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Motivated by the physical properties of Vesignieite BaCu3V2O8(OH)2, we study the J1 − J3

Heisenberg model on the kagome lattice, that is proposed to describe this compound for J1 < 0
and J3 � |J1|. The nature of the classical ground state and the possible phase transitions are
investigated through analytical calculations and parallel tempering Monte Carlo simulations. For

J1 < 0 and J3 >
1+
√

5
4
|J1|, the ground states are not all related by an Hamiltonian symmetry. Order

appears at low temperature via the order by disorder mechanism, favoring collinear configurations
and leading to an emergent q = 4 Potts parameter to a finite temperature phase transition. For

J3 between 1
4
|J1| and 1+

√
5

4
|J1|, the ground state goes through a succession of semi-spiral states,

possibly giving rise to multiple phase transitions at low temperatures. Effect of quantum fluctuations
are studied through linear spin wave approximation and high temperature expansions of the S = 1/2
model.

I. INTRODUCTION

The existence of competing interactions in a magnetic
spin lattice model leads to the inability to satisfy all pair
interactions simultaneously. The system is said to be
frustrated. While its effects in a classical spin model can
be important, they are enforced for quantum spin mod-
els, where they may induce spin liquid ground states[1].
These phases break none of the Hamiltonian symmetries
and as a consequence, show no magnetic long range or-
der. Thus, it is interesting to pick up classical models
where frustration has the largest effects, in view to de-
tect quantum models hosting highly disordered phases.

Such spin models on the bidimensional kagome lat-
tice have a long history, both from theoretical and ex-
perimental points of view. The most studied model
is definitely the first neighbor antiferromagnet, realized
in Herbertsmithite[2], even if impurities and other in-
teractions keep this compound away from its idealiza-
tion. In the search of the perfect chemical realization
of this specific model, many other kagome compounds
were proposed, such as Kapellasite[3], Volborthite[4],
Haydeite[5, 6], Ba-Vesignieite[7–10], Sr-Vesignieite[11]...
although they were finally described by different interac-
tions. Here we shall restrict our attention to the model
supposed to describe the Ba-Vesignieite compound[12],
with small first neighbor ferromagnetic and large third
neighbor antiferromagnetic interactions.

In the Vesignieite BaCu3V2O8(OH)2 compound, mag-
netic Cu atoms form decoupled and perfect bidimen-
sional kagome layers of S = 1/2 spins. Its Curie-Weiss
temperature is around −77K[7], indicating an antifer-
romagnetic dominant coupling that was first proposed
to be first neighbor[7]. Moreover, specific heat, mag-
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netic susceptibility and powder neutron diffraction mea-
surements on Vesignieite were supporting the spin liquid
ground state hypothesis[7, 13], even if more and more
indications of a phase transition around 9K appeared
with time[13, 14]. This transition, probably related to
a small interlayer coupling, is now clearly identified in
crystalline samples[8]. Finally, neutron diffraction results
on crystals[13] indicated that the short range spin cor-
relations were uncompatible with antiferromagnetic first
neighbor interaction (J1 in Fig. 1), but coherent with a
dominant third neighbor interaction J3. These unusual
interactions in Ba-Vesignieite are our main motivation to
explore this kagome model. To the best of our knowledge,
the J1 − J3 Heisenberg model on the kagome lattice[12]
has still not been studied for large J3.

In classical Heisenberg models, the interaction between
two tridimensional unit spins on sites i and j is given by
Ji,j Si · Sj . Ji,j is the coupling constant, either positive
for antiferromagnetic interaction, or negative for ferro-
magnetic one. Unfrustated classical Heisenberg models
have collinear ground states (i.e. all the spins are ori-
ented along a unique line, with only two possible direc-
tions). It is notably the case for ferromagnetic models,
or for antiferromagnetic ones on bipartite lattices, where
sites can be labelled A or B in such a way that only
different types of sites interact. Frustration can induce
non-collinear magnetic orders, as on the triangular lattice
with antiferromagnetic interactions: three sublattices A,
B and C host spins directions SA, SB and SC each at
an angle of 120◦ from the others. In this case, spins
are no more collinear but remain coplanar. Eventually,
non-coplanar spin states may be found with larger unit-
cells[3, 15–18]: for example, twelve site unit cells, with
spins pointing towards the corners of a cuboctahedron
are found with up to third neighbor interactions on a
kagome lattice[3, 15, 16].

The Mermin-Wagner theorem states that no continu-
ous symmetry of a Hamiltonian can be broken at finite
(non-zero) temperature in two dimensions[19–21]. Yet,
other types of finite temperature phase transitions exist,
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with or without symmetry breaking[22, 23], associated
with topological defects for instance. When a Hamilto-
nian symmetry is broken, the Mermin-Wagner theorem
implies that it is a discrete one. In Heisenberg models,
global spin rotations form a continuous symmetry group,
thus a broken symmetry can be a lattice symmetry[24],
or the time reversal symmetry[25, 26]. In most cases, a
phase transition can be inferred from the analysis of the
ground state manifold: several connected components
generally correspond to a broken discrete symmetry. For
example, if the spins are non coplanar, the ground state
manifold is isomorphic to O(3), which has two connected
components ±SO(3). An emergent Ising parameter ±1
(chirality) can be defined, indicating in which connected
component the spin state is. The time reversal symmetry
(Si → −Si) is broken in the ground state but is restored
at finite temperature via a phase transition[15, 25, 26].

In most cases, all the ground states are equivalent, in
the sense that they are related by a symmetry of the
Hamiltonian. For example, two ground states of the tri-
angular antiferromagnetic lattice have each three differ-
ent spin orientations on their sublattices: SA, SB , SC
and S′A, S′B , S′C . But there exists a three dimensional
rotation R such that

∀α ∈ {A,B,C}, S′α = RSα.

R is an Hamiltonian symmetry: for any spin configura-
tion, the R-transformed one has the same energy. When
the symmetries of the Hamiltonian fail to make all of the
ground states equivalent, we speak of accidental degen-
eracy. Different ground states then have different prop-
erties, including different density of low energy excita-
tions. This implies that, at low temperature, some of the
ground states are selected by the order by disorder mech-
anism. A connected manifold of ground states can thus
be reduced to disconnected components at infinitesimal
temperatures, possibly giving rise to phase transitions
with an emergent discrete order parameter. It is pre-
cisely what occurs in some part of the phase diagram of
the J1−J3 kagome Heisenberg model, and is the subject
of this article.

The paper is organized as follows. In Sec. II, we present
the model and its classical ground states.

In Sec. III we analyze in detail a phase called 3sub-
AF, found in the range of parameters corresponding to
the Ba-Vesignieite compound: we first point out an or-
der by disorder mechanism originating a phase at finite
temperature. Second, one defines an appropriate order
parameter, characterizing the possible phase transition.

The finite temperature phase diagram of the classical
model is explored using parallel tempering Monte Carlo
simulations in Sec. IV and thermal linear spin wave cal-
culations in Sec. V A. A phase transition is evidenced
through a finite size analysis, and the critical exponents
are numerically evaluated. The effects of quantum fluctu-
ations are discussed through a linear spin wave approx-
imation (Sec. V B) and high temperature series expan-
sions (Sec. VI). The relevance of our approach in the case

J1 J2 J3 J ′
3

FIG. 1. Sketch of first, second and third neighbor interac-
tions on the kagome lattice, J1, J2, J3 and J ′3 respectively. The
third neighbor interaction is split in two contributions: J ′3 cor-
responds to interactions between spins located on two oppo-
site corners of an hexagon, and J3 between spins located at the
same distance, but on corners of two neighboring hexagons.

of the S = 1/2 Ba-Vesignieite compound is discussed.
In conclusion (Sec. VII), the nature of the phase transi-
tion experimentally observed in Vesignieite is discussed
in light of the numerical and analytical results.

II. THE MODEL AND ITS T = 0 CLASSICAL
PHASE DIAGRAM

The kagome lattice consists of triangles sharing cor-
ners, with three sites per unit cell. On each site i, we
place a unit vector Si (in the quantum model, S = 1/2).
We consider spin interactions between first and third
neighbors, with respective strengths J1 and J3 (Fig. 1).
The Hamiltonian of the system reads:

H = J1

∑

〈i,j〉
Si · Sj + J3

∑

〈i,j〉3
Si · Sj , (1)

where the sums over 〈i, j〉 and 〈i, j〉3 indicate a sum over
all first and third neighbor links of the lattice.

