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Along the Western Cordillera of Ecuador, fault-bounded ophiolites derived from the Late Cretaceous Caribbean Large Igneous
Province (CLIP) have provided key petrotectonic indicators that outline the nature and the mechanism of continental growth in
this region. However, most of the forearc basement across Western Ecuador is buried under sediments impairing its crustal
structure understanding. Here, we propose a first crustal model throughout the spectral analysis of gravity and aeromagnetic
data, constrained by observations made both at the surface and at the subsurface. Three main geophysical domains, within the
North Andean Sliver in Western Ecuador, have been defined based on spectral analysis and augmented by 2D forward models.
An outer domain, characterized by magnetic anomalies associated with mafic rocks, coincides with evidence of a split
intraoceanic arc system. An inner domain is governed by long-wavelength mid to deep crust-sourced gravity and magnetic
anomalies possibly evidencing the root of a paleoisland arc and the residuum of a partial melting event with subsequent
associated serpentinization, the latest possibly associated with an obduction process during the middle Eocene-Oligocene. In
addition, our model supports the presence of a lithospheric vertical tear fault, herein the southern suture domain, inherited from
an oblique arc-continent interaction. Our interpretation also brings new insights and constraints on the early geodynamic
evolution of the Ecuadorian forearc and provides evidence on the structural style and preservation potential of the forearc
basement, most likely the roots of a mature island arc built within an oceanic plateau.

1. Introduction

Major continental growth took place along the NW corner of
South America during the Late Cretaceous, following the col-
lision and accretion of a sliver from the Caribbean Large
Igneous Province (CLIP) [1–3]. Records of the interaction
between the CLIP and the South America continental margin
are preserved along its suture zone in the Western Cordillera

and in SW coastal Ecuador (e.g., [4–8]) (Figure 1). Several
lines of evidence suggest that prior to the collision with South
America, the CLIP was affected by the emplacement of the
tholeiitic San Lorenzo/Naranjal and Rio Cala island arcs,
while the western limit of the South American Plate (SAP)
was most likely a passive margin [6, 8]. Different authors
agree on an oblique arc-passive margin collision configura-
tion starting at ~75Ma [1, 6, 9] with subsequent clockwise
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block rotations between ~70 and 75Ma [2, 10, 11]. However,
discrepancies exist about the subduction polarity beneath the
CLIP. This aspect and the arc-continent collision geometry,
including the tectonic regime of the subduction, may have
had a great impact on the preferential preservation or loss
of evidence of the Late Cretaceous subduction system [12].

Stern et al. [13] suggest that ophiolites emplaced along
the suture zone provide the best record for understanding
subduction initiation processes and forearc composition
and magmatic stratigraphy. Such exposures along the West-
ern Cordillera of Ecuador and Colombia have provided key
petrotectonic indicators for the geodynamic reconstruction
of the NW South American margin (Figure 1). Nevertheless,
the low preservation potential of such ancient terranes after
an arc-continent collision, together with limited exposure,
could limit geodynamic reconstructions, leading to contro-
versial interpretations [12, 14]. Despite the records of arc

activity in the Western Cordillera, there are few publications
discussing the different precollision elements of the subduc-
tion system including the location of the trench, forearc,
and back-arc systems.

In Western Ecuador, between the Coastal Cordillera and
the Western Cordillera (Figure 2(a)), the units associated
with the accreted sliver are buried beneath the Cenozoic fore-
arc sediments impairing the reconstruction of the underlying
forearc basement. We use an unpublished aeromagnetic/-
gravity survey of this region (Figure 2(b)) and present a mul-
tiscale data integration approach to uncover the underlying
crustal structure of the forearc region in Ecuador and add
further constraints on the geodynamic evolution of the
region. This work was motivated by the lack of a crustal
model for the Ecuadorian forearc region. Indeed, since the
presentation of a simple 2D Bouguer’s anomaly forward
model across the continental margin by Feininger and Seguin
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Figure 1: Plate configuration of the NW South America and Central America regions, highlighting the surface exposure of ophiolites
attributed to the Late Cretaceous Caribbean Large Igneous Province (CLIP). Plate kinematics are derived from relative plate motions
according to GPS data (unfilled color arrow) and the NUVEL-1 global kinematic model (filled color arrow). Modified after [3, 52, 107].
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[15], and a more recent and similar plate-scale study using
satellite potential field data by Tamay et al. [16], the underly-
ing basement structure of the Ecuadorian forearc remains
poorly understood.

In this work, we have defined three main geophysical
domains based on the analysis of aerogravity/magnetic
anomalies, constraints derived from published geodynamic
scenarios [6–8, 10, 17, 18], and by means of 2D forward
models. Our interpretation shows a heterogeneous and struc-
turally complex basement, which may have resulted from the
fragmentation of the sliver following the initial Late Creta-
ceous accretionary phase. Furthermore, our model sheds
light on the nature of the southern suture between the
accreted sliver of the CLIP and the continental block.

2. Regional Geology

The Coastal and Western Cordillera regions in Ecuador are
characterized by exposures associated with crustal fragments
derived from the plume-derived Caribbean Large Igneous
Province (CLIP) erupted in Early-Late Cretaceous times
(e.g., [3, 18, 19]) (Figure 2). The arrival and collision of the
CLIP along the NW corner of the South American margin
have been dated as a Late Cretaceous event (75-65Ma) on
the basis of stratigraphic, paleomagnetic, and radiometric
age control [7, 8, 20]. Paleomagnetic studies in Western
Ecuador by Roperch et al. [11] and Luzieux et al. [10] con-
cluded that the arc-derived basement in Ecuador was gener-
ated at low latitudes. The collision of the CLIP may have been
followed by crustal fragmentation and clockwise rotations
(ca. 40-50°) during the Campanian to Early Maastrichtian
[10, 11]. Alternative models propose the presence of at least
two different oceanic plateaus emplaced during two accre-
tionary periods between the Late Cretaceous and the Late
Eocene [5, 7, 21, 22].

2.1. Western Cordillera Crustal Blocks

2.1.1. Pallatanga Block. The block is located along the West-
ern Cordillera, composed of a series of fault-bounded slices
with SSW-NNE direction (Figure 2(b)). It is limited to the
west by the Chimbo-Toachistrike slip fault and to the east
by the Calacalí-Pujilí-Pallatanga fault, which represents
part of the Late Cretaceous ocean-continent suture [8]
(Figure 2(b)). It comprises Early to Late Cretaceous mafic
to ultramafic rocks, mainly composed of basalts, gabbros,
and massive dolerites, overlain by volcanic lastic sediments
(Figure 2(c)) [7, 18]. Basalts and gabbros from the Pallatanga
block have an enriched MORB geochemical signature, possi-
bly related to a mantle plume [5, 7, 18, 23, 24]. Its eastern-
most part comprises serpentinized peridotites, dolerites,
and hornblende-bearing gabbros from the San Juan unit
[6, 7]. An amphibole-bearing gabbro of this unit yielded an
Sm/Nd isochron of 123 ± 1:3Ma [23] and a poor Ar/Ar inte-
grated age of 105Ma [25]. However, zircons from a layered
gabbro mapped as the San Juan unit yielded a U/Pb age of
87:1 ± 1:66Ma [8], suggesting that the San Juan unit is part
of the same oceanic plateau as the Pallatanga unit.
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Figure 2: (a) Topographic relief map of western Ecuador and NW
Peru showing the location and coverage of the aeromagnetic
survey. (b) Simplified tectonic terrane map showing the different
crustal blocks interpreted along western Ecuador maps (modified
after Luzieux et al. [10] and Vallejo et al. [8]). The blue outline
defines the limits of the gravity and magnetic aeromagnetic survey
used in this study. (c) Representative stratigraphic columns for the
three main tectonic blocks discussed in this study.

