehicle lat-

eral motion at high velocities (path tracking) while fulfilling its physical and

13



intrinsic constraints. The equation (9) can be written in a matrix format de-

pending on the state and inputs vectors,

βk =

 βf,k

βr,k

 , (10a)

= Tξk + Juk, (10b)

= T (Xk + ξss) + J(Uk + uss), (10c)

with T =

 1

Vx

a

Vx
0 0

1

Vx

−a
Vx

0 0

 and J =

 −1 0

0 −1

 ,195

From (10c), the side-slip angles over a moving time horizon Np can be pro-

jected as follows,


βk+1

βk+2

...

βk+Np


︸ ︷︷ ︸

β̄∈Rr×1

=


TXk+1

TXk+2

...

TXk+Np


︸ ︷︷ ︸

Ξ

+


JUk+1

JUk+2

...

JUk+Np


︸ ︷︷ ︸

Θ

+


Tξss + Juss

Tξss + Juss
...

Tξss + Juss


︸ ︷︷ ︸

Π

, (11)

Relying on the vehicle dynamics (3), the matrix Ξ given in (11) can be

developed as a function of the optimization variable U ,

Ξ = WXk + ZU, (12)

W =


TΦ

TΦ2

...

TΦNp

, Z =


TΓ 0 . . . 0

TΦΓ TΓ . . . 0
...

. . .
. . .

...

TΦNp−1Γ · · · TΦΓ TΓ

 ,

Similarly, Θ can be written as,

Θ = ΥU, (13)
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with Υ =


0 J . . . 0 0

0 0 J . . . 0
...

...
. . . J

0 0 · · · J

 ,

From (11), (12) and (13) we can finally express the projected side-slip angles

β̄ as following,

β̄ = (Z + Υ)U +WXk + Π, (14)

where W ∈ Rr×4, Z ∈ Rr×r, Υ ∈ Rr×r and Π ∈ Rr×1.

Therefore, the slippage-angle constraints can be deduced using (14),200

 Z + Υ

−Z −Υ

U ≤
 β̄max −WXk −Π

−β̄min +WXk + Π

 , (15)

where β̄max = −β̄min = [βmax
f , βmax

r , . . . , βmax
f , βmax

r ]T ∈ Rr×1 are the minimum

and maximum bounds of the pseudo-sliding zone.

After the development of the slippage constraint (15), the following question

must be addressed: how can we proceed to determine the limits β̄max and

β̄min ? In fact, these saturations are related to the tire/ground contact friction205

coefficient µ and the normal force of the vehicle (Fz). Thus, the following

inequality can be deduced using the linear tire model (1) by supposing the

symmetry of the vehicle,

−µFz ≤ C(f,r)β(f,r) ≤ µFz (16)

The vertical force Fz can be calculated assuming that the total weight of the

vehicle is equally balanced between the front and rear axles (Fz = mg
2 ). Hence,210

the front and rear side-slip angle bounds can be approximated as,

βmin
f = − µmg

2.C(f,r)
≤ β(f,r) ≤ βmax

f =
µmg

2.C(f,r)
(17)
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3.2.2. Steering angles bounds

From a practical point of view, the limitations corresponding to the articular

physical capabilities of the robot must be accounted for solving the control

problem. Therefore, the front and rear steering angles δ(f,r) must be saturated,

which is ultimately due to the fact that the vehicle’s actuators have mechanical

limit strokes that cannot be exceeded. These constraints can thus be expressed

as following:

−δmax
f ≤ δf,k ≤ δmax

f , (18a)

−δmax
r ≤ δr,k ≤ δmax

r , (18b)

We can then derive these constraints over the prediction horizon Np as a

function of the optimization variable U , given by the the following inequality, Ir×r

−Ir×r

U ≤
 Umax − Λss

−Umin + Λss

 , (19)

where Umax = −Umin = [δmax
f , δmax

r , . . . , δmax
f , δmax

r ]T ∈ Rr×1 are the robot’s215

joints limits, and Λss = [uss, uss, . . . , uss]
T ∈ Rr×1 denotes the vector depending

on the steady-state conditions.