Let us first investigate the landscape of possible ground
states, presented in Fig. 2. We define an energy scale
J =

√
J2

1 + J2
3 and an angle φ such that (J1, J3) =

(J cosφ, J sinφ).
The ground state determination for given (J1, J3) is a

tough problem. No general procedure is known for such
a classical Hamiltonian, outside of the case of a quadratic
Hamiltonian on a Bravais lattice, that can be handled by
the Luttinger-Tizsa (LT) method[27, 28]. This method
can still be applied in the other cases, but then only gives
a lower bound for the ground state energy (see App. A).
If the energy of a trial state reaches this lower bound,
it is then proved to be a ground state. Using a group-
theoretical approach, a set of spin configurations called
regular magnetic orders were defined[17], that are impor-
tant trial states. In our case, regular magnetic orders are
ground states for almost the whole phase diagram, with
the exception of a small transition region (grey area of
Fig. 2).

We now describe the phase diagram of Fig. 2, whose
most phases are described on Fig. 3. When both J1 and
J3 are negative, the ground state is obviously a ferromag-
netic state, which survives for small positive J3. Moving
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FIG. 2. Top: Ground states in the J1−J3 plane (see Fig. 1 for
the definition of J1 and J3). The different orders are described
in Fig. 3. Bottom: Energy per site e0 for each state named
above, and Luttinger-Tizsa lower bound (dashed). e0 = 2J1+
2J3 for the ferromagnetic state (blue line), −2J3 for the 3sub-
AF state (red), −J1 + 2J3 for the q = 0 state (green) and
−J1 − J3 for the

√
3×
√

3 state (yellow). The lower bound is
reached everywhere except in the grey region. The magenta
curve is the energy of the variational ground state, described
in the text and in Fig. 5.

on to an antiferromagnetic coupling J1 > 0, we encounter
the kagome Heisenberg antiferromagnet for J3 = 0. This
model is known for its extensive ground-state degener-
acy, which is lifted when J3 is switched on: J3 < 0 aligns
spins equivalent under translations of the lattice in differ-
ent triangles, giving rise to the q = 0 phase, while J3 & 0
leads to the

√
3×
√

3 order, which survives up to J3 = J1

(φ = π/4).

If J1 = 0, the lattice is decoupled into three square
sublattices (Fig. 4), each with a ferromagnetic (J3 < 0)
or antiferromagnetic (J3 > 0) order, in three independent
spin directions. When J3 < 0, an infinitesimal (positive
or negative) J1 completely lifts the degeneracy towards
the ferromagnetic or q = 0 states previously discussed,
but this is not the case for J3 > 0. To see why, it is useful
to consider a single spin and its nearest neighbors. The
large value of J3 imposes that each spin is surrounded by
pairs of anti-aligned spins, thus cancelling out nearest-
neighbor energetic contributions as long as each sublat-
tice stays ordered (Fig. 4). Thus, a small, arbitrary, J1

Ferromagnetic q = 0
√
3×
√
3

Collinear Hexagonal Octahedral

FIG. 3. Top: Three long-range orders on the kagome lat-
tice, that are ground states in some part of the phase dia-
gram of Fig. 2. Bottom: Collinear, hexagonal and octahedral
states, that belong to the ground state manifold of the 3sub-
AF states of Fig. 2.

e1

e2e3

FIG. 4. Left: When only J3 interactions are present,
the kagome lattice divides into three independent deformed
square lattices (with blue, red and green sites and links).
When J3 > 0, an antiferromagnetic T = 0 spin order sets
in on each sublattice, with an arbitrary direction. A small
J1 does not lift this degeneracy as it couples for example a
red spin with two opposite green spins and two opposite blue
spins. The same phenomena occurs on the J1 − J2 square
lattice for a strong AF J2 (right).

does not lift the degeneracy at T = 0. Among the degen-
erate configurations in this manifold, called the 3subAB
states (some of them are illustrated in Fig. 3), we find
a regular octahedral order whose spin directions corre-
spond to the vertices of an octahedron[17]. At stronger
J1, the 3sub-AF phase breaks down in favor of other
states -

√
3 ×
√

3 for J1 > 0, and a succession of uncon-
ventional states with eventually several wave vectors for
J1 < 0, before reaching the ferromagnetic sector again.

We will now briefly discuss the unconventional ground
states of Fig. 2, even if a detailed description is beyond
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the scope of this article. In this part of the phase dia-
gram, the LT lower bound of the energy is not reached
by any spin configuration and the system has to find a
compromise between the different wave vectors to min-
imize its energy. This situation occurs as soon as the
wave vector qmin corresponding to the lowest eigenvalue
λmin(q) becomes different from those of the simple neigh-
boring phases. When φ decreases from π, we leave the
ferromagnetic state at φF = π−arctan 1

4 . The only qmin,
previously the zero wave vector, splits into six qmin stay-
ing on lines going from the center of the BZ to its cor-
ners. When φ increases, departing from π/2, we leave the

3sub-AF phase at φO = π − arctan 1+
√

5
4 ' 0.78π (proof

in App. B, see also Fig. 19). The three qmin previously at
the middles of the edges of the BZ split into six qmin stay-
ing on lines going from the middles of the edges of the BZ
to its center. This part of the phase diagram is very rich.
As an example, we describe here the ground state found
near φO, which is similar to the alternating conic spiral
state of[18] and whose energy is given in Fig. 2. From
numerical simulations (iterative minimization[18]), it ap-
pears that one of the three sublattices of Fig. 4 develops
spin orientations in a plane, say the xy plane, whereas
the other two form a cone of axis z and of small angle φ
(see Fig. 5). Note that the orientations of the two last
sublattices are exactly the same, translated by a lattice
spacing. Thus, this state is a spiral state, in the sense
given in[17], but with an enlarged unit cell of twelve sites,
reminiscent of the parent 3sub-AF phase.

III. GROUND STATE SELECTION IN THE
3SUB-AF PHASE

A. Order by disorder

When J1 = 0, the three sublattices of Fig. 4 are in-
dependent and each of them develops its own long range
order at zero temperature. The ground state is then fully
determined by the orientation on three reference sites
(say the three sites of a reference unit cell): an element
of S2

3, where S2 is the unit sphere in three dimensions.
The effect of a small J1 depends on the sign of J3, as de-
tailed in Sec. II. For a negative J3, no accidental degen-
eracy survives to an infinitesimal J1, whatever its sign.
On the other hand, for positive J3, an infinitesimal J1

has no effect on this degeneracy whatever its sign. Note
that this accidental degeneracy is not extensive, i.e. does
not increase with the lattice size. When temperature or
quantum fluctuations are switched on, the phenomena of
order by disorder occurs, lifting this degeneracy to a sub-
set of S2

3 - which will be determined below to be S2×K4,
where K4 is the Klein four-group.

Before considering in more detail the kagome J1 − J3

model, let us list some models where such (simpler) ac-
cidental degeneracies are known. Historically, the order
by disorder (ObD) phenomenon was described by Vil-
lain et al. on a domino model of Ising spins[29]. For a

θ

π
2
− ψ

θφ

Rz2θ

Id

FIG. 5. Spin configuration supposed to be the ground state for
φ slightly larger than φO, i.e. in the unconventional phase of
Fig. 2. The spins of the dashed unit cell of 12 sites have 6 ori-
entations, as indicated on the bottom left. The parametriza-
tion of this state is detailed in App. B. A translation in the
e1 direction let the spins invariant, whereas in the e2 direc-
tion, they are rotated by 2θ around the z axis. Bottom right:
orientation of the spins over the full lattice.

Heisenberg model, the most spectacular and most stud-
ied example of ObD is without any doubt the kagome
antiferromagnet[30–38], whose degeneracy is extensive,
as for the domino model. On the kagome lattice, thermal
or quantum ObD selects coplanar states, whose number
is still extensive, giving rise to possible further ObD ef-
fects, such as those occurring in the octupolar order[36].

We now focus our attention on other cases of bidimen-
sionnal lattices, which share with the J1 − J3 kagome
model a non-extensive accidental degeneracy, with a con-
tinuous set of ground states. This situation is relatively
common for Heisenberg Hamiltonians with nearest and
next-nearest neighbor interaction. A well studied case is
the J1− J2 Heisenberg model on a square lattice[39, 40],
where in the case of strong AF J2, the lattices decouples
into 2 sublattices with independent antiferromagnetic or-
ders (S2

2 ground state manifold), see Fig. 4, right. Both
thermal and quantum fluctuations favor collinear order-
ing, the ground state manifold being reduced to S2×Z2:
the first sublattice has a free orientation (S2) and the sec-
ond one can align its reference spin with the one of the
first sublattice, or set it opposite (Z2). The effective set
of ground states is now formed by two disconnected man-
ifolds. Depending on the discrete component selected by
the system, the T → 0+ order is an horizontal or vertical
columnar state. This emergent Ising variable gives rise
to a phase transition at finite temperature, compatible
with the Mermin-Wagner theorem.
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e1

e2e3

FIG. 6. In the 3sub-AF phase of Fig. 2, order by disorder
effect tends to align along a unique direction the spins of
the three antiferromagnetic square lattices depicted in Fig. 4.
The resulting collinear spin order has a unit cell of 12 sites
(in dashed green) and only two opposite spin orientations (on
the blue and red sites).