3Lithosphere

Downloaded from http://pubs.geoscienceworld.org/gsa/lithosphere/article-pdf/2020/1/2810692/5210387/2810692.pdf
by Sorbonne Universite user
on 27 February 2021



2.1.2. Macuchi Block. The Macuchi block is in faulted contact
with the Pallatanga block along the Chimbo-Toachi fault
(Figure 2(b)) [7, 8]. Different authors have interpreted the
Macuchi block as a volcanic arc accreted during the Eocene
(e.g., [7, 17]). However, Vallejo et al. [8] suggest that this is
a difficult model to reconcile given the current position of
the Macuchi block, in between the Pallatanga and Piñón
blocks that possess a similar radiometric age (ca. 88Ma).

The Macuchi block is mostly characterized by volcani-
clastic material with a small percentage of basaltic pillow
lavas, lithic tuffs of basaltic and andesitic composition, basal-
tic breccias, turbidites of volcanic origin, and cherts [5, 26].
The sedimentary units that compose the Macuchi block
are interpreted as a product of submarine volcanism trans-
ported by gravity flow processes [5]. Whole-rock K/Ar
radiometric data yield an age of 41:6 ± 2:1Ma for a basaltic
andesite sample [27]. Vallejo et al. [8] obtained a similar
age of 42:63 ± 1:3Ma from a plagioclase of an andesitic lava
flow. Nevertheless, the age of the base of the Macuchiunit,
as well as the age of the volcaniclastic deposits, remains
largely unconstrained.

2.1.3. Naranjal Block. The block is located in the northern
part of the study area in faulted contact with the Pallatanga
block, along the Mulaute shear zone (Figure 2(b)). The
Naranjal block is characterized by rocks with a volcanic arc
affinity, which appears to correlate with the interpreted
Ricaurte arc in southern Colombia [28]. It is composed of
basaltic pillow lavas and andesites with intercalated sedimen-
tary rocks [26]. Two distinct lithotectonic units have been
interpreted within the block: (1) island arc lavas, towards
the north, which may correlate with basalts from the Río Cala
group at the Pallatanga block, and (2) to the south by rocks
with plateau affinities [7]. The southern extent of the Naran-
jal block is assumed to be buried under the forearc sediments
of the Manabí basin (Figure 2(b)).

2.2. Volcanic and Oceanic Plateau Remnants in the
Forearc Region

2.2.1. Piñón and Santa Elena Blocks. The exposures in the
Chongón Colonche Hills in SW Ecuador (Figure 2(a)) are
mainly composed of tholeiitic basalts, pillow lavas, and
gabbros. The geochemical signature of these mafic rocks
supports an oceanic plateau interpretation [7, 18, 21, 22].

The age of the Piñón Formation was initially constrained
by foraminifera and nannofossils from the overlying black
shales of the Calentura Formation, which yielded a
Cenomanian-Early Coniacian age and led Reynaud et al.
[22] to propose an Early Cretaceous age for the Piñón For-
mation. Van Melle et al. [19] then based on an expanded
stratigraphic dataset propose a Coniacian age for the Piñón
Formation. Furthermore, it was suggested that the Pallatanga
and Piñón blocks were fragmented after the Late Cretaceous
collision with the South American margin. This is supported
by 40Ar/39Ar dating yielding an age between 90 and 87Ma for
both crustal blocks [10].

South of the Chongón-Colonche Hills, in the Santa Elena
block (Figure 2), the stratigraphy is dominated by deformed

Late Cretaceous rocks from the Santa Elena Formation,
unconformably overlain by folded rocks from the Paleocene
Azúcar Formation. These deformed sequences are inter-
preted as an accretionary wedge, which led to the develop-
ment of an outer forearc high during the Oligocene, and
the development of the restricted Neogene Progreso basin
(Figure 2(b)) [4, 29]. It is assumed that volcaniclastic
sequences from the Cayo Formation and possibly mafic rocks
from the Piñón Formation form the underlying basement of
the Santa Elena block.

2.2.2. San Lorenzo Block. Located to the west of the Piñón
block and delimited by the Jipijapa, Jama, and Canandé faults
(Figure 2(b)), this block forms the medium topography (max.
400m) Coastal Cordillera [30]. The mafic rocks exposed in
the Coastal Cordillera are attributed to the Piñón Formation,
commonly overlain by coarse-grained sandstones, ash beds,
basaltic flows, dikes, and pillow lavas (Figure 2(c)) [10, 22].
Goossens and Rose [31] report that tholeiites erupted along
east-trending fractures from the Late Cretaceous until Early
Eocene. These rocks are attributed to a Campanian to Maas-
trichtian volcanic island arc constituting the San Lorenzo
Formation [8, 19, 21, 22]. Based on plagioclase from pillow
basalts Ar/Ar dated as 72:7 ± 1:4Ma, Lebrat et al. [17] pro-
posed that the island arc-related sequences preserved in the
Coastal and the Western Cordillera are coeval and possibly
part of the same system. However, several authors report
larger age ranges between 87 and 54Ma [10, 21, 31]. The
San Lorenzo block is also characterized by a clear hiatus
between the Late Cretaceous and Middle Eocene carbona-
ceous formations [10, 22, 32], which has been attributed to
the accretion of the San Lorenzo block to the already accreted
Piñon block, during Paleocene-Eocene times [7, 21].

2.2.3. Esmeraldas Block. Limited to the east by the Canandé
fault and mostly covered by Neogene sediments (Figure 2(b)),
this is the least well-constrained block in terms of its nature
and age. It is composed of pillow basalts, dolerites, isotropic
gabbross, and hyaloclastites containing glass fragments and
picritic compositions [18]. The same authors suggest that the
units forming the block appear petrologically and geochemi-
cally like the lavas of the CLIP (92-86Ma).

2.3. Amotape-Tahuin Massif along NW Peru. The Amotape-
Tahuin Massif is an E-W oriented morphological feature
composed of Precambrian to Paleozoic rocks along the
NW coast of Peru, which shifts into a N-S direction
towards the south [33]. Towards the ENE, the Jubones
fault separates rocks with a continental affinity from those
composed of exhumed high pressure, low-temperature
oceanic origin [34–36].

Most of the massif between 4°S to 6°S is composed of
metasediments. Zircon ages along the metamorphic belt
show a very similar pattern of Neoproterozoic age clusters
and a younger group around 320Ma and suggest a common
metasedimentary origin of the entire massif [37]. Further-
more, these age clusters are similar with those in the western
parts of the Eastern Cordillera and the northern section
of the Occidental Cordillera of Peru suggesting a wide,

4 Lithosphere

Downloaded from http://pubs.geoscienceworld.org/gsa/lithosphere/article-pdf/2020/1/2810692/5210387/2810692.pdf
by Sorbonne Universite user
on 27 February 2021



polyphase Andean metamorphic belt [37] thus excluding
previous theories about the allochthonous origin for the
Amotape-Tahuin Massif [33, 38, 39]. Moreover, its autoch-
thonous origin was previously evidenced by the pervasive
presence of Triassic (230-220Ma) granitoids along the Amo-
tape Massif and the Cordillera Real of Ecuador [35, 40, 41].

Paleomagnetic studies at the Amotape-Tahuin Massif
report clockwise rotations in the order of 35° during the Late
Cretaceous-Early Paleocene, related to the collision and
accretion of the CLIP [33]. Fault mapping and displacement
data show deformation that might be associated with a post-
Paleocene reactivation, with block rotations in the order of
25° [42], of the inherited structures formed during the initial
accretionary phase [4].