3.2.3. Rate of change in steering angles limits

In an equivalent way, the steering actuators have a certain maximum speed

that the controller must respect at each computation step. In other words, the220

high variation in steering angles with the actuators’ response time issue may in-

deed generate delays in input computation, as well as perturbations of the path

tracking task. Consequently, the rate of change of the steering angles ∆U must

also lie within a specific allowable range to respect the technical capabilities of

the actuators. Taking these constraints into account, the quadratic program-225

ming generates smooth inputs without any abrupt changes enabling the lateral

stability of the vehicle to be maintained (particularly at high speeds and during

cornering). Therefore, the variation of U over the prediction horizon Np can

16



simply be deduced as follows,


∆Uk

∆Uk+1

...

∆Uk+Np−1


︸ ︷︷ ︸

∆U

=


Uk

Uk+1

...

Uk+Np−1


︸ ︷︷ ︸

U

−


Uk−1

Uk
...

Uk+Np−2


︸ ︷︷ ︸

Ω

, (20)

The vector Ω can then be written as :230

Ω =


Uk−1

0
...

0


︸ ︷︷ ︸

M

+


0 0 · · · 0

I2×2 0 · · · 0
...

. . .
...

0 · · · I2×2 0


︸ ︷︷ ︸

F


Uk

Uk+1

...

Uk+Np−1


︸ ︷︷ ︸

U

,
(21)

The variation of steering angles can then be expressed by substituting (21)

into (20),


∆Uk

∆Uk+1

...

∆Uk+Np−1


︸ ︷︷ ︸

∆U

=


Uk

Uk+1

...

Uk+Np−1


︸ ︷︷ ︸

U

−


Uk−1

0
...

0


︸ ︷︷ ︸

M

−


0 0 · · · 0

I2×2 0 · · · 0
...

. . .
...

0 · · · I2×2 0


︸ ︷︷ ︸

F


Uk

Uk+1

...

Uk+Np−1


︸ ︷︷ ︸

U

,

(22)

Therefore, the rate of change in steering angles as a function of optimization

variable U appears to be simply,

∆U = (Ir×r − F )U −M, (23)

with F ∈ Rr×r and M ∈ Rr×1.235

By exploiting (23), the constraints related to the rate of change of the front
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and rear steering angles can naturally be written as inequality, Ir×r − F

−Ir×r + F

U ≤
 ∆Umax +M

−∆Umin −M

 , (24)

where ∆Umax and ∆Umin are the maximal and minimal permitted speeds of

the steering actuators defined along Np.

3.3. Final quadratic problem240

By way of reminder, the constrained MPC strategy should be able to provide

a unique optimal control input U? = [U?k , U
?
k+1, . . . , U

?
k+Np−1]T at each time-

step k that minimizes the cost function describing the trajectory tracking task,

and that must be such that the considered limits are not violated at the next

time step k + 1. The final MPC optimization problem will be recast into the245

standard quadratic programming (QP) formulation as following :
U? = arg min

U

1

2
UTHU + fTU + ETQnE,

s.t. GU ≤ h,
(25)

where G and h gather all the linear constraints with their bounds given in

(15), (19) and (24). It can be shown that the quadratic forms composing the

tasks expression can be written as a function of positive semi-definite matrices

including constraints expressed in a linear form (i.e. the Hessian matrix H is250

a function of Qn ∈ Rq×q and Rn ∈ Rr×r that are chosen with positive semi-

definite matrices, then H may be symmetric positive semi-definite). This QP

optimization problem is then convex and admits a unique global minimum.

Since the tire/ground contact conditions are intended to be changed in the

off-road context, their estimation is necessary to enhance the robustness of the255

QP (25). This estimation is not the subject of this paper. However, our con-

troller is mixed with some previous works [32] and [6], summarized in the Ap-

pendix A. These algorithms are based on the dynamic model for cornering stiff-

nesses C(f,r) as well as the bank and grade angles (θr and φr) estimation.
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4. Simulation and Experimental Validation260

Simulation and experiments are conducted to evaluate the capability of the

proposed controller. In order to do this, we compare the performance of our

controller with another path tracking controller proposed in [27]. The second

path tracking controller is based on LQR approach and the vehicle dynamic

model given in (2). A brief summary of this LQR controller is presented in265

Appendix C. The advantage of this comparison relates to the fact that this

LQR controller does not take into account any physical or intrinsic constraints.