The Heisenberg models on triangular[41] and
honeycomb[42] lattices also develop ObD favoring
collinear states (with a S2 × Z3 effective set of ground
states) for some values of the J1 − J2 − J3 exchanges.
But contrary to the square lattice, no limit of decoupled
lattices allows for an simple understanding of this
phenomenon. In the presence of a magnetic field,
there are also many examples of ObD, where collinear
configurations are stable and lead to magnetization
plateaus[43, 44].

For the 3sub-AF phase of the J1 − J3 kagome lattice,
we can infer from the J1−J2 square lattice that the three
sublattices will have a common, globally collinear, spin
orientation under thermal or quantum fluctuations. The
ground state manifold thus changes from S2

3 to S2×K4:
the first sublattice has a free orientation (S2), the sec-
ond and third ones can align its reference spin with the
one of the first sublattice, or set it opposite (fixing an
element of K4) (see Fig. 6). The choice of a reference
spin for each sublattice is arbitrary, which suggests to
use K4 as the symmetry group labelling the different con-
nected components, instead of the isomorphic Z2

2, since
all symmetries are then explicitly treated on the same
footing. Note also that the point-group symmetry of the
lattice is unchanged - only the translational symmetries
are broken. K4 is an unusual broken symmetry, but it
has already been reported for example in an interacting
electron model on the honeycomb lattice[45].

The (effective) ground-state manifold is sometimes
abusively called the order parameter space. We take care
here to distinguish them, as an order parameter taking
values in another set will be defined in the coming sec-
tion.

B. Definition of an order parameter

In the previous section, it was shown that the ground-
state manifold S2

3 effectively reduces down to S2 × K4

at infinitesimal temperature, i.e. when states in the limit

T → 0+ are considered. We construct in this section a lo-
cal order parameter Σ, that will be averaged over the full
lattice. We recall here that several order parameter def-
initions are possible, and that specific order-parameters
are required for different broken symmetry.

In simple cases, the broken symmetry group is home-
omorphic to the set of local configurations and the order
parameter can be chosen in this set. This is for exam-
ple the case for the local magnetization of ferromagnetic
Ising or Heisenberg models, where the order parameter
is defined on each lattice site as the spin orientation, or
for the staggered magnetization of Néel orders. In these
cases, the order parameter takes values in S2 and can
reveal a S2 symmetry breaking (at T = 0, or in 3 dimen-
sions for example).

Complications arise when the definition of a ground-
state involves several sites, with constraints on the spin
orientations. The antiferromagnetic triangular lattice is
such an example: the sum of 3 spins of a triangle is zero at
T = 0, and the orientation of two non collinear spins are
required to fully determine a ground state. This ground-
state manifold is homeomorphic to SO(3)[46]. For T 6= 0,
the constraint on the sum of spins is no more verified
and there is no direct way to chose a ground state re-
lated to this configuration. We are here quite lucky, as
a local configuration on a triangle of the kagome lattice
can uniquely be propagated over the full lattice to form
one of the 3sub-AF states. A first possible order param-
eter is such a triplet of unit spins, forming an element of
S2

3. However, S2
3 as order parameter space does not do

the job to reveal a possible symmetry breaking (Mermin-
Wagner theorem). Here, the global spin rotations SO(3)
form classes of equivalence in S2

3 such that at infinites-
imal temperature, spin waves disorder the ground state
and disperse the local order parameter over the full equiv-
alence class, when measured over the full lattice. Each
such class has a zero average in S2

3, which rules out S2
3

as order-parameter space to detect any finite tempera-
ture phase transition.

A SO(3) invariant description of the ground-state
manifold is obtained as the quotient S2

3/SO(3), in or-
der to appropriately account for the possible symmetry
breakings. Each point in S2

3 is defined by 6 param-
eters, while SO(3) is a tridimensional manifold, from
which we deduce that S2

3/SO(3) has dimension 3 as
well. Points in this space, equivalence classes of states,
must be described using SO(3) invariants built from the
initial variables (SA,SB ,SC) on a triangle ABC. An
obvious choice is to use the dot product, giving three
invariants that we group in a vector σ(SA,SB ,SC) =
(SB ·SC ,SC ·SA,SA ·SB). The σ’s are in a subset of R3

whose shape is a slightly inflated tetrahedron. Its ver-
tices correspond to collinear configurations, with three
±1 vector components, and it can be shown that this
shape indeed has the tetrahedral symmetry group Td.
Note that we have lost the distinction between the time-
reversed spin configurations Si → −Si. Each σ can be
obtained from two distinct triplets of spins, except when
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σ =

( σ1 = SB · SC

σ2 = SC · SA

σ3 = SA · SB

)
σ1

σ2

σ3

SA

SB SC

(
+1
+1
+1

) (
+1
−1
−1

) ( −1
−1
+1

)( −1
+1
−1

)

FIG. 7. Definition of a local variable σ on each (up and
down) triangle of the kagome lattice as a function of the spin
orientations (SA,SB ,SC) on the triangle vertices. Each com-
ponent of σ is a dot product between two of these spins. A, B
and C labels are chosen as indicated by the colors. In collinear
configurations (expected in the T → 0+ limit), each compo-
nent of σ takes the value ±1 with a constraint of an even
number of −1. Then, the 4 possible σ values are horizontally
listed, together with the corresponding collinear configuration
(up to a global spin rotation) on up and down triangles. These
four values point toward the vertices of a tetrahedron (drawn
in magenta) in the (σ1, σ2, σ3) space.

they are coplanar (as spin inversion is equivalent to a ro-
tation of π in this case). Thus, σ is unable to describe
the breaking of the Z2 inversion subgroup of the O(3)
global spin transformations.

Returning to ObD, the alignment of all spins can now
be easily identified using σ. The tendency to collinear-
ity of neighboring spins can be visualized as free en-
ergy barriers effectively pushing the ground-state con-
figurations towards the vertices of the inflated tetrahe-
dron, points of high symmetry, describing perfect (anti)-
alignment in spin triplets. By considering vertices only,
one can quickly observe that each vertex is invariant un-
der the permutation of the three others, S3, while the
whole symmetry group is isomorphic to the permutation
group of four points S4. Consequently, our points may
be described as the quotient space S4/S3 ' K4, a gen-
uine group since S3 is normal in that case. This group
provides the set of transformations that allows us to nav-
igate between the different collinear ground states, by
flipping pairs of spins (or not flipping any for the neu-
tral element), and is thus the actual symmetry broken
by this phase transition - they simply represent the ac-
tion of translations of the lattice on a ground state. As
a time-reversal spin transformation (Si → −Si) let the
elements of this group invariant, the impossibility to dis-
tinguish states breaking this symmetry, evocated above,
does not evince σ as an appropriate order parameter.

Up to now, we have considered a single reference tri-
angle ABC. Depending on the choice of the labels A, B

σ1

σ2

σ3

FIG. 8. Honeycomb lattice of effective spins, i.e. values of
the tri-dimensional order parameter locally defined on each
triangle of the kagome lattice. Shared vertices between trian-
gles are edges between sites of the honeycomb lattice. Each
effective-spin color corresponds to a value of σ, as shown on
the right panel. Vertices of red triangles and blue hexagons
are sites with opposite spin directions, as in Fig. 6. Each value
of σ exists both on up and down triangles (see for example
the red triangles).

and C of the triangle vertices (4 possibilities), σ under-
goes a transformation. To fix the definition of σ, its ith
component σi is defined as the dot product of spins on
a link directed along the vector ei of Fig. 6. This unam-
biguously defines σ on all the pointing-down as well as
pointing up triangles (see Fig. 7).

The four possible triplets for collinear configurations
are represented on Fig. 7. The centers of up and down
triangles on the kagome lattice form a honeycomb lattice,
and σ is an effective (non unit) spin on these sites, ori-
ented alternatingly as indicated on Fig. 8 in a collinear
ground state configuration. Note that once σ is chosen
on one of the kagome triangle in a collinear ground state
configuration (or equivalently on one of the honeycomb
lattice sites), σ on any other triangle can be deduced
from elementary operations belonging to the Klein group
K4: an ei translation of the spins rotates σ by π around
the σi axis. The tetrahedra of σ orientations falls in one
of four possible orientations, corresponding to a q = 4
Potts variable[47].

