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Abstract

The bonding and antibonding character of individual Molecular Orbitals has been
previously shown to be related to their orbital energy derivatives with respect to nu-
clear coordinates, known as Dynamical Orbital Forces. Albeit usually derived from
Koopmans’ theorem, in this work we show a more general derivation from conceptual
DFT, which justifies application in a broader context. The consistency of the approach
is validated numerically for valence orbitals in Kohn-Sham DFT. Then, we illustrate
its usefulness by showcasing applications in aromatic and antiaromatic systems and in
excited state chemistry. Overall, Dynamical Orbital Forces can be used to interpret
the results of routine ab initio calculations, be it wavefunction or density based, in
terms of forces and occupations.

Keywords: Density Functional Theory, Dynamic Orbital Forces, Nuclear Fukui
Function, Nuclear Forces, Conceptual Density Functional Theory
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A simple framework based on Koopmans’ theorem can be used to assess the bonding or
antibonding properties of individual Molecular Orbitals. Derivatives of orbital eigenvalues
with respect to geometric deformations mimic the forces induced by electron removal.
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INTRODUCTION

Molecular Orbital Theory (MOT) constitutes the main theoretical framework of chemistry,

yet individual Molecular Orbitals (MOs), especially as the complexity of the system under

consideration increases, are difficult to characterize in a quantitative way. While in simple

systems a character can be assigned to individual MOs with ease, cases with sophisticated

hybridization character and low symmetry are hard to classify: the weight and effect of

non-local MOs on individual bonds or interactions is highly problematic.

Orbital forces have been used in several contexts for the individual characterization of

MOs in terms of bonding or antibonding character with respect to individual bonds.1–5 This

technique stems from the ideas of Tal and Katriel,6 which are based on the famed Koopmans’

theorem. The main idea is captured in Eq. 1, which is simply an extension of the theorem in

which the ground state energy of a system (E0) is related to the energy of the corresponding

ith cation, in which an electron has been removed from orbital i (E+
i ) that has, in the ground

state calculation, an associated eigenvalue εi and an ionization energy Ii:

εi ≈ E0 − E+
i = Ii (1)

Koopmans’ theorem is exact in monodeterminantal Hartree-Fock Theory (HFT) as long

as orbital relaxation is neglected, which is to say the MOs of the cation are the same as in

the neutral species. This is generally untrue, which introduces a significant error and thus

demands the approximation sign in Eq. 1. Fortunately, the major caveat of HFT, which is

it does not account for instantaneous electron correlation, seems to partially cancel with the

error derived from orbital relaxation. Therefore, through error compensation, Koopmans’

theorem provides good vertical excitation energies for many molecules.7

By taking derivatives of Eq. 1 with respect to a nuclear coordinate R in a Born-

Oppenheimer context, we obtain the following expression (Eq. 2):

∂εi
∂R
≈ ∂E0

∂R
− ∂E+

i

∂R
(2)

that further simplifies to Eq. 3 if the fixed, equilibrium ground state geometry is consid-

ered (Req) and thus ∂E0/∂Req = 0 for any internal coordinate:
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∂E+
i

∂Req

≈ − ∂εi
∂Req

(3)

Hence, as seen in Eq. 3, by analyzing the derivatives of MO energies (i.e. eigenvalues)

in the ground state species with respect to a nuclear displacement (second term), one can

in principle predict the forces induced on the nuclei (first term) upon removal of an electron

from the corresponding ith orbital. This can be used to classify MOs into bonding or

antibonding with respect to any coordinate deformation, such as pairwise elongation or

shortening corresponding to a bond.

The force term derived from the MO eigenvalue εi that appears in the right side of Eq. 3

is what has been called a Dynamic Orbital Force (DOF). A set of i DOFs can be defined, one

per MO in the system. In principle, according to Eq. 3, such quantities let us link cationic

states and ground state properties.

Unfortunately, even when Eq. 3 holds, the predicted gradients have limited usefulness

due to the inaccuracy of HFT, which does not properly account for electron correlation.

Therefore, even if the equality is exact, the left hand term in Eq. 3 is highly questionable.

Thus, it would be desirable to extend the aforementioned framework to Kohn-Sham (KS)

Density Functional Theory (DFT), which is significantly more accurate and widely used.