The constrained MPC and LQR controllers are both tested on a bi-steerable

mobile robot “SPIDO” shown in Figure 4 with a weight of 880kg, a yaw-inertia

moment of 300kg.m2 and a front and rear half-wheelbases of 0.85m. The global270

QP problem is implemented using the CVXOPT solver, a real-time and effective

open-source solver for convex optimization based on the Python programming

language [33].

Figure 4: [Left] Virtual “SPIDO” platform on sloping environment. [Right] Experimental
robot with the embedded sensors [34].

Our algorithms make use of two embedded sensors : First, a Real Time

Kinematic GPS (RTK-GPS) providing an accurate absolute position according275

to the base station. This kind of GPS enables us to reach the cm−level ac-

curacy at sampling frequency of 10Hz. Second, an IMU (Xsens MTi-G) that

integrates multi-axes, accelerometers, gyroscopes, and other sensors to provide

an estimation of the vehicle attitude in inertial frame (e.g. yaw angle and its

rate) by using EKF filter (0.1.s1 accuracy at 100Hz sampling rate). Other sen-280

sors depicted in Figure 4 (e.g. LiDAR) are not exploited in the framework of
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this paper. Otherwise, the lateral velocity Vy used by our approach needs to

be observed. That is why a linear Kalman-Bucy filter was designed for its real-

time estimation from the steering angles and on-board sensors measurements

(see Appendix B).285

4.1. Simulation Results

First, numerical simulation results are reported using ROS-GAZEBO and

a virtual physical engine (cf. Figure 3). These simulations are performed in

the sloping environment (i.e. slope with ±15◦) to study the effectiveness of our

QP problem compared with the LQR controller. Two kinds of global reference290

paths with different characteristics are both tested with these controllers: the

first one is a path with two aggressive maneuvers right and left (“Z path”)

plotted in Figure 5(a), and the second one is a path with a narrow right turn

and small radius curvature to excite the vehicle dynamics (“O path”) as shown

by Figure 5(b). It can be noticed that thanks to the QP problem and LQR295

controller, the vehicle successfully follows the desired paths at Vx = 10m.s−1.

The simulation part is performed at high longitudinal speeds Vx = 5m.s−1

and Vx = 10m.s−1. The parameters of this proposed constrained path track-

ing controller are tuned as: the sample time Td = 20ms and the prediction

horizon is fixed according to the vehicle’s velocity (Np = 20 at Vx = 5m.s−1
300

and Np = 40 at Vx = 10m.s−1). The extremum front and rear steering an-

gles are adjusted to δmax
(f,r) = −δmin

(f,r) = ±10◦, and their rate of change ex-

tremum is ∆δmax
(f,r) = −∆δmin

(f,r) = ±3◦.s−1. The state-weighting matrix Qn =

diag(Q,Q, . . . , Q) ∈ Rq×q with Q = diag(50, 20, 20), and the input-weighting

matrix Rn = diag(R,R, . . . , R) ∈ Rr×r with R = diag(102, 102).305

The friction coefficient, by the way, is assumed to be a constant value and

to be the same at all wheels (i.e. µi = µ ∀i ∈ J1, 4K) and invariable over a finite

time horizon. Since the robot moves in grass terrain, the friction coefficient value

can be approximated to µ = 0.35 characterizing the rubber and grass contact

friction (see [35] and [36] for an overview on friction estimation techniques).310

Therefore, the extremum front and rear side-slip angles βmax
(f,r) = −βmin

(f,r) can
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be naturally computed using the inequality (17). However, it also requires the

knowledge about the cornering stiffness parameters C(f,r) that will be estimated

via the nonlinear observer described in Appendix A. The estimated parameters

via this observer at Vx = 10m.s−1 are plotted in Figure 6(e) for “Z path” and315

Figure 7(e) for “O path”. As can be seen, this observer converges very quickly

when the vehicle is moving along curves with the high curvature that excites

its lateral dynamics. The convergence value of the front and rear cornering

stiffness is (C(f,r) ≈ 16kN.rad−1) reflecting the tire-ground contact conditions of

GAZEBO environment. Take into account the estimated tire cornering stiffness,320

the side-slip angle limits can then be approximated to βmax
(f,r) = −βmin

(f,r) ≈ 6◦.