By analogy with the alternate order parameter used
for antiferromagnetic long-range order, we define an al-
ternate order parameter Σ, homogeneous over the full
lattice. The evolution of its average over the full lattice
as a function of the temperature and of the system size
will now be studied below using Monte Carlo simulations.
Note that in a collinear ground state, Σ is homogeneous,
and only four ground states are possible. In this aspect,
the effective model for the Σ variables resembles more to
the ferromagnetic q = 4 Potts model than to the anti-
ferromagnetic one, whose degeneracy on the honeycomb
lattice would be extensive.
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IV. MONTE CARLO SIMULATIONS AT FINITE
TEMPERATURE

A. The method

To investigate the phase diagram of the J1−J3 model,
we perform Monte Carlo simulations by implementing
a parallel-tempering method[48]. In the case of first-
order phase transitions, this method enables to over-
come the associated free-energy barriers by considering
Np replicas of the system at different temperature Ti,
with i = 1, . . . , Np. Each replica constitutes a sepa-
rate, parallel, simulation box whose state evolves inde-
pendently via local spin updates, but can also periodi-
cally be swapped with that of its immediate neighbors.
Hence, higher temperature simulation boxes allow lower
temperature ones to sample their phase space much more
efficiently. The temperature interval [Tmin, Tmax] is cho-
sen in order to cover the region where a putative phase
transition is expected, and the difference of inverse tem-
perature between two adjacent replicas ∆β is kept con-
stant (we also also tried a geometric progression for the
inverse temperatures in the range, without noticing sig-
nificant changes for the convergence of the method).

In order to satisfy a detailed balance for this process,
the probability PPT of accepting an exchange of con-
figurations between boxes i and i + 1 is chosen with a
Metropolis rule

PPT (i↔ i+ 1) = Min(1, exp(∆β∆E)), (2)

with ∆β = βi − βi+1 and ∆E = Ei − Ei+1. The double
arrow means that the probability PPT is symmetric to
the reverse exchange.

The mean acceptance probability PA(i ↔ i + 1) be-
tween boxes i and i+ 1 is the average of PPT (i↔ i+ 1)
over thermalized configurations, and writes:

PA(i↔ i+ 1) =

∫
dEi dEi+1 (3)

Pβi
(Ei)Pβi+1

(Ei+1)PPT (i↔ i+ 1),

where Pβi
(Ei) denotes the equilibrium probability of the

box i to have an energy Ei. Eq. (3) is merely a weighted
sum over all possible energetic configurations for two
given neighboring boxes. In order to optimally schedule
the temperatures, we check that the acceptance probabil-
ity of swaps between neighboring replicas is near 0.5[48].

We choose an even number of replicas Np and at con-
stant time intervals, two kinds of exchanges between
neighboring boxes are proposed: either exchanges be-
tween all pairs (2k − 1, 2k) where k = 1, ..., Np/2 or
exchanges between all pairs (2k, 2k + 1) where k =
1, ..., Np/2− 1, which preserves the ergodicity of the pro-
cess. Otherwise, we perform local updates of spins for
each simulation box according to a Metropolis rule.

In simulations on a lattice of linear size L, we store
the histograms of the energy and of the order parameter
modulus |∑O,M Σ| for each temperature, giving directly

α γ β δ ν η

2
3

7
6

1
12

15 2
3

1
4

TABLE I. Critical exponents of the two-dimensional q =
4 Potts model. For q ≤ 4, they have a conjectured exact
expression[47].

access to the mean energy 〈E〉(β, L), and the mean Potts
magnetization 〈Σ〉(β, L). The specific heat CV , the sus-
ceptibility of the order parameter χΣ, and the associated
Binder parameter BΣ[49] are given per lattice site as:

CV (β, L) =
β2

N

(
〈E2〉 − 〈E〉2

)
(4a)

χΣ(T, L) = N∆(〈Σ2〉 − 〈Σ〉2) (4b)

BΣ(β, L) = 1− 〈Σ4〉
3〈Σ2〉2 . (4c)

where N∆ is the number of up and down triangles.

Moreover, by using the reweighing method[50],and the
histograms obtained in simulations, one builds for each
box i all estimated above quantities within a tempera-
ture interval [(βi + βi−1)/2, (βi + βi+1)/2]. Collecting all
datas, one can build a global graph from Tmin to Tmax.
The convergence for all temperatures of the parallel tem-
pering method is confirmed when the curve is continuous
at each boundary between two temperature intervals.

In order to perform a finite-size scaling analysis, we
simulated different system sizes of the kagome lattice
with periodic boundary conditions. L is the linear size
of the lattice, and the number of sites is N = 3L2. From
simulation data, we determine the maxima Cmax

V (L) and
χmax

Σ (L) of these quantities, occurring at temperatures
TCV
c (L) and TχΣ

c (L). For a continuous phase transition,
the finite size scaling at the lowest order of these quanti-
ties is given by[49]:

Cmax
V (L) ' aLα/ν + b, (5a)

χmax
Σ (L) ' cLγ/ν + d, (5b)

TCV ,χ
c (L) ' eL−1/ν + Tc(∞), (5c)

where α, ν and γ are critical exponents whose values
for the ferromagnetic q = 4 Potts model are recalled in
Tab. I and Tc(∞) is the critical temperature of the phase
transition. For a first-order phase transition in D dimen-
sions, and when the linear size of the simulation box L
is larger than the correlation length, the magnetization
and the energy distributions become bimodal[49], which
leads to a finite size scaling given by:

Cmax
V (L) ' aLD + b, (6a)

χmax
Σ (L) ' cLD + d, (6b)

TCV ,χ
c (L) ' eL−D + Tc(∞). (6c)



8

J3
|J1|

0 1/4 1/2 0.68 3/4 0.809 1 2 ∞
φ/π 1 0.922 0.852 0.810 0.795 0.783 0.750 0.648 1/2

TABLE II. J3/|J1| versus φ for J1 = −1. φF ' 0.922π and
φO ' 0.783π are the boundaries of the unconventional phase,
whose exact value is given in Fig. 2.

B. Results for ferromagnetic J1

The linear size of the lattice L goes in the simulations
from 12 to 104. The interaction between nearest neigh-
bors is set to J1 = −1, and J3 is varied from 0.2 to 2. By
considering the T = 0 phase diagram (top of Fig. 2), this
corresponds to a vertical line in the upper left quarter,
which intersects three ground state sectors: ferromag-
netic, unconventional and 3sub-AF. One leaves the ferro-
magnetic phase when J3 = 1

4 and enters the degenerate

3sub-AF phase for J3 = 1+
√

5
4 ' 0.809, where one expects

a finite temperature phase transition due to emergence
of the discrete K4 order parameter. Note that Tab. II
gives a one-to-one mapping between the coupling ratio
J3/|J1| and the parameter φ introduced in the preceding
section.
CV and/or χΣ show a maximum increasing with L

for some J3 values, revealing a phase transition. The
resulting finite temperature phase diagram is displayed
in Fig. 9, while Fig. 10, 11 and 12 illustrate the specific
points J3 = 0.67, J3 = 1 and J3 = 1.5.

Blue points indicate both a CV and χΣ divergence,
whereas green points indicate that only CV diverges. For
the blue points, Cmax

V and χmax
Σ have been collected on

Fig. 13, for different values of L and J3, together with
the temperature TCV

c and TχΣ
c .

We now discuss in more detail our results by consider-
ing the three different regions (ferromagnetic, unconven-
tional and 3sub-AF ground states).

1. Ferromagnetic region: no transition

For J3 = 0.2 (let us recall that J1 is set to −1 in
simulations), no phase transition was observed, at any
temperature. There is no evolution of the specific heat
with the system size. Hence our results are in line with
the predictions of the Mermin-Wagner theorem for this
phase, as expected.

2. Non K4 phase transitions in the unconventional phase

When 0.25 < J3 < 0.809, the ground state is not easily
determined and seems to be very dependent of J3, as
explained in Sec. II (for example, with a succession of
various types of wave vectors). The following values of
J3 have been explored: 0.3, 0.4, 0.5, 0.6, 0.65, 0.67, 0.69,

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
J3/|J1|

0.0

0.2

0.4

0.6

0.8

1.0

T c ferro
magnetic

?

3sub-AF

FIG. 9. Phase diagram of the J1 − J3 Heisenberg model on
the kagome lattice. A phase transition with both CV and χΣ

divergence (blue points) is evidenced by Monte Carlo classi-
cal simulations, restoring the K4 symmetry. Blue (res.grey)
dashed line fits the low-T (resp. high-T ) points with the func-
tion a(J3/|J1| − c)b with with a = 0.851, b = 0.516, c = 0.670
(resp. a = 0.7547, b = 0.832, c = 0.417). Green points are
phase transitions with no χΣ divergence The green dashed
line is a guide to the eyes. Error bars are smaller than the
symbol size

0.7, 0.71, 0.75, 0.8, all a divergence of CV (β, L) with L
at a unique temperature.