However, a new source of error is added, namely the accuracy of the Density Functional

Approximation (DFA) to the exchange-correlation functional. Consequently, the fortuitous

error compensation that enables Eq. 1 in HFT in the first place might not be valid at all in

DFT. On the other hand, the errors due to the lack of electron correlation treatment may

in principle disappear if the exact functional is considered. There is a wealth of literature in

this regard, both from the theoretical and the empirical points of view,8–12 but Koopmans’

theorem and its consequences are routinely used in a KS-DFT context, using KS orbital

energies without much questioning.

In this paper we justify and foster the usage and interpretation of DOFs calculated

from KS-DFT molecular orbitals. A unified theoretical background will be provided. Then,

the validity of the main assumptions will be tested empirically, and finally some example

applications will be presented.
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METHODOLOGY

All calculations were first performed using the PSI4 v.1.1 package,13 using the Maximum

Overlap Method14,15 for all ∆-SCF excited state cation calculations. DOF calculations were

performed with an in-house finite differences code using the helpful Python framework of

HORTON 2.1,16 PySCF17 and libcint.18 All DFAs were used as defined by the Libxc

library19 as PBE, PBE0 and B3LYPG. Graphical representations were produced with the

VMD program.20

RESULTS AND DISCUSSION

The structure of this paper is the following: first, a unified derivation for Dynamic Or-

bital Forces will be given in the DFT framework, closely related to the work of Averill and

Painter,21 and possible interpretations will be examined. Then, both the right and left-side

terms in Eq. 3, the DOFs and the nuclear gradients of the ith cations, will be computed

using both HFT and DFT. By comparison between the two terms, the validity of Koop-

mans’ theorem and its extension to DFT in this particular regard will be ascertained and

condensed to a simple list of do’s and and don’ts. Finally, some examples of applications

will be presented in simple molecules.

Unified derivation and interpretation

The concept and interpretation of DOFs can be derived from the conceptual DFT framework,

thus independently from Eq. 1. In fact, Nuclear Fukui Functions (NFF) as defined by Cohen

and Ganduglia-Pirovano,22,23 can be seen as a particular case of DOFs. NFFs, Φα, measure

the variation of the force experienced by a nucleus α upon variation of the number of electrons

N with constant external potential v. Such descriptor is analogous to Fukui functions, but

focused in nuclear effects. NFFs can be expressed as the opposite of the variation of the

molecular electronic chemical potential µ upon variation of the nuclear coordinates Rα with

a constant number of electrons N , as shown in Eq. 4.24
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Φα =

(
∂Fα

∂N

)
v

= −
(
∂µ

∂Rα

)
N

(4)

NFFs have previously been used for the rationalization of the Jahn-Teller effect and the

effect of electron addition upon equilibrium bond lengths.25,26

If µ in Eq. 4 is expressed as 1/2(εHOMO − εLUMO) it becomes apparent that Φ arises

from subtracting the forces arising from the LUMO from the forces arising from the HOMO,

which in the ground state equilibrium geometry further simplifies as in Eq. 5, where the

rightmost term assumes Eq. 3 holds. In the equilibrium geometry, NFFs reflect whether the

forces exerted on nuclei as a result of electron addition or removal (in the LUMO and HOMO

MOs respectively) dominate. Simply put, it is able to predict how the forces upon nuclei will

change upon globally changing N, which is the same as predicting whether electron acception

or donation will become more favorable upon nuclear displacement. For the energies E+
HOMO

and E−
LUMO of the HOMO cation and the LUMO anion respectively, we may write (Eq. 5):

Φα,eq ≈
1

2

(
∂εLUMO

∂Rα,eq

− ∂εHOMO

∂Rα,eq

)
≈ 1

2

(
∂E+

HOMO

∂Rα,eq

− ∂E−
LUMO

∂Rα,eq

)
(5)

The same concept can be extrapolated to construct orbital NFFs Φi
α in which the deriva-

tive of the force is taken with respect of the individual occupation ni of the ith MO. As per

Janak’s theorem,27 such orbital NFFs are equivalent to DOFs in the equilibrium geometry

of the ground state (Eq. 6), as previously derived from a different pathway21:

Φi
α =

(
∂Fα

∂ni

)
v

= −
(

∂E0

∂ni∂Rα

)
= −

(
∂εi
∂Rα

)
N

(6)