On the other hand, the road bank and road grade angles are on-line identified

using the Luenberger observer proposed in [32] (see Appendix A) in order to

adapt and update the identified parameters into the controllers when new data

becomes available (Figures 7(e) and 6(e)) .

Figure 5: Reference paths and recorded ones using the constrained MPC and LQR controller
at Vx = 10m.s−1. (a) “Z path”. (b) “O path”.

325

To emphasize more precisely the efficiency of the proposed constrained MPC

compared with the LQR controller, the front and rear steering angles at longi-

tudinal speeds Vx = 5m.s−1 and Vx = 10m.s−1 are plotted in Figures 6(a)&(b)

and Figures 7(a)&(b) for “Z ” and “O paths”, respectively. The steering angles

obtained with the LQR controller are depicted using the black line, and those330

with the MPC are in blue and red lines. We can remark that the constrained

MPC and LQR controllers allow to keep them at each sampling instant between

the fixed bounds (±10◦). Nevertheless, the LQR controller does not guarantee
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their respect all the time if the conditions change (e.g. reference path, vehicle’s

velocity), as can be seen by the experimental results depicted in Figure 8(d),335

where the steering angles computed by the LQR controller exceed slightly the

mechanical limits. That makes the proposed constrained MPC much more in-

teresting than the LQR controller to ensure the rover’s safety. Moreover, the

measured steering angles vary smoothly with small values and opposite signs to

increase the vehicle’s maneuverability, that characterizes one of the most signif-340

icant benefit of a double-steering systems. Nonetheless, we can note that the

property of opposite signs is no longer preserved at high speeds. This is proba-

bly due to the important sliding phenomenon and the existence of one side-slip

angle at the vehicle’s center of mass that can affect significantly the symmetry

between the front and the rear side-slip angles.345

It is recalled that side-slip angles can be computed using the equation (9a)

and are depicted on Figures 6(c)&(d) and Figures 7(c)&(d) for “Z ” and “O

paths”, respectively, at different velocities. Once the curves are reached, these

angles become large due to high centrifugal forces along cornering and important

lateral acceleration ay. This latter is indeed related to the square of the vehicle350

longitudinal velocity and the curve curvature (ay = ρV 2
x ). As mentioned before,

the LQR controller does not apply any constraints, it is for that reason that the

slip angles computed through this controller (black lines) exceed the bounds

(±6◦). In contrast, those supplied by the constrained MPC are always main-

tained between them, which is a huge advantage of this controller for ensuring355

robot stability and controllability (i.e. by maintaining the tire pseudo-sliding

zone).

The path tracking accuracy is an another issue that has to be studied by

using the MPC and LQR controllers. Figures 6(g)&(h) and Figures 7(g)&(h)

show the lateral and angular deviations at Vx = 10m.s−1. As can be clearly360

seen from these figures, the path tracking accuracy using the LQR controller is

better than the one given by the QP problem (e.g. for “Z paths”, ey = 0.2m and

eψ = 2◦ with the LQR controller at curvilinear abscissa 40m, against ey = 0.5m

and eψ = −4◦ with the MPC controller). This quality of path tracking is reduced
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because of sliding and steering constraints included in the configuration of the365

QP problem that must be respected during the robot task, and they cannot be

handled by the LQR controller.

Figure 6: Simulation results of “Z path”at the velocities Vx = 5m.s−1 and Vx = 10m.s−1

with the constrained MPC and LQR controllers. (a) & (b) Recorded front and rear steering
angles. (c) & (d) Front and rear side-slip angles. (e) Estimated front and rear tire cornering
stiffness. (f) Estimated bank and grade angles. (g) & (h) Lateral and angular path tracking
errors at Vx = 10m.s−1.