For 0.25 ≤ J3 ≤ 0.67, the K4 Potts parameter Σ re-
mains close to zero at all temperatures. However, the
specific specific heat displays a peak at low temperature,
whose size increases with L. The approximative limit of
TCV
c when L increases seems to be a continuous function

of L and is indicated as green points on Fig. 9: it in-
creases from zero for J3 = 1/4 up to Tc = 0.134(1) for
J3 ' 0.60(3), and slightly decreases down to 0.116(1) up
to J3 = 0.67(2). Due to the nature of the ground state,
it is possible that transitions associated with various bro-
ken symmetries occur in this range of parameters. It is
for example probable that the three-fold spatial rotation
is broken at low T for J3 ' 0.67 as the order of Fig. 5
particularizes one of the three sublattices. We did not
try to identify the order parameter associated with these
phase transitions as the focus of this study is the 3sub-AF
phase.

For 0.5 ≤ J3 ≤ 0.67, the mean energy per site at low T
depends on the system size even quite far from the critical
temperature. Moreover the temperature of Cmax

V varies
non monotonously with the system size (see Fig. 10).
These features are the signature of a phase transition
thwarted by the incommensurability of the lattice size
with the periodicity of the order, inducing frustration.
The phenomenon weakens when L increases, and could
be handled using twisted boundary conditions.

Lastly, the energy distribution is unimodal for J3 <
0.5, but becomes bimodal for system sizes of L ≥ 32 (24)
and J3 = 0.6 (0.65), which is in favor of a first-order
phase transition. For J3 = 0.67, the energy distribution
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0.114 0.116 0.118 0.120 0.122
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0
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0.114 0.116 0.118 0.120 0.122
T

1.28
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1.24

E

1.28 1.27 1.26 1.25 1.24
E

0.00

0.02

0.04

0.06

0.08

P
(E

)

L=18, T=0.118
L=24, T=0.1194
L=36, T=0.1159
L=48, T=0.1168
L=60, T=0.1166

FIG. 10. Specific heat CV , average energy E and distribution
of the energies for J1 = −1 and J3 = 0.67, for different lattice
sizes. TCV

c is non-monotonic, which corresponds to variations
of E with the size L over a large temperature range. The
energy distribution at TCV

c is clearly bimodal, sign of a first
order transition. The K4 order parameter remains very low
and no divergence of its susceptibility develops in this range
of temperature.

consists in two well separated peaks near Tc, even at low
L and the phase transition is clearly first order (bottom
of Fig. 10).

For 0.69 ≤ J3 ≤ 0.809, Σ has large values in the low T
phase and its susceptibility shows a peak which increases
with L. For this reason, this transition will be discussed
in the next paragraph, on the K4 transition. Such K4

transition is surprising here as the T → 0 state is not
supposed to break the K4 symmetry: Σ should be zero
in the non- 3sub-AF ground state. Another phase tran-
sition thus seems unavoidable at lower T , restoring K4.
In this hypothesis, the green dashed line of Fig. 9 was
extended up to 0.809, implying a reentrance of the K4-
breaking phase in the unconventional phase. The low-T
phase transition would be first-order, as it relates phases
with different broken symmetries. However, we did not
succeed to evidence such a low-T phase transition, prob-
ably because of metastable states breaking K4, in which
the simulations remains stucked despite the parallel tem-
pering.

3. K4 phase transition, in the unconventional and 3sub-AF
regions

For J3 ≥ 0.69, a transition occurs with both a Cmax
V

and a χmax
Σ divergence with L, occurring at temperatures

converging towards the same value Tc(J3). The Binder
cumulant associated with Σ also indicates a phase tran-
sition: it tends to 2/3 below Tc when L increases and
its curves cross at the same temperature for different L.
Fig. 11 shows several quantities as a function of T for

2

3

4

C V

L=12
L=24
L=36
L=48
L=60
L=72
L=84
L=96

0.0

0.2

0.4

0.6

<
>

0

200

400

600

0.46 0.47 0.48 0.49 0.50 0.51
T

0.55

0.60

0.65
B

FIG. 11. Specific heat CV , K4 order parameter Σ, suscep-
tibility χΣ and Binder parameter BΣ versus T for different
system sizes L for J1 = −1 and J3 = 1.

different system sizes, for J3 = 1, as an illustration of a
finite size scaling.

This phase transition separates a low-T phase with
large Σ from a high-T one with nearly zero Σ and cor-
responds to the restoration of the K4 Potts symmetry.
Thus, we have the proof that the order by disorder fa-
vors collinear states among the ground state manifold at
low temperature.

The critical temperature Tc(J3) increases with J3

(Fig. 9) and is fitted by the three-parameter function
Tc(J3) = a(J3 − c)b. When the fit is restricted to low
J3’s (blue dashed line of Fig. 9), the exponent b is nearby
1/2, and increases up to b = 0.88 for only large J3’s (grey
dashed line). b seems to tend to 1 for large J3, what
would be similar to the results of Weber et al. [51] on the
J1 − J2 square lattice: a square root behavior near the
transition with the competing phase and a linear behav-
ior in the large J2 (J3 here) limit.

At low J3 . 1, the energy distribution is weakly bi-
modal near Tc, which means that the two peaks are not
well separated at low L. Both CV and χΣ show a nice
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0.70 0.75 0.80 0.85 0.90 0.95 1.00
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1.35
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C v
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FIG. 12. Specific heat for different system sizes L for
J1 = −1 and J3 = 1.5, with the development of a slowly
increasing secondary peak. The disjoint lines are an effect of
the reweighting method at the junction between two temper-
ature intervals and give an indication of the error bars.

divergence, at a temperature that extremely rapidly con-
verges, making the determination of the exponents re-
lated to it impossible due to precision issue. The expo-
nents of the growth of χΣ is very near 2, which supports
the hypothesis of a first order transition, but the one for
CV remains near 1, against 2 expected. It may be as a
consequence of the unclear separation of the two peaks
in the energy distribution, revealing a finite, but very
large correlation length at the critical temperature, that
would require simulations with larger lattice size. An-
other explanation would be that the transition becomes
second ordered. Then, if it is in the universality class of
the q = 4 Potts model, the exponents should be α/ν = 1
and γ/ν = 7/4. These values are possible, but cannot be
confirmed in view of our calculations.

The energy distribution at Tc becomes unimodal for
J3 & 1 up to the explored lattice sizes. Together with
this change, the maximum of the specific heat needs
much larger lattice sizes to convincingly increase with
L (Fig. 13). This is more and more pronounced when J3

increases: for J3 & 1.25, we even see the appearance at
large size of a secondary peak in CV , that develops itself
on the side of the main broad peak. For J3 = 1.5, it only
catches up the broad-peak maximum value at L ' 64,
as illustrated on Fig. 12. It can also be seen on Fig. 13,
where it translates in a dropout of TCV

c with L. It be-
comes tedious to extract critical exponents for CV be-
cause the prefactor of the scaling behavior is very small.
The signature of the transition is still present in the scal-
ing behavior of the order parameter: χΣ displays clear
sign of divergence, even at small lattice sizes, with an
exponent that remains near 2. This behavior at large J3

explains the absence of points for J3 > 2 on the phase
diagram of Fig. 9, where the extraction of the critical
temperature would require too large lattice size.

To conclude, we observe a phase transition for J3 >

0.69 associated with Σ, that is weakly first order for small
J3. With increasing J3, the first order transition still
weakens, up to a point where it could be a second order
transition. However, the critical exponents are difficult
to determine due to the large sizes required to observe the
leading order behavior of the maximum of CV , but could
correspond to those of the q = 4 Potts model. In the case
of the antiferromagnetic J1 − J2 square lattice, where
order by disorder tends to align spins for J2 > J1/2,
the same difficulty was observed[51] when the sublattices
become less coupled (when J2 increases for the square
lattice, J3 for the kagome).

C. Results for antiferromagnetic J1

In order to explore the full 3sub-AF phase of the phase
diagram, we have also investigated the model with an
antiferromagnetic interaction between the first nearest
spins (J1 = 1). However, this situation is not supposed
to describe the Ba-Vesignieite compound. Simulation are
performed for various positive values of J3 and the transi-
tion temperatures are displayed on Fig. 14, which trans-
lates Fig. 9 in terms of φ and extends it to positive J1

values. An astonishing similarity with the ferromagnetic
J1 is found: the transition temperature does not depend
on the sign of J1 for J3 > 1, as emphasized on Fig. 14. It
suggests that the critical temperature is only a function
of sinφ in the whole 3sub-AF phase. The grey curve of
Fig. 14: Tc = a(J3/|J1| − c)b, with b = 0.88 has a limit
limφ→π/2 Tc(φ) = 0 as b < 1, which seems coherent as in
this limit, the three sublattices are completely indepen-
dent and no order is expected, at any temperature. A
linear behavior with b = 1 is however not excluded for
large J3 if logarithmic corrections restore this limit.