Note that the transformation implicitly owes to the derivatives of the ground state en-

ergy with respect to the occupation numbers.28 Thus, DOFs, which are orbital NFFs in the

ground state equilibrium geometry, determine whether decreasing occupation in that spe-

cific MO brings certain atoms closer or pushes them apart. The concept is faithful to the

core principles and interpretations of MOT: the bonding or antibonding character of any

individual or subgroup or MOs can be unequivocally ascertained by using the complete set

of DOFs. When depicted as a set of atomic displacement vectors departing from the equi-

librium ground state geometry, Φi
α represent the forces that arise whenever an electron is
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subtracted from the ith MO, while −Φi
α represent the predicted forces for when an electron

is added to the ith MO.

Static and dynamic forces

By assuming Hellmann-Feynman forces are sufficient in the previous expression, we can

rewrite Φi
α as (Eq. 7):

Φi
α = Zα

∫ (
∂ρ(r)

∂ni

)
v

(r−Rα)

|r−Rα|3
dr (7)

in which r,R are electronic and nuclear coordinates respectively, Zα is the nuclear charge

of nuclei α and ρ(r) is the electron density. The derivative in the integral in Equation 7 can

be expressed as the sum of two terms (Eq. 8),

(
∂ρ(r)

∂ni

)
v

=

(
∂
∑N

j nj|ψj(r)|2

∂ni

)
v

= |ψi(r)|2 +
N∑
j

nj∂|ψj(r)|2

∂ni
(8)

in which ψj are the different MOs in the Kohn-Sham wave function, including the ith MO

ψi. The |ψi(r)|2 term in the rightmost side of Eq. 8 represents the change in occupation of

the MO under consideration while the second term represents orbital relaxation phenomena.

This orbital relaxation term is often very small, and thus is usually neglected. The underlying

assumption is that MOs do not change significantly whenever the occupation of a different

MO changes, which is a weaker constraint than the one implied by Koopmans’ theorem, in

which all MOs remain unaltered. By following this assumption the following expression is

recovered (Eq. 9), where the ψ subscript indicates that the orbitals remain unaltered:

(
Φi
α

)
ψ

= Zα

∫
|ψi(r)|2

|r−Rα|3
(r−Rα)dr (9)

With the removal of the orbital relaxation term, Eq. 9 reveals the foundation of DOFs,

which are simply the forces arising from the electrostatic interaction between the density

in a particular MO ψi and a nuclei α, or, in other words, the ith MO contribution to the

Hellmann-Feynman force on that nuclei, or static force by analogy.

However, the inclusion of orbital relaxation effects is not always negligible. Recalling

the following equalities given by the construction of the Hamiltonian (Eqs.10 and 11) and
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the derivatives of the Fock operator, where T is the electronic kinetic energy, UNe is the

nuclear–electron attraction energy, VNN accounts for the nuclear–nuclear repulsion energy,

Wee is the (approximate) electron–electron interaction energy, and Pulay forces are ignored

(analogous results are obtained using a Kohn-Sham formulation in this regard):

E0 = T + UNe + VNN +Wee =
N∑
i

εi −Wee + VNN (10)

N∑
i

∂εi
∂R

=
∂E0

∂R
+
∂Wee

∂R
− ∂VNN

∂R
=
∂T

∂R
+
∂UNe
∂R

+ 2
∂Wee

∂R
(11)

As given by Eq. 9, note that the sum of all static forces is analogous to ∂UNe/∂R (Eq.

12):

N∑
i

(
∂εi
∂R

)
ψ

= −
N∑
i

(
Φi
)
ψ

=
∂UNe
∂R

(12)

Therefore, the application of Eq. 9 neglects the derivative of (twice) the effective electron–

electron term Wee and the one electron kinetic energy T . Thus, it assumes that the sum

of those derivatives is negligible with respect to the derivative of the nuclear–electron term

UNe.