3. Previous Gravimetric and
Magnetometric Studies

The earliest study using aeromagnetic data was carried out
during the mid-1960’s for the Mineral Project of the United
Nations Development Program [31] and identified a series
of E-W magnetic anomalies, along the San Lorenzo block,
bounded to the west by a major north to NE-trending fault
(Jipijapa fault in this study). Goossens and Rose [31] suggest
that these anomalies are caused by tholeiitic basaltic flows
(their “Basic Igneous Complex”). Later, these rocks were
compared to similar exposures in Colombia and interpreted
to form an elongated igneous belt along the NW of South
America, from Ecuador to Panamá [43]. Subsequent poten-
tial field studies along the margins of Ecuador and Peru ana-
lyzed free-air gravity gradients, both near the trench and
along the continental slope [44]. Primary observations along
the NW Peru and SW Ecuador margin by Shepherd and
Moberly [44] include (1) flattened gradients east of the cur-
rent trench position associated with a wedge of tectonized
sediments accumulated by subduction processes; (2) abrupt
free-air gravity inflections on the upper slope (NW Peru),
related to granitic basement (correlative to the Amotape-
Tahuin block); and (3) a gravity minimum in the Gulf of
Guayaquil, which denotes more than 6000m of Quaternary
sediments infilling an inferred pull-apart basin.

Feininger and Seguin [15] characterized the crust in
Ecuador using a 2D forward model (located at ~2°S) based
on simple Bouguer gravity data. They concluded that the
coastal region in Ecuador must be underlain by an ancient
oceanic plate. Based on the correlation between positive
(Bouguer) anomalies over the inferred oceanic terrane and
negative values over the interpreted continental crust, they
proposed a possible location for the suture between these
two crustal blocks. Nevertheless, the conclusions drawn for
the coastal region lacked a more thorough analysis regarding
its internal structure.

Tamay et al. [16] studied the extension of the subducted
Carnegie Ridge using potential field data analysis and suggest
that the Carnegie Ridge underlies the continental margin
reaching the Andes Cordillera based on an elongated E-W
negative magnetic anomaly concordant with the position of
the aseismic ridge and that it subsequently controlled margin
segmentation, seismicity, and volcanism. Free-air gravity

anomalies along the offshore zone have more recently been
used to constrain the tectonic development of the offshore
forearc basins between 1°N and 2°S [45]. This study shows
a clear relationship between depth-to-basement and related
faulting and the distribution of gravimetric anomalies.

Despite the different studies using potential field data,
none of them present a detailed view of the crustal structure
of the entire forearc region in Ecuador. Utilizing recently
acquired high-resolution aeromagnetic and gravity data
along the coastal region, we present a model of the underly-
ing crustal architecture of the forearc region in Western
Ecuador.

4. Geophysical Data and Methods

An aeromagnetic/gravity survey, acquired by Sander Geo-
physics for EP Petroecuador in 2010, is available between
2°N and 4°S for the forearc region in Ecuador (Figure 2). A
total area of ca. 78000 km2 was covered with N-S oriented
acquisition lines and E-W tie lines with a spacing of ca.
1500m and ca. 8950m, respectively, and a nominal flight
altitude of 250m above the terrain. In addition, we had access
to unpublished onshore seismic lines acquired and processed
by Sinopec for EP Petroecuador in 2009, which aid to define
the forearc basin geometry (especially depth to basement)
within the study area. Offshore seismic reflection and refrac-
tion profiles across the margin [45–49] were integrated into
the 2Dmodels to constrain the extent of the forearc basement
up to the trench.

4.1. Analysis of Gravity and Magnetic Anomalies. Our
approach is based on two steps: (1) a spectral analysis of
the frequency content to map out buried geological features
and (2) 2D forward modeling of the anomalies to test plausi-
ble geological scenarios. Throughout this approach, we aim
to delineate the main geophysical domains and to character-
ize the interpreted crustal blocks in terms of density and
magnetic susceptibility.

Conventional filtering techniques including regional and
residual anomalies, analytical signal, and tilt derivative were
applied to the data (Item DR1), in order to aid geological
interpretations of the sources of the gravity and magnetic
anomalies. Due to the poor coverage and low-frequency con-
tent of global satellite-derived magnetic data in this region,
only the aeromagnetic survey was used. A brief description
of the different types of filters including the results of their
application to the data is further described in the supplemen-
tary material (Item DR1).

For 2D forward modeling purposes, we utilized the GM-
SYS module in Oasis Montaj, software developed by Geosoft
Inc. Three key profiles were selected to cover all the major
crustal blocks (Figure 2): (1) a northern profile to study the
Esmeraldas and Naranjal blocks, (2) a central profile across
the Santa Lorenzo and Piñón blocks to study the highest
Bouguer gravity anomaly observed in the region (Figure 3),
and (3) a southern profile, coincident with a narrow strip of
the high-resolution magnetic data, to study the suture of
the accreted sliver across the Gulf of Guayaquil area.
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4.2. Data Constraints for 2D Forward Models. The geometry
of the 2D crustal models across the forearc region in Ecuador
was mainly constrained by means of existing velocity models
and deep and conventional seismic profiles. The properties of
the different blocks to initiate the forward models were
derived from velocity analyses, paleomagnetism studies,
and borehole data (Table 1).

The densities for basement rocks are derived from the
velocity analysis of wide-angle seismic data [47, 49, 56], using
empirical velocity-density relationships for igneous rocks
[60]. For the sedimentary cover, densities were estimated
from industrial borehole logs, located in the Gulf of Guaya-
quil and the Progreso basins. The different densities used in
this study are listed in Table 2.

We define the acoustic basement as the Cretaceous oce-
anic crust underlying the coastal forearc region. Overlying
sedimentary packages were roughly averaged with a seismic
velocity of 2.3 km/s, to depth convert the top of the acoustic
basement. The results of the seismic interpretation of deep
and conventional seismic profiles ([46, 49, 56, 61, 62]; and
this work) were used to constrain the forearc basement struc-
tural configuration as input geometry for the 2D forward
models.

Magnetic susceptibility and remanent magnetization
values from outcrops along the Chongón-Colonche Hills
[20] were used as input parameters for the Cretaceous blocks
in our forward magnetic models. For the characterization of
the subducting Nazca Plate, natural remanent magnetization
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(NRM) values were used from Ocean Drilling Program
(ODP) sites 1238 and 1239 [63]. Other blocks were initialized
with theoretical values [60], and final parameters were deter-
mined based on a best-to-fit approach.

5. Analysis of Regional Geophysical Data

5.1. Seismic, Gravity, and Magnetic Anomalies. The gravity
and magnetic data show contrasting anomalies (Figures 3
and 4), which have been grouped into three main geophysical
domains based on their different wavelength and textural
characteristics.

5.1.1. Outer Domain. A series of short-wavelength Bouguer
anomalies and elongated in a NNW-SSE direction character-
ize the SW coast (yellow arrows, Figure 3(a)). This region is
coincident with the Santa Elena block and bounds the Pro-
greso basin to the east. The short-wavelength characteristic
of the anomalies extends north, but in an irregular pattern
(Figure 3(a)). The eastern boundary of this domain is defined

by a high positive and elongated anomaly, which appears seg-
mented and apparently rotated clockwise to the north. This
last lineament is also highlighted by a series of elongated
magnetic anomalies (Figure 4(a)). An analytical filter applied
to the total intensity magnetic map highlights a series of pos-
itive anomalies (M1, M2, and M3 sections in Figure 4(b)) of
similar textural characteristics. The analytical signal high-
lights the outline of the possible sources of these anomalies
with their eastern edges coincident with the major Jipijapa,
Jama, and Canandé faults (Figure 4(b)), a set called here the
Coastal Range Fault System (Figure 4). The same textural
characteristic appears to extend southwards into the SEH
but shifting to a NW-SE direction. This lineament is coinci-
dent with the La Cruz fault, delimiting the outer domain
from the Progreso basin. From south to north, this linea-
ment, which appears related to a deep source as shown by
Figure 3(b), has a concave shape and delimits the outer
domain from the inner domain to the east. As mentioned
above, this lineament is coincident with major faults and
bounds Cenozoic forearc depocenters located landwards

Table 1: Model constraints.