To summarize, the simulation results provided by the MPC controller are

more relevant than the ones obtained by the LQR controller. Both of them allow

the robot to successfully track different desired path with small and smooth370

23



inputs. However, the LQR controller does not guarantee any steering and sliding

constraints that are critical and necessary for the vehicle stability and safety,

and where all of them are fulfilled by the constrained MPC. To show clearly

the limits of the LQR controller, we plan in our future works to perform other

experiments and tests when the vehicle roll (roll angle control) and longitudinal375

(Vx control) dynamics will be integrated.

Figure 7: Simulation results of “O path”at the velocities Vx = 5m.s−1 and Vx = 10m.s−1

with the constrained MPC and LQR controllers. (a) & (b) Recorded front and rear steering
angles. (c) & (d) Front and rear side-slip angles. (e) Estimated front and rear tire cornering
stiffness. (f) Estimated bank and grade angles. (g) & (h) Lateral and angular path tracking
errors at Vx = 10m.s−1.
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4.2. Experimental Results

The constrained MPC and LQR controllers are implemented on a test double-

steering vehicle shown in Figure 4. These controllers are validated with the

same settings as the simulation part. The experiments are performed on a flat380

ground (assuming θr = φr = 0◦) at the longitudinal velocities Vx = 2.5m.s−1

and Vx = 4m.s−1. The experimental results are summarized in Figure 8. In all

tests, the extremum steering angles are ±10◦ and their rate of change limit is

±3◦.s−1, the slip-angle extremum is ±6◦, the road friction coefficient is approx-

imately 0.35 and the prediction horizon Np = 10. The controllers were run in a385

powerful Intel Nuc (with a core i7− 7567U , 3, 5GHz) feeding the low-level con-

trol with the required optimal front and rear steering angles needed to perform

the tracking task. Onboard sensors and tested controllers are invoked every

100ms. In order to effectively remove certain frequencies of noise related to the

experimental issues, all signals, before they can be used, are filtered by applying390

an eight-order low-pass butterworth filter with small cut-off frequency.

To demonstrate the usefulness of our approach, we compare it with the pre-

viously proposed controller in [27] under the same conditions. Figure 8(a) shows

the desired path and recorded ones at Vx = 4m.s−1 supplied by the constrained

MPC (red line) and LQR controller (black line). We choose a reference path395

with a small radius curvature so as to obtain high lateral acceleration that can

excite the vehicle lateral motion. As can be seen, the car tracks efficiently the

desired path thanks to these controllers. However, the LQR controller appears

more accurate than the constrained MPC because it does not consider any steer-

ing or sliding constraints. This can be noted from Figures 8(g) and 8(h) showing400

the lateral and angular errors (e.g., ey = 0.5m and eψ = 2.5◦ with LQR con-

troller at curvilinear abscissa 40m, whereas with MPC controller ey = 0.9m and

eψ = 5.5◦).

For the results presented below, the estimation algorithm presented in [6]

is implemented to estimate the front and rear tire cornering stiffness C(f,r)405

(Appendix A), which are thereafter used to feed the controllers with adequate

parameters as new data becomes available (see Figure 8(b)). They converge to
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the same value in steady state (C(f,r) ≈ 28kN.rad−1). This value is important

due to the fact that the robot is moving on a quite good grip ground conditions

(dry-grass ground). We also note that between the curvilinear abscissa 0 and410

10m, the estimated parameters remain almost constant because the trajectory is

a straight line that does not excite the vehicle dynamics. Besides from the start

of the turn between 10 and 15m, they converge quickly but remains constant

between 15m and 20m, which is probably the steady state of the circular part

of the reference path.415

Figures 8(c) and 8(d) show the computed steering angles δ(f,r) needed to keep

the vehicle close to the desired path at the longitudinal speeds Vx = 2.5m.s−1

and Vx = 4m.s−1 (black line for LQR controller, red and blue lines for the con-

strained MPC). We note that, the magnitude of δ(f,r) is too small and smooth,

and is always maintained between fixed bounds ±10◦ thanks to the QP prob-420

lem. Compared to the constrained MPC, the steering angles given by the LQR

controller exceed the limits imposed by the mechanical stops of the vehicle at

Vx = 4m.s−1 (see Figure 8(d)), which is undesirable for the system safety par-

ticularly when the robot tracks complex reference paths (i.e. with big curvature)

at high speeds. Consequently, the MPC corrects the robot’s control action to425

avoid the constraint violation.