Generally, the neglected terms can be presumed to be small and the approximation

is valid. However, within the Born-Oppenheimer approximation, the divergence term will

increase enormously whenever, over a particular coordinate R, electronic reorganization is

more energetically relevant than nuclear displacement in the potential energy surface. This is

particularly relevant if additions or subtractions of DOFs are to be performed, and specially

in the study of chemical reactivity.29 The quantification of the total divergence term is easily

available as Eq. 13 in HFT, or Eq. 14 in KS-DFT, where Ts is the kinetic energy of the KS

system, EH is the Hartree energy and Vxc is the exchange-correlation potential:

N∑
i

[
Φi −

(
Φi
)
ψ

]
=
∂T

∂R
+ 2

∂Wee

∂R
(13)

N∑
i

[
Φi −

(
Φi
)
ψ

]
=
∂Ts
∂R

+ 2
∂EH
∂R

+ 2

∫
ρ(r)Vxc(r)dr (14)
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Note that while the total difference is expected to be small, this is not necessarily true

for individual ith contributions. Therefore, in this work DOFs will be computed including

the orbital relaxation term, as the true derivatives of the MO eigenvalues, and always from

the equilibrium ground state geometry. Formally, the inclusion or neglect of the orbital

relaxation term in the integrand of Eq. 7 is analogous to the difference between Fukui

functions and classic Frontier Molecular Orbital (FMO) theory. Therefore, DOFs need not

to be confused with Hellmann-Feynman forces or static forces.

Summarizing, a set of DOFs Φi, acting on each nuclei α, can be constructed per each

MO i of a molecular system. If taken around the equilibrium geometry, R = Req, DOFs are

expected to satisfy

Φi = − ∂εi
∂Req

=

(
∂F

∂ni

)
v

≈ ∂E+
i

∂Req

(15)

in which the approximate equality in Eq. 15 is exact if Koopmans’ theorem holds. In

the domain of chemical bonding, analyzing or representing Φi
α predicts the distortion in

the molecular geometry that happens when an electron is removed from the ith MO of the

ground state, and -Φi
α works similarly for whenever an electron is added to the ith MO.

Accuracy of DOFs in DFT

This section focuses on verifying that DOFs calculated from KS MOs are valid. Recall that

there are two sources of error at hand here: orbital relaxation in the electronically relaxed

cation, and the accuracy of the exchange-correlation functional.

The rightmost and leftmost terms of Eq. 3 have been calculated for the water molecule

using four different methodologies (HFT, PBE, PBE0 and B3LYP) and nine different basis

sets, namely cc-pVDZ, cc-pVTZ, cc-pVQZ and the analogous triads including diffuse (aug-)

and core-valence correlation (c) functions.30–32 For reference, the canonical MOs of water

are represented in Figure 1, and labeled upwards from i = 1 to N/2 = 5, such that i = 5 for

the HOMO. Recall that the ∂E+
i /∂Req terms have been calculated using the appropriate

electronically relaxed ith cations.
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5 4 3 2 1

1b1 3a1 1b2 2a1 1a1

Figure 1: Isosurface representation of the canonical MOs of water and their respective sym-

metry labels.

To compare the gradient for each atom in the relaxed cations and the corresponding Φi
α

(Eq. 3), the Cartesian norm (L2) was used, measuring the distance between each pair of

vectors with the same center (see Fig. 2). Both the magnitude and the alignment between

the gradient vectors are implicitly considered in L2, however the alignment is more relevant

and thus will be measured explicitly as the cosine of the angle θ between vector pairs.

Figure 2: L2 indicated as a dotted black line for the HOMO (1b1) orbital of water: carte-

sian distance between ∂E+
5 /∂Req (orange) and −∂ε5/∂Req (blue). Note that the x axis is

perpendicular to the plane of the molecule.

The results of this comparison can be interpreted on two levels. First, if the alignment

(cos(θ)) between the gradients in the ith cation, where the electron has been removed from

the ith MO, and the set of Φi
α, is always close to 1.0, all the qualitative information is

properly captured. If, furthermore, the L2 norms between vector pairs are small, results are

quantitative and Koopmans’ theorem holds.

First of all, it is important to check that the alignment between the gradients of the

cationic species (first three columns of Table 1) are aligned independently of the method.
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This means that there is a similar qualitative effect that is shared between HF, PBE, PBE0

and B3LYP. Therefore, it can be assumed that all discrepancies are due to Koopmans’ failure:

differences in alignment arise from Φi
α, not from different descriptions of the cations.