Element to be constrained Parameter of constraint Reference

Tectonic settings Fieldwork and geophysical studies

This work. Aizprua et al. [4]; Bethoux et al. [50]; Calahorrano et al.
[46]; Feininger and Seguin [15], Font et al. [51]; Gutscher et al. [52];
Graindorge et al. [49]; Gailler et al. [53]; Hernández et al. [45];

Jaillard et al. [54]; Koch et al. [55]; Luzieux et al. [10]; Lynner et al.
[56]; Michaud et al. [57]; Vallejo et al. [8]; Witt and Bourgois [58]

Ecuadorian trench Bathymetry SRTM30 plus v7

Subduction slab geometry Wide-azimuth seismic, OBS Gailler et al. [53]; Graindorge et al. [49]

Density Density from seismic velocity profiles Calahorrano et al. [46]; Gailler et al. [53]; Sanclemente [59]

Magnetic properties Paleomagnetic studies Roperch et al. [11]; Luzieux et al. [10]

Table 2: List of parameters used for forward modeling purposes.

(a)

Initial parameter

Earth’s magnetic field (December 2011)

Magnitude (Am-1) 29407 nT

Inclination (deg) 20.58°

Declination (deg) -0.78°

(b)

Block’s name Density (kgm-3) Susceptibility (SI)
Remanence magnetization

Intensity (Am-1) Inclination (deg) Declination (deg)

Water 1030 — — — —

Piñón 2850 0.01 1.2 -15 50

Hydrated mantle 2900 0.07 — — —

Mantle 3300 — — — —

Volcanic arc 2900 0.02 1.4 -15 70

Sedimentary basin 2400 — — — —

Volcano-sedimentary 2700 — — — —
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within the inner domain. The unusual feature (E in Figure 4),
here termed the Estancia magnetic high, strongly correlates
with the La Cruz fault. The Estancia magnetic high (70 nT)
suggests that it may be underlain by mafic rocks, presumably
from the Piñón formation. Farther south into the Santa
Elena High and towards the Puná island, the magnetic
intensity has a different anomaly pattern (Figure 4), possi-
bly suggesting the transition into the Santa Elena accre-
tionary complex [4].

The M1 and M2 anomalies highlighted by the analytical
signal are characterized by a discontinuity that correlates
to the jump between the Jipijapa and Jama faults
(Figure 4(b)). Northward into the M3 anomaly, similar
textural patterns are observed with its eastern limit appar-
ently rotated in relation to the same structural trends, the
Jipijapa and Jama faults, observed to the south. The near
E-W orientation of the eastern limit of the M3 anomaly
coincides with the Canandé fault, a major bounding fault

to the Cenozoic Manabí basin and boundary between
inner and outer domains (Figure 4).

The apparent relationship between the eastern limit of
the M1 to M3 anomalies to the major bounding faults sug-
gests that the mafic-associated anomalies may partly control
the location of major fault activity, possibly as a rheological
factor. A close-up look into the transitional region between
M2 and M3 anomalies shows the structural complexity of
the area and how this may correlate with exposures of the
Esmeraldas block and possibly with the southern extent of
the Naranjal block (Item DR2). An industrial seismic profile
across this area (Figure 5(a)) shows the Canandé fault sepa-
rating a major structural high to the north from a sedimen-
tary basin to the south. The closely spaced normal faults
affecting the top of the basement can be correlated with the
geophysical lineaments derived from the analytical signal
(Item DR2). A seismic profile farther south (Figure 5(b))
shows similar characteristics to the profile described above

1°0’S

80°0 ’W80°0 ’W

!.

Magnetic
intensity RTP (nT) High

Low

Jip
ija

pa
 F

au
lt

Cascol FaultColonche Fault
Carrizal Faul

La Cruz Fault
Flav

io Alfar
o Fault

B B’

A’

A

1°0’S

80°0’W

0 50 100

N

km

Line B

Line A

Line C

2D forward modeling profiles

A’

A

C

C’

B B’

A’

A

C’

M

F

C

C’

F

F

F

Jam
aFault

Canand faulté

F

F

M6

M1

M7
M2

M3

M5M4

EE

Seismic line

Outline of deep seated
magnetic anomaly
(hydrated mantle?)

Low velocity
gradient (LVG)

(a) (b) (c)

Deep velocity zone
(LVZ)

Coastal Range Fault system

Fast forear anomaly (Vs)

Slow forearc
velocity anomaly
(Vs) at 10 km

CRFS:

Coast line

Outline of magnetic
anomaly (mafic volcanics)

Outline of magnetic
anomaly (felsic intrusive bodies)

Surface fault
trace
Chingual - Cosanga
Pallatanga-Puná
fault (CCPP)

Analytical
signal

135

75

45

25

–15

–45

–60

–80

–100

–160

10

TMI - reduced to the
pole - regional (nT)

100

33

25

7

–11

–19

–27

–35

–68

–125

0

Guayaquil

Puna

Isla
nd

Jip
ija

pa
 fa

ul
t

Esmeraldas

Canand fault

Pi
ch

in
ch

a f
au

lt

Esmeraldas

Jam
a F

ault C
RF

Guayaquil

Figure 4: (a) Total magnetic intensity (TMI) map-reduced to the pole (RTP) of the forearc region in Ecuador. (b) Analytical signal of the TMI
in (a). (c) Upward continuation (10 km) of the TMI in (a). M-type anomalies are associated with mafic-derived bodies, whereas F-type
anomaly relates to felsic intrusive bodies. The E anomaly refers to the Estancia Magnetic high, possibly a M-type anomaly and prominent
feature in southern Ecuador coincident with the La Cruz fault.

8 Lithosphere

Downloaded from http://pubs.geoscienceworld.org/gsa/lithosphere/article-pdf/2020/1/2810692/5210387/2810692.pdf
by Sorbonne Universite user
on 27 February 2021



suggesting that the Canandé and Jama faults delimit the
outer domain landwards and may be of a similar origin.

The M4 anomaly, located farther north, appears to
have similar textural characteristics in the analytical sig-
nal as those observed for M3, however with a less con-

siderable size (Item DR2). The location of the M4
anomaly is coincident with exposures across the struc-
tural high called “Businga dome,” where rocks of the Late
Cretaceous Piñón Formation have been described in the
past [30, 64].
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5.1.2. Inner Domain. In contrast to the outer domain, the
inner domain is mostly characterized by long-wavelength
anomalies (Figures 3 and 4). It is limited to the west by the
convex-shaped lineament forming the eastern boundary of
the outer domain (Figure 3), to the east by the limit of the
survey (i.e., Andean piedmont and related outcrops of the
Macuchi block), and to the north by the Canandé fault. This
domain accounts for a large portion of the forearc region in
Ecuador. A key feature of this domain is the high positive
amplitude and long-wavelength Bouguer gravity anomaly,
coincident with the exposures along the Chongón-Colonche
Hills (Figure 3(a)).

From the inner and towards the outer domain, gravity
values decrease considerably reaching up to ca. -10mGal to
the north and ca. -50mGal south of the Chongón-Colonche
Hills (Figure 3). The northernmost gravity low within this
domain is associated with the Manabí sedimentary basin,
which has an elliptical shape with a NE-SW oriented axis.