Furthermore, Figures 8(e) and 8(f) plot the front and rear sliding angles

β(f,r) for both studied scenarios, MPC and LQR controllers, at Vx = 2.5m.s−1

and Vx = 4m.s−1. At low speeds, these angles seem too small due to weak

centrifugal forces and small lateral acceleration (ay = ρV 2
x ). Although, when430

the vehicle velocity increases, they become much more significant as can be

noticed from Figure 8(f). For the LQR controller, the considered limits are

violated at Vx = 4m.s−1, even though the constrained MPC guarantees the

pseudo-sliding area bounds at each time-step, i.e. they lie within ±6◦.

As a conclusion, the constrained MPC seems much more interesting than435

the LQR controller for ensuring the path tracking task and fulfilling the steer-

ing and sliding constraints. As mentioned before, these constraints affect slightly

the path tracking accuracy. This point will be treated in our future works to
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enhance the efficiency of the MPC controller. In fact, the performance of the

considered strategy could potentially be much more promising by incorporating440

other control inputs (e.g., vehicle longitudinal speed Vx control) and other con-

straints to increase more the vehicle stability and safety (such as limiting the

lateral acceleration ay and roll angle φ).

Figure 8: Experimental results with the constrained MPC and LQR controller at the velocities
Vx = 2.5m.s−1 and Vx = 4m.s−1. (a) Reference path and recorded ones. (b) Estimated
cornering stiffness. (c) & (d) Recorded front and rear steering angles. (e) & (f) Front and
rear side-slip angles. (g) & (h) Lateral and angular path tracking deviations at Vx = 4m.s−1.
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5. Conclusions & Future Work

Off-road robots are intended to traverse different kinds of terrains with dif-445

ferent conditions of friction and cohesion. In such dynamic and non-predictable

environment, several criteria must be satisfied with the safety and stability as

the most important ones. In the work presented in this paper, a constrained

model predictive control (MPC) is synthesized and applied for the dynamic

path tracking dedicated to off-road mobile robots with a double-steering axle450

(it can also be easily extended to single-steering rovers). The main advantage

of the MPC is indeed the ability to anticipate future changes in set-points and

handle constraints that are critical and necessary for the safety and stability

of the vehicle. This controller is based on a dynamic model that includes the

wheel-ground lateral slippage and terrain geometry parameters. It is formu-455

lated as an optimization problem that computes at each time-step the optimal

and dynamically-consistent front and rear steering angles required to perform a

desired path, with respect to multiple constraints, essentially the steering joint

limits and the tire adhesion area bounds (i.e., pseudo-sliding zone limits). To

demonstrate the capability of the proposed controller, it is compared with an-460

other previously designed control law, which is based on the LQR strategy and

the same dynamic model. However, it does not take into account any physical

constraints of the system, which is not a beneficial point to emphasize their

importance to make the vehicle safe and stable. Finally, we show simulation

results under ROS/GAZEBO detailing the behavior of the proposed controller465

compared with the LQR one, as well as experimental results obtained by im-

plementing the proposed framework controller in a real off-road mobile robot.

The results prove the capability of the constrained MPC to manage effectively

the path tracking task while respecting at each sampling time the steering and

sliding constraints, that are not applied by the LQR controller. Moreover, the470

proposed constrained MPC seems to be less accurate than the LQR controller

due to the critical constraints fulfilled by the constrained MPC at each time-

step, which affect its performances once they are reached.
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Besides, the longitudinal dynamics (control of Vx) were not considered in this

study. We anticipate to integrate the control of the longitudinal dynamics into475

our QP problem in order to improve its performance particularly the tracking

accuracy. Indeed, such a control will enable the vehicle to mitigate its forward

speed mainly along turns where the curvature is maximum (transient regime).