A detailed comparison for the HF/aug-cc-pVQZ level of theory is shown in Table 1. In

this case, the qualitative aspect (i.e. the alignment) is accurate in all cases except for the

lowest lying core MO 1, where cos(θ) ≈ −1 (i.e. counteralignment). Examining Table 1

reveals that MOs 2 and 3, HOMO-3 and HOMO-2 respectively, have the highest gradient

values, which aim to unbind the molecule when an electron is removed from them, confirming

their bonding character. MO 5, the HOMO, is fundamentally non-bonding (i.e. gradients

are very small in all directions), and the HOMO-1 is very weakly antibonding. All these are

in perfect agreement with classical MO theory: the HOMO orbital in water is fundamentally

non-bonding, the HOMO-1 has some antibonding character resulting from the 2 s orbital of

oxygen, and the HOMO-2 and HOMO-3 effectively bind the molecule together. Note that,

while we are discussing the role of individual orbitals in the stability of the molecule as a

whole, it is possible to project forces on internuclear axes to assess their roles in individual

bonds as well. Both the cationic gradients and the values of Φi
α give relevant information,

which is this case is in perfect interpretative agreement.
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α i x y z i x y z cos(θ)

O

∂E+
1

∂Rα

0.0000 0.0000 -0.0622

Φ1
α

0.0000 0.0000 0.2460 -1.0000

H 0.0000 -0.0913 0.0311 0.0000 0.1738 -0.1230 -0.9589

H 0.0000 0.0913 0.0311 0.0000 -0.1738 -0.1230 -0.9589

O

∂E+
2

∂Rα

0.0000 0.0000 0.2822

Φ2
α

0.0000 0.0000 0.3950 1.0000

H 0.0000 0.2323 -0.1411 0.0000 0.2753 -0.1975 0.9971

H 0.0000 -0.2323 -0.1411 0.0000 -0.2753 -0.1975 0.9971

O

∂E+
3

∂Rα

0.0000 0.0000 0.5562

Φ3
α

0.0000 0.0000 0.2668 1.0000

H 0.0000 0.1455 -0.2781 0.0000 0.0737 -0.1334 0.9997

H 0.0000 -0.1455 -0.2781 0.0000 -0.0737 -0.1334 0.9997

O

∂E+
4

∂Rα

0.0000 0.0000 -0.0556

Φ4
α

0.0000 0.0000 -0.0484 1.0000

H 0.0000 0.1376 0.0278 0.0000 0.0780 0.0242 0.9949

H 0.0000 -0.1376 0.0278 0.0000 -0.0780 0.0242 0.9949

O

∂E+
5

∂Rα

0.0000 0.0000 0.0613

Φ5
α

0.0000 0.0000 0.0372 1.0000

H 0.0000 0.0380 -0.0307 0.0000 0.0410 -0.0186 0.9683

H 0.0000 -0.0380 -0.0307 0.0000 -0.0410 -0.0186 0.9683

Table 1: Nuclear gradients for the cationic species and corresponding Φi
α, per nuclei α per

cartesian direction (x,y,z) in atomic units, calculated at the HF/aug-cc-pVQZ level. Cosines

of the angle between each pair (θ) are shown right.

Table 2 offers the same information compared in terms of L2 and averaged over α and i.

The average L2 norm over α has been termed L
2

α, while averages over individual MOs are

expressed as L
2

i . Note how the conclusion that the agreement is good except for the core

MO, as seen in Table 1, is now conveyed by the average value of i = 1, or L
2

1, in a much

more compact way.

Plotting L
2

i for each method and basis set (Fig. 3) corroborates that DOFs from valence

MOs are generally in good agreement (L
2

i ≈ 0), especially with large augmented basis sets.

The DOFs associated with MO 1, Φ1, which concern essentially the core orbital of the oxygen

atom, are in significantly worse agreement than the others, and therefore have much larger

L
2

1 values (red bars). In this regard, DFT (Fig. 3B-D) is significantly worse than HFT

(Fig. 3A). Koopmans’ theorem does not seem to hold for the core orbital in general, which
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α

i
5 4 3 2 1 L

2
α

O 0.0241 0.0072 0.2894 0.1127 0.3082 0.1483

H 0.0124 0.0597 0.1615 0.0709 0.3067 0.1222

H 0.0124 0.0597 0.1615 0.0709 0.3067 0.1222

L
2
i 0.0163 0.0422 0.2041 0.0848 0.3072 0.1309

Table 2: L2 distances (a.u.) between matching pairs of cationic nuclear gradients and Φi
α,

calculated at the HF/aug-cc-pVQZ level. All data in atomic units.