For J3 < 1, the ground state is in the
√

3×
√

3 phase
and at low T , Σ is effectively very low. However, for
0.95 < J3 < 1 (0.242 < φ/π < 0.25), it sharply increases
above a first critical temperature, and goes down again
at a second one (grey dots of Fig. 14). This shows the ex-
istence of a reentrance of the K4 symmetry broken phase
in the

√
3×
√

3 phase. This behavior is here more easily
detected than in the unconventional phase, where it was
only conjectured. This is probably due to the nature of
the
√

3×
√

3 low T phase, that here does not break any
symmetry and must cause less thermalization issue.

V. QUANTUM AND THERMAL
FLUCTUATIONS: LINEAR SPIN WAVE

APPROXIMATION

An analytical approach to understand the emergence of
a discrete order parameter, leading to a phase transition,
consists in departing from one of the classical ground
states, and perturbing it by adding infinitesimal ther-
mal or quantum fluctuations. We thus expect to lift the
degeneracy between them. Thermal and quantum per-
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FIG. 13. Maximum of CV and of χ versus the lattice size L for J1 = −1 and various J3, and temperature of their maxima. Tc
has been extracted from χΣ.
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FIG. 14. Phase diagram of the J1 − J3 Heisenberg model on
the kagome lattice as a function of φ. Phase diagram obtained
by Monte-Carlo simulation of the J1 − J3 model,in the T − φ
plane. Tc is in unit of J =

√
J2

1 + J2
3 . The blue and green

points are those of Fig. 9, for J1 < 0, with the same fits
(blue and grey dashed lines). Grey and blue dots indicate a
phase transition from a K4 ordered low-T phase and green
crosses: between two K4 symmetric phases. The grey dashed
line is symmetric with respect to φ = π/2. The magenta
crosses indicate a transition from a low-T K4 symmetric phase
towards an intermediate-T K4 ordered phase: the K4 order
only exists at intermediate temperature over this small range
of φ.

turbations can be handled through the same linear spin
wave formalism. It will be developed in the two next
subsections. But let us first develop the part common to
both perturbations and define a set of eigen energies ωq,l

which will be exploited differently in each case.
First, a reference ground state is chosen, whose spin

orientation on site i is S0
i . Then, we chose a rotation Ri

such that RiS
0
i = ez and label by S′i the spin in the newly

defined basis: S′i = RiSi, whatever its orientation. S′i is
either a real vector in the classical case, or an operator
vector in the quantum case. In both cases, its norm is
constrained by the spin length S. Using S′i

±
= S′ix±iS′iy,

a vector Ui is defined as:

Ui =




S′i
+

S′i
−

S′i
z


 = V S′i V =




1 i 0

1 −i 0

0 0 1


 (7)

The Hamiltonian written in terms of Ui is:

H =
1

2

∑

i,j

Ui · (V RiJi,jR−1
j V −1)

︸ ︷︷ ︸
Mi,j

Uj (8)

We now expand the Hamiltonian with respect to a small
parameter related to the distance of the actual state with
the reference ground state: S−S′zi . We need here to focus
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successively on the low-T classical case and on the zero-
T quantum case, to finally get the same eigen modes in
both situations.

To describe the quantum ground state, a Holstein-
Primakoff transformation of the S′i spins is performed.

It defines a†i and ai bosonic creation and annihilation op-
erators on each site i. They are subject to a constraint

on their number ni = a†iai ≤ 2S, in order to respect the
spin length. ni is supposed to be O(1) in S:

Ui =




√
2S − a†iai ai

a†i

√
2S − a†iai

S − a†iai


 =




√
2Sai +O

(
S−1/2

)
√

2Sa†i +O
(
S−1/2

)

S − a†iai


 (9)

The Hamiltonian now describes interacting bosons on the
lattice.

On the classical side, by choosing as small complex

parameter zi =
S′+

i√
2S

and assuming it in O(1) (which is

unjustified, as explained below), we get:

Ui =




√
2Szi√
2Sz∗i√

S2 − 2S|zi|2


 =




√
2Szi√
2Sz∗i

S − |zi|2 +O
(
S−1

)


 .

(10)
The Hamiltonian of Eq. (8) is now expanded in powers

of 1/
√
S. The first term is the energy of the reference

classical ground state, in S2. The next term, in S3/2,
is zero if the reference ground state has correctly been
chosen, as a stationary point of the reference energy with
respect to the Ri’s. Finally, the first interesting term is
in S, and has exactly the same form from Eq. (9) or from

(10): it is a quadratic Hamiltonian either in ai and a†i or
in zi and z∗i :

HS =
1

2

∑

i,j

v†iM
S
i,jvj (11)

where MS
i,j is a 2×2 matrix and vi is the two-component

vector containing either ai and a†i or zi and z∗i .
Depending on the periodicity of MS

i,j , an eventually
large unit-cell of m sites is chosen to perform a Fourier
transform ṽq of vi, of components:

ṽq =




ãq,1

ãq,2

. . .

ãq,m

(ã−q,1)†

(ã−q,2)†

. . .

(ã−q,m)†




,




zq,1

zq,2

. . .

zq,m

(z−q,1)∗

(z−q,2)∗

. . .

(z−q,m)∗




. (12)

The Hamiltonian rewrites:

HS =
1

2

∑

q

(ṽq)† · M̃S
q ṽq + Eclass, (13)

where i and j = 1 . . .m are now the indices of sites in
the large unit cell and q are wave vectors of a reduced
Brillouin zone. The constant Eclass results from commu-
tation relations used in the quantum case, and has no
effect in the classical expansion.

The eigen energies ωq,l are determined via a Bogoli-
ubov transformation, that preserves the bosonic commu-
tation relations in the quantum case, and the conjuga-
tion relations between zi and z∗i in the classical case.
We thus define new vectors w̃q from a matrix Pq such
that Pqw̃q = ṽq, with properties similar to the ṽq, that

are eigen modes of the Hamiltonian (the transformed M̃S
q

matrix is diagonal). The information that we can extract
from Pq and ωq,l in the quantum and classical cases will
be described in the next subsections.

We now apply this formalism to the J1 − J3 model,
in the 3sub-AF part of the phase diagram (Fig. 2). A
generic ground state is chosen, parametrized by three
angles θB , θC and φC where spins in the origin unit cell
(on the green, blue and red sites of the brown triangle of
Fig. 4) are:

S0
A =




0

0

1


 , S0

B =




sin θB

0

cos θB


 , S0

C =




sin θC cosφC

sin θC sinφC

cos θC


 .

(14)
This parametrization describes all the ground states, up
to a global spin rotation (equivalent to an appropriate
choice of the basis in the spin space). Moreover, up to
a lattice translation, we can fix 0 ≤ θB , θC ≤ π/2, 0 ≤
φC ≤ π. The three states of the bottom of Fig. 3 are given
from left to right by (θB , θC , φC) = (0, 0, 0) (collinear
state), (π/3, π/3, π) (hexagonal) and (π/2, π/2, π/2) (oc-
tahedral).

To perform the Fourier transformation of Eq. (13), a
unit-cell of 12 sites has to be chosen (as on Fig. 6), which

results in 24× 24 M̃S
q matrices. The dispersion relations

for φ = 3π/4 (J3 = −J1 > 0) are given in Fig. 15 for the
collinear, hexagonal and 3sub-AF states.

A. Linear thermal spin wave approximation

In two dimensions, we cannot expect to have a valid ex-
pansion at finite temperature: the Mermin-Wagner theo-
rem predicts that a continuous order parameter (here the
spin orientation), cannot survive to infinitesimal temper-
ature. The hypothesis done on the small fluctuations
around the classical ground state is false. However, short
range correlations survive, and their nature can still be
inferred from entropic selection of the maximally fluctu-
ating ground state at low temperatures[39, 52].
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FIG. 15. Dispersion relations ωq,l along a cut in the Brillouin zone (red line on the right) from linear spin wave approximation
for φ = 3π/4 (J3 = −J1 > 0) for the J1 − J3 kagome model, for the three ground states of Fig. 3. As a unit cell of 12 sites has
been chosen, there are 12 energy bands in the reduced Brillouin zone (full black line on the right).