The analytical signal of the total magnetic intensity
anomaly map (Figure 4) shows two major mafic-associated
anomalies (M6 and M7). In between these two anomalies,
there are a series of patchy circular to elliptical anomalies
possibly associated with felsic intrusions, of similar dimen-
sions as those outcropping farther to the east within the
Macuchi block (Figure 2). It is likely that the circular anom-
alies observed in the analytical signal may represent a SW
prolongation of the intrusive bodies related to the Macuchi
Unit. A seismic profile across this region (Figure 5(c)) shows
a localized and irregular acoustic basement relief, typical of
igneous intrusions.

The elongated M6 anomaly apparently expanding from
west towards the east, exposed along the Chongón Colonche
Hills, accounts primarily for rocks of mafic characteristics
[10, 19]. Goossens and Rose [31] have previously reported
elongated magnetic anomalies located along the Chongón-
Colonche Hills, with a predominantly E-W orientation, and
associated them with basaltic lava flows. In contrast, in the
northern part of the inner domain near the transition to the
Naranjal block, the M7 anomaly coincides well with the
exposures that define the Naranjal block (Item DR2), sug-
gesting that the anomaly may be a southward prolongation
of the former.

5.1.3. Southern Suture Domain (Gulf of Guayaquil). The
positive Bouguer gravity anomaly over the Santa Elena block
decreases to the south where it becomes negative over the
Esperanza subbasin (Figure 3(a)). A rapid change related to
the thick sedimentary succession of Quaternary deposits in
the Esperanza subbasin, a depocenter that is associated
with the northward migration of the North Andean Sliver
[4, 65], whereas along the Tumbes basin, the gravity low is
likely to be controlled by a s.s. forearc depocenter [4, 66].
Across the Ecuador-Peru border, south of the Tumbes
basin (Figure 3), the gravity anomaly increases towards
the Amotape-Tahuin Massif, which is of continental affin-
ity and marks the southern limit of the suture domain.

The gravity map shown in Figure 3(a) shows an apparent
oblique relationship between the Tumbes and Esperanza
gravity lows. From the Esperanza subbasin towards the con-

tinent, the gravity low area narrows drastically into a location
where it coincides with the major Chingual-Cosanga-Palla-
tanga-Puná (CCPP) fault system defined by Alvarado et al.
[67] (Figure 3(a)). The wider part of the whole negative
anomaly may be associated with (1) the possibly northward
displacement of the Santa Elena High, which is part of the
North Andean Sliver tectonic scape [4], or (2) the trenchward
extension of the Jubones fault. The latest is the southernmost
location of the suture between the accreted oceanic terranes
of the CLIP and the continent. At the narrow section of the
gravity low, Late Cretaceous rocks from the Pallatanga For-
mation (an age equivalent to the Piñón Formation) are inter-
preted to underlay the sedimentary basin in this region [4].

Despite only partial coverage of the aeromagnetic survey
across the eastern part of the Gulf of Guayaquil, this has
allowed us to better constrain the deep crustal structure
across a major boundary (Item DR2). The magnetic intensity
map-reduced to the pole (RTP) shown in Figure 4(a) shows a
decrease of values over the Puná island, pointing towards a
reduction in magnetic susceptibility of the region. The dis-
posal of the magnetic anomalies, shown in Figure 4(a),
appears to correlate with some surface exposure of crustal
units in the area. For instance, south of the Puná island, a
prominent magnetic source correlates with the strike of
the ultramafic Raspas Complex, an exhumed fragment
from a Late Jurassic-Early Cretaceous subduction system
[34, 68]. This magnetic high is bounded to the north by
a magnetic low striking E-W and coincident with the
trend of the Jubones fault (the southernmost identified
suture) and to the south by the Late Cretaceous Lancones
sedimentary basin.

5.2. Forward Models

5.2.1. Crustal Structure. Overall the model A-A’ shows an
average thickness of 15 km of crust (Figure 6(c)), based on
a best-fit approach, with some variations at the different
domains. At the outer domain in profiles A-A’ and B-B’
(Figures 6 and 7, respectively) the seaward decrease of the
gravity anomaly may be indicative of thickness or density
variations. For instance, at profile A-A’ (between 20 and
50 km, 2600 kg/m3), this lower gravity anomaly may be asso-
ciated with a low-velocity zone along the western part of the
prestacked depth migrated SIS-line 44 presented by Collot
et al. [62], who suggest that this block represents an altered
outer wedge affected by deep-sourced fluids flowing along
crustal faults. Indeed, a three-dimensional velocity model
covering the same block [61] supports a low-velocity zone
that may be related to altered and hydrated mafic and ultra-
mafic rocks, commonly observed along margins consisting of
oceanic or island arcs accreted terranes. Furthermore, recent
tomography-based shear velocity inversion models reveal
low-velocity crustal bodies possibly associated with the
subduction of the Carnegie Ridge, north of 1°S (Figure 3)
[55, 56]. East of the low-density zone (Figures 6(b) and
6(c)), a high-amplitude magnetic anomaly shows decreasing
values towards the Borbón basin. The magnetic contrast
towards the east (0.01 SI) extends from 60 to 110 km in pro-
file A-A’. In between 110 and 140 km, both the magnetic and
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gravity anomalies are characterized by a flat gradient prior to
entering into an area of varying magnetic values, associated
with the major Canandé fault zone, as observed on the seis-
mic profile shown in Figure 5(a). A series of faulted blocks
with varying magnetic susceptibility are added to match the
varying magnetic profile west of the Canandé extensional
fault (Figure 6(a)). The blocks are vertically extended from
the inferred top basement down to depths of 7-9 km match-
ing the upper boundary of a higher density (2950 kg/m3) and
laterally extended lower crust. The inferred fault system may
be also associated with NNE-SSW dyke-shape mafic bodies,
considering the high degree of variability in the total mag-
netic intensity map, a typical response encountered at low
latitudes [69]. The Canandé fault also marks the base of a
steep gravity gradient and the eastern edge of the irregular
magnetic zone. In our model, the depocenter of the Cenozoic
Manabí basin and a less dense Late Cretaceous oceanic crust

basement account for this steep gradient marking the bound-
ary between the inner and outer domains.

Along profile B-B’, anomalies are matched with a rela-
tively shallow Moho with ~10 km depth and up to 15 km
depth towards the Andean piedmont (Figure 7). The gravity
anomaly and derived model show a similar pattern towards
the trench as in A-A’, except that values are considerably
higher compared to profile A-A’. To fit the anomaly, across
the outer domain, a thicker upper crustal block (of ca.
7 km) with a density of 2740 kg/m3was adjusted into the
model. This thicker upper crustal unit appears to relate to
an outer-wedge geometry in the west, which may partly cor-
respond to the northern prolongation of the interpreted
Santa Elena High farther south. The latest consists of thick
and highly deformed successions of Late Cretaceous to
Paleocene sediments [4, 21, 46]. The highly deformed nature
of the Late Cretaceous and Paleocene series of the Santa
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Elena block and the tectonic interaction with the Piñón block
(here, the inner domain), this last one acting as a backstop
[4], support this outer-wedge model (Figure 7).

The spectral analysis of the total magnetic intensity map
indicates that themagnetic anomalies within the inner domain
may be originated at different depth levels (Figure 4 and Item
DR1). An initial model test withmagnetized bodies at medium
to shallow depth (<10km) and susceptibility values between
0.01 and 0.02 SI account partly for the observed magnetic
anomalies within the inner domain in profile B-B’ (Item
DR3). An alternative interpretation for this initial model
may include faults; however, it still requires the presence of
highly magnetized bodies. We do not rule out a combined
model, where highly magnetic bodies are associated with
deep-seated faults.