can be attributed to the orbital relaxation effects that the wave function may experience

when an electron is removed from such a stable MO. The removal of core density induces a

drastic rearrangement of the other orbitals, which can not be accounted for starting from the

ground state neutral MOs. It can also be argued that decontracted basis sets are necessary

for a proper treatment of core holes. However, in any case, we expect the derivatives or core

orbitals to be small in relative terms and uninteresting from an interpretative point of view.

In all other cases a qualitative and often quantitative agreement is found.
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Figure 3: L
2

i (a.u.) per MO per basis for each of the four methods considered in the water

molecule: A) HF, B) PBE, C) PBE0, D) B3LYP.

The average norm over both i and α can be used as a global descriptor of the agreement

that we shall denote simply L
2
. Figure 4 shows the values of L

2
for all the combinations

considered in the water molecule. Detailed data can be found in the Supporting Information.

It can be seen that correspondence in HF calculations improves slightly with larger basis

sets, while all considered DFAs seem to improve greatly when including diffuse functions but

not necessarily with basis set size or core–valence functions (Fig. 4). In particular, core–

valence functions seem to alter the magnitude of cationic gradients even if the result of Φi
α is

relatively similar with and without such functions. Diffuse functions, on the contrary, barely

affect cationic gradients, but improve the DOF set noticeably. When a suitable basis set is

14



used, DFT results are similar to the HF ones in terms of L2 distances, and hence as valid

as HFT-derived values (Fig. 3, Fig. 4). Noticeably, the aug-cc-pVDZ basis set is extremely

successful in spite of its relatively small size. Hybrid DFAs seem to outperform the pure

PBE in this regard, and offer better agreements in general, which is reasonable considering

that they are closer to the HFT Hamiltonian.

Figure 4: L
2

distance (a.u.) per method per basis set in the water molecule.

Nevertheless, it should be noted that this assessment Sconcerns the degree of agreement

between the right and left sides of Equation 3, and not the absolute quality of Φi
α. Therefore,

it can be said based on the results summarized in Figures 1 and 2 that DOFs are in agreement

with the corresponding cation gradients calculated at the same level of theory, in both HFT

and DFT as long as the basis set is appropriate. The sole exception are core orbitals, which

are not very interesting from the bonding or reactive point of view anyway.

Following these two notions, an analogous comparison was performed on the ethene

molecule. In this case, only the large aug-cc-pVQZ basis set was used, and only the most

relevant MOs, shown in Figure 5, were considered.
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8 7 6 5 4

2b1u 1b2u 3ag 1b3g 1b3u

Figure 5: Isosurface representation of the five highest energy occupied canonical MOs of

ethene and their respective symmetry labels.

The obtained results are remarkably good in both HFT and DFT, summarized in Fig.

6 in terms of L
2

i . Note the significantly reduced scale in the y-axis, compared to Fig. 3.

The alignment of the relevant gradient components is excellent in all cases, even though HF

seems to generally outperform DFT once more. Hybrid DFAs (PBE0, B3LYP) have slightly

better agreement than PBE, but in all cases the qualitative behavior is well-captured and

the norm of all vectors is not significantly different. In this case, for the HOMO, the results

are fundamentally quantitative, with L
2

i norms very near zero. In all other cases the general

trend is captured and the relative magnitude among the different nuclear forces and MOs

is reproduced. In other words, DOFs can be calculated through Koopmans’ theorem at

inexpensive levels of calculation since the difference between ∂E+
i /∂Req and −∂εi/∂Req is

very small for valence orbitals.
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Figure 6: L
2

i (a.u.) per MO for each of the four methods considered in the ethene molecule:

A) HF, B) PBE, C) PBE0, D) B3LYP.