Classical spins are described, in the linear spin wave
approximation, by a collection of independent harmonic
oscillators of frequencies ωq,l. There are two modes
for each couple (q, l), associated with the real (x spin
component) and imaginary (y spin component) part of
zi in Eq. (10). At finite temperature, the free energy
F = E − TS depends on the reference ground state
which has been chosen. E is the same for all of them,
thus, it is the entropy that lifts the degeneracy. For
a classical harmonic oscillator of frequency ω, the en-
tropy is S = const − ln T

ω . A zero point energy is nec-
essary to forbid negative values of the entropy at low
temperature. The entropies of different reference ground
states are parametrized by the angles S(θB , θC , φC) of
Eq. (14), or more conveniently, by the vector of spin
dot-products σ, defined in Sec. III B. The difference
∆S(θB , θC , φC) = S(θB , θC , φC) − S(0, 0, 0), or equiva-
lently ∆S(σ) = S(σ)−S(σ0), where σ0 = (1, 1, 1), does
not depend on the temperature and is represented on
Fig. 16 for φ = 3π/4. The maximum is reached in the
collinear state, and the minimum in the octahedral state,
as expected.

B. Linear quantum spin wave approximation

In quantum materials, the spin has a finite value
(S = 1/2, 1, 3/2...), which differs from the classical case
corresponding to the limit S → ∞. In Ba-Vesignieite,
the spin on the copper sites has the most quantum value
of 1/2. We now discuss the consequences in light of the
previous classical considerations. Quantum fluctuations
tend to disorder the system: a model with a magnetically
ordered ground state in the classical limit generally has
an order parameter m that decreases when S decreases.
We thus face two possibilities: either the order param-
eter remains finite (m > 0) when quantum fluctuations
are switched on, or it reaches zero and the ground state
is no more long-range ordered.

The linear spin wave approximation expands to first
non trivial order quantum observables (as the energy or

an order parameter) in 1/
√
S at zero temperature and

C

0

/4

/2

C

0

/2

B

0

/8

/4

3 /8

/2

4

3

2

1

0

FIG. 16. Low energy entropy ∆S(θB , θC , φC) (top) and
∆S(σ) (bottom), where the angles were defined in Eq. (14)
and σ in Sec. III B, for J1 < 0 and J3 = −J1. The maximal
entropy (in dark red) is for θB = θC = 0: the collinear state,
and the minimum (in dark blue) for θB = θC = φC = π/2:
the octahedral state, corresponding respectively to the ver-
tices and to the center of the inflated tetrahedron formed by
the set of σ values.
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FIG. 17. Results of quantum linear spin wave approximation
for (J1, J3) = (cosφ, sinφ), in the 3sub-AF phase of Fig. 2.
Top: correction ∆E of order S to the energy around the three
classical states depicted in Fig. 3. Bottom: correction ∆Σ
of order S to the order parameter for the collinear phase.
The dashed line indicates an approximative value of −∆Σ/

√
3

above which quantum fluctuations restore the K4 symmetry
for S = 1/2.

around a specific ground state. When several ground
states exist, as occurs here in the J1 − J3 model, the
expansion can be performed around any of them, giving
different correction to the energy that eventually lifts the
degeneracy. The first terms of the energy are:

E = S(S + 1)Eclass −
S

2

∑

q,l

ωq,l +O(
√
S), (15)

where Eclass = −2J3 in the 3sub-AF phase. The term
of order S: ∆E = Eclass − 1

2

∑
q,l ωq,l, depends on the

angles (θB , θC , φC) and on the coupling φ. It can be rep-
resented in the same way as ∆S in Fig. 16 for a fixed
φ. The same qualitative behavior is obtained, and the
same conclusion: the collinear state is the most favored
by quantum fluctuations, whereas the octahedral one has
the weakest quantum energy correction. It is quite ex-
pected that quantum and thermal fluctuations favor the
same order, even if counter-examples exist[53]. For com-
pleteness, the curve of ∆E is given versus φ in Fig. 17,
for the three ground states of Fig. 3. Whatever φ (except
φ = π/2 where the three sublattices are completely de-
coupled), quantum fluctuations always favor the collinear
state.

The order parameter Σ can be expanded as the energy:
Σ = S2 Σclass + S∆Σ +O(

√
S), which can be used as an

indication of the critical spin where its average cancels,
excluding the occurrence of a phase transition at finite
temperature. The classical value is Σclass =

√
3. Thus,

Sc ∼ −∆Σ√
3

. Sc is below 1/2 in all the 3sub-AF phase,

except near the boundary with the unconventional phase
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FIG. 18. Ground state energy per site e0 as a function of
φ, with (J1, J3) = (cosφ, sinφ) on the kagome lattice. e0 is
obtained via the method described in Bernu et al. [54], using
high temperature series expansions up to order 15, assuming
no finite temperature phase transition. The red and black
points are the results with the hypothesis that CV ∼ A(φ)Tα,
with α = 1 and 2. The blue curve is the linear spin wave
energy up to order S, approximated for S = 1/2. nCPA is the
number of coinciding Pade approximants, whose large value
indicates a good quality of the result.

(Fig. 17). It suggesting that the K4 symmetry could be
broken even in the S = 1/2 case.

VI. HIGH TEMPERATURE SERIES
EXPANSIONS (HTSE)

After a look at the behavior of the model from the
classical limit (S =∞) towards finite spins, the extreme
quantum case of S = 1/2 can be investigated through
high temperature series expansions. The logarithm of
the partition function lnZ

N (β) is expanded in powers of
the inverse temperature β directly in the thermodynamic
limit:

lim
N→∞

lnZ

N
(β) = ln 2 +

∞∑

n=1

(
n∑

i=0

Qi,nJ
i
1J

n−i
3

)
βn, (16)

where N is the number of lattice sites. Enumerating con-
nected clusters on the J1−J3 kagome lattice, we exactly
calculate the coefficients of this series up to order 15 in
β, each of them being an homogeneous polynomial in J1

and J3.
A direct use of the truncated series to evaluate ther-

modynamical functions is doomed to fail, as the series
only converges for T & J1, J3. An extrapolation tech-
nique called the entropy method (HTSE+s(e)) has been
developed[55, 56], that extrapolates functions from in-
finite down to zero temperatures, under the hypothesis
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of the absence of finite temperature phase transition (so
that the functions are analytical over the full tempera-
ture interval). First, we apply it to the J1 − J3 model
assuming that this hypothesis is verified. Incoherent re-
sults are found near J3 = |J1| for J1 < 0. Thus, in a
second part, we will adapt the method to account for
finite temperature phase transitions.

Without finite temperature phase transition:
the HTSE+s(e) method also requires some inputs: the
ground state energy per site e0 and the low temperature
behavior of CV (in power law CV ∼ Tα, or exponen-
tial for example), what can be understood as the need to
constrain the thermodynamical functions both from the
T = ∞ side, which is ensured by the series coefficients,
and from the T = 0 one.

The need for e0 is a real problem, as no generic method
exist to determine it in the case of frustrated quantum
models. In Bernu et al. [54], a self-consistent method
has been developed that proposes an e0. Although no
rigorous argument says that this energy is near the real
one, it has been shown to give extremely coherent results
on the first neighbor kagome model. With the hypothesis
that no finite-temperature phase transition occurs, the
ground state energy e0 obtained by this method is shown
in Fig. 18, for CV ∼T→0 AT

α with α = 2 (which is the
case for φ = π/2) and α = 1. The minimal φ = π/2 on
Fig. 18 corresponds to the three decoupled square sub-
lattices, whose ground state energy is accessible through
quantum Monte Carlo simulations in this unfrustrated
case: e0 = −0.6695[57, 58]. HTSE+s(e) results give still
better results that the linear spin wave approximation
at φ = π/2. The quality of the results is bad in the
neighborhood of φO (convergence issue of the method:
small number of coinciding Pade approximants), at the
point where a slope breaking occurs in e0(φ).

With a finite temperature phase transition: In
view of the previous sections, this behavior can be at-
tributed to the existence of a phase transition at finite
temperature Tc near φO. In the Supp. Mat. of [56],
the possibility to detect a phase transition thanks to
HTSE+s(e) was proposed for a ferromagnetic BCC lat-
tice, where e0 was exactly known and the extrapolation
was performed down to T = 0 despite the singularity
at Tc. Here, the method tends to deviate e0 from its
real value to get ride of eventual singularities. We pro-
pose a new adaptation of HTSE+s(e) to models with
phase transitions, that will be detailed elsewhere[59].
The extrapolation is only done on the temperature in-
terval [Tc,∞], requiring as supplementary input param-
eters Tc, the energy ec and the entropy sc at Tc We also
characterize the behavior of CV near the transition by an
exponent α:

CV (T ) ∼T→T+
c

A

(T − Tc)α
. (17)

Because of the sum rules on CV (T )/T , α must be lower or
equal to 1. For J1 = −1 and J3 = 1, the four parameters
Tc, ec, sc and α giving the higher quality of result were

looked for. Interesting values are found in a tiny valley of
the 4 dimensional space, with a transition at Tc = 0.42(1)
and an exponent of α = 0.29(1), ec = −0.405(5) and
sc = 0.35(1).