The long-wavelength component of the magnetic anom-
aly has been modeled considering deeper sources, to a depth
of 10-15 km (Figure 7). Two different scenarios were consid-
ered to match the main gravity low in the east part of the
model. The first scenario involves a low-density polygon

located at the base of the oceanic crust representing a frag-
ment of the continental autochthonous crust; a low-density
polygon is necessary in order to match the gravity low with-
out reaching an anomalous high thickness for the accreted
plateau rocks. The second scenario (Figure 7) involves a sim-
ilar autochthonous polygon with a paleohydrated mantle
wedge necessary to match the high positive magnetic anom-
aly. This last scenario is the preferred one, together with the
presence of continental crust, as supported by the velocity
model presented by Lynner et al. [56]. Indeed, partial serpen-
tinization of the lower crust or a remnant hydrated mantle
wedge may be the source of the positive magnetic and nega-
tive gravity anomaly pair (see next section). The magnetic
anomaly to the west in profile B-B’ (between 80 and
110 km, Figure 7) is located near to a high to low shear veloc-
ity zone according to the model proposed by Lynner et al.
[56] (Figure 4). Considering the gravity decrease in this area,
the presence of magnetic underplated material or a hydrated
mantle wedge seems plausible models. Similar observations
are reported across other active margins, with the presence
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of a hydrated mantle wedge underlying a forearc basement of
oceanic affinity like in Oregon and East Antarctica [70, 71].

5.2.2. Southern Suture of the North Andean Sliver to the
Continent. To investigate the southern suture between the
trapped oceanic sliver and the continental South American
Plate, we have integrated the observed tectonic elements of
the area and modeled the gravity and magnetic response
along profile C-C’ (see Figure 2 for location). The northern-
most segment of profile C-C’ (Figure 8) partly crosses the
eastern extent of the Chongón-Colonche Hills, which are
characterized by surface exposures of the Piñón Formation
and by the highest gravity anomaly in the region discussed
in the previous section (Figure 3(a)). The high-amplitude
gravity anomaly decreases towards the center of the profile

and coincides with the southeastern extent of the Progreso
basin (Figure 8). This segment crosses a series of high-
magnetic anomalies that were matched by introducing shal-
low bodies (0.01 SI) and a deeper source of high magnetic
susceptibility (0.07 SI) extending to a depth of ca. 15 km com-
parable to profile B-B’.

Towards the south, at the Gulf of Guayaquil (Figure 8),
the gravity anomaly drops to a minimum of ca. -120mGal.
A strong lateral contrast in density coincident with the base
of the steep gravity gradient was introduced in the model to
account for this gradient. Although less constrained than
profiles A-A’ or B-B’, the profile C-C’could be divided and
analyzed into two main segments: (1) the northern segment
characterized by high gravity values as well as long-
wavelength magnetic anomalies that extend laterally along
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the Chongón-Colonche Hills (Figure 4) and (2) the southern
segment presenting a gentle southward stepping-uptrend of
gravity values and lower magnetic contrasts. In between 90
and 125 km (Figure 8), gravity values increase to ca. -60mGal
staying almost constant up to 180 km, where it increases
again up to -20mGal. At the lowermost gravity point (at ca.
90 km), the SE extend and deepening of the Progreso basin
connects to the eastern extent of the Gulf of Guayaquil basin,
without any hint on the eastward presence or continuation of
the Santa Elena High, as described by Aizprua et al. [4]
(Figure 8).

A series of north stepping magnetic highs, in between 120
and 210 km, characterized by steep slopes to the north and
gentle gradients to the south (Figure 8) are modeled by a
stacked series of blocks probably developed during the Late
Cretaceous accretionary phase, later reactivated by exten-
sional tectonics. Large basement faults with an extensional
component have been previously reported in this area based
on seismic profiles [4, 65, 72]. The southernmost part of the
model is constrained by the surface exposure from the Raspas
Complex that coincides remarkably well with a high mag-
netic peak (at ca. 190 km) and the slight increase in gravity
values forming a bell-shaped geometry. In between this area
and the Jubones fault (Figure 8), the model is fitted with a
block of lower density (2750 kg/m3) comparable to the block
south of the Raspas Complex, suggesting that this area might
be considered the continuation of the NE of the metasedi-
ments from the Amotape-Tahuin Massif or it consists of a
transitional zone to the obducted oceanic section (Figure 8).

6. Discussion

The gravimetric and magnetic anomalies in the Ecuadorian
forearc show a clear correlation to the crustal exposures
across the coastal region. Furthermore, the structural inter-
pretation based on the anomaly’s gradients correlates well
with their surface expression allowing to extend the interpre-
tation to buried areas. The compilation of the different linea-
ments interpreted from the spectral analysis of gravity and
magnetic anomalies provides clear evidence of a complex
crustal architecture (Figure 9), most likely inherited from
the Late Cretaceous allochthonous terranes (CLIP)-passive
margin collision event.

It is admissible to conceive that the structure of the cur-
rent Ecuadorian forearc and part of the arc will depend on
the preservation degree of the accreted terranes during the
arc-continent collision, which is controlled at the first order
by the polarity of subduction [12]. A major discrepancy in
the precollision settings of the Late Cretaceous arc is related
to the subduction polarity. A west-dipping subduction
system colliding perpendicular with the South American
margin, presented by Vallejo et al. [8], is in accordance with
the “forward-facing” arc-continent collision type-1 (the fore-
arc collides first) proposed by Draut and Clift [12], which
may lead to the preferential preservation of the intraoceanic
arc, as observed in the northern part of the Western Cordil-
lera. Suggested evidence for a westward polarity includes
regional models proposed for volcanic island arcs located in
Colombia and farther north in the Caribbean region and

the absence of magmatism older than 85-80Ma in the Ecua-
dorian margin [8]. Nevertheless, alternative models based on
tomography and supported by a quantitative plate recon-
struction support an east-dipping subduction system in the
Northern Andes [1, 9]; a similar polarity has been considered
in models across western Ecuador, inferred from a geochem-
ical and stratigraphic approach (e.g. [5–7]). Suggested evi-
dence for an eastward subduction includes the lack of a
clear magmatic gap from the older oceanic plateau lavas
(Piñón Fm.) to younger arc lavas, expected during a polarity
reversal as proposed by Vallejo et al. [8]. Collision with an
eastward polarity is in accordance with the “backward-
facing” arc-continent collision type-1 (the back-arc collides
first) proposed by Draut and Clift [12], which may lead to
the preferential loss of the back-arc system.

6.1. Split of Rio Cala-San Lorenzo Arc and Development of a
Marginal Basin? Major block rotation that took place
between 70 and 75Ma probably triggered the initial crustal
fragmentation of the forearc area [10]. The series of high
magnetic susceptibility sources along the outer domain
(Figure 4(b)) appear to correlate with plateau and island
arc-associated formations described within the San Lorenzo
block (Figure 2) [7, 10]. The coincidental location of the
major faults bounding the eastern limit of the M1, M2, and
M3 anomalies (the Coastal Range Fault System, see
Figure 4) suggests rheological controls on the formation of
this major boundary. The patchy and apparent northward
change in orientation between the M2 and M3 anomalies,
along the Canandé fault, suggests crustal deformation possi-
bly accompanied by block rotation. In addition, the lack of
continuity between M1 and M2 anomalies (Figure 4) could
be explained by a fault-related demagnetization process fol-
lowing block fragmentation and strike-slip movements. This
area is coincident with the development of the Pedernales
basin [45, 73] within the outer domain.