The direction of the set of Φi matches well-established chemical insight: MO 8, the

HOMO, is bonding for the C–C bond, while MO 7 is clearly anti-bonding. MO 6 is bonding

again, with similar strength as the HOMO. MO 5 concerns mostly C–H bonds, but is mostly

non-bonding for the C–C bond, and finally MO 4, HOMO-4, is strongly C–C antibonding, as

expected. The complete dataset is available in the SI, and a vector schematic representation

of Φi
α is given for the HF case in Figure 7. For proper interpretation, recall that the length

and direction of the vectors that represent Φi
α match the forces that arise on nuclei with

electron removal from the ith MO.
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Figure 7: Scaled vector representation of Φi
α for the five highest energy occupied canonical

MOs of ethene at the HF/aug-cc-pVQZ level. Note that only half of the atoms have their

vector drawn, the other half would be analogous as per the molecular symmetry, and have

not been reproduced for clarity.

Thus, performing DOF analysis, at least in valence MOs with large basis sets, appears

to be valid in both the HFT and the KS-DFT contexts. This fact has to be understood

pragmatically: Koopmans’ theorem is usable due to error cancellation between the lack of

correlation and the frozen orbital approximation. Empirically, we have shown that, presum-

ably through error cancellation as well, this methodology works well with KS-DFT orbitals.

This does not ensure, by any means, that DOF estimate the true, exact cationic gradient,

as in all cases we are limited by the precision of the calculation. The inclusion of core–valence

functions might be beneficial for the correct description of core-hole states, and yet not be

flexible enough to capture the variations in the amplitudes of MOs. Diffuse functions seem

to improve the description of Φi
α without compromising the core-hole states significantly,

and are therefore recommended in DFT calculations if the DOF analysis framework is to be

used.

In the following sections, two brief example applications will be detailed using these

established guidelines.

Example application I: aromatic and antiaromatic molecules

Two small conjugated systems, benzene, cyclobutadiene, have been examined using DOFs

to exemplify the usefulness of the technique. From the results of the previous sections, an

aug-cc-pVDZ basis set with the PBE0 DFA was deemed acceptable for the calculations in
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this section.

In the case of the benzene-cyclobutadiene pair, the question that will be investigated is

whether aromaticity and antiaromaticity can be characterized by the response of π orbitals

to deformation. A similar procedure had been used in the past to investigate σ and π

contributions to symmetry.33 In our case, the set of Φi
α was calculated for the occupied MOs

of both molecules. The initial expectation is that the π1, π2 and π3 MOs of benzene are

bonding, while the π2 and π3 MOs of cyclobutadiene are fundamentally nonbonding due

to the perpendicular nodal planes. These two well-known arguments can be derived from

simple Frost circles based on Hückel’s rule (Fig. 8).

��� ���π2

��� ���π1

��� ���π3

E = 0 ���π3���π2

��� ���π1

Figure 8: Frost circles for bencene and cyclobutadiene showing the qualitative nature of the

π MOs.

Note that in this case obtaining the HOMO cations for these two species is in principle

doable, but accessing specific HOMO-n cations is extremely difficult due to near-degeneracy.

In our case, for exemplary purposes, an open-shell singlet configuration with D4h symmetry

was imposed for cyclobutadiene for illustrative purposes.
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π3 π2 π1

Figure 9: Isosurface representation of the three highest energy occupied canonical MOs of π

symmetry of benzene (top) and their corresponding set of Φi
α (bottom).

π3 π2 π1

Figure 10: Isosurface representation of the three highest energy occupied canonical MOs of

π symmetry of cyclobutadiene (top) and their corresponding set of Φi
α (bottom).

MOs for both species are represented in the top section of Figures 9 and 10, with their

corresponding Φi
α forces in proportional vectorial representation depicted below. As it can

be clearly seen by examining the direction of the induced forces, the assumptions made

previously are accurately captured by our approach. The forces arising from the HOMO and

HOMO-1 pair π2 and π3 in benzene are small, but undoubtedly pull the carbon ring closer.

The π1 orbital has a significantly stronger binding force, which is in agreement with its much

more stable and binding nature.

In the case of cyclobutadiene, the highest singly occupied MOs, π2 and π3, are shown to
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be bonding for the two possible double bond configurations, but not binding for the molecule

altogether: electron removal from either will favor fragmentation. Only the π1 contributes to

global molecular binding, analogous to the one in benzene. As a small precision, note that

the forces depicted for the π2 and π3 MOs are not exactly the same due to differences between

what should be two perfectly degenerate MOs. This is a limitation of single-determinant

frameworks, and not an issue that arises from DOF analysis. In fact, averaging over the

supposedly degenerate pairs in both systems clarifies that the HOMO is clearly bonding for

benzene (the forces add up), and fundamentally nonbonding in cyclobutadiene (the forces

cancel out). Insomuch as the DFT calculations are accurate enough, our analysis is in

agreement with the classic results from Hückel’s rule.