Moreover, this longitudinal speed must always fill an inequality which depends

on the curvature of the desired path ρ and the friction coefficient µ : Vx ≤480 √
µg
ρ . On the other hand, it would also be interesting to incorporate other

constraints related to the vehicle stability. We particularly plan to constrain the

lateral acceleration and the robot roll angle to prevent the robot from generating

harmful lateral motions (such as the vehicle rollover or spin around during

cornering). These new constraints require new formulations taking into account485

the prediction horizon and optimization variable.

Appendix A : Environmental Parameters Estimation

In this appendix, our motivation is to ensure high accuracy and stability of

the proposed QP problem developed in section 3. This controller is based on

the dynamic model by taking into account the wheel/ground contact conditions490

(C(f,r)) and the environment geometry variables (θr and φr). Hence, the real-

time adaptation of these parameters is crucial to get good outcomes of the path

tracking task. This estimation is not the purpose of this paper. Nevertheless,

we remind some observers that have already been developed in our previous

works to estimated accurately these parameters [32] and [6].495

Cornering Stiffnesses Estimation

The nonlinear observer based was designed in [6] for on-line estimation of

the front and rear tire cornering stiffness (C(f,r)). This observer makes use

of the lateral velocity Vy, the yaw rate Vψ and the steering angles δ(f,r). We
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summarize here the equation of this nonlinear observer,500  Λ̇ = −G(x, u)Λ−G(x, u)
[
B−1
c Acx+ Υ− c(x, u)

]
ω̂c = Λ + c(x, u)

(26)

where the variables Λ, x, u,Ac, Bc, G, c, ω̂c and Υ can be reviewed in more details

in [6].

Terrain Geometry Estimation

Since the environment geometry is intended to be changed mainly in the

off-road context, the estimation of the bank and grade angles (θr and φr) is505

necessary (particularly when the vehicle moves across a slope) to compensate

the gravity components in the dynamic model. For this issue, one linear Luen-

berger observer was previously stated in [32] to estimate on-line terrain geometry

angles. This observer is based on the yaw rate, lateral velocity and IMU mea-

surements. Finlay, the estimated parameters are then fed in our new controller510

to enhance its efficiency. The standard observer equation can be reminded as:

x̂r[k+1] = Arx̂r[k] +Brur[k] + Lx̃r[k] (27)

where x̂r[k] and ur[k] are the observer state and control variable respectively.

x̃r[k] is the observer error. Ar and Br are observer state matrices. L is the

Luenberger observer gain matrix (see [32] for more details).

Appendix B : state observer - Kalman-Bucy Filter515

Embedded sensors allow to measure Vψ, ey and eψ. In order to estimate

the lateral speed Vy and complete the state vector needed for computing the

control input, a linear Kalman-Bucy observer was designed in this appendix.

This observer assumes the knowledge of the robot dynamic model and then the

ground geometry and wheel-ground contact parameters. Its inputs are y, u,520

A, B, C, Γς , Γγ (the error covariance matrices) and dt (the sampling time of
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discretization). Its on-line calculated variables are the Kalman Bucy gain Kb,

the estimated state ξ̂ and the state covariance matrix Γt (see equation (28)).


˙̂
ξ = A(ξ̂ − ξss) +Kb(y − C(ξ̂ − ξss)) +B(u− uss)

Γ̇t = AΓt + ΓtA
T −KbΓγK

T
b +

1

dt2
Γς

Kb = ΓtC
TΓ−1

γ

(28)

Appendix C : LQR controller

From the dynamic model given in (2), the feedback control law that mini-525

mizes the LQR cost function can be derived as follows (see [27]),

u = Nyd −K(ξ̂ − ξss) + uss (29)

with yd is the desired set-point, ξ̂ = [V̂y, V̂ψ, êy, êψ]T is the observed state by

Kalman-Bucy filter and the gain matrices N , K are expressed in (30).

K = R−1BTPr and N = [C[A−BK]−1B]−1 (30)

where Pr is the algebraic solution of the Riccati equation depending on Q and

R which are the state-weighting and the input-weighting matrices respectively.530
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