Both the San Lorenzo and Esmeraldas blocks are charac-
terized by the presence of volcanic rocks from the San
Lorenzo Formation unconformably overlain by middle
Eocene rocks, marking a clear stratigraphic hiatus [74]. A
stratigraphic gap supports the interpretation of a structural
high developed by Late Cretaceous [10, 75, 76]. Furthermore,
an oil exploratory well located in the inner domain (Ricaurte-
1 in Figure 5) encountered (near its bottom) a series of
volcaniclastic deposits (Coniacian to Campanian) that corre-
late to the Cayo Formation described farther south along the
Chongón Colonche Hills [72, 74, 77]. The on lapping stratal
termination pattern of the lowermost seismic unit onto the
Piñón acoustic basement suggests that the depocenter and
the bounding structural high were coeval with the sedimenta-
tion of the Cayo Formation. Thus, the onset of sedimentation
in the Cayo Formation may have preceded the main accre-
tion whereas the upper part is synchronous with the major
tectonic event during Late Campanian characterized by
clockwise block rotations, between 75 and 70Ma, recorded
by paleomagnetic declination [10, 11] and most likely associ-
ated with the main Late Cretaceous accretionary period in
Ecuador [6–8]. Although the temporal relationships between
the San Lorenzo and Rio Cala arcs are poorly constrained
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(especially because of poorly defined ages for the Rio Cala
arc; see [8]) the wealth of observations suggests that the outer
domain andmore specifically the San Lorenzo arc may repre-
sent the western section of a split arc. An early separation

between these two arcs may have developed a marginal Late
Cretaceous basin, where sedimentation of volcaniclastic
deposits of the Cayo Formation took place. It is, however, dif-
ficult to conceive the mechanism leading to the formation of
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the marginal basin, especially because of doubts about the
temporal relationships between the arcs and the subduction
polarity during Late Cretaceous. However, the very weak
deformation observed at the base of the depocenter, inter-
preted here as a marginal basin, suggests that the accreted
sliver was most likely transferred to the continental margin
with little internal deformation. This last aspect may be inter-
preted as a highly preserved sliver because of forward-facing
collision. Nevertheless, a weak deformation may also be con-
ceivable in the context of a thick accreted sliver colliding in a
backward-facing mode and even with a transcurrent accre-
tion mode.

At the southernmost part of the inner domain, we found
one of the most significant positive and long-wavelength
Bouguer anomalies in the northern Andes located along the
Chongón Colonche Hills. Feininger and Seguin [15] and this
study estimate that a shallow mantle and a thinner crust
(down to 7 km locally) are contributing to the anomaly. This
may be considered atypical for an oceanic plateau or for an
island-arc, as they commonly exhibit thicknesses above
10 km [78]. Recent studies based on seismic tomography
put in evidence a high shear velocity zone that correlated very
well with this gravity anomaly, confirming the shallow man-
tle model (Figure 3). Indeed, farther north, the thickness of
the accreted sliver increases and reach values of ca. 15 km
(Figure 6). The very significant positive anomaly seems coin-
cident in the southern limit of the marginal basin, here
related to a possible split of the Rio Cala and San Lorenzo
arcs. Therefore, crustal thinning and resulting isostatic man-
tle upwelling may well explain this gravity high in the region.
Additionally, preliminary petrological analysis on intrusive
rocks at the eastern part of the CCH [79] suggests significant
denudation in excess of 2-3 km subsequent to the magmatic
activity. Nevertheless, this hypothesis needs further verifica-
tion, especially regarding the timing of the denudation period
and its relationship with better known rotational and accre-
tional periods in SW Ecuador.

6.1.1. The Regional Positive Magnetic Anomaly: A
Serpentinized Mantle? We propose that a combination of
(1) deep-seated faults controlling basalt flow location and
(2) disturbances of the underlying mantle possibly through
a serpentinization process may have considerably modified
the density and magnetic properties of the underlying forearc
basement or crustal mantle.

It is widely accepted that at depths of ~40-50 km, the
subducting slab releases large amounts of water into the
overlying lithosphere producing serpentine [70, 80]. Ser-
pentinization can be distributed extensively affecting in
some cases the entire forearc mantle [70]. It is known that
serpentinization reduces the density of peridotites and pro-
duces a residual iron oxide, typically magnetite, which
imparts a strong magnetic susceptibility to serpentinites,
where its value is proportional to the degree of serpentini-
zation and amount of iron derived from source rocks [80,
81]. Magnetic susceptibilities may increase by several
orders of magnitude; remanent magnetization may increase
by one order whereas density may decrease from
~3000 kg/m3 to ~2500 kg/m3 (e.g., [70, 82]). Therefore,

and as suggested by Blakely et al. [70], long-wavelength
magnetic anomalies lacking corresponding positive gravity
anomalies may provide evidence to map hydrated mantle
in convergent margin settings. Forearc hydrated mantles
may also have a strong influence on deformation partition-
ing and seismicity at depth [83, 84], and they have been
usually discovered by the presence of anomalous low
velocities in mantle regions (e.g., [70]).

The long-wavelength component of the anomalies
described within the inner domain suggests that part of the
anomalies may be originated at great depths. Thus, the very
high positive magnetic anomaly (~250nT) observed at
~180 km in profile B-B’ is not paired with a positive gravi-
metric anomaly, although the gravimetric low may be
masked by the vicinity of the continental crust. In addition,
the presence of small circular anomalies, highlighted by the
analytical signal in Figure 4(b), with high magnetic suscepti-
bility may suggest the presence of magnetite-rich igneous
intrusions built on the accreted and composite sliver. Indeed,
the apparent serpentinization of the forearc mantle does not
appear to correlate to the modern arc (actually, a high-
velocity mantle has been defined in the area; Lynner et al.,
2020), and instead, it may be related to ancient plutonism.
We suggest that part of the inner domain underlying the
crustal mantle may have undergone a serpentinization pro-
cess giving rise to this significant magnetic anomaly
(Figure 4(c)), most likely coevally with the magmatic intru-
sions, which east of the piedmont has been dated between
43 and 25Ma in the Macuchi block [85]. Similar anomaly
patterns have been observed along other active margins
that share similar characteristics in terms of forearc sliver
accretion, like in Cascadia on the Oregon coast [70], East
Antarctica [71], and Japan [86].

The Macuchi block, just east of the inner domain, is char-
acterized by a broad volcanic arc region and marked by
pulses of adakite-like magmatism [87]. This author attributes
the peculiar adakite-like magmas to a process of crustal
thickening through the build-up of previous magmatic arcs.
Indeed, the hydration of the mantle may have considerably
modified the upper crustal structure through the emplace-
ment of volcanism and felsic intrusive material such as the
intrusives of the Macuchi block [85, 87–89]. The intrusions
observed beneath the forearc depocenter, considered together
with coeval intrusions outcropping in the Western Cordillera,
may possibly represent the wider magmatic arc of the
Cenozoic history of the Northern Andes of Ecuador
(Figure 10(b)). In this context, the serpentinization process
may have played a significant role in the generation of mineral
deposits during Late Eocene to Oligocene such as the porphyr-
y/epithermal Balzapamba, Chazo Juan, and La Plata deposits.
Indeed, the suite of porphyry Cu-Au and epithermal Au
deposits, such as those encountered in Ecuador, have been
related to water-rich, calc-alkaline magmas originated by
partial melting of a hydrated mantle wedge (e.g., [90, 91]).
Alternative models for the serpentinization within the inner
domainmay be related to the obduction process of continental
crust [92, 93]. Either process may have led to serpentinization
of the mantle and lower crust, diminishing the density and
therefore a reduction on the gravity anomaly. This may shed
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some light on the up to now disputable Macuchi event (Late
Eocene to Oligocene event) in the Ecuadorian geology.