Even if still exploratory, this section on HTSE confirm
the possibility of a phase transition in the S = 1/2 model,
in the domain of parameter where it is the more easily
detected in the classical model: J3 ' |J1|.

VII. CONCLUSION

Motivated by the Ba-Vesignieite compound, this arti-
cle has explored the J1−J3 model on the kagome lattice,
in the domain of large J3. The classical phase diagram
has revealed interesting phases: for ferromagnetic J1 and
moderate J3, an unconventional phase displays conical,
spiral, and probably other unusual phases, whereas for
large J3, whatever the sign of J1, an 3sub-AF phase pos-
sesses an accidental degeneracy. Thermal or quantum
fluctuations lift this degeneracy via the order by disorder
mechanism, favoring collinear configurations, labelled by
an element of the K4 group. An order parameter Σ was
constructed by analysing the symmetries of the model,
to detect this discrete K4 symmetry breaking.

Classical Monte Carlo simulations have evidenced an
order-by-disorder induced phase transition associated
with Σ. The transition is first order for low J3’s, and
either weakly first order or second order for large ones.
Other phase transitions were found in the unconventional
phase, associated with one or several other order param-
eters.

Linear spin wave formalism have shown that both ther-
mal and quantum fluctuations favor the collinear states.
But quantum fluctuations can be so strong that they
completely disorder the system, preventing the occur-
rence of a phase transition, notably near the boundary
with the unconventional phase φ = φO. Finally, HTSEs
also confirm the possibility of a phase transition, this
time in the S = 1/2 model.

What are the implication of this phase transition on
Ba-Vesignieite ? First of all, the dominant coupling was
proposed to be J3 in [12], but the one coming next was J ′3,
then J1, and J2. We did not considered J ′3 as it did not
couple the three kagome sublattices, and have focused on
J1. Note that J2 would have led to the same order by
disorder effect as J1. One could argue that many pertur-
bations other than next nearest neighbor interactions can
lift the degeneracy of the 3sub-AF phase. Among them,
a slight distortion of the lattice is know, of less that 1% of
the Cu-Cu distance and causes a coupling anisotropy[13].
Some impurities are unavoidable, whose effect has been
studied on the J1 − J2 square lattice. Their effect is
opposite to the one of thermal fluctuation, selecting or-
thogonal configurations[39, 52], and penalizing collinear
ones. If this occurs here, the octahedral state of Fig. 3
would be favored, possibly leading to a chiral phase tran-
sition. Dzyaloshinskii-Moriya interactions must also be
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present[60], as well as Ising spin anisotropy[12] but even-
tually very small. Lastly, a small coupling between spins
in successive kagome planes exists and is suspected to
induce the phase transition observed at T = 9K[12].

However, despite this whole set of deviations from the
J1 − J3 model, the transition discussed in this article
remains meaningful. At temperature larger than the en-
ergy scale of these deviations, their effect is crushed, and
the K4 order can still be present.

Lastly, the theoretical investigation of such an emerg-
ing q = 4 Potts order parameter and of its phase tran-
sition illustrate in an original way the order by disorder
mechanism.
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Appendix A: The Luttinger-Tizsa (LT) method

To use the LT method[27, 28], we perform a Fourier
transform on H. With this in mind, we rewrite Eq. (1)

H =
1

2

∑

r

∑

v

∑

i,j

Ji,j(v) Si,r · Sj,r+v, (A1)

where r, r + v are vectors from a Bravais lattice locating
the unit-cells of the interacting spins, i and j label in-
equivalent sites in each unit-cell. Next, we introduce the
Fourier modes of a spin i in cell r:

Si,r =
1√
N

∑

q

S̃i(q)eiq·r, (A2)

to rewrite the Hamiltonian as:

H =
1

2

∑

q

∑

i,j

S̃i(q)J̃i,j(q)S̃j(−q) (A3)

where J̃i,j(q) =
∑

v Ji,j(v)eiq·v is akin to a Fourier
transform of the couplings of H. The Hamiltonian it-
self is now expressed as a bilinear form in the Fourier
modes S̃i(q).

If the lattice is a Bravais lattice (with one site per
unit cell), its ground state may easily be found by di-

agonalizing J̃(q) and minimizing its lowest eigenvalue
λmin(q) with respect to q. This, in turn, leads us to a
generally discrete set of wave vectors qi of the Brillouin
zone respecting the lattice symmetries[61]. The desired
ground state is then obtained by solely populating the
eigen modes corresponding to λmin(qi) and performing
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FIG. 19. λmin(q) for the J1−J3 model on the kagome lattice
with φ = φO − 0.05 (top left), φO + 0.05 (top right) φ =
φF − 0.05 (bottom left), φF + 0.05 (bottom right).

an inverse Fourier transform.
However, for non-Bravais lattices (with more than one
site per unit cell), we have to take into account an un-
mentioned constraint: at each site we have a unit spin
Si, with ‖Si‖ = 1. For Bravais lattices this is not an is-
sue, since there always exists a spiral state, defined by a
single wave vector, which is a ground state of the Hamil-
tonian. For non-Bravais lattices, however, such as the
kagome lattice we are working on, this constraint pre-
vents us from applying the last step, as naively populat-
ing a mode with the lowest energy generally does not re-
spect the constraint on all sites of a unit cell. Thus, other
modes can be used to recover the constraint, increasing
the energy as compared with λmin, which is then only a
lower bound.

Appendix B: Determination of the value of φO

We present here a derivation of the value of φO, where
the transition between the orthogonal and unconven-
tional phase occurs in the J1 − J3 model on the kagome
lattice (see Fig. 2). The proof rests on the LT method

presented in App. A. The J̃(q) matrix of Eq. (A3), mul-
tiplied by the overall 1

2 , writes:




J3(c21 + c22 − 1) J1

2 c1
J1

2 c2
J1

2 c1 J3(c21 + c23 − 1) J1

2 c3
J1

2 c2
J1

2 c3 J3(c22 + c23 − 1))


 ,

(B1)

where c1 = cos qx2 , c2 = cos
qy
2 and c3 = cos

qx−qy
2 .

In the 3sub-AF phase, the minimal eigenvalue λmin(q)

of J̃(q) occurs for three q: M1,2,3, the middles of the
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edges of the Brillouin zone (see Fig.19). At the transi-
tion toward the unconventional phase, each of the three
minima splits in two, giving six new minima evolving
with φ along the line Mi − Γ.

The characteristic polynomial C(λ) of the J̃i,j(M1 +
δq) matrix is expanded to the first order in ε = λ+ 2J3,
as we look for the minimal root of C(λ), which is nearby
−2J3 (the energy of an 3sub-AF state) in the neighbor-
hood of M1 = (π, 0) and for the values of J3 and J1 of
interest. The root of the first order degree polynomial
approximating C(λ) is expanded to the second order in
δq. Increasing from φ = π/2, the quadratic form thus

obtained changes at φ = φt = π − arctan 1+
√

5
4 from a

positive one, with a minima at δq = 0, to a non-positive
one, with a saddle point at δq = 0, indicating that the
energy of the 3sub-AF states is no more the lower bound,
and that φO ≥ φt (they are unequal if the 3sub-AF phase
remains the ground state in the area where it does not
have the LT lower bound energy).

It remains to exhibit a state that has a lower energy
than the 3sub-AF states for φ > φt to prove that φt is
effectively the transition value. This is done using the
conical state of Fig. 5. We parametrize it by four angles
(θ, φ, ψ). A unit cell of 12 sites is defined as indicated
on Fig. 5, with three different spin orientations S1,2,3. A
translation in the e1 direction has no effect on the spin

orientation, whereas a translation in the e2 (y coordi-
nate) rotates the spins of φ and inverse them:

S1 = (−1)y




cos 2yψ

sin 2yψ

0


 ,

S2 = (−1)y




− sinφ sin((2y − 1)ψ)

sinφ cos((2y − 1)ψ)

cosφ


 ,

S3 = (−1)y




− sinφ sin((2y − 1)ψ)

sinφ cos((2y − 1)ψ)

− cosφ


 (B2)

The energy per site thus reads:

E =
2J1 sinφ

3
(sinψ(1− cos 2ψ)− cosψ sin 2ψ + sinφ)

+
2J3

3
(2 sin2 φ sin2 ψ − cos 2ψ − 2 cos2 φ)

The minimum of this energy (numerically obtained) is
effectively between the lowest bound and the energy of
the 3sub-AF states for φ & φO (see the inset of Fig. 2,
bottom)
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