Example application II: characterization of MOs of acrolein

Acrolein (2-propenal) is another simple molecule in which the π system is highly important.

In this case constructing the MO diagram and deriving conclusions from it is slightly more

challenging, partly because of the symmetry loss that the oxygen atom exerts. Nevertheless,

the excited state chemistry of acrolein is very relevant and has been studied very thoroughly

over the years from the experimental and theoretical points of view.34–36

In this case, Φi
α have been calculated for all the occupied MOs of the s-trans conformer at

the PBE0/aug-cc-pvdz level, in an attempt to classify each valence MO completely ab initio.

The highest energy occupied MOs are presented in Figure 11 as isosurfaces. As previously

stated, predicting the role of each MO by examining the isosurfaces is increasingly difficult

as they grow more delocalized with molecular size. Furthermore, the HOMO-1, HOMO-2

and HOMO-3 are all relatively close in energy which complicates the spectroscopic study of

excitations from those levels.

Results are captured in Figure 12. According to the calculated DOFs, orbital 15 (the

HOMO) is fundamentally nonbonding, with no forces being exerted on nuclei. MO 14 is

strongly bonding for the C––C bond, as suggested by its depiction. MO 13, however, is

strongly antibonding for that very same bond. MO 12 is strongly bonding for the C––O

bond, while MO 11 (HOMO-4) is bonding for both double bonds, albeit less-so. According

to this analysis, excitations arising from MO 14 should significantly weaken the C––C bond,
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facilitating torsion, and excitations from MO 12 should weaken the C––O bond enormously.

However, excitation from MO 15 should not weaken the bonds in the molecule per se, and

electron removal from MO 13 should in fact make the C––C bond stronger and thus harder

to rotate. Such detailed ab initio characterization is not possible through other techniques

at a negligible cost.

15 14 13 12 11

13a
′

2a
′′

12a
′

1a
′′

11a
′

Figure 11: Isosurface representation of the five highest energy occupied canonical MOs of

acrolein and their respective symmetry labels.

15 14 13 12 11

13a
′

2a
′′

12a
′

1a
′′

11a
′

Figure 12: Scaled vector representation of Φi
α for the five highest energy occupied canonical

MOs of acrolein at the PBE0/aug-cc-pVDZ level.

Therefore, the study of DOFs can be of interest, too, when studying excited state chem-

istry. The interpretation of MO response to excitation can be complemented with DOF

analysis, which requires no additional knowledge and is relatively inexpensive. For instance,

coupling of DOF analysis with active space elucidation might be a future possibility for

future development.

CONCLUSIONS

Dynamic Orbital Forces, which are originally derived from Koopmans’ theorem, have been

shown to be a generalized case of Nuclear Fukui Functions. Several interpretations have
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been given for such forces, which can be calculated as the opposite of the derivatives of

orbital eigenvalues with respect to nuclear displacement. The validity of such forces has

been empirically tested for both HFT and DFT, and shown to be consistent for valence

orbitals as long as a diffuse basis set is used. Core orbital response can not be accurately

captured due to massive orbital relaxation effects.

The quality of results is at least qualitative, and in many cases can be expected to

be quantitative. Therefore, DOFs may be used to unequivocally classify valence MOs as

bonding, nonbonding or antibonding in any system that can be reasonably described using

a single-determinantal KS-DFT approach. However, as with everything in the Kohn-Sham

DFT framework, the errors introduced by the approximate functional, along with inherent

errors from the ∆-SCF procedure, may hamper the process, and caution is always advised.

For interpretative purposes, vectorial representations are a simple way to analyze the

effect of occupation of different MOs, which provides immediate insight for excited states

calculations and a way to rationalize molecular structure and properties (e.g. aromaticity

and antiaromaticity). The coupling of DOFs with orbital localization schemes is a promising

future development. A formalism that can be reliably extended to virtual orbitals would

allow for additional applications in excited state chemistry.
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