6.2. Esmeraldas Block: Trailing Edge of a Different Accreted
Sliver? South of the city of Esmeraldas, the total magnetic
intensity map reveals strong negative anomalies oriented in
a NE-SW direction, a pattern that differs from those observed
along the outer domain (Figure 4). Figure 4(c) shows a deep
source (>10 km) contributing to the negative anomaly. The
southern limit of the anomaly coincides with the major
Canandé fault. This long-wavelength and negative magnetic
anomaly appears to extend trenchwards and landwards to
the northeast prolonging into Colombia, where a major
strike-slip system and a double forearc basin system have
been previously described [76, 94]. The Borbón and Tumaco
basins in Ecuador and Colombia, respectively, are coincident
with the location of the magnetic low, with major basin

development onset by Early Miocene [76]. In Western Ecua-
dor, the set of strike-slip duplex appears limited to the
Esmeraldas block and northwards into Colombia. The north-
ern limit of the magnetic low coincides with the southern
prolongation of the Buenaventura fault described in Colom-
bia. The latter is interpreted as the suture trace between the
Gorgona and the Dagua terrane (equivalent to the Piñón ter-
rane) [95], both of an oceanic plateau origin. However, paleo-
magnetic data from the Gorgona terrane [96] may suggest a
different plateau origin compared to the CLIP [97, 98].

Farther north at the edge of the aeromagnetic survey, a
slight increase in magnetic susceptibility appears to coincide
very well with a decrease in gravity (Figure 3). Furthermore,
the outline of a low-velocity zone, inferred from a tomo-
graphic model [61], agrees with the gravity/magnetic relation-
ship described above. This relationship may be attributed to a
serpentinization process of mafic rocks, commonly present
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along the convergent margin, such as the one described in the
present work associated with the Macuchi block, and like
those observed in south-central Alaska [99] or western
Oregon [70].

Thus, we cannot discard that the Esmeraldas block could
be the southern prolongation of a different sliver such as the
Gorgona sliver described by Cediel et al. [95], which extends
farther north and possibly giving rise to the development
of a double forearc basin system as observed in Western
Colombia [94].

6.3. The Southern Suture Zone (Gulf of Guayaquil): A
Transform Fault Boundary. The southern suture, across the
Gulf of Guayaquil, between the oceanic crustal sliver from
the CLIP and the South American Plate, remains uncertain
giving rise to different interpretations. For instance, Bourgois
[100] proposes two end-member tectonic reconstructions for
the underlying crustal structure across the Gulf of Guayaquil-
Tumbes basin to better explain the movement of the North
Andean Sliver through (1) reactivation of ~75-65Ma
ophiolite suture by simple shear or (2) pure shear along
the Inter-Andean depression. Onshore, south of the Puná
Island, the depression coincides with the Jubones-Peltetec
fault (Figure 2). Giving the partial coverage of this area
by the airborne survey, we discuss the possible location
of the suture based on the forward model presented in
Figure 8 and the spatial distribution of the different tec-
tonic elements (Figure 4), which may be inferred as inher-
ited from the underlying crustal configuration.

The forward model along profile C-C’ (Figure 8) was
geologically constrained based on surface and subsurface
observations [4, 68, 100–102]. We consider that the gravity
low south of the major long-wavelength gravity high
described along the Chongón Colonche Hills may be
caused by a great lateral density variation possibly con-
trolled by a major transform fault. Considering that the
Gulf of Guayaquil area may be the southernmost region
where a west-dipping subduction system from the CLIP
interacted with another subduction system along northern
Peru (Figure 10(a)), it is plausible that both systems con-
nect through a transform fault as shown by analogue
modeling [103]. Fault segments with a possible shear char-
acter, such as the Puná segment [67, 104], are apparently
rooted in this major transform fault, which is defined as
a vertical tear fault.

Farther to the west (Figure 10), there are two key ele-
ments to consider for positioning the suture: first, the pres-
ence of the Santa Elena High, which consists of deformed
Late Cretaceous to Paleocene sequences possibly conforming
an outer wedge remnant of an east-dipping subduction sys-
tem ([4]), and second, the clear oblique relationship between
the Tumbes and Esperanza associated gravity lows (Figure 3).
This may suggest that the underlying crustal structure across
the Tumbes basin differs from the Esperanza subbasin.
Indeed, Aizprua et al. [4] and Espurt et al. [66] propose that
the Tumbes basin may conform a forearc s.s. basin controlled
to the north by the Banco Peru outer forearc high and
underlain by the offshore continuation of the continental
Amotape-Tahuin Massif.

Forward modeling seems insufficient to define the south-
ern suture zone of the CLIP. Nevertheless, by putting
together all the elements, we considered that the suture zone
across the Gulf of Guayaquil is composed of both a suture
and a vertical tear fault (Figure 8), both inherited from the
collision and accretion process during Late Cretaceous, a
model composed of elements from both end-members pro-
posed by Bourgois [100].

7. Conclusions

We put forward the first crustal model for the forearc region
in Ecuador that integrates spectral analysis of gravity and
magnetic data along with 2D forward models and seismic
data. It incorporates previous geophysical, geochemical,
stratigraphic, and structural observations mostly derived
from the ophiolites emplaced along the Western Cordillera
and Coastal regions. It is noteworthy that the analyses and
interpretation of the geophysical data were tied to geological
constraints at least for the shallowest sources of the
anomalies. The crustal structure model of an exception-
ally well-preserved remnant sliver from the CLIP provides
additional constraints when building a geodynamic model
for Western Ecuador.

Our model is composed of at least three main geophysical
domains, which are (1) the inner domain, (2) the outer
domain, and (3) the southern suture domain. The inner
and outer domains here defined on the basis of their geo-
physical characterization may be in direct relationship to
the structuring of the forearc basement, possibly prior to
the entrapment of a sliver from the CLIP, during the collision
and further fragmentation. For instance, the disposal and
alignment of the mafic-associated magnetic anomalies (M1
to M3) along the outer domain, bounded to the east by major
faults, here defined conjointly as the Coastal Range Fault
System, may suppose an underlying rheological control. Fur-
thermore, the presence of Coniacian to Campanian volcani-
clastic deposits, within the inner domain, onlapping onto
the structural high, delimited by the fault system mentioned
above suggests the development of a marginal basin prior
to the collision and accretion of the plateau. The post-
Oligocene deformation due to an oblique subduction may
have resulted in the development of strike-slip systems
[4, 30, 58, 105] across the outer domain and thus the dis-
posal and apparent rotation of the outer domain magnetic
anomalies.

The presence of a high positive gravity anomaly and 2D
forward models support a very shallow Moho in this region
with a thin crust atypical of an oceanic plateau and most
likely related to the process leading to the split of the San
Lorenzo arc.

Another key factor of our interpretation is related to a
regional long-wavelength magnetic anomaly across the inner
domain, at least in partly pair with a gravity low, which may
suggest the presence of an underlying serpentinization pro-
cess, with intrusions built on the accreted and composite
sliver. Based on the irregularities of the magnetic anomaly,
the serpentinization process may have altered the lower crust
or the mantle crust underlying the CLIP as suggested by
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forward modeling. The general disposition of the high mag-
netized area seems to coincide with the western edge of the
exposed Macuchi block, suggesting that the magmatism type
present in the block may be at least partly related to the ser-
pentinization process. The identification of a serpentinized
lower crust beneath the forearc of Ecuador may have crucial
significance, for instance, in the definition of metallogenic
zones [90].

Forward modeling seems insufficient to define the south-
ern suture zone of the CLIP. However, by considering the dif-
ferent tectonic elements at the surface and subsurface, we
propose that the suture zone across the Gulf of Guayaquil is
most likely composed of a suture and superimposed vertical
tear fault.

Throughout the use of potential field methods and the
integration of different types of data, we have shown the
key importance of geophysics to uncover the forearc crustal
structure in Western Ecuador, such as the similar cases of
southern Alaska [99], Antarctica [71, 106], Cascadia [70],
and the northeast of Japan [86] where buried volcanic arcs
and serpentinized mantle have also been identified based
on the analyses of gravity and aeromagnetic anomalies